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In the recent decade, meshless methods have been handled for solving some PDEs due to 
their easiness. One of the most efficient meshless methods is the element free Galerkin 
(EFG) method. The test and trial functions of the EFG are based upon the special basis. 
Recently, some modifications have been developed to improve the EFG method. One of 
these improvements is the variational multiscale EFG (VMEFG) procedure. In the current 
article, the shape functions of interpolating moving least squares (IMLS) approximation 
are applied to the variational multiscale EFG technique to numerical study the Navier–
Stokes equations coupled with a heat transfer equation such that this model is well-
known as two-dimensional nonstationary Boussinesq equations. In order to reduce the 
computational time of simulation, we employ a reduced order model (ROM) based on 
the proper orthogonal decomposition (POD) technique. In the current paper, we developed 
a new reduced order model based on the meshless numerical procedure for solving an 
important model in fluid mechanics. To illustrate the reduction in CPU time as well as the 
efficiency of the proposed method, we investigate two-dimensional cases.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

This work devoted to coupling of the incompressible Navier–Stokes equations with a heat conduction problem. The 
resulting system is the so-called nonstationary Boussinesq approximation [1,2]. The Boussinesq equations can be used for 
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modeling large scale atmospheric and oceanic flows that are responsible for cold fronts and the jet stream. Furthermore, 
the Boussinesq equations have important role in the study of Rayleigh-Benard convection [3]. Thus, we consider

ut(x, t) − ε�u(x, t) + (u(x, t) · ∇)u(x, t) + ∇p(x, t) = wj, (x, t) ∈ � × I, (1.1)

∇ · u(x, t) = 0, (x, t) ∈ � × I, (1.2)

wt(x, t) − γ �w(x, t) + (u(x, t) · ∇) w(x, t) = 0, (x, t) ∈ � × I, (1.3)

u(x, t) = f(x, t), w(x, t) = h(x, t), (x, t) ∈ ∂� × I, (1.4)

u(x,0) = u0(x), w(x,0) = w0(x), x ∈ �, (1.5)

where j = (0, 1) is unit vector, � is the computational domain and I = (0, T f ) such that T f is the final time. The mathe-
matical model (1.1)-(1.4) has been studied by some numerical techniques for example mixed finite element formulation [4], 
POD mixed finite volume element procedure [5], POD Galerkin type with error estimation [2] and Crank–Nicolson mixed 
finite volume-element procedure [1]. Also, the existence and uniqueness of the solutions of model (1.1)-(1.5) are studied in 
[8]. The extended version of Eqs. (1.1)-(1.5) is [4,5]

∂u

∂t
− ε

(
∂2u

∂x2
+ ∂2u

∂ y2

)
+ u

∂u

∂x
+ v

∂u

∂ y
+ ∂ p

∂x
= 0, (x, t) ∈ � × I, (1.6)

∂v

∂t
− ε

(
∂2 v

∂x2
+ ∂2 v

∂ y2

)
+ u

∂v

∂x
+ v

∂v

∂ y
+ ∂ p

∂ y
= w, (x, t) ∈ � × I, (1.7)

∂u

∂x
+ ∂v

∂ y
= 0, (x, t) ∈ � × I, (1.8)

∂ w

∂t
− γ

(
∂2 w

∂x2
+ ∂2 w

∂ y2

)
+ u

∂ w

∂x
+ v

∂ w

∂ y
= 0, (x, t) ∈ � × I, (1.9)

u(x, t) = f (x, t), v(x, t) = g(x, t), (x, t) ∈ ∂� × I, (1.10)

w(x, t) = h(x, t), (x, t) ∈ ∂� × I, (1.11)

u(x,0) = u0(x), v(x, t) = v0(x), x ∈ �, (1.12)

w(x,0) = w0(x), x ∈ �, (1.13)

where

• x is (x, y),
• u and v are the velocity components of the fluid in the x- and y-directions, respectively,
• w is the temperature of the fluid,
• p presents the pressure of the fluid,
• ε =

√
Pr (Re)−1,

• Re denotes the Reynolds number,
• Pr interprets the Prandtl number,
• γ = √

(Re)( Pr),
• f , g and h are the boundary conditions for the velocity in the x- and y-directions and the temperature of the fluid, 

respectively,
• Furthermore, u0, v0 and w0 are the initial conditions for the velocity in the x- and y-directions and the temperature 

of the fluid, respectively.
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The proper orthogonal decomposition (POD) idea is a method used to construct reduced order models (ROMs) [9,10]. The 
POD technique can be found in several research papers for solving different physical models. The POD technique is consid-
ered by many scholars. The main aim of [11,12] is to evaluate and compare the efficiencies of techniques for constructing 
reduced-order models for finite difference (FD) and finite element (FE) algorithms obtained via discretizing the systems of 
unsteady nonlinear partial differential equations (PDEs). A new approach to enhance the accuracy of a novel Proper Or-
thogonal Decomposition (POD) model applied to moderate Reynolds number flows (of the type typically encountered in 
ocean models) is developed in [13]. The authors of [14] proposed a non-intrusive reduced order model for general, dynamic 
partial differential equations based on the proper orthogonal decomposition (POD) and Smolyak sparse grid collocation. 
Reduced-order models are derived in [15,16] from low-order bases computed by applying proper orthogonal decomposition 
(POD) on an a priori ensemble of data of the Navier–Stokes model. A non-intrusive model reduction computational method 
is developed in [17] using hypersurfaces representation for reservoir simulation and further it was applied to 3D fluvial 
channel problems. Recently, authors of [18] presented a non-intrusive reduced order model based on machine learning.

A non-intrusive reduced order method is employed in [19] to model a solid interacting with compressible fluid flows to 
simulate crack initiation and propagation. A new reduced order model is proposed in [20] based upon the POD for solving 
the Navier–Stokes equations as the novelty of the method lies in its treatment of the equation’s non-linear operator. The 
main aim of [21] is to develop a new nonlinear POD Petrov–Galerkin approach for the Navier–Stokes equations. A new non-
intrusive model reduction method is proposed in [22] for the Navier–Stokes equations based on the radial basis function 
(RBF) multi-dimensional interpolation instead of the traditional approach of projecting the equations onto the reduced space. 
A fast and stabilized meshless method that combines a variational multi-scale element free Galerkin (VMEFG) method and 
the POD method is developed in [23] to solve convection-diffusion problems. The POD technique is applied for the meshless 
method in [24] for transient heat conduction problems. A combination of POD method with finite difference technique 
has been proposed in [25,26] to solve the parabolized Navier–Stokes (PNS) equations. A POD technique is used in [5] for 
model reduction of mixed finite element (MFE) for the nonstationary Navier–Stokes equations and error estimates between 
a reference solution and the POD solution of reduced MFE formulation are studied. Authors of [6] proposed a framework for 
orthogonal decomposition of swirling flows applied to problems originating from turbomachines. A combination of proper 
orthogonal decomposition with radial basis functions is developed in [7] for solving fluid flow problems.

