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Kurzfassung

D ie verwendung von nanodrähten als biologisch sensitive Feldeffekttransistoren und
somit als markierungsfreie Sensoren birgt eine Reihe von vielversprechenden Anwendungen

wie zum Beispiel die Detektion von dna oder, wie kürzlich in Blut nachgewiesen, von Krankheits-
markern. Doch trotz des enormen experimentellen Entwicklungsfortschrittes und dem Versuch
diese Technologie massenproduktionstauglich zu machen, fehlt ein umfassendes quantitatives
Verständins, welches nur durch mathematische Modellierung und durch Simulationen erreicht
werden kann. Das mathematische Modell muss dabei zweierlei Dinge berücksichtigen: Den Auf-
bau solcher Sensoren und das Detektionsprinzip.

Der Aufbau besteht grundlegend aus einer nichtleitenden Schicht auf der der halbleitende Nan-
odraht aufgelegt ist. Der Nanodraht selbst ist wiederum mit einer nichtleitenden Schicht über-
zogen und der ganze Sensor ist einer wässrigen Lösung ausgesetzt, welche die zu detektierenden
Moleküle enthält. Um alle geometrischen Eigenheiten des Sensors zu berücksichtigen muss das
Modellierungsgebiet als dreidimensional angenommen werden. Die vorkommenden Materialien
können dann mit einem System von partiellen Differentialgleichungen beschrieben werden. Dieses
System ist auf der Poisson Gleichung aufgebaut und beinhaltet die Poisson-Boltzmann Gleichung
und das Drift-Diffusion-Poisson System. Mit diesen Gleichungen können das elektrostatische Po-
tential und die Ladungsträgerkonzentrationen selbstkonsistent berechnet und somit der Strom
durch den Sensor bestimmt werden.

Das Detektionsprinzip und somit auch die Sensitivität des Sensors ist von dem, durch den Wechsel
der Ladung in einer Grenzschicht, welcher durch die Bindung der zu detektierenden Moleküle an
die an der Oberfläche befindlichen Moleküle zu Stande kommt, induzierten, Feldeffekt abhängig.
Da diese Moleküle um einige Größenordnungen kleiner sind als die Gesamtgröße des Sensors
würde eine herkömmliche Methode zur Lösung des Gleichungssystems, zum Beispiel die finite
Volumen Methode, eine sehr feine Auflösung brauchen. Daher ist eine Multiskalenmethode
angeraten welche nicht nur das Auflösungsproblem löst sondern gleichzeitig auch den Vorteil mit
sich bringt, dass verschiedene Methoden zur Berechnung der Gegenionen in der Grenzschicht
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verwendet werden können.

Nichtsdestotrotz ist das zu lösende lineare System, welches aus der finiten Volumen Methode
resultiert, nach wie vor groß. Daher wurde eine Parallelisierungsmethode entwickelt. Par-
allelisierungsmethoden die auf dem feti Algorithmus aufbauen haben den Vorteil, dass das
Schnittstellenproblem durch Lagrange Multiplikatoren gelöst wird und somit die Sprungbedin-
gungen der Multiskalenmethode in einer intuitiven Art implementiert werden können.

Abschließend kann dieses Model dazu benutzt werden, die Sensitivität in Abhängigkeit von ge-
ometrischen und physischen Eigenschaften zu optimieren. Um all diese Resultate zu zeigen
wurden sie in die folgenden Kapitel gegliedert.

Diese Arbeit startet mit einer Einführung in Feldeffekttransistoren und der Modellierung von
selbigen wobei vor allem auf Feldeffekttransistoren basierend auf Nanodrähten eingegangen wird.
Das Modell trennt mithilfe einer Homogenisierungsmethode das für die Berechnung des Potentials
und der Ladungsträger zu Grunde liegende Gebiet in die Grenzschicht und den übrigen Sensor
auf. Weiters werden die drei am häufigsten benutzten Grenzschichtmodelle, das Drift-Diffusion-
Poisson System und die Poisson-Boltzmann Gleichung für Flüssigkeiten besprochen. Am Ende
des Kapitels wird das gesamte Modell zusammengefasst. Dieses einführende Kapitel basiert auf
(Baumgartner et al., 2012b).

Im zweiten Kapitel ist die Existenz und lokale Eindeutigkeit einer Lösung des Modellsystems
bewiesen. Dafür werden ein Satz von Rellich-Kondrachov über Kompaktheit, der Schauder
Fixpunktsatz und ein Maximumprinzip verwendet. Dieses Kapitel basiert auf (Baumgartner
and Heitzinger, 2012a).

Wie schon zuvor erwähnt wurde ein paralleler Simulator basierend auf der feti Methode entwick-
elt. Der Algorithmus dieser Methode und dessen Herleitung sind im dritten Kapitel beschrieben.
Weiters sind verschiedene Beispiele zur Verifizierung dieses Algorithmus gegeben. Dieses dritte
Kapitel basiert auf (Baumgartner and Heitzinger, 2012b; Baumgartner et al., 2012a).

Das vierte Kapitel behandelt die optimale Sensitivität von zwei verschiedenen Sensoren. Dabei
wird der Simulator mittels publizierten, gemessenen Strom-Spannungs Charakteristiken kalibri-
ert und anschließend werden geometrische und physische Eigenschaften mit Rücksicht auf die
Sensitivität optimiert. Dieses Kapitel basiert auf (Baumgartner et al., 2011a,b).

Das letzte Kapitel fasst diese Doktorarbeit zusammen.
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Abstract

Nanowires used as biologically sensitive field-effect transistors (biofets) are promising label-
free sensing devices with a wide range of applications, e.g., the detection of dna or disease

markers, recently even in whole blood. Despite the experimental progress in recent years and the
push towards mass fabrication, quantitative understanding of the devices has been missing and
hence mathematical modeling and simulation are crucial for physical understanding and optimal
sensing. Therefore, a mathematical model has to include two major parts, the structure of such
devices and the sensing mechanism.

The structure is based on a dielectric bulk layer carrying the semiconducting nanowire. The
nanowire itself is covered by a second, thin dielectric layer. The whole dielectric surface is
functionalized with probe molecules and is exposed to an aqueous solution containing the target
molecules. To capture all geometry properties the model domain needs to be in 3d. The different
materials are simulated by a system of partial differential equations based on the Poisson equation
consisting of the Poisson-Boltzmann equation and the drift-diffusion-Poisson system. A solution
of these equations exists and is locally unique around thermal equilibrium. The electrostatic
potential and the charge densities are self-consistently computed and hence the current through
the device is obtained.

The sensing mechanism and hence the sensitivity of the sensor is based on a field effect induced
by a change of the boundary layer charge due to binding of target molecules to probe molecules.
Since these molecules are some orders of magnitude smaller than the structure of the nanowire,
a usual approach, such as the finite volume method, would need a very fine resolution. Hence
a multiscale method is recommended which has the advantage that not only the resolution
problem is avoided, it also makes it possible to use various methods for the computation of the
concentration of counter ions in the boundary layer.

Nonetheless, the resulting linear problem, after discretization with the finite volume scheme, is
still large and hence a parallelization technique has been developed. Parallelization techniques
based on the feti method have the advantage that the interface problem is solved by Lagrange
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multipliers and hence the implementation of the jump conditions from the multiscale method is
straightforward.

In the end, this model can be used to determine the optimal point of sensitivity regarding the
geometry as well as the physical properties of such devices. To show all these results, they are
arranged in chapters as follows.

This thesis starts with an introduction to field-effect transistors, especially nanowire field-effect
transistors, and the modeling of these devices. The model splits the computation domain of the
potential and the charges in the boundary layer and the remaining device using a homogenization
method. Three main types of boundary layer models, the drift-diffusion-Poisson system, and the
Poisson-Boltzmann equation for liquids are discussed. At the end of the introduction, the whole
model is stated. This introductory chapter is based on (Baumgartner et al., 2012b).

In the second chapter, an existence and local uniqueness theorem for the model equations is
proved. Therefore the Rellich-Kondrachov compactness theorem, the Schauder fixed-point theo-
rem, and a maximum principle are used. This chapter is based on (Baumgartner and Heitzinger,
2012a).

As aforementioned, a parallelization simulator based on the feti method has been developed.
The algorithm of this method and its derivation is stated in chapter 3. Different examples are
shown for the validation of this technique. This third chapter is based on (Baumgartner and
Heitzinger, 2012b; Baumgartner et al., 2012a).

Optimal sensitivity for two different devices is shown in the fourth chapter. Therefore, the
simulator is calibrated by published, measured current-voltage characteristics. After calibration,
geometric properties as well as physical properties are optimized with respect to sensitivity. This
chapter is based on (Baumgartner et al., 2011a,b).

The last chapter concludes this thesis.
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Chapter 1

Introduction

The field effect and its use for the sensing of biomolecules has a long and exciting history.
At the beginning of this history stands, as for every technology, an idea and so it was for

the field-effect transistor (fet) as Lilienfeld applied for a patent in 1926. This patent describes
that a poorly conducting material changes conductivity when a voltage is applied which is – in
some sense – the main idea of today’s fet (Brinkman et al., 1997). Many ideas never become
real but fortunately over a decade later, in the late 1940s, the digital revolution was initiated by
the development of the first field-effect transistor in the Bell Labs, for which Shockley, Bardeen,
and Brattain were jointly awarded the 1956 Nobel Prize in Physics. From this time onwards
semiconductor transistors and microchips have deeply influenced human society and today we
even could not imagine how a world without this versatile technology should look.