The interpolating moving least-squares (IMLS) method based on a nonsingular weight function is used in [27] to con-
struct the approximation function, the weak form of the problem of inhomogeneous swelling of polymer gels is used to 
obtain the final discretized equations, and penalty method is applied to impose the displacement boundary condition, then 
an improved element-free Galerkin (IEFG) method for the problem of the inhomogeneous swelling of polymer gels is pre-
sented. The improved element-free Galerkin (IEFG) method based on the improved MLS approximation and a nonsingular 
weight function is proposed in [28] for solving elastoplastic large deformation problems. Improved complex variable mov-
ing least-squares (ICVMLS) approximation is applied in [29] to construct the shape function and then modified Galerkin 
weak form of wave propagation problems is employed for obtaining the final system equations. The improved element-free 
Galerkin (IEFG) method is presented in [30] based on the improved MLS approximation to solve three-dimensional elasto-
plasticity. The authors of [31] developed an interpolating element-free Galerkin (IEFG) method for solving three-dimensional 
potential problems based on the improved interpolating moving least-squares (IIMLS) method. By combining the dimension 
splitting method and the improved complex variable element–free Galerkin method, the dimension splitting and improved 
complex variable element-free Galerkin (DS–ICVEFG) method is developed in [32] for solving 3D transient heat conduc-
tion problems. Furthermore, authors of [33] combined the dimension splitting method with the improved complex variable 
element-free Galerkin method to get a hybrid improved complex variable element-free Galerkin (H–ICVEFG) method for 
solving three-dimensional advection-diffusion problems. The main aim of [34] is to develop a fast and efficient local mesh-
less method based on the POD method and RBF-generated FD technique for solving shallow water equations in one- and 
two-dimensional cases. The authors of [35] employed the shape functions of the reproducing kernel particle method in the 
meshless local Petrov–Galerkin procedure for solving two-dimensional nonstationary incompressible Boussinesq equations. 
The main propose of [36] is to introduce a numerical procedure based on the POD method and local RBF-generated FD for-
mulation to simulate the time dependent incompressible Navier–Stokes equation with variable density. The Oldroyd model 
as a generalized incompressible Navier–Stokes equation is investigated in [37] via the interpolating stabilized element free 
Galerkin technique. An upwind local radial basis functions-differential quadrature (RBFs-DQ) technique is developed in [38]
to simulate some models arising in water sciences. The authors of [39] developed a meshless numerical procedure based on 
the interpolating element free Galerkin (IEFG) method to simulate the groundwater equation (GWE). The main aim of [40]
is to propose a POD reduced-order discontinuous Galerkin method for solving the generalized Swift–Hohenberg equation 
with application in biological science and mechanical engineering.

In the current research work, we replace the MLS shape functions with the interpolating MLS shape functions to directly 
apply the essential conditions. Also, we employ a variational multiscale (VM) approach based on increasing the order of 
approximation to improve the numerical results. Furthermore, to decrease the computational cost of the new scheme, the 
POD technique is utilized.

The structure of this paper is: the shape functions of interpolating moving least squares approximation are explained 
in Section 2, the proper orthogonal decomposition is described in Section 3, the discretization of the temporal variable is 
developed in Section 4, the variational multiscale element free Galerkin method is explained in Section 5, some numeri-
3
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cal experiments are investigated in Section 6 to show the efficiency and accuracy of the new numerical formulation and 
conclusion of paper has been noted in Section 7.

2. Shape functions of interpolating MLS approximation

Here, we explain constructing the shape functions of the interpolating MLS (IMLS) approximation. The shape functions 
of MLS approximation do not have δ-Kronecker property thus the Dirichlet boundary condition cannot be applied, directly. 
However, the shape functions of IMLS approximation are built based on a singular weight function as according to this 
alteration, the new shape functions have δ-Kronecker property.

Let X = {
ς i

}N
i=1 be a set of distributed nodes in � ⊂Rn . The fill distance parameter is

hX,� = sup
x∈�

min
1≤ j≤N

∥∥x − ς j
∥∥

2, qX = 1

2
min
i �= j

∥∥ςi − ς j
∥∥

2. (2.1)

Also

	(ς)
�= B(ς , δ) = {

ς∗ ∈Rn : ∥∥ς − ς∗∥∥< δ(ς)
}
, (2.2)

is the influence domain of node ς and the influence domain of point ς i is

	i
�= 	(ς i) = {

ς∗ ∈ Rn : ∥∥ς i − ς∗∥∥< δi
}
, (2.3)

where δi is the radius of 	i . Also, the following weight function is employed [41]

wi(x) =

⎧⎪⎪⎨⎪⎪⎩
	

(∥∥x−ς i

∥∥
2

δi

)∥∥∥ x−ς i
δi

∥∥∥−α

2
, x ∈ 	i,

0, x /∈ 	i,

(2.4)

where the function 	 is nonnegative, compactly supported in the unit circle B(0, 1), r-th times continuously differentiable, 
and its derivatives up to order r are bounded. The function 	 may be constant one or any weight function of MLS approxi-
mation. We set

p(x) = [
p0(x), p1(x), . . . , pm−1(x)

]T
, x ∈ �, (2.5)

where m is the number of polynomials. The shifted and scaled bases are applied as [42]

p(x) =
[

1,

(
x − x∗

h

)
,

(
x − x∗

h

)2
]T

, in 1D,

p(x) =
[

1,

(
x − x∗

h

)
,

(
y − y∗

h

)
,

(
x − x∗

h

)2

,

(
x − x∗

h

)
×
(

y − y∗

h

)
,

(
y − y∗

h

)2
]T

, in 2D,

where (x∗, y∗) is a fixed point. Thus, we use I1, I2, . . . , Iδ(ς) to describe the sequential sequence numbers of these points 
and also

E(ς) = [
I1, I2, . . . , Iδ(ς)

]
. (2.6)

Consider span {p0(ς), p1(ς), . . . , pm(ς)} and according to [41], we have

q0(ς ,ς) = p0(ς)

(p0, p0)
1
2
ς

= 1⎡⎣ ∑
i∈E(ς)

wi(ς)

⎤⎦
1
2

, (2.7)

where the following inner product is defined

( f , g)ς =
∑

i∈E(ς)

wi(ς) f (ς i)g(ς i). (2.8)

Also, we set [41]

qi(ς ,ς) = pi(ς) −
∑

vl(ς)pi(ς l), (2.9)

l∈E(ς)

4
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in which

vl(ς) = wl(ς)∑
j∈E(ς)

w j(ς)
. (2.10)

To approximate the unknown function u(ς ) at ς , uh(ζ, ̄(ζ )) takes the following form [41]

uh(ς ,ς) =
m∑

i=0

qi(ς ,ς)ai(ς) = q0(ς ,ς)a0(ς) + qT(ς ,ς)a(ς), (2.11)

such that {ai(ς)}m
i=0 are the unknown coefficients. According to [41], to approximate ai , the following minimization problem 

is defined through:

J (ς) =
∑

i∈E(ς)

wi(ς)
[
u(ς i) − uh(ς ,ς i)

]2 =
∑

i∈E(ς)

wi(ς)

[
u(ς i) −

m∑
i=0

qi(ς ,ς i)ai(ς)

]2

. (2.12)

According to relation (2.8), Eq. (2.12) can be rewritten as follows

(u(·) − uh(ς , ·),qi(ς , ·))ς = 0, 0 ≤ i ≤ m, (2.13)

such that [41]

a0(ς) = (u − q0(ς , ·))ς , (2.14)
m∑

i=1

(qi(ς , ·),q j(ς , ·))ςai(ς) = (u,q j(ς , ·))ς , j = 1,2, . . . ,m. (2.15)

Thus, Eq. (2.15) can be written as

A(ς)a(ς) = B(ς)u, (2.16)

where

u =
[

u(ς l1) u(ς l2) . . . u(ς lη(ς)
)
]T

A(ς) = B(ς)Q(ς), (2.17)

Q(ς) =
[

q(ς ,ς l1) q(ς ,ς l2) . . . q(ς ,ς lη(ς)
)
]
, (2.18)

and also [41]

Bi j(ς) =

⎧⎪⎪⎨⎪⎪⎩
wl j (ς)qi(ς ,ς l j

), ς �= ς l j
,

∑
k∈E(ς),k �= j

wk(ς)
[

pi(ς l j
) − pi(ςk)

]
, ς = ς l j

.
(2.19)

Hence, by using (2.16), we approximate a, as follows

a(ς) = A−1(ς)B(ς)u. (2.20)

Now, from the above formulation, we can achieve [41]

q0(ς ,ς)a0(ς) = q0(ς ,ς)(u,q0(ς , ·))ς =
∑

i∈E(ς)

vi(ς)u(ς i) = βT(ς)u, (2.21)

in which

β(ς) = [
vl1(ς) vl2(ς) . . . vlη(ς)

(ς)
]T

. (2.22)

Applying Eqs. (2.20) and (2.21) into Eq. (2.11) yields

uh(ς ,ς) = βT(ς)u + qT(ς ,ς)A−1(ς)B(ς)u. (2.23)

Thus, we have [41]

u(ς) ≈ uh(ς) = uh(ς ,ς)
∣∣ = [

βT(ς) + qT(ς ,ς)A−1(ς)B(ς )
]

u, (2.24)
ς=ς

5
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where the IMLS shape functions are [41]

φi(ς) =

⎧⎪⎨⎪⎩ vi(ς) +
m∑

j=1

q j(ς ,ς)
[
A−1(ς)B(ς)

]
jk, i = Ik ∈ E(ς),

0, i /∈ E(ς).

(2.25)

Remark 2.1. As mentioned previously, in this technique, we can apply the Dirichlet boundary condition exactly i.e. this 
boundary condition is imposed by some changes in the final coefficient matrix and also in the right hand side vector of the 
final algebraic system of equations. Consider the following general problem⎧⎨⎩ Lu = f , in �,

u = g, on ∂�

(2.26)

in which L is linear differential operator and also functions f and g are known. After constructing the discretization of 
main equations, based on the interior and boundary integrals, we get a system of algebraic equations as follows

AU = F. (2.27)

Now, to apply the Dirichlet boundary condition the following steps must be done:

1. Find rows of matrix A associated to the boundary nodes for example ith-row of matrix A is related to the ith-node on 
∂�. Set

A(i, :) = 0, i.e. A(i, j) = 0 f or every j = 1,2, . . . ,dim(A),

A(i, i) = 1.

2. Put the value of boundary condition in ith-element of right hand side vector F i.e.

F (i) = g(xi).

According to the above steps, the Dirichlet boundary conditions can be applied, exactly and also without interpolation error.

3. Construction of the POD basis

Let pni
r be known for 1 ≤ n1 < n2 < . . . < nL ≤ N and 1 ≤ i ≤ L, we define

V = span
{

pn1
r , pn2

r , . . . , pnL
r
}
, (3.1)

and also {	}l
j=1 is an orthogonal basis of V such that

pni
r =

l∑
j=1

(
pni

r ,	 j
)
ω
	 j, i = 1,2, . . . , L, (3.2)

in which(
pni

r ,	 j
)
ω

= (∇pni
r ,∇	 j

)
. (3.3)

Definition 3.1. [4,5] In the POD idea, we want to find an orthogonal basis 	 j such that for every 1 ≤ d ≤ l⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min

{	}d
j=1

1

L

L∑
i=1

∥∥∥∥∥∥pni
r −

d∑
j=1

(
pni

r ,	 j
)
ω
	 j

∥∥∥∥∥∥
2

ω

subject to : (
	i,	 j

)
ω

= δi j, 1 ≤ i ≤ d, 1 ≤ j ≤ i,

(3.4)

where∥∥pni
r

∥∥2 = ∥∥∇pni
r

∥∥2
. (3.5)
ω
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On other hand, problem (3.4) is equivalent to [4,5]

max
(	,	)ω=‖∇	‖2

L2(�)

1

L

L∑
i=1

∣∣(pni
r ,	

)
ω

∣∣2. (3.6)

We use trial function 	 as follows [4]

	 =
L∑

i=1

βi pni
r , (3.7)

where the coefficient βi must be calculated such that 	 is a maximizer for Eq. (3.6) [4]. Now, we define

F ((x, y), (η, ξ)) = 1

L

L∑
i=1

pni
r (x, y)pni

r (η, ξ), (3.8)

and

I	 =
∫
�

∇′ F ((x, y), (η, ξ))∇′	(η, ξ)dηdξ, (3.9)

where I : ω → ω and ∇′ is the gradient with respect to (η, ξ). Thus, [4]

(I	,	)ω = 1

L

L∑
i=1

∣∣(pni
r ,	

)
ω

∣∣2, (3.10)

(I	,φ)ω = (	, Iφ)ω, ∀	,φ ∈ ω. (3.11)

According to the above explanations, problem (3.6) reduces to find the largest eigenvalue of

I	 = λ∇	, and ‖∇	‖L2(�) = 1, (3.12)

or equivalently∫
�

∇′∇ F ((x, y), (η, ξ))∇′	(η, ξ)dηdξ = λ∇	, and ‖∇	‖L2(�) = 1. (3.13)

Employing function F and Eq. (3.7) in relation (3.13), gives [4]

L∑
k=1

⎛⎝1

L

∫
�

∇′ pni
r (η, ξ) · ∇′pnk

r (η, ξ)dηdξ

⎞⎠βk = λβi, i = 1,2, . . . , L. (3.14)

Therefore, Eq. (3.13) is converted to the eigenvalue problem

Āβ̄ = λβ̄, (3.15)

in which

Āik =
∫
�

∇′ pni
r (η, ξ) · ∇′pnk

r (η, ξ)dηdξ , β̄ = [β1, β2, . . . , βL]T . (3.16)

Moreover, Ā has a complete set of orthogonal eigenvectors

β1 = [
β1

1 , β1
2 , . . . , β1

L

]T
, β2 =

[
β2

1 , β2
2 , . . . , β2

L

]T
, . . . ,βl =

[
βl

1, β
l
2, . . . , β

l
L

]T
, (3.17)

with the eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λl > 0. The solution of problem (3.4) is [4]

	1 = 1√
Lλ1

L∑
i=1

β1
i pni

r . (3.18)

The remaining POD basis is
7
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	k = 1√
Lλk

L∑
i=1

βk
i pni

r , k = 2,3, . . . , l. (3.19)

The obtained POD basis has the following property [4]

(	k,	i)ω = 1√
λkλi

λiβ
kβ i =

⎧⎨⎩ 1, k = i,

0, k �= i.
(3.20)

Theorem 3.2. [4,5] Let (λi, β i) be eigenvalue and eigenvector of matrix Ā such that λ1 ≥ λ2 ≥ . . . ≥ λl > 0. Then, the POD basis can 
be computed as

	i = 1√
Lλi

L∑
j=1

β i
j p

n j
r , 1 ≤ i ≤ d ≤ l. (3.21)