While the transistor became more and more popular another innovation came to life as Clark and
Lyons invented the first biosensor for blood analysis in 1962 (Clark and Lyons, 1962). Probably
due to the popularity of the fet it took only eight years till these two technologies merged
to the first biosensors based on the field effect, the ion-sensitive field-effect transistors (isfets),
introduced by Bergveld (Bergveld, 1970; Schöning and Poghossian, 2006). Therefore the classical
fet configuration was only changed by replacing the upper electrode, which is responsible for
the field-effect, by an aqueous solution containing charge carriers. The detailed description of
the field-effect is given in Section 1.2.

The first property of such isfet is that changes in ph value at the solution-insulator interface
changes the conductance in the fet. Hence an isfet can be used as a ph sensor which was first
established in 1971 by Matsuo et al. (Janata, 2004). Also other ion species can be detected with
isfets. Those isfet are called chemically-sensitive field effect transistors (chemfets) (Janata,
1994). Moreover, every other electrical interaction at this interface leads to a change in the
electrical response of the underlying semiconductor which makes the isfet a versatile tool for the
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detection of, e.g., ion concentrations, enzymatic reactions, cellular metabolism, action potentials
of living cells, or other bioreceptors (Poghossian et al., 2007; Schöning and Poghossian, 2002).

The isfets using a bio-recognition element are termed biologically-modified field-effect tran-
sistors (biofets) which are, e.g., the enzyme-modified fet (enfet) first realized in 1980, the
immunologically modified fet (immunofet) or the dna-modified fet (dnafet) (Schöning and
Poghossian, 2002). It should be noted that these examples of sensors using the field effect have
one thing in common which is crucial for the mathematical model – they are all based on a
change of charges in a boundary layer near an interface.

Since the invention of the first isfet, biosensor technologies flourished and are still of paramount
interest today (Stern et al., 2010; Tian et al., 2010; Timko et al., 2010). Despite this huge
experimental progress the theoretical understanding is still incomplete and hence mathematical
and physical modeling is as important as it was for the transistor - the theoretical model from
Shockley had an immense impact on its success.

The last ingredient for todays sensing devices which became very popular in the last decades is
the nanotechnology and hence nanostructures. A nanostructure is a system where at least one
dimension is smaller than 100 nm. These can be 2d layers, 1d nanowires, or 0d nanoclusters
(Lieber, 1998). Using nanostructures, more than 40 years the transistors followed Moore’s Law
which states that every 24 month the number of transistors on a chip doubles (Chau et al., 2005).
To reach this ambitious aim, the length of the transistor gate went down to less than 30 nm in
the last years (Iwai, 2009; Palacios, 2012). However, it is quite doubtful that this trend can
be maintained in future (Bohr et al., 2007). The transducers used in field-effect sensors have
been influenced by this development, although the downsizing has not been done as much as
for the transistor, and now many promising bio-sensing devices for medical and biotechnological
applications are based on nanotechnology (Patolsky et al., 2006a,c; Stern et al., 2008).

Nowadays, we even have the choice which nanotechnology we want to use. The most promising
sensing devices are based on nanowires and carbon nanotubes due to their high sensitivity, fast
response, and direct electrical readout (Patolsky et al., 2006b). Still, questions of characteriza-
tion, uniformity and manufacturability need to be addressed before nanoscale biosensors can be
mass-produced and used in daily life. In the following we will look on some of these issues of
carbon nanotubes and nanowires separately.

In the case of carbon-nanotube sensors, it has been reported that the adsorption of biomolecules,
e.g., proteins, on a swnt (single-walled carbon nanotube) results in a sufficient change of con-
ductance for detection due to the field effect (Chen et al., 2003, 2004; Sorgenfrei et al., 2011).
Nonetheless, some problems must be overcome before swnts can be used commercially as sen-
sors. For example, the non-specific binding of molecules to the swnt must be avoided due to
the possible change of the dielectric constant of the electric double layer in the aqueous solution,
which would cause an unwanted sensor response (Chen et al., 2004). However, for mass produc-
tion silicon nanowires are more promising due to the dominant use of cmos technology (Iwai,
2009). Hence we will restrict ourselves to devices based on nanowires in this thesis.

Much research on producing silicon nanowire based sensors has been conducted in recent years
(Cui et al., 2000, 2001, 2003; Elfström et al., 2008; Gao et al., 2010; Hahm and Lieber, 2004; Li
et al., 2006; Patolsky and Lieber, 2005; Patolsky et al., 2007; Stern et al., 2007a,b; Wang et al.,
2005; Zheng et al., 2010, 2005) and today devices based on nanowires are the most likely future
tool for the electrical detection of biological and chemical species ranging from proteins, dna,
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drug molecules, and viruses to single molecules (Patolsky et al., 2006c). Furthermore they are
highly sensitive due to their high surface to volume ratio, are, as stated before, cmos compatible
due to their fabrication out of silicon, and sense without labeling. To get a better understanding
of these devices, how they look, and which parts we need to cover with our simulations we give
an overview on the fabrication of nanowires in the following.

1.1 The Nanowire

The production of nanowires and hence the production of nanowire devices can be classified
in two categories, bottom up and top down. The most popular bottom-up technique is the
vapour-liquid-solid (vls) growth method (Cui et al., 2001; Hahm and Lieber, 2004; Lieber, 1998;
Patolsky et al., 2006a; Wagner and Ellis, 1964). This process uses a catalyst nanoparticle to
grow nanowires through absorption of a gas phase. The advantage of bottom-up methods over
top-down methods is that incorporation of heterogeneities and dopings is easily done and that
the size of the nanowire can be defined by the size of the catalyst nanoparticle.

When growing nanowires by the bottom-up technique, we usually get a lot of nanowires located
somewhere at a substrate from which we have to pick a single nanowire. Then this nanowire is
deposited on another substrate contacted by electrodes. This process is difficult to achieve with
mass production techniques and each device has its unique properties. Hence reproducibility of
devices produced by this method is hard to achieve, by now (Ginet et al., 2011; Stern et al.,
2011).

Source Drain

Oxide

Backgate

Figure 1.1: Schematic diagram of an nwfet device.

Using top-down methods, the placement step is not needed and hence reproducibility is improved.
Currently the most used tools are the electron-beam (ebl), the focused ion beam (fib) or the
deep ultraviolet (duv) lithography followed by anisotropic, dry or wet reactive ion etching (rie).
Recently, for the use of nanowires in sensor applications an anisotropic wet etch of silicon with
tetramethylammonum hydroxide has been used (tmah) (Ginet et al., 2011; Stern et al., 2007a,
2011). However, both methods have their applications and can be used for nanowire sensors with
a design depicted in Fig. 1.1.

In this thesis we consider a general design. Here a silicon nanowire lies on an silicon dioxide
substrate and has two electrical contacts at the source and the drain of the nanowire. A third

3



CHAPTER 1. INTRODUCTION 1.2. The Sensing Mechanism

electric contact rests under the silicon dioxide. The nanowire is separated from the aqueous
solution by a thin silicon dioxide layer. This layer is functionalized with receptor molecules, e.g.,
proteins or antibodies, on which a corresponding ligand, if present in the aqueous solution, binds.
How this binding is measured by the nanowire biofet is explained in the following section.

1.2 The Sensing Mechanism

In this section we discuss the state of the art of the quantitative understanding of the sensing
mechanism in nanowire-based field-effect biosensors. The quantitative understanding is impor-
tant for predictive simulations, leads to a rational design, and the optimization of the nanowire
sensors. Therefore we have to identify the crucial parts for modeling. The response of the sensor
is dependent on the charge changes in the boundary layer. Hence we take now a look at this
component of the sensor.

A p-doped silicon nanowire together with two contacts, a source and a drain contact, is shown
in the lower half of Fig. 1.2. The nanowire transducer is usually located on top of a dielectric
material and covered by a second dielectric material, which is exposed to the ionic solution. A
conventional fet structure is shown in the upper half of Fig. 1.2: In this device, a gate contact
is located on the top of the dielectric and a negative gate voltage VG induces an accumulation of
positive charge carriers near the silicon surface, which in turn induces an increase of conductance,
while a positive gate voltage decreases the conductance. Vice-versa, when using an n-doped
silicon nanowire, a negative gate voltage decreases the conductance and a positive gate voltage
increases the conductance.

In field-effect biosensors, the gate contact is replaced by a functionalized boundary layer and an
ionic solution containing target molecules. The dielectric covering the transducer is functionalized
with receptor molecules: in the case of dna sensors, the receptors are complementary single-
stranded dna; in the case of antigen sensors, the receptors are the corresponding antibodies.
As target molecules in the liquid bind to the receptors, their presence and their partial charges
change the charge concentration in the boundary layer, which in turn modulates the conductance
of the nanowire transducer. In Fig. 1.2, the target molecules carry negative charges and act as
a negative gate voltage. Hence accumulation of charge carriers again increases the conductance.