Also, the following error formula holds

1

L

L∑
i=1

∥∥∥∥∥∥pni
r −

d∑
j=1

(
pni

r ,	i
)
ω
	 j

∥∥∥∥∥∥
2

ω

=
l∑

j=d+1

λ j. (3.22)

As shown in [43], we can use the following relation to obtain the number of POD basis [43]

I(m) =

d∑
i=1

λi

l∑
i=1

λi

. (3.23)

4. Discretization of the temporal variable

We define tk = kdt for k = 0, 1, . . . , N , where dt = T /N . To approximate the time-derivative the backward finite difference 
method is used, thus we have

∂u(x, y, tk)

∂t
= uk+1(x, y) − uk(x, y)

dt
, (4.1)

∂v(x, y, tk)

∂t
= vk+1(x, y) − vk(x, y)

dt
. (4.2)

According to the main problem (1.6)-(1.9), we can write the following time discretization

uk+1 − uk

dt
− ε

(
∂2uk

∂x2 + ∂2uk

∂ y2

)
+ uk ∂uk

∂x
+ vk ∂uk

∂ y
+ ∂ pk

∂x
= 0, (4.3)

vk+1 − vk

dt
− ε

(
∂2 vk

∂x2
+ ∂2 vk

∂ y2

)
+ uk ∂vk

∂x
+ v

∂vk

∂ y
+ ∂ pk

∂ y
= wk, (4.4)

∂uk+1

∂x
+ ∂vk+1

∂ y
= 0, (4.5)

wk+1 − wk

dt
− γ

(
∂2 wk

∂x2
+ ∂2 wk

∂ y2

)
+ uk ∂ wk

∂x
+ vk ∂ wk

∂ y
= 0. (4.6)

Simplifying relations (4.3)-(4.6), yields
8
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uk+1 = uk + dt

[
ε

(
∂2uk

∂x2
+ ∂2uk

∂ y2

)
− uk ∂uk

∂x
− vk ∂uk

∂ y
− ∂ pk

∂x

]
, (4.7)

vk+1 = vk + dt

[
ε

(
∂2 vk

∂x2
+ ∂2 vk

∂ y2

)
− uk ∂vk

∂x
− vk ∂vk

∂ y
− ∂ pk

∂ y

]
+ dt wk, (4.8)

∂uk+1

∂x
+ ∂vk+1

∂ y
= 0, (4.9)

wk+1 = wk + dt

[
γ

(
∂2 wk

∂x2
+ ∂2 wk

∂ y2

)
− uk ∂ wk

∂x
− vk ∂ wk

∂ y

]
. (4.10)

Now, we define

Mk = uk + dt

[
ε

(
∂2uk

∂x2
+ ∂2uk

∂ y2

)
− uk ∂uk

∂x
− vk ∂uk

∂ y

]
, (4.11)

Nk = vk + dt

[
ε

(
∂2 vk

∂x2
+ ∂2 vk

∂ y2

)
− uk ∂vk

∂x
− vk ∂vk

∂ y
+ wk

]
, (4.12)

Pk = wk + dt

[
γ

(
∂2 wk

∂x2
+ ∂2 wk

∂ y2

)
− uk ∂ wk

∂x
− vk ∂ wk

∂ y

]
, (4.13)

then, Eqs. (4.6), (4.8) and (4.10) can be rewritten as follows

uk+1 = Mk − dt
∂ pk

∂x
, (4.14)

vk+1 = Nk − dt
∂ pk

∂ y
, (4.15)

wk+1 = Pk. (4.16)

Next, the first-order derivative with respect to the x and Y for Eqs. (4.14) and (4.15), gives

∂uk+1

∂x
= ∂Mk

∂x
− dt

∂2 pk

∂x2 , (4.17)

∂vk+1

∂ y
= ∂Nk

∂ y
− dt

∂2 pk

∂ y2
, (4.18)

respectively. Substituting Eqs. (4.17) and (4.18) in Eq. (4.9), results in

∂2 pk

∂x2
+ ∂2 pk

∂ y2
= 1

dt

(
∂Mk

∂x
+ ∂Nk

∂ y

)
, (4.19)

such that Eq. (4.19) is a Poisson equation. We note that Poisson problem (4.19) has been solved by boundary element 
method [44,45] and element free Galerkin method [46,47].

4.1. Numerical procedure in the temporal direction

According to the above explanations, we present the following steps:
9
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Step 1: Calculate the velocity field and the temperature as follows

Mk := uk + dt

[
ε

(
∂2uk

∂x2
+ ∂2uk

∂ y2

)
− uk ∂uk

∂x
− vk ∂uk

∂ y

]
, (4.20)

Nk := vk + dt

[
ε

(
∂2 vk

∂x2
+ ∂2 vk

∂ y2

)
− uk ∂vk

∂x
− vn ∂vk

∂ y
+ wk

]
, (4.21)

Pk := wk + dt

[
γ

(
∂2 wk

∂x2
+ ∂2 wk

∂ y2

)
− uk ∂ wk

∂x
− vk ∂ wk

∂ y

]
. (4.22)

Step 2: Compute the pressure by using the following equation⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂2 pk

∂x2
+ ∂2 pk

∂ y2
= 1

dt

(
∂Mk

∂x
+ ∂Nk

∂ y

)
, in �,

pk
∣∣
�D

= pk
0, ∇pk · n

∣∣
�N

= qk
0. on ∂�,

(4.23)

Step 3: Upgrade the velocity field and the temperature term by using the below relation

uk+1 = Mk − dt
∂ pk

∂x
, (4.24)

vk+1 = Nk − dt
∂ pk

∂ y
, (4.25)

wk+1 = Pk. (4.26)

5. Variational multiscale interpolating EFG procedure

In the mid 90’s Hughes [48,49] reviewed the stabilization schemes for the two-scale problems which are commonly 
known as the variational multiscale (VM) method. There are several research papers that the VM idea is combined with 
finite element method such as multiscale/stabilized (FEM) formulations for solving the incompressible Navier–Stokes equa-
tions [50], the advection-diffusion equation [51], the heat transfer problem [52], the Darcy flow model [53], the Fokker–
Planck equation [54]. Also, Franca et al. [55,56] developed a two-level FEM for solving the convection–diffusion problem in 
[55] and the incompressible Navier–Stokes equations [56].

In these investigations, there exists a main assumption that the fine scale solutions vanish identically over the element 
boundaries although non-zero within the elements. Hughes [48] remarked that it is a rather strong assumption and it 
may be not valid for many cases of practical interest. Zhang et al. [57–59] followed the variational multiscale FEM and 
they applied it for meshfree methods and proposed the variational multiscale EFG technique for solving several practice 
problems in mechanics and electromagnetic applications. Recently, the non-intrusive version of the VM method which 
is so-called the global-local approach, is applied to the localized solid mechanics PDE; but not yet for the EFG setting 
[60–62]. Furthermore, Yeon and his co-authors [63,64] combined VM and meshless methods for studying elastoplastic 
solids.

5.1. The VMEFG method for Burgers’ equation

In this section, we explain the variational multiscale element free Galerkin method for the Burgers’ equation in the 
one-dimensional case. The used time-discrete scheme is as follows

un − un−1

dt
+ μun−1 ∂un−1

∂x
= ε

2

(
∂2un

∂x2
+ ∂2un−1

∂x2

)
, x ∈ [a,b], n = 1,2, . . . . (5.1)

Simplifying Eq. (5.1), gives

un − dtε ∂2un

2
= un−1 + dtε ∂2un−1

2
− dtμun−1 ∂un−1

, x ∈ [a,b], n = 1,2, . . . . (5.2)

2 ∂x 2 ∂x ∂x

10
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Let the unknown scalar solution be decomposed as follows

u = ũ + u, (5.3)

where ̃u and u are the coarse and fine scales terms, respectively. The trial function spaces for each scale are

Ũ = {
u
∣∣ u ∈ H1(�) , u = g at ∂�

}
, U = {

u
∣∣ u ∈ H1(�) , u = 0 at ∂�

}
, (5.4)

and ̃u ∈ Ũ , u ∈ U such that U = Ũ ⊕ U . Similar to the trial function and trial function space, for test function we have

v = ṽ + v, (5.5)

in which ṽ and v are the coarse and fine scale terms, respectively and also

Ṽ = {
v
∣∣ v ∈ H1(�) , v = 0 at ∂�

}
, V = {

u
∣∣ v ∈ H1(�) , v = 0 at ∂�

}
, (5.6)

with V = Ṽ ⊕ V . Considering Eq. (5.2), linearizing and substituting the trial solutions Eq. (5.3) and the weighting functions 
Eq. (5.5) into the standard variational form, we arrive at

〈
ṽ + v,

ũn+1 + un+1

dt

〉
+ μ

〈
ṽ + v,

(̃
un + un) ∂

(̃
un+1 + un+1

)
∂x

〉

+ε

〈
∂
(̃

v + v
)

∂x
,
∂
(̃

un+1 + un+1
)

∂x

〉
=
〈̃

v + v,
un

dt

〉
,

(5.7)

in which 〈•,•〉 is the inner product. Using the linearity of the weighting function slot, we can split Eq. (5.7) into the coarse 
and the fine scale equations as follows

Ṽ :
〈

ṽ,
ũn+1 + un+1

dt

〉
+ μ

〈
ṽ,
(̃
un + un) ∂

(̃
un+1 + un+1

)
∂x

〉
+ ε

〈
∂ ṽ

∂x
,
∂
(̃

un+1 + un+1
)

∂x

〉
=
〈̃

v,
un

dt

〉
, (5.8)

V :
〈

v,
ũn+1 + un+1

dt

〉
+ μ

〈
v,
(̃
un + un) ∂

(̃
un+1 + un+1

)
∂x

〉
+ ε

〈
∂v

∂x
,
∂
(̃

un+1 + un+1
)

∂x

〉
=
〈

v,
un

dt

〉
. (5.9)

Rewriting relations (5.8) and (5.9) yields

Ṽ : 〈̃v, ũn+1
〉+ dtμ

〈̃
v, un ∂ ũn+1

∂x

〉
+ dtε

〈
∂ ṽ

∂x
,
∂ ũn+1

∂x

〉
= dt

〈̃
v, un

〉− 〈̃
v, un+1

〉

−dtμ

〈
ṽ, un ∂un+1

∂x

〉
− dtε

〈
∂ ṽ

∂x
,
∂un+1

∂x

〉
,

(5.10)

V :
〈
v, un+1

〉
+ dtμ

〈
v, un ∂un+1

∂x

〉
+ dtε

〈
∂v

∂x
,
∂un+1

∂x

〉
= dt

〈
v, un

〉− 〈
v, ũn+1

〉

−dtμ

〈
v, un ∂ ũn+1

∂x

〉
− dtε

〈
∂v

∂x
,
∂ ũn+1

∂x

〉
.

(5.11)

Now, we consider a set of functions whose sum equals to the unity on the whole domain such that it is covered with a set 
of open domains �i i.e.

supp{φi}=�i, ∀x ∈ �,
∑

i

φi = 1. (5.12)

The space of local enrichment basis functions is defined as follows
11
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ϑi (�i) = span
{

V j
i

}
. (5.13)

Multiplying the partition of unity (PU) functions and the local approximation functions, the used space of functions for the 
approximation is as follows

ϑ (�) = span
{
φi V j

i

}
. (5.14)

Then the approximation of the unknown scalar field at point x is applied by

uh(x) =
∑

i

∑
V j

i ∈ϑi

φi V j
i (x)ui, j. (5.15)

Often for an open domain �i , the polynomial basis functions are selected as the local enrichment basis V j
i . In the squeal, 

we introduce some of them.

1. First order (p = 1):

•
{

V j
i

}
= {

V 1
i

}= {1} , 1D ,

•
{

V j
i

}
= {

V 1
i

}= {1} , 2D .

2. Second order (p = 2):

•
{

V j
i

}
= {

V 1
i , V 2

i

}= {
1, (x − xi)

2} , 1D ,

•
{

V j
i

}
= {

V 1
i , V 2

i , V 3
i

}= {
1, (x − xi)

2, (y − yi)
2} , 2D .

3. Third order (p = 3):

•
{

V j
i

}
= {

V 1
i , V 2

i , V 3
i

}= {
1, (x − xi)

2, (x − xi)
3} , 1D ,

•
{

V j
i

}
= {

V 1
i , V 2

i , V 3
i , V 4

i , V 5
i , V 6

i , V 7
i

}
= {

1, (x − xi)
2, (y − yi)

2, (x − xi)
3, (x − xi)

2 (y − yi) , (x − xi) (y − yi)
2, (y − yi)

3} , 2D.

4. Fourth order (p = 4):

•
{

V j
i

}
= {

V 1
i , V 2

i , V 3
i

}= {
1, (x − xi)

2, (x − xi)
3, (x − xi)

4} , 1D,

•

{
V j

i

}
= {

V 1
i , V 2

i , V 3
i , V 4

i , V 5
i , V 6

i , V 7
i , V 8

i , V 9
i , V 10

i , V 11
i , V 12

i

}
= {

1, (x − xi)
2, (y − yi)

2, (x − xi)
3, (x − xi)

2 (y − yi) , (x − xi) (y − yi)
2, (y − yi)

3 ,

(x − xi)
4, (x − xi)

3 (y − yi) , (x − xi)
2(y − yi)

2, (x − xi) (y − yi)
3, (y − yi)

4} , 2D.

In the current paper, we consider fourth-order polynomial basis functions in one-dimension, thus we have

uh(x) =
∑

i

φi

(
ui,0 + (x − xi)

2ui,1, (x − xi)
3ui,2, (x − xi)

4ui,3

)
, (5.16)

where φi is shape functions of IMLS approximation. Rewriting relation (5.16) arrives

uh(x) =
∑

i

φiui,0 +
∑

i

φi(x − xi)
2ui,1 +

∑
i

φi(x − xi)
3ui,2 +

∑
i

φi(x − xi)
4ui,3. (5.17)

We distribute the coarse and fine scales as follows

ũh(x) =
∑

i

φiui,0, (5.18)

uh(x) =
∑

i

φi(x − xi)
2ui,1 +

∑
i

φi(x − xi)
3ui,2 +

∑
i

φi(x − xi)
4ui,3. (5.19)

Now, substituting relations (5.18) and (5.19) in relations (5.10) and (5.11), respectively, we can write

M1ũn+1 = F1 + G1(un+1
), (5.20)

M2un+1 = F2 + G2(̃un+1), (5.21)

in which Mi for i = 1, 2 are coefficient matrices. For obtaining the acceptable results, the coarse scale problem 
(5.20) and the fine scale problem Eq. (5.21) must be solved iteratively. The following procedure has been em-
ployed:
12
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(1) Set ̃un+1,0 = u0;
(2) Solve the fine scale problem through the known the coarse scale solution ̃un+1 in the right-hand side to 

determine ūn+1,i+1

Mn+1,i+1
2 un+1,i+1 = Fn

2 + G2(̃un+1,i).