Additional control of the nanowire can be provided by the implementation of a backgate contact,
which plays an important role for the sensitivity of such sensors (see Chapter 4). Furthermore,
it is well-known that the nanowire surface is charged when in contact with water due to chemical
reactions, and the surface charge depends on the material and the pH value. Therefore a double
layer of ions forms at the surface.

The sensor signal is the measured current through the nanowire, which is modulated due to
the gate effect as target molecules bind. In order to calculate the sensor response, it is therefore
crucial to consider the boundary layer and the screening of the partial charges of the biomolecules
by free ions. The charged boundary layer acts as the gate contact, so that electron and hole
transport in the semiconductor must be calculated as a function of the boundary layer, the
applied voltages, the geometry of the nanowire, and so forth.

These considerations imply that physically sound modeling and simulation must include firstly
the charge concentration in the biofunctionalized boundary layer that gives rise to the field effect
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Figure 1.2: Working principle of a conventional fet (top) and a nanowire field-effect
sensor (bottom). In both cases, negative charge at the gate contact or at
the nanowire surface leads to an increase of conductance due to accumu-
lation of charge carriers in the semiconductor near the negative charges.

and secondly the charge transport in the semiconducting transducer that translates the difference
in charge in the boundary layer to the electrical signal. Clearly, the modeling and simulation
of field-effect sensors is more complicated than the simulation of conventional fets due to the
additional boundary layer. In the best case, the sensor model is self-consistent meaning that
the influences of all charges onto all charges are taken into account while including all applied
potentials; this is usually achieved by solving the Poisson equation.

In summary, field-effect biosensors consist of two parts – namely the biofunctionalized boundary
layer and the nanowire transducer – that shall be considered self-consistently. Models for the
boundary layer, i.e., screening models, are discussed in Section 1.4. The sensor signal is measured
as the current (or change in current) through the nanowire and cannot be explained by the
surface models alone; hence suitable charge-transport models are discussed in Section 1.5. In
order to connect these two parts and to solve the multiscale problem inherent in these sensors,
a homogenization method is advantageous, which is presented in the following Section 1.3.

1.3 Homogenization

As mentioned above, the characteristic length scale of the biomolecules in the boundary layer is
smaller than the dimensions of the nanowire by some orders of magnitude. This circumstance
becomes obvious when we look at the, true to scale, schematic diagram of a dna sensor in Fig. 1.3
where the right-hande side is a detailed view of the nanowire surface on the nanowire device on
the left-hand side. Problems of this type are called multiscale problems (Bensoussan et al., 1978;
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Figure 1.3: Schematic diagram of an nwfet, true to scale, with functionalized sur-
face. The grid spacing on the left-hand side is 10 nm × 10 nm and the
detail on the right-hand is 20 nm wide, 30 nm high, and is also true to
scale. The depicted dna is bound to the surface by a 1 nm long linker,
is 5 nm high, and has a radius of 1 nm. The ions in the aqueous solution
are modeled as charged hard spheres with a diameter of 0.3 nm.

Pavliotis and Stuart, 2007). A main motivation to study them is the fact that problems with a
microscopic structure are extremely time consuming to solve numerically, since the microscopic
structure must be resolved by the numerical grid. Homogenization generally yields equations of
similar type, but with homogenized coefficients so that the numerical grids do not have to resolve
the microscopic structure anymore. Then previously computationally intractable problems can
be solved numerically with reasonable effort.

To obtain the sensor response in terms of the nanowire current, the electrostatic potential V
must be computed everywhere in the simulation domain. Therefore, we usually solve the Poisson
equation

−∇ · (ε(x, y, z)∇V (x, y, z)) = ρ(x, y, z) in Ω, (1.1a)

V (0+, y, z) = V (0−, y, z) on Γ, (1.1b)

ε(0+, y, z)∂xV (0+, y, z) = ε(0−, y, z)∂xV (0−, y, z) on Γ (1.1c)

as the basic equation for the electrostatic potential, where V is the electrostatic potential and ε
is the permittivity. Furthermore, ρ is the charge concentration in the different materials and will
depend on the electrostatic potential itself in the drift-diffusion-Poisson system in Section 1.5.
In the liquid, ρ describes the charge concentration in the ionic solution and hence also in the
boundary layer. The interface Γ splits the domain Ω ⊂ R

3 into two parts Ω+ and Ω−. For
the sake of notational simplicity, we assume that the normal vector of the interface Γ points in
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the positive x-direction and is located at x = 0. The conditions (1.1b) and (1.1c) ensure the
continuity of the electric potential and dielectric displacement in the presence of the discontinuity
in the permittivity ε at the material boundaries.

The idea of the homogenization procedure is to compare the weak formulations of two problems:
the first problem is the original problem above and the second, the homogenized problem, con-
tains general interface conditions, but not the fast varying charge concentration, i.e., we replace
the Poisson equation and the fast varying charge concentration ρ in the boundary layer by a
simpler problem that does not exhibit a microscopic structure and oscillations.

At the end of the procedure, the interface conditions are derived by comparing the coefficients
of the test function and its normal derivative with respect to the interface. Indeed it is found
that the complicated, oscillating three-dimensional structure of the biomolecules, their partial
charges and screening ions can be replaced by two interface conditions involving only two integral
values of the charges in the boundary layer after the cell size in the boundary layer goes to zero
(Heitzinger et al., 2010b).

V |Ω−

Ω−

α

Γ



0−

0+ Ω+

V |Ω+

Figure 1.4: Schematic diagram of the electric potential V at the interface Γ in a cross
section. The jump of size α of the electric potential is shown, while the
jump of size β in the electric displacement results in a difference in the
normal derivatives of the potential in Ω− and Ω+.

After homogenization, the original problem (1.1) becomes the homogenized problem

−∇ · (ε(x, y, z)∇V (x, y, z)) =

{
ρ(x, y, z) in Ω−,

0 in Ω+,
(1.2a)

V (0+, y, z) − V (0−, y, z) = α on Γ, (1.2b)

ε(0+, y, z)∂xV (0+, y, z) − ε(0−, y, z)∂xV (0−, y, z) = β on Γ, (1.2c)

where V is now the homogenized potential and 0+ denotes the limit at the interface Γ on the
side of the liquid, while 0− is the limit on the side of the transducer as depicted in Fig. 1.4.
The fast varying charge concentration in the surface layer is now, as stated before, subsumed in
the macroscopic dipole-moment density ζ and the macroscopic surface-charge density γ of the
boundary layer and

α =
ζ(y, z)

ε(0+, y, z)
, β = −γ(y, z). (1.3)
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are just, for the sake of simplicity, abbreviations for the modified charges. Both ζ and γ may
depend on y and z, the coordinates parallel to the surface, to allow for slow variations of the
boundary layer along the interface.

The two interface conditions have the following interpretation (see also Fig. 1.4): the condition
(1.2b) is a jump in the electrostatic potential and is given by the dipole-moment density of the
boundary layer, whereas condition (1.2c) is a jump in the electrostatic field (or more precisely,
in the electrostatic displacement) and is given by the surface-charge density (Cherstvy, 2011).

The values of ζ and γ are immediately obtained from the charge concentration in a cell of
the boundary layer and can be obtained from any of the boundary-layer models in Section 1.4
(Heitzinger et al., 2010b).

In summary, the homogenization result decouples the microscopic and macroscopic length scales
via the two interface conditions in (1.2). Details on the efficient implementation of the interface
conditions are given in Chapter 2.

1.4 The Biofunctionalized Boundary Layer

The biofunctionalized boundary layer is the part of the sensor that provides selectivity. It
also translates the presence of biomolecules into a change in the electrostatic potential in the
semiconducting transducer due to a redistribution of charge in the boundary layer, when target
molecules are present and bound to receptors. Since the sensing concept is based on the field
effect, the charge concentration in the boundary layer is crucial for the quantitative understanding
of the sensing mechanism.

An accurate model for the boundary layer has to incorporate several effects. In the simplest case,
a non-functionalized nanowire is exposed to an electrolyte. Here the charge of the dielectric, e.g.,
SiO2 or Si3N4, which covers the transducer, depends on the ph value of the electrolyte due to
reactions of the electrolyte with hydroxyl groups at the dielectric surface. This is a well-known
effect for isfets and can be modeled by the site-dissociation model (Bergveld and Sibbald, 1988;
Schöning and Poghossian, 2002; Xu et al., 2005) discussed in Section 1.4.1. This model together
with the homogenization result in Section 1.3 and a charge-transport model for the nanowire can
be used for the simulation of ph sensors.

Due to the surface charge of the dielectric, an electric double layer of free ions forms on the
transducer. This is a well-known effect that is commonly simulated using Metropolis-Monte-
Carlo simulations (Allen and Tildesley, 1987) in order to take the finite size of the ions into
account. In addition to the electric double layer, receptor and target molecules with their partial
charges are present at the surface, together with a cloud of screening, free ions. Furthermore, the
charge state of biomolecules depends on the ph value and the biomolecules and their screening
charges interact with the electric double layer.