(3) Solve the coarse scale problem to determine ̃un+1,i+1;

Mn+1,i+1
1 ũn+1,i+1 = Fn

1 + G1(un+1,i
).

(4) Compute un+1,i+1 and un+1,i and calculate

Error = norm(un+1,i+1 − un+1,i, inf),

(5) Check if Error ≤ 10−5 then un+1,i+1 → un, n + 1 → n and go to (1) else go to (2).

Now, we are ready to describe the presented method for the main mathematical model. For Eq. (4.23) in the numerical 
procedure, the unknown solution must be divided to the coarse and the fine scales solutions as

p = p̃ + p, (5.22)

in which p̃ and p denote the coarse and fine scales terms, respectively. We define the following functional spaces

P̃ =
{

pk
∣∣∣ pk ∈ H1(�) , pk = g on ∂�

}
, P =

{
pk
∣∣∣ pk ∈ H1(�) , pk = 0 on ∂�

}
. (5.23)

Similarly, for the test functional spaces, we set χ = χ̃ + χ and

Ṽ = {
χ
∣∣ χ ∈ H1(�) , χ = 0 on ∂�

}
, V = {

χ
∣∣ χ ∈ H1(�) , χ = 0 on ∂�

}
, (5.24)

so V = Ṽ + V . Substituting the above test and trial functions in Eq. (4.23), yields [65](
χ̃ + χ̄ ,

∂2(̃pk+1 + pk+1)

∂x2
+ ∂2(̃pk+1 + pk+1)

∂ y2

)
= 1

dt

(
χ̃ + χ̄ ,

∂Mk

∂x
+ ∂Nk

∂ y

)
, (5.25)

or

−
(
∇ · (χ̃ + χ̄ ),∇ · (̃pk+1 + pk+1)

)
= 1

dt

(
χ̃ + χ̄ ,

∂Mk

∂x
+ ∂Nk

∂ y

)
. (5.26)

Now, Eq. (4.17) will be transferred to

Ṽ : −
(
∇ · χ̃ ,∇ · p̃k

)
= 1

dt

(
χ̃ ,

∂Mk

∂x
+ ∂Nk

∂ y

)
+
(
∇ · χ̃ ,∇ · pk

)
, (5.27)

V : −
(
∇ · χ̄ ,∇ · pk

)
= 1

dt

(
χ̄ ,

∂Mk

∂x
+ ∂Nk

∂ y

)
+
(
∇ · χ,∇ · p̃k

)
. (5.28)

We must consider a set of functions such that their summation is equal to one, e.g.,

supp{φi}= �i, ∀x ∈ �,
∑

i

φi = 1. (5.29)

The space of local enrichment basis functions is

ξi (�i) = span
{
J j

i

}
. (5.30)

The used space of functions for the approximate solution is

ξ (�) = span
{
φiJ j

i

}
. (5.31)

Thus the approximation solution will be
13
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pk(ς) =
∑

i

∑
J j

i ∈ξi

φiJ j
i (ς)pk

i, j . (5.32)

In the current study, we consider the second-order (p = 2) basis [65]{
J j

i

}
= {

J 1
i ,J 2

i ,J 3
i

}= {
1, (x − xi)

2, (y − yi)
2} .

In the following, we assume

pk(x, y) =
∑

i

φi

(
pi,0 + (x − xi)

2 pi,1 + (y − yi)
2 pi,2

)
, (5.33)

in which φi are shape functions of IMLS approximation. So Eq. (5.33) changes to

pk(x, y) =
∑

i

φi pk
i,0 +

∑
i

φi(x − xi)
2 pk

i,1 +
∑

i

φi(y − yi)
2 pk

i,2. (5.34)

Let the approximate solution of the coarse and fine scales be

p̃k(x, y) =
∑

i

φi pk
i,0, (5.35)

pk(x, y) =
∑

i

φi(x − xi)
2 pk

i,1 +
∑

i

φi(y − yi)
3 pk

i,2. (5.36)

Substituting Eqs. (5.35) and (5.36) in Eqs. (5.27) and (5.28), respectively, gives

A1 p̃k = F1, (5.37)

A2 pk = F2, (5.38)

in which

A1 =

⎡⎢⎢⎢⎣
− (∇ · φ1,∇ · φ1) − (∇ · φ1,∇ · φ2) . . . − (∇ · φ1,∇ · φN)

− (∇ · φ2,∇ · φ1) − (∇ · φ2,∇ · φ2) . . . − (∇ · φ2,∇ · φN)
...

...
. . .

...

− (∇ · φN ,∇ · φ1) − (∇ · φN ,∇ · φ2) . . . − (∇ · φN ,∇ · φ2)

⎤⎥⎥⎥⎦
N×N

, (5.39)

A2 =
[

A(1)
2 A(2)

2
A(3)

2 A(4)
2

]
2N×2N

, (5.40)

such that(
A(1)

2

)
i, j

= −
(
∇ ·

(
φi(x − xi)

2
)

,∇ ·
(
φ j
(
x − x j

)2
))

1 ≤ i, j ≤ N, (5.41)

(
A(2)

2

)
i, j

= −
(
∇ ·

(
φi(x − xi)

2
)

,∇ ·
(
φ j
(

y − y j
)2
))

, 1 ≤ i, j ≤ N, (5.42)

(
A(3)

2

)
i, j

= −
(
∇ ·

(
φi(y − yi)

2
)

,∇ ·
(
φ j
(
x − x j

)2
))

, 1 ≤ i, j ≤ N, (5.43)

(
A(4)

2

)
i, j

= −
(
∇ ·

(
φi(y − yi)

2
)

,∇ ·
(
φ j
(

y − y j
)2
))

, 1 ≤ i, j ≤ N, (5.44)

p̃k =
[

pk
1,0 pk

2,0 . . . pk
N,0

]T
, (5.45)

pk =
[

pk
1,1 pk

2,1 . . . pk
N,1 pk

1,2 pk
2,2 . . . pk

N,2

]T
, (5.46)
14
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(F1)i = 1

dt

(
φi,

∂Mk

∂x
+ ∂Nk

∂ y

)
, 1 ≤ i ≤ N, (5.47)

(F2)i = 1

dt

(
φi(x − xi)

2,
∂Mk

∂x
+ ∂Nk

∂ y

)
, 1 ≤ i ≤ N, (5.48)

(F2)i+N = 1

dt

(
φi(y − yi)

2,
∂Mk

∂x
+ ∂Nk

∂ y

)
, 1 ≤ i ≤ N. (5.49)

We define the following functional spaces

Ũ =
{

uk
∣∣∣ uk ∈ H1(�) , uk = g at ∂�

}
, U=

{
uk
∣∣∣ uk ∈ H1(�) , uk = 0 at ∂�

}
. (5.50)