These questions are – despite recent progress – still an area of active research (Alexov et al.,
2011). Hence we describe the three main types of models for these effects in the following: the
atomistic approach, i.e., Monte-Carlo simulations, the continuum approach, i.e., the Poisson-
Boltzmann equation (Heitzinger et al., 2010a), and the empirical propka model (Li et al.,
2005) are discussed. Compact screening models, such as (Sørensen et al., 2007) have also been

8



CHAPTER 1. INTRODUCTION 1.4. The Biofunctionalized Boundary Layer

developed for the simulation of nanowire sensors (De Vico et al., 2011, 2010; Vacic et al., 2011).

1.4.1 The Site-Dissociation Model

The surface of dielectric materials such as SiO2, Si3N4, Al2O3, and Ta2O5 is charged when in
contact with an electrolyte and it is neutral only at the isoelectric point, a specific ph value.
This surface charge provides an important baseline value, also regarding the operating regime
of the sensor. Since the surface charge is a function of ph value, it was already investigated in
isfet theory. In the following, we give an overview on the site-dissociation model from Bergveld
(Bergveld and Sibbald, 1988).

The site-dissociation model assumes that there is an interaction of the electrolyte with discrete
surface sites which are amphoteric, i.e., the surface sites can be neutral, a proton donor, or a
proton acceptor.

The reactions of the hydroxyl groups (AOH groups, where A is, for example, Si or Al in the
case of an SiO2 or Al2O3 surface) at the surface with the H+ ions in their vicinity relate the
equilibrium potential ψ0 and the H+ ions. These reactions are expressed in the equilibrium
equations

AOH ⇋
Ka AO− + H+

s , (1.4a)

AOH + H+
s ⇋

Kb AOH+
2 , (1.4b)

where the dissociation constants Ka and Kb are

Ka =
[AO−][H+]s

[AOH]
, Kb =

[AOH+
2 ]

[AOH][H+]s
(1.5)

and where AO−, AOH+
2 and AOH represent the negative (deprotonated), positive (protonated),

and neutral surface sites respectively and [.] denotes site concentration.

Furthermore, the concentration of the H+ ions at the surface is related to the bulk concentration
via Boltzmann statistics by

[H+]s = [H+]b exp
(
−qψ0/(kT )

)
, (1.6)

where q is the elementary charge, k is the Boltzmann constant, and T is the temperature. Using
the net surface charge

σ0 := q([AOH+
2 ] − [AO−]) (1.7)

and the total number of surface sites per unit area

Ns := [AOH] + [AOH+
2 ] + [AO−] (1.8)

together with (1.5) and the assumption that 2(KaKb)
1/2 ≪ 1 yields the equation (see also

(Bousse et al., 1983))

ln[H+] − ln(Ka/Kb)
1/2 =

qψ0

kT
+ sinh−1

(
σ0

2qNs(KaKb)1/2

)
− ln

(
1 −

σ0

qNs

)
. (1.9)
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From this equation and the assumption that σ0 ≪ qNs, we obtain the relation between the
isoelectric point pI (i.e., the pH value where the surface is charge neutral) and the surface
potential ψ0 as the equation

2.303(pI − pH) =
qψ0

kT
+ sinh−1

(
qψ0

kTκ

)
(1.10)

with

κ :=
2q2Ns(KaKb)

1/2

kTCL
, (1.11)

where CL is the constant capacitance of the double layer, i.e., CL gives the relation σ0 = ψ0CL

between σ0 and ψ0. Values reported in the literature are Ns = 5 · 1014 cm−2 and CL = 20µFcm−2

for SiO2 (Bergveld and Sibbald, 1988). In the case of an SiO2 surface, the values of κ and pI
are κ = 0.14 and pI = 2.2 (Bergveld and Sibbald, 1988). Finally, the net surface charge can be
obtained from the equilibrium potential by multiplication by CL. For a more detailed description
see (Bousse et al., 1983; Harame et al., 1987).

1.4.2 Screening and Biomolecules

The modeling of the electrostatics of biomolecules such as proteins and dna is not only essential
for the simulation of nanowire field-effect sensors, but it is its own important research area.
Hence it is not surprising that many approaches of different kinds have been developed, but it
is astonishing that none of the methods is significantly better than the rest, each having its own
advantages and disadvantages (Alexov et al., 2011; Kukic and Nielsen, 2010; Lu et al., 2008).

In the following, the three main types of biomolecule models are presented. Firstly, a Monte-
Carlo algorithm for charged biomolecules at charged surfaces is discussed (Bulyha and Heitzinger,
2011). It is the first of its kind to include charged biomolecules and has been used for sensor
simulation (Baumgartner et al., 2011a). The main advantage of the Monte-Carlo approach is
that it takes into account the finite size of the ions. Secondly, continuum models are based on the
Poisson-Boltzmann equation (pbe), a three-dimensional partial differential equation and one of
the main equations in computational chemistry. Thirdly, empirical models have been developed
and we give an overview on the propka algorithm, which is one of the most used (Li et al.,
2005), also for biosensor simulations (De Vico et al., 2011, 2010).

1.4.2.1 The Metropolis-Monte-Carlo Method

Recently, a Metropolis-Monte-Carlo (mmc) algorithm was developed for the simulation of
biomolecules and free ions in the constant-voltage ensemble (Bulyha and Heitzinger, 2011). Here
we give an overview on the method which is used for simulations in Chapter 4.

The simulation box is shown in Fig. 1.5. The biomolecules such as pna (peptide nucleic acid),
single-stranded dna (ssdna), or double-stranded dna (dsdna), are fixed at the bottom of the
box. The length of the oligomers and their linkers can be adjusted to the desired length. The
dna and pna oligomers are modeled as cylinders, where the partial charges of the phosphate
groups of the backbone are situated on the cylinder surface on a helix while the free ions are
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Figure 1.5: The simulation domain of a constant-voltage Metropolis-Monte-Carlo
simulation. Here it contains 2 × 2 biomolecules at the bottom of the
cell. The molecules can be rotated with respect to the surface (Bulyha
and Heitzinger, 2011).

excluded. The points where the linkers are attached to the bottom of the box are arranged in
an equidistant grid.

The reason for including many biomolecules in a single simulation box is computational. In
order to be able to simulate electrolytes with realistic, low ionic concentrations and realistic
concentrations of immobilized biomolecules, the simulation domain is quite small compared to
the number of free ions; the small number of ions in the box leads to bad statistics in the Monte-
Carlo simulation. Hence a larger simulation domain with a grid of molecules provides a sufficient
number of ions and leads to much improved statistics.

Each oligomer is bound to the surface by a linker and the biomolecules together with their linkers
are simulated as impenetrable cylinders with two hemispheres of the same radius on the top and
at the bottom. In the case of pna oligomers, the cylinders are uncharged, and in the case of
ssdna and dsdna oligomers, they carry the charges of the phosphate groups of the backbone
on their outside. The sizes correspond to the b-dna conformation of dna. The oligomers can
additionally be rotated with respect to the surface.

The electrolyte in the simulation box is usually Na+Cl−. The ions are modeled as charged hard
spheres and water is modeled as a continuous medium without structure.

The top and the bottom of the simulation box are impenetrable walls with given charge densities
to that the electric field can be controlled. The bottom of the box carries the surface charge as
calculated from the site-dissociation model in Section 1.4.1.

In order to calculate the ion concentration profile, a 3d mmc method must be used in the constant-
voltage ensemble because of the voltage drop across the simulation box in sensor application.
The constant-voltage ensemble (Kiyohara and Asaka, 2007) can be considered as an extension
of the grand-canonical ensemble.

11
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A simulation in the mmc constant-voltage ensemble starts with a random state of the system,
i.e., the locations of all ions are random. A new state of the system is generated by randomly
adding or deleting a pair of ions, changing the position of an ion while avoiding overlaps, and
by transferring a random amount of charge between the walls. Then the potential energy is
calculated for each state of the system. The interactions between all pairs of charge types,
i.e., the ion-ion, the ion-biomolecule, the ion-plate, the biomolecule-plate, and the plate-plate
interactions, are included in this calculation and the long-range contributions of the Coulomb
forces are taken into account via integration over infinitely many periodically repeated cells. If
the movement of a charge reduces the energy of the system, the new state is unconditionally
accepted, while otherwise the movement is allowed only with a certain probability that depends
exponentially on the energy difference.

Finally, the surface-charge density γ and the dipole-moment density ζ are calculated as integrals
over the charge concentration in the simulation cell (Heitzinger et al., 2010b).

1.4.2.2 The Poisson-Boltzmann Equation

The most-common and well-established continuum model for the description of ionic concentra-
tions and the electrostatic interactions is the Poisson-Boltzmann equation (Lu et al., 2008). It is
one of the most important equations in computational chemistry and is often used to calculate
ionic concentrations around molecules and the applications considered here at surfaces (Talasaz
et al., 2006). The domain Ω is partitioned into two parts: the subdomain Ωm of the molecule and
the subdomain Ωs of the solvent. Both regions are modeled by the nonlinear Poisson-Boltzmann
equation

−∇ · (ε∇u) −

K∑

j=1

cjqje
−ξqju=

N∑

i=1

piδ(x− xi) in Ωs, (1.12a)

−∇ · (ε∇u) =

N∑

i=1

piδ(x− xi) in Ωm, (1.12b)

where ε is again the permittivity, cj is the bulk concentration of free ion species j with charge
qj, pi is a charge at xi in Ωm, and ξ = 1/(kT ), where k is the Boltzmann constant and T is the
temperature.

On the interface between the two subdomains Ωm and Ωs, continuity equations for the potential
u and the dielectric displacement (i.e., the permittivity times the normal derivative),

[u] = 0, (1.13)
[
ε
∂u

∂n

]
= 0, (1.14)

where [.] denotes the difference of the limits in Ωm and in Ωs analogously to equations (1.2).

A leading special case of the pbe is the pbe for a symmetric, 1 : 1 electrolyte (Holst et al., 2012).
With K = 2, the bulk concentration cj = c, and qj = (−1)jq, equation (1.12a) simplifies to

−∇ · (ε∇u) + 2cq sinh(ξqu) =
N∑

i=1

piδ(x− xi). (1.15)
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This equation can be solved by various numerical methods such as the finite-difference method,
the finite-volume method, or the boundary-element method (Lu et al., 2008). Nowadays several
pbe solvers such as DelPhi (Honig and Nicholls, 1995), grasp (Nicholls et al., 1991), mead

(Bashford and Gerwert, 1992), uhbd (Davis et al., 1991), pbeq (Im et al., 1998), apbs (Baker
et al., 2000; Holst et al., 2000), and afmpb (Lu et al., 2010a), are available for biochemistry and
biophysics.

A stochastic version of the Poisson-Boltzmann equation was also used to quantify fluctuations
in nanowire field-effect biosensors (Heitzinger et al., 2010a).

1.4.2.3 PROPKA

An empirical method for the calculation of protein charges and pKa values is the fortran

program propka (Bas et al., 2008; Li et al., 2005; Olsson et al., 2011; Rostkowski et al., 2011).
This method uses the structure of proteins from pdb files to compare it with empirical data. An
initial guess for the pKavalue pKwater

a of a titrable group in water is perturbated by the change
∆pKwater→protein

a of the pKavalue due to the protein, i.e., the pKavalue is

pKa = pKwater
a + ∆pKwater→protein

a (1.16)

according to (Søndergaard et al., 2011). Here pKwater
a is obtained empirically and is well-known,

while ∆pKwater→protein
a is calculated by propka.

From comparison with empirical data and investigations of the structure of the proteins in
pdb files, the main contributions to ∆pKwater→protein

a have been detected and approximated. In
propka3.1, these contributions are

∆pKwater→protein
a = ∆pKdesolv

a + ∆pKHB
a + ∆pKRE

a + ∆pKQQ
a , (1.17)

where ∆pKdesolv
a describes the desolvation effects, ∆pKHB

a describes the hydrogen-bond inter-
actions, ∆pKRE

a describes the contribution due to electrostatic reorganization energies, and
∆pKQQ

a describes the Coulombic interactions. The Coulomb contribution due to charge-charge
interactions is described for the protein residue i and a charge j from a charged or ionizable
group as

∆pKQQ
a,i =

244σij

εrij
wQQ(rij), (1.18a)

wQQ(rij) =





rij

rmin
if rij ≤ rmin,

rij−rmin

rmax−rmin
if rmin ≤ rij ≤ rmax,

0 if rij ≥ rmax,

(1.18b)

σij =





−1 if (i ∈ acids and j ∈ bases)

or (i ∈ bases and pKa,i < pKa,j),

+1 if (i ∈ bases and j ∈ acids)

or (i ∈ acids and pKa,i > pKa,j),

0 else,

(1.18c)

where 244 is the Coulomb’s-law coefficient in pKa units, ε is the dielectric constant, and σ gives
the direction of the pKa shift. Furthermore rij is the distance between the charge centers and
w is a weight function.
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Short-distance contributions ∆pKHB
a,i from hydrogen bonds or contributions ∆pKRE

a,i from re-
versed hydrogen bonds are modeled as

∆pKHB
a,i =

{
cHBwHB(rij) cos θ if θ ≥ 90◦,

0 else,
(1.19a)

wHB(rij) =





1 if rij ≤ rmin,
rij−rmin

rmax−rmin
if rmin ≤ rij ≤ rmax,

0 if rij ≥ rmax,

(1.19b)

where cHB is a fitted constant, w is a weight function, and θ is the angle between the hydrogen
bond and the hydrogen acceptor. Furthermore rij is the hydrogen-bond distance.

The desolvation effect due to nearby, non-hydrogen atoms (k = 1, . . . , N) with volume Vk is
calculated as

∆pKdesolv
a,i = c

N∑

k=1

Vk

r4ik
, (1.20)

where c is an empirically determined constant and where the center of the atom k is a distance
rik away from the center of residue i.

The charge of the molecule is the sum of the charges of the single amino acids
∑
qi. The charge

qi of the amino acid i can be calculated as (De Vico et al., 2010)

qi =
10pKa,i−ph

1 + 10pKa,i−ph
. (1.21)

1.4.3 Gas Sensors

Just for completeness we want to mention that the homogenization method is also applicable
for gas sensors. Here no molecules are attached at the nanowire surface. Instead, reactions at
the nanowire surface happen which can be computed from the solutions of systems of odes that
govern the chemical reactions. In the case of SnO2 based sensors in the presence of oxygen and
a reducing gas such as CO, the chemisorption and ionization at the surface can be described by
the system

dNO

dt
= k1([S] −NO −NS)[O2]

1/2 − k−1NO −
dNS

dt
,

dNS

dt
= k2nsNO − k−2NS ,

whereNO denotes the neutral-adsorbed-oxygen density, NS is the ionized-oxygen density, and the
ki are the rate constants of the surface processes, while [S] is the local adsorption-site density and
[O2] is the oxygen concentration (Fort et al., 2006). Furthermore the electron concentration ns

corresponds to the surface-charge density Mγ(V ) and the dipole-moment density Mα(V ) vanishes
in the case of gas sensors since the distance from the surface is zero. Of course, there are many
more systems of odes that are relevant for the modeling of gas sensors.
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1.4.4 Comparison of Boundary-Layer Models

In summary, many approaches for the simulation of the partial charges of molecules, and in
particular of dna and proteins, have been developed. The main advantage of empirical models
is the very fast prediction of pKa values and charges with simulation times in the seconds range.
Since these methods contain parameters that have been fitted to a sample data set, they are
expected to work reliably only for molecules similar to the sample set. Hence more physically
motivated methods are desirable, but come at a computational cost. In any case, empirical
methods provide good approximations for many proteins and other biomolecules.

The simulation of dna is facilitated by its comparatively simple and periodic structure. The
structure of the biomolecules also plays a crucial role for the pKa value and the partial charge,
e.g., proteins have different charges if they are folded or unfolded. Hence it is often not possible
to model and simulate the charging state of molecules accurately within feasible time or with
feasible computational resources.

Hence this area continues to be one of active research and it is highly relevant for the quantitative
understanding of affinity based sensors.

Using the methods summarized here, the charge concentration in boundary layers as they occur
in nanowire field-effect sensors can be simulated. Furthermore, a transport model for the charges
in the semiconducting nanowire is needed in order to simulate the whole sensor system. This is
discussed in the next section.

1.5 The Charge Transport in the Nanowire

A realistic model for the charge transport through the nanowire transducer must be three-
dimensional because of the real-world boundary conditions, namely the location of the source,
drain, and backgate contacts (Elfström et al., 2007; Elfström and Linnros, 2008; Nair and Alam,
2007; Stern et al., 2007a).

In this section, we present a continuum model for charge transport through nanowires. Various
models for particle transport in semiconductors have been developed focusing on different aspects;
the two main approaches are the Boltzmann equation, equations derived thereof such as the
drift-diffusion-Poisson system and diffusion-type equations (Heitzinger and Ringhofer, 2011),
and Monte-Carlo methods. For the purpose of the simulation of field-effect sensors, continuum
models are well-suited. The important aspect in field-effect sensors is the boundary layer and
minute changes therein, and not so much advanced effects of charge transport in nanoscale
structures. Hence the drift-diffusion-Poisson system is chosen to be the model for the charge
transport in the nanowire.

1.5.1 The Drift-Diffusion-Poisson System

The charge transport in the semiconducting nanowire can be calculated by special models for
confined structures (Ben Abdallah et al., 2001, 2006; Heitzinger and Ringhofer, 2011). In this
work, the charge-transport equations in the nanowire that yield the carrier concentrations n
and p is the drift-diffusion-Poisson system which is discussed in the following. As stated in
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Section 1.3, the electric potential V is the solution of the Poisson equation

−∇ · (ε(x)∇V (x)) = ρ(x) (1.22)

for the electric potential V , where ρ(x) is the charge concentration and x ∈ Ω ⊂ R
3. When

modeling semiconducting materials, the charge concentration includes the charge carriers, i.e.,
the electron concentration n and the hole concentration p. Furthermore, the doping concentra-
tion Cdop of the semiconductor is also part of the charge concentration. In detail the charge
concentration for semiconductors is defined as

ρsemi(x) := q(p(x) − n(x) + Cdop(x)), (1.23)

where q is the elementary charge.