The variational weak form will be(
χ̃ + χ, ũk+1 + uk+1

)
=
(
χ̃ + χ,Mk

)
− dt

(
χ̃ + χ,

∂ pk

∂x

)
, (5.51)

(
χ̃ + χ, ṽk+1 + vk+1

)
=
(
χ̃ + χ,Nk

)
− dt

(
χ̃ + χ,

∂ pk

∂ y

)
, (5.52)

(
χ̃ + χ, w̃k+1 + wk+1

)
=
(
χ̃ + χ,Pk

)
. (5.53)

Now, the above relations can be transferred to the coarse scale problem

(
χ̃ , ũk+1

)
=
(
χ̃ ,Mk

)
− dt

(
χ̃ ,

∂ pk

∂x

)
−
(
χ̃ , uk+1

)
, (5.54)

(
χ̃ , ṽk+1

)
=
(
χ̃ ,Nk

)
− dt

(
χ̃ ,

∂ pk

∂ y

)
−
(
χ̃ , vk+1

)
, (5.55)

(
χ̃ , w̃k+1

)
=
(
χ̃ ,Pk

)
−
(
χ̃ , wk+1

)
, (5.56)

as well as the fine scale problem

(
χ, uk+1

)
=
(
χ,Mk

)
− dt

(
χ,

∂ pk

∂x

)
−
(
χ, ũk+1

)
, (5.57)

(
χ, vk+1

)
=
(
χ,Nk

)
− dt

(
χ,

∂ pk

∂ y

)
−
(
χ, ṽk+1

)
, (5.58)

(
χ, wk+1

)
=
(
χ,Pk

)
−
(
χ, wk+1

)
. (5.59)

Let

uk(x, y) =
∑

i

φi

(
ui,0 + (x − xi)

2ui,1 + (y − yi)
2ui,2

)
, (5.60)

vk(x, y) =
∑

i

φi

(
vi,0 + (x − xi)

2 vi,1 + (y − yi)
2 vi,2

)
, (5.61)

wk(x, y) =
∑

i

φi

(
wi,0 + (x − xi)

2 wi,1 + (y − yi)
2 wi,2

)
. (5.62)

Now, we can split Eqs. (5.60), (5.61) and (5.62) into coarse scale and fine scale problems as
15
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ũk(x, y) =

∑
i

φiu
k
i,0,

uk(x, y) =
∑

i

φi(x − xi)
2uk

i,1 +
∑

i

φi(y − yi)
3uk

i,2,

(5.63)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ṽk(x, y) =

∑
i

φi vk
i,0,

vk(x, y) =
∑

i

φi(x − xi)
2 vk

i,1 +
∑

i

φi(y − yi)
3 vk

i,2.

(5.64)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
w̃k(x, y) =

∑
i

φi wk
i,0,

wk(x, y) =
∑

i

φi(x − xi)
2 wk

i,1 +
∑

i

φi(y − yi)
3 wk

i,2.

(5.65)

Substituting Eqs. (5.63)-(5.65) in relations (5.54)-(5.59), gives⎧⎨⎩
A1ũk+1 = J1,

A2uk+1 = J2,

⎧⎨⎩
B1 ṽk+1 = G1,

B2 vk+1 = G2,

⎧⎨⎩
C1 w̃k+1 = H1,

C2 wk+1 = H2,

(5.66)

in which matrices and vectors in relation (5.66) can be achieved in a similar way to the first stage. In the final relation, we 
can see that the difference between traditional EFG method and the variational EFG method is two more terms.

Algorithm 1 Combination of VMIEFG method with POD approach.

1: Compute the derivative matrices in x- and y-direction, according to Eqs. (5.39) and (5.40).

2: Consider some collocation nodes in the computational domain based on the regular or irregular distributed points.

3: Evaluate relations (4.20), (4.21) and (4.22).

4: Obtain solutions of relation (5.66) according to previous step.

5: Obtain the snapshot 	 = [	k(x, tk)] ∈ Rnxy×nk from the full discretization.

6: Apply SVD for 	 = [	k(x, tk)], to get the singular values.

7: Investigate relation (3.23) to derive suitable POD basis to solve linear system of equations (5.66).

6. Numerical argument

The numerical results are carried out using MATLAB 2018b software on an Intel Core i7 machine with 16 GB of memory.

6.1. Example 1 (Accuracy test problem)

To check the accuracy of the proposed technique, we investigate the following model [66]

∂u

∂t
− ε

(
∂2u

∂x2
+ ∂2u

∂ y2

)
+ u

∂u

∂x
+ v

∂u

∂ y
+ ∂ p

∂x
= 0, (x, t) ∈ � × I, (6.1)

∂v

∂t
− ε

(
∂2 v

∂x2
+ ∂2 v

∂ y2

)
+ u

∂v

∂x
+ v

∂v

∂ y
+ ∂ p

∂ y
= w, (x, t) ∈ � × I, (6.2)

∂u

∂x
+ ∂v

∂ y
= 0, (x, t) ∈ � × I, (6.3)

∂ w − γ

(
∂2 w

2
+ ∂2 w

2

)
+ u

∂ w + v
∂ w = 0, (x, t) ∈ � × I, (6.4)
∂t ∂x ∂ y ∂x ∂ y
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Fig. 1. A computational domain for Example 2.

Fig. 2. A computational domain for Example 3.

Fig. 3. A computational domain for Example 3.

with following exact solution

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u(x, y, t) = −P (t) sin(kx) cos(y),

v(x, y, t) = kA(t) cos(kx) sin(y),

w(x, y, t) = λk B(t) sin(kx) sin(y),

in which P (t), A(t) and B(t) can be obtained by solving the following ODEs [66]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP (t)

dt
= υλk P (t) − Ri

k

λk
A(t),

dA(t)

dt
= kP (t) + κλk A(t) − 2kB(t)P (t),

dB(t)

dt
= −4κ B(t) − kP (t)A(t),

(6.5)

and also k = 1, λk = −(k2 + 1), υ = κ = 0.001 and Ri = 1 and also � = [0, π ]2. We use a fourth-order Runge-Kutta method 
to compute P (t), A(T ) and B(t) functions in relation (6.5). Tables 1, 2 and 3 show the error obtained for components u, 
v and w at final time T f = 10 and dt = 10−5 and based on the different values of distributed nodes in the computational 
domain for Example 1. Tables 1, 2 and 3 illustrate the efficiency and accuracy of the proposed technique.

To display that the POD plan can approximate the full model, there are some idea such as

• Root mean squares error (RMSE) [43]

RMESn =

√√√√√√
N∑

i=1

(Un( f ull)
i − Un(P O D)

i )
2

, (6.6)

N
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Fig. 4. Singular values based on different snapshots for Example 1.

• Energy relation [17,43]

I(m) =

d∑
i=1

λi

l∑
i=1

λi

. (6.7)

• Singular values of snapshot matrix [17,43].
18
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Fig. 5. Singular values based on different snapshots for Example 2.

In the current paper, we engage the singular values of snapshot matrix. According to this idea, the best selection is where 
the singular value goes to zero. Fig. 4 demonstrates the singular values of snapshots u, v and w components. By computing 
the singular values in Fig. 4, we can conclude that λ20 ≤ ×10−15 for 800 collocation points. Thus, we can choose 20 POD 
basis.