The concentrations n and p of the charge carriers are the solutions of the drift-diffusion equations

∇ · Jn = R, (1.24a)

∇ · Jp = −R, (1.24b)

Jn = Dn∇n− µnn∇V, (1.24c)

Jp = −Dp∇p− µpp∇V, (1.24d)

where Dn and Dp are the electron and hole diffusion coefficients, µn and µp are their mobilities,
Jn and Jp are their current densities, and R denotes the recombination rate (Markowich et al.,
1990; Selberherr, 1984). An important model for the recombination rate is the Shockley-Read-
Hall recombination rate

RSRH :=
np− n2

i

τp(n+ ni) + τn(p+ ni)
, (1.25)

where ni denotes the intrinsic charge concentration and τn and τp are the relaxation times of the
electrons and holes, respectively. Furthermore, we assume that the Einstein relations Dn = UTµn

and Dp = UTµp hold, where UT is the thermal voltage.

In general the drift-diffusion-Poisson system is solved by the Scharfetter-Gummel iteration
scheme which allows us to solve the charge of the boundary layer (the microscopic part of the
model) and the charge transport (the macroscopic part of the model) in a self-consistent manner.

1.5.2 The Liquid

The equation for the aqueous solution outside the boundary layer (the boundary layer charges
are already included in the surface charge density and the dipole moment density) is the Poisson-
Boltzmann model

−∇ · (A∇V ) =
∑

σ

σηe−σξ(V −Φ),

where η is the ionic concentration, the constant ξ is defined as ξ := q/(kT ) in terms of the
Boltzmann constant k and the temperature T , and Φ is the Fermi level. The right-hand side is a
sum over the valences σ of all ion species; for example, the index set σ ∈ {−1,+1} corresponds
to a 1:1 electrolyte such as Na+Cl−. In this case, the equation simplifies to

−∇ · (A∇V ) = −2η sinh(ξ(V − Φ)).
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1.5.3 Self-Consistent Simulation of Sensor Systems

We have now all parts for a self-consistent model of nwfets. We consider the typical structure
of a nanowire sensor as depicted in Fig. 1.6.

Nanowire
Drift Diffusion

Aqueous Solution: Poisson Boltzmann

Ωliq

Ωox

ΩSi Boundary
Layer

↓

Silicon Dioxide

Poisson

Source Drain

Oxide

Backgate

Figure 1.6: Schematic diagram of the nanowire sensor; the different materials and the
corresponding equations, used in the simulations, are indicated.

Here, the silicon nanowire is covered by a thin, dielectric layer of silicon dioxide and surrounded
by the aqueous solution containing the target molecules. Hence the simulation domain Ω can be
partitioned into three subdomains ΩSi, Ωox, and Ωliq corresponding to these three materials. At
the interface Γ between the nanowire surface and the liquid, the charge concentration exhibits a
fast varying spatial structure which leads to the multiscale problem discussed in Section 1.3. To
simplify notation, the x-axis is always normal to the smooth interface Γ located at x = 0.

The equation for the electric potential is now the homogenized Poisson equation

−∇ · (ε(x, y, z)∇V (x, y, z)) =





ρ(x, y, z) in ΩSi ∪ Ωox,

0 in Ωblayer,

−2η sinh(ξ(V − Φ)) in Ωliq

(1.26a)

V (0+, y, z) − V (0−, y, z) =
ζ(y, z)

ε(0+)
on Γ, (1.26b)

εliq∂xV (0+, y, z) − εox∂xV (0−, y, z) = −γ(y, z) on Γ, (1.26c)

where 0+ denotes the limit at the interface in the outside of the nanowire, while 0− is the limit
in the inside. The cumulative effect of the fast varying charge concentration in the surface layer
is now given by the macroscopic dipole-moment density ζ and the macroscopic surface-charge
density γ; they are calculated by the models in Section 1.4.
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After modeling the charges in the boundary layer, we now turn to the charge concentration ρ in
the remaining materials. In the semiconductor, i.e., in ΩSi, the Poisson equation is

−∇ · (εSi∇V ) = ρsemi(n, p), (1.27)

where ρsemi(n, p) is given by the drift-diffusion equations in Section 1.5.1.

Neumann

Neumann

Dirichlet

Neumann Neum
an

n

Neum
an

n

↑

Dirichlet

Neu
man

n

Neu
man

n

Dirichlet

↑
Neumann

Neumann→

↓
Dirichlet

Figure 1.7: On the left-hand side the boundary conditions for the electric potential are
indicated. The potential satisfies Dirichlet conditions for Ohmic contacts
at the source and at the drain as well as Dirichlet conditions for the
applied voltage at the backgate. Everywhere else, the potential at the
boundary is described by Neumann conditions. For the drift-diffusion-
Poisson system we need additional boundary conditions at the nanowire.
The electron and hole concentrations satisfy Dirichlet conditions at the
source and the drain. Everywhere else Neumann conditions hold.

The aqueous solution Ωliq is described by the Poisson-Boltzmann equation already discussed in
Section 1.4.2.2. The charge concentration on the right-hand side is a hyperbolic sine (in the case
of 1:1 electrolyte) with the bulk ionic concentration as a factor.

At the source, drain, and backgate contacts, Dirichlet boundary conditions, as depicted in
Fig. 1.7, hold, as well as at the electrode in the liquid if there is one (Lu et al., 2010b). Zero
Neumann boundary conditions, i.e., vanishing electric fields, are used everywhere else. The in-
clusion of backgate contacts is crucial, since the operating regime of the sensor can be adjusted
and optimized in this way (see Chapter 4) (Baumgartner et al., 2011a,c). We denote the bound-
ary conditions at the silicon nanowire as ∂ΩD,Si for the Dirichlet boundary and ∂ΩN,Si for the
Neumann boundary. The notation for the remaining Dirichlet boundary is ∂ΩD and for the
remaining Neumann boundary ∂ΩN .

Summarized, we have to solve the boundary-value problem
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−∇ · (εSi∇V ) = q(p− n+Cdop) in ΩSi, (1.28a)

−∇ · (εox∇V ) = 0 in Ωox, (1.28b)

−∇ · (εliq∇V ) = 0 in Ωblayer, (1.28c)

−∇ · (εliq∇V ) = −2η sinh(ξ(V − Φ)) in Ωliq, (1.28d)

V (x+) − V (x−) = α on Γ, (1.28e)

εliq∂xV (x+) − εox∂xV (x−) = β on Γ, (1.28f)

∇ · Jn =
np− n2

i

τp(n+ ni) + τn(p+ ni)
in ΩSi, (1.28g)

∇ · Jp = −
np− n2

i

τp(n+ ni) + τn(p+ ni)
in ΩSi, (1.28h)

Jn = Dn∇n− µnn∇V in ΩSi, (1.28i)

Jp = −Dp∇p− µpp∇V in ΩSi, (1.28j)

V = VD = Vapplied + UT ln(
nD

ni
) on ∂ΩD,Si, (1.28k)

V = Vapplied on ∂ΩD, (1.28l)

n = nD =
1

2

(
Cdop +

√
C2

dop + 4n2
i

)
on ∂ΩD,Si, (1.28m)

p = pD =
1

2

(
−Cdop +

√
C2

dop + 4n2
i

)
on ∂ΩD,Si, (1.28n)

∇νV = 0 on ∂ΩN , (1.28o)

∇νn = 0, ∇νp = 0 on ∂ΩN,Si. (1.28p)

for the electrical potential V , the electron density n, and the hole density p. The nanowire
sensors governed by this system of equations are biosensors (Li et al., 2006; Stern et al., 2007a,
2008, 2010; Tian et al., 2010; Zheng et al., 2005) as well as gas sensors (Brunet et al., 2012;
Griessler et al., 2011; Huang et al., 2010; Köck et al., 2009; Tischner et al., 2009; Zima et al.,
2010).

The values of α and β can be stored in look-up tables depending on the surface potential.
Then the whole sensor can be simulated self-consistently using an enhanced Scharfetter-Gummel
iteration scheme so that no computational penalty is paid compared to solving the classical
drift-diffusion-Poisson system (Baumgartner and Heitzinger, 2012a).

1.6 Summary

Nanowire sensors have been demonstrated experimentally in recent years, and they are a technol-
ogy that is currently being developed. Nanowires are extremely well-suited for sensing purposes
due to their single-crystalline structure and their high surface-to-volume ratio.

Quantitative understanding of this new technology is crucial for the rational design and the
optimization of various devices. The boundary layer containing the biomolecules at the nanowire
transducer is responsible for sensitivity and selectivity. Therefore the boundary layer and its
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effect on the transducer are the crucial aspects of these field-effect sensors. Regarding modeling
and simulation, these two aspects are novel compared to the well studied area of semiconductor
devices and new intriguing questions arise. Hence the modeling and simulation of field-effect
sensors goes beyond the modeling and simulation of semiconductor transistors.

This becomes obvious after a look on the system of equations describing the nanowire field-effect
sensor.