6.2. Example 2

In the current example, we solve the Rayleigh-Benard convection problem. The distributed nodes in the computational 
region are 4000 points. According to Fig. 1 the bottom of domain is heated and the top of domain is cooled furthermore 
the rest walls are insulated. Also the velocities in x- and y-directions are zero. The computational domain of Fig. 1 is 
19



Fig. 6. Temperature profile for Example 2.

Table 1
Results computed for component u with T f = 10 and dt = 10−5 for Example 1.

N L∞ L2 CPU time(s)

100 5.3511 × 10−5 8.7013 × 10−5 150
200 2.0135 × 10−5 4.5318 × 10−5 420
400 8.6501 × 10−6 1.5908 × 10−5 1340
800 3.0511 × 10−6 7.3801 × 10−6 2007

Number of POD basis L∞ L2 CPU time(s)

20 2.3411 × 10−1 7.8891 × 10−1 8
40 1.5312 × 10−2 6.4011 × 10−2 15
50 6.3015 × 10−3 1.2077 × 10−2 29
60 2.3015 × 10−3 8.7739 × 10−3 49

� = (0, 5) × (0, 2). Fig. 5 demonstrates the singular values based on the component u, v and w and different snapshots 
for Example 2. Results of Fig. 5 are based on Re = 100, Pr = 7, Pe = Re × Pr, T N = 55 and T S = 35. From Fig. 5, we can 
conclude that number of 20 POD basis is suitable for simulation of this problem according to the mentioned parameters. 
Thus, Fig. 6 illustrates the approximation of temperature in final times T = 4, T = 6 and T = 8 for Example 2. From Fig. 6 it 
is clear that the hot fluid goes to the cold place. The computational region of Figs. 8 and 9 is � = [0, 100] × [0, 50]. Figs. 8
and 9 display the simulations of fluid velocity and temperature profile with 30 POD basis for Example 2. In this status, Fig. 8
depicts the fluid flow as it is called the Benard convection multi-cellular patterns. In Table 4, we compare the used CPU 
time of EFG, VMEFG and POD-VMEFG techniques based on final time T f = 10 and dt = 10−5 and the number of collocation 
points N = 800 and N = 1600 for Test problem 2.
M. Abbaszadeh, M. Dehghan, A. Khodadadian et al. Journal of Computational Physics 426 (2021) 109875
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Fig. 7. Singular values based on different snapshots for Example 3.

Table 2
Results computed for component v with T f = 10 and dt = 10−5 for Example 1.

VMEFG EFG

N L∞ L2 CPU time L∞ L2 CPU time

100 8.33 × 10−4 1.02 × 10−3 150 2.11 × 10−1 8.69 × 10−1 25
200 6.01 × 10−5 7.65 × 10−4 420 3.80 × 10−2 7.99 × 10−2 87
400 2.03 × 10−5 8.77 × 10−5 1340 7.52 × 10−3 1.22 × 10−2 167
800 9.10 × 10−6 7.33 × 10−6 2007 9.08 × 10−4 6.55 × 10−3 387
21
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Fig. 8. Fluid velocity for Example 2.

Table 3
Results computed for component w with T f = 10 and dt = 10−5 for Example 1.

VMEFG EFG

N L∞ L2 CPU time L∞ L2 CPU time

100 7.22 × 10−5 6.339 × 10−4 150 3.52 × 10−1 9.97 × 10−1 25
200 3.56 × 10−5 7.99 × 10−5 420 5.30 × 10−2 8.99 × 10−2 87
400 8.79 × 10−6 2.00 × 10−5 1340 8.97 × 10−3 2.03 × 10−2 167
800 4.55 × 10−6 8.70 × 10−6 2007 1.0 × 10−3 9.88 × 10−3 387

6.3. Example 3 (Channel flow with two rectangular protrusions)

In the current example, we investigate two computational domains that they are a channel with two rectangular protru-
sions. The total width of one channel is 2.4 and with two identical rectangular protrusions at the bottom and at the top of 
the channel with width 0.7 and length 0.05 as are depicted in Fig. 2. The total width of another channel is 2.85 and also 
with two rectangular protrusions at the bottom of the channel that length and width of small rectangular are 0.4 and 0.1, 
respectively, and the length and width of the larger one are 0.6 and 0.1, respectively, as these are shown in Fig. 3. In Figs. 2
and 3 the black walls are insulated thus the related boundary conditions for them are homogeneous Neumann boundary 
conditions. Also, In Figs. 2 and 3 values Ts = 10 and T N = 1 are the hottest and coldest places of these domains, respectively. 
For two computational regions, we consider Re = 100, Pr = 7, Pe = Re × Pr, T N = 1 and T S = 10. Also the velocities in x-
and y-directions are zero. Similarly, Fig. 7 illustrates the singular values based on the components u, v and w and different 
snapshots with Re = 2000, Pr = 1, Pe = Re × Pr, T N = 0 and T S = 1 for Example 3. By computing the singular values, we 
can see λ20 ≤ 2.3310 × 10−10 for 1450 collocation points. In Eq. (3.23), the value of I(m) converges to one. On the other 
22
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Fig. 9. Temperature profile for Example 2.

Table 4
The used CPU time calculated with T f = 10 and dt = 10−5 for Example 2.

N EFG Method VMEFG Method POD-MVEFG Method

20 POD basis 40 POD basis

800 37 min 1 hr & 22 min
8 s 21 s

1600 1 hr & 4 min 2 hr & 52 min

hand, from Eq. (3.23), we have I(1) = 0.999032 and I(20) = 0.999999. Thus, we can declare if λi+1 ≤ 2.3310 × 10−10 then 
the number of the optimal POD basis will be equal to i. In other words, we compute I(m) based upon the different values 
of m. Therefore, the smallest number m, where the value of I(m) is enough closed to one, can be selected as the number 
of POD bases. For Example 3, we take 20 POD basis for 1450 nodes. Figs. 10 and 11 illustrate the numerical temperature 
profile based on the two computational domains and dt = 10−5 for Example 3. In Table 5, we compare the used CPU time of 
EFG, VMEFG and POD-VMEFG techniques based on final time T f = 10 and dt = 10−5 and the number of collocation points 
N = 1000 and N = 12000 for Test problem 3.

7. Conclusion

In this paper, we developed a new reduced order model based on the meshless variational multiscale interpolating el-
ement free Galerkin (IEFG) method for solving the two-dimensional nonstationary Boussinesq equations. The interpolating 
moving least squares approximation is employed in the IEFG technique to derive an improved meshless weak form formu-
23
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Fig. 10. Temperature profile for Example 3.

Table 5
The used CPU time computed with T f = 2 and dt = 10−5 for Example 3.

N EFG Method MVEFG Method POD-MVEFG Method

50 POD basis 80 POD basis

1000 56 min 2 hr & 15 min
35 s 177 s

12000 2 hr & 43 min 4 hr & 2 min

lation. First, the time variable is discretized by a finite difference scheme. The time-discrete plane is based on a two-step 
formulation such that in the first step we calculated the pressure component by solving a Poisson equation. Then, in the 
second step we updated the velocity vector. By applying the variational multiscale approach, we increase the accuracy of 
the IEFG method. Furthermore, to increase the efficiency of the proposed method, we proposed a new reduced order model 
based on the proper orthogonal decomposition method. The numerical results show the accuracy and efficiency of the new 
scheme.
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Fig. 11. Temperature profile for Example 3.
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