The boundary layer must be modeled as realistically as possible. A mathematical method to
achieve this in face of the multiscale aspect of the problem is to homogenize the partial differential
equations that model the system. This allows us to simulate large structure while including effects
on the microscopic length scale, i.e., the length scale of single molecules in the boundary layer.

The screening of the partial charges of the biomolecules in the boundary layer can be simulated
by continuum models such as the Poisson–Boltzmann equation and by atomistic models such
as Metropolis-Monte-Carlo algorithms while calculating the partial charges by a model such as
propka.

Since a solution for the drift-diffusion equations exists and is unique around thermal equilibrium
we are going to prove this also for our system of equations including the jump conditions in
Chapter 2.

Although the homogenization method reduces the computation cost, the linear systems after
discretization are still large. To avoid this issue a parallel algorithm is presented in Chapter 3.

Using this self-consistent model, all relevant physical and geometrical properties can be included
in the simulations. This makes it possible to provide realistic simulations and to predict sensi-
tivity, see Chapter 4.
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Chapter 2

Analysis of the Model Equations

Existence and Local Uniqueness

The analysis of the model equations (1.28) described in Section 1.5.3 consists of an existence
and a local uniqueness result.

Before we start with the discretization of the mathematical model and the simulations, it should
be clear if a solution exists at all and if it is unique. Only then, the numerics can work. To get
an indication for how far our analysis can go let us take a look at our system of equations.

It is important to note that our model (1.28) is self-consistent; more precisely, the system of
equations has the structure

V = V (n, p, α, β), (2.1)

n = n(V, p), (2.2)

p = p(V, n), (2.3)

α = Mα(V ), (2.4)

β = Mβ(V ), (2.5)

where n and p are the solutions of the drift-diffusion equations. From the drift-diffusion-Poisson
system we know that we have an existence of a solution and a unique solution around ther-
mal equilibrium (Buet and Dellacherie, 2010; Ghani and Masmoudi, 2010; Markowich, 1986;
Markowich et al., 1990). Hence the best result we can get for our system is, as for the drift-
diffusion equations, existence of a solution and a unique solution around an equilibrium. In fact
we can show these properties, which is the aim of this chapter.

Therefore the values α and β of the interface conditions are given by microscopic models Mα

and Mβ for the surface-charge density and the dipole-moment density of the boundary layer as
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discussed in Section 1.4. They generally depend on the electrostatic potential and usually on the
electrostatic potential close to the boundary layer. The multiscale problem is also extensively
discussed in earlier work by (Heitzinger et al., 2010b; Ringhofer and Heitzinger, 2008).

In the following we describe the system (1.28) in Slotboom variables which is necessary for the
analysis of these equations. Then, in Section 2.3, the existence of solutions of semilinear elliptic
problems with interface conditions is shown. Based on the lemmata in this section, the existence
of solutions of the model equations is proved in Section 2.4. Furthermore, in Section 2.5, we show
local uniqueness of the solution around the equilibrium state, i.e., when the applied voltages are
small enough.

2.1 Slotboom Variables

The drift-diffusion-Poisson system can be written in Slotboom variables u and v, which are
defined as

n =: nie
V/UT u, (2.6)

p =: nie
−V/UT v. (2.7)

Then, system (1.24a) becomes

−∇ · (A∇V ) = qni(e
−V/UT v − eV/UT u) + qCdop, (2.8)

UTni∇ · (µneV/UT ∇u) = ni
uv − 1

τp(eV/UT u+ 1) + τn(e−V/UT v + 1)
, (2.9)

UTni∇ · (µpe
−V/UT ∇v) = ni

uv − 1

τp(eV/UT u+ 1) + τn(e−V/UT v + 1)
. (2.10)

where the permittivity ε is now treated as a coefficient function A and the corresponding Dirichlet
boundary conditions are

V |∂ΩD
= VD, u|∂ΩD,Si

= uD, v|∂ΩD,Si
= vD (2.11)

as in Section 1.5.3. For details about the boundary conditions at the Ohmic contacts the reader
is referred to (Markowich et al., 1990). The zero Neumann conditions

∇νV |∂ΩN
= 0, ∇νu|∂ΩN,Si

= 0, ∇νv|∂ΩN,Si
= 0 (2.12)

hold on the Neumann part of the boundary (see Section 1.5.3).

In summary, the boundary-value problem (1.28) in Slotboom variables is the boundary-value
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problem

−∇ · (A∇V ) = qCdop − qni(e
V/UT u− e−V/UT v) in ΩSi, (2.13a)

−∇ · (A∇V ) = 0 in Ωox, (2.13b)

−∇ · (A∇V ) = −2η sinh(ξ(V − Φ)) in Ωliq, (2.13c)

V (x+) − V (x−) = α on Γ, (2.13d)

A(0+)∂xV (x+) −A(0−)∂xV (x−) = β on Γ, (2.13e)

UTni∇ · (µneV/UT ∇u) = ni
uv−1

τp(eV/UT u+1)+τn(e−V/UT v+1)
in ΩSi, (2.13f)

UTni∇ · (µpe
−V/UT ∇v) = ni

uv−1
τp(eV/UT u+1)+τn(e−V/UT v+1)

in ΩSi, (2.13g)

α = Mα(V ) on Γ, (2.13h)

β = Mβ(V ) on Γ, (2.13i)

V = VD on ∂ΩD, (2.13j)

u = uD, v = vD on ∂ΩD,Si, (2.13k)

∇νV = 0 on ∂ΩN , (2.13l)

∇νu = 0, ∇νv = 0 on ∂ΩN,Si. (2.13m)

2.2 Existence Theorem

In order to state the existence result, the coefficients and boundary conditions in the boundary-
value problem (2.13) have to satisfy the following assumptions.

Assumptions 2.2.1.

(i) The bounded domain Ω ⊂ R
3 has a C2 Dirichlet boundary ∂ΩD, the Neumann boundary

∂ΩN consists of C2 segments, and the Lebesgue measure of the Dirichlet boundary ∂ΩD is
nonzero.

The C2 hypersurface Γ ⊂ Ω splits the domain Ω into two nonempty domains Ω+ and Ω−

so that meas(Γ ∩ ∂Ω) = 0 and Γ ∩ ∂Ω ⊂ ∂ΩN hold.

(ii) The coefficient functions A, µn, and µp are uniformly elliptic and bounded with A|Ω+ ∈
C1(Ω+,R3×3), A|Ω− ∈ C1(Ω−,R3×3), and µn, µp ∈ C1(ΩSi,R

3×3).

For the data, the inclusions f ∈ L∞(Ω), VD ∈ H1/2(∂ΩD) ∩ L∞(Γ), and uD, vD ∈
H1/2(∂ΩD) hold.

(iii) The doping concentration Cdop(x) is bounded above and below and we define

C := inf
x∈Ω

Cdop(x) ≤ C(x) ≤ sup
x∈Ω

Cdop(x) =: C.

(iv) There is a constant K ≥ 1 satisfying

1

K
≤ uD(x), vD(x) ≤ K ∀x ∈ ∂ΩD.
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(v) The microscopic models Mα and Mβ depend continuously in H1(Ω) on the potential V , and
for every potential V in H1(Ω)∩L∞(Ω), the inclusions α(y) = Mα(V ) ∈ H1/2(Γ)∩L∞(Γ)
and β(y) = Mβ(V ) ∈ L∞(Γ) hold.

Using these assumptions, we can state the existence result.

Theorem 2.2.2 (Existence).
Under Assumptions 2.2.1, there exists a solution

(V, u, v, α, β) ∈
(
H1(Ω\Γ) ∩ L∞(Ω\Γ)

)
×
(
H1(ΩSi) ∩ L

∞(ΩSi)
)2

×
(
H1(Γ) ∩ L∞(Γ)

)2

of the boundary-value problem (2.13) and it satisfies the L∞-estimate

1

K
≤ u(x) ≤ K in ΩSi,

1

K
≤ v(x) ≤ K in ΩSi,

V ≤ V (x)≤ V in Ω,

where

V := min

(
inf
∂ΩD

VD,Φ − sup
Ω
VL, UT ln

( 1

2Kni

(
C +

√
C2 + 4n2

i

))
− sup

Ω
VL

)
,

V := max

(
sup
∂ΩD

VD,Φ − inf
Ω
VL, UT ln

( K
2ni

(
C +

√
C

2
+ 4n2

i

))
− inf

Ω
VL

)

and where VL is the solution of the linear equation in Lemma 2.3.1, for which the estimate

‖VL‖H1(Ω) ≤ C(‖β‖L2(Γ) + ‖VD‖H1/2(∂Ω) + ‖α‖H1/2(Γ)).

holds.

The existence of solutions will be shown by applying the Schauder fixed-point theorem similarly
to (Markowich et al., 1990) for the drift-diffusion equations. It is also known that solutions of
the nonlinear Poisson-Boltzmann equation exist. The main issue of our model is how to treat
the different equations on a single domain and how the interface conditions (1.2b) and (1.2c)
influence estimates of the solutions. As stated in Section 1.3, the interface conditions are jumps
in the potential V and in the field −∂xV . The size of the jumps depends on the values of α
and β; large values of α or β result in large absolute values of the potential.

The influence of the interface conditions on semilinear elliptic problems will be discussed in the
following section. Based on the lemmata in the following section, the existence result will be
proved in Section 2.4.

2.3 Semilinear problems including interface conditions

In the proof of the existence result, we will need two lemmata. The first one is concerned with
linear elliptic problems with jumps of the form (1.2) and the second one yields the existence and
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uniqueness of a solution of semilinear elliptic problems including jumps. An a-priori estimate is
provided as well.

In the following, Γ ⊂ R
d will be a C2 hypersurface in the domain Ω which splits the domain and

its boundary into two parts Ω+ and Ω−. Here, for the sake of notational simplicity, we denote
the one-dimensional coordinate orthogonal to Γ by x and the remaining (d − 1)-dimensional
coordinates by y. Consequently, the notation u(0+, y) means the limit within Ω+ and u(0−, y)
is the corresponding limit within Ω−. Furthermore, the jump conditions α and β depend only on
the spatial variable y and not on the potential V as it arises in the iterative structure of the proof
of Theorem 2.2.2. The Dirichlet part of the boundary is denoted by ∂ΩD and the Neumann part
by ∂ΩN .

Lemma 2.3.1 (Elliptic boundary-value problems with interface conditions).
Assume that Ω ⊂ R

d is a bounded domain with a C2 boundary split into two nonempty domains
Ω+ and Ω− by the C2 hypersurface Γ so that meas(Γ ∩ ∂Ω) = 0. Suppose that A with A|Ω+ ∈
C1(Ω+,Rd×d) and A|Ω− ∈ C1(Ω−,Rd×d) is uniformly elliptic and that α ∈ H1/2(Γ), β ∈ L2(Γ),
f ∈ L2(Ω), and uD ∈ H1/2(∂ΩD) hold. Suppose further that ∂Ω ∩ Γ ⊂ ∂ΩN holds or that the
jump α is compatible with the Dirichlet boundary conditions uD, i.e., uD(0+) − uD(0−) = α
holds on ∂ΩD.

Then the boundary-value problem with interface conditions

−∇ · (A(x)∇u) = f in Ω\Γ,

u(0+, y) − u(0−, y) = α on Γ,

A(0+)∂xu(0+, y) −A(0−)∂xu(0−, y) = β on Γ,

∇νu = 0 on ∂ΩN ,

u = uD on ∂ΩD

has a unique solution u ∈ L2(Ω) and u|Ω+ ∈ H1(Ω+) and u|Ω− ∈ H1(Ω−) hold. Furthermore,
the estimate

‖u‖H1(Ω+) + ‖u‖H1(Ω−) ≤ C(‖f‖L2(Ω) + ‖β‖L2(Γ) + ‖uD‖H1/2(∂Ω) + ‖α‖H1/2(Γ))

holds.

Proof. We extend α ∈ H1/2(Γ) to α ∈ L2(Ω) so that α|Γ = α, α|Ω− = 0, α|Γ∪Ω+ ∈ H1(Γ ∪ Ω+),
α|∂ΩD

= 0, and (∇να)|∂ΩN
= 0. Such an extension α can always be found by solving, e.g.,

the Laplace equation, since the boundary conditions are smooth enough. Similarly, we extend
uD ∈ H1/2(∂Ω) to uD ∈ H1(Ω). We define

w := u− uD − α (2.14)

so that the first interface condition becomes w(0+) − w(0−) = 0 and the Dirichlet boundary
conditions become homogeneous.

Multiplication by test functions v with v|Ω+ ∈ H1(Ω+), v|Ω− ∈ H1(Ω−), and v|∂Ω = 0 and
integration by parts on Ω+ and Ω− yields the weak formulation for w ∈ H1

0 (Ω) as

〈A∇w,∇v〉 = 〈f, v〉 +

∫

Γ

βvds− 〈A∇(uD + α),∇v〉, (2.15)
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where 〈., .〉 denotes the scalar product 〈f, g〉 :=
∫
Ω+ fg +

∫
Ω−

fg and where we have used the
identity

∫

Γ

A(0+)∂xu(0+, y)vdy −

∫

Γ

A(0−)∂xu(0−, y)vdy =

∫

Γ

βvdy. (2.16)

Since the right-hand side of the weak formulation is a bounded functional, the Lax-Milgram
Theorem yields the assertion.

The extensions uD and α are not unique. Therefore the uniqueness of the solution u must be
shown as well. Suppose u1 and u2 are two solutions. We define u := u1 − u2 and find that u
solves the homogeneous problem

−∇ · (A(x)∇u) = 0 in Ω\Γ, (2.17)

u(0+, y) − u(0−, y) = 0 on Γ, (2.18)

A(0+)∂xu(0+, y) −A(0−)∂xu(0−, y) = 0 on Γ, (2.19)

∇νu = 0 on ∂ΩN , (2.20)

u = 0 on ∂ΩD (2.21)

and hence the maximum principle (see (Protter and Weinberger, 1967)) yields u = u1 − u2 = 0
almost everywhere.

Finally, we show the estimate. The definition of w yields

‖u‖H1(Ω+) ≤ ‖w‖H1(Ω+) + ‖uD‖H1(Ω+) + ‖α‖H1(Ω+), (2.22)

‖u‖H1(Ω−) ≤ ‖w‖H1(Ω−) + ‖uD‖H1(Ω−) + ‖α‖H1(Ω−). (2.23)

Substituting v = w in the weak formulation and using the uniform ellipticity of A, we obtain

‖w‖H1(Ω+) + ‖w‖H1(Ω−) ≤ C(‖f‖L2(Ω+) + ‖f‖L2(Ω−) + ‖β‖L2(Γ)

+ ‖uD‖H1(Ω+) + ‖α‖H1(Ω+) + ‖uD‖H1(Ω−) + ‖α‖H1(Ω−)). (2.24)

Combining these inequalities and using the inequality ‖φ‖H1(Ω) ≤ C‖φ‖H1/2(∂Ω) (Ding, 1996)
yields the asserted estimate. (Note that C denotes a general constant.)

The estimate allows a physical interpretation. The value β corresponds to the presence of charges;
therefore f and β are present in the estimate analogously in the same norm as ‖f‖L2(Ω) and
‖β‖L2(Γ), respectively. The value α corresponds to a dipole moment and results in a shift or
jump of the potential; this is similar to a Dirichlet boundary condition and hence α and uD

appear as ‖α‖H1/2(Γ) and ‖uD‖H1/2(∂Ω) in the same norm. This means that the terms on the
right-hand side of the estimate are consistent with the physical meaning of the problem.

If in Lemma 2.3.1 the data α, β, f , and uD are bounded, then the solution u is bounded as well,
i.e., u ∈ L∞(Ω) (see, e.g., (Caffarelli and Cabré, 1995)).

Having treated the linear problem with interface conditions, we now consider the semilinear
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problem with interface conditions

−∇ · (A(x)∇u) + g(x, u) = f in Ω\Γ, (2.25a)

u(0+, y) − u(0−, y) = α on Γ, (2.25b)

A(0+)∂xu(0+, y) −A(0−)∂xu(0−, y) = β on Γ, (2.25c)

∇νu = 0 on ∂ΩN , (2.25d)

u = uD on ∂ΩD. (2.25e)

We split the solution u into the solution uL of a linear problem and the solution uN of a nonlinear
problem so that

u = uL + uN , (2.26)

where uL is the solution of the problem in Lemma 2.3.1 and uN is the solution of the boundary-
value problem

−∇ · (A(x)∇uN ) + g(x, uL + uN ) = 0 in Ω, (2.27a)

∇νuN = 0 on ∂ΩN , (2.27b)

uN = uD on ∂ΩD, (2.27c)

which is treated in the following lemma. The use of the Leray-Schauder fixed-point theorem is
similar to (Markowich et al., 1990).

Lemma 2.3.2 (Semilinear elliptic boundary-value problems with interface conditions).
Suppose that Ω, Γ, A, f , uD, α, and β are as in Lemma 2.3.1 and additionally that f , uD, α,
and β are bounded. Suppose further

(i) that the function g(x, u) ∈ C1(Ω × R) is monotonically increasing in u for all x ∈ Ω,

(ii) that there exist functions g
˜
(u) and g̃(u) so that

g
˜
(u) ≤ g(x, u) ≤ g̃(u) ∀x ∈ Ω ∀u,

(iii) and that the algebraic equations g
˜
(ũ) = 0 and g̃(u

˜
) = 0 have solutions.

Then there exists a unique solution u = uL+uN of the semilinear elliptic boundary-value problem
with interface conditions (2.3.1) and uN ∈ H1(Ω)∩L∞(Ω) holds. Furthermore, the solution uN

satisfies the estimate

κ ≤ uN (x) ≤ λ ∀x ∈ Ω,

where

κ̃ := arg max z

(
g(x, z + sup

Ω
uL) ≤ 0 ∀x ∈ Ω

)
,

κ := min(κ̃, inf
∂Ω
uD),

λ̃ := arg min z

(
g(x, z + inf

Ω
uL) ≥ 0 ∀x ∈ Ω

)
,

λ := max(λ̃, sup
∂Ω

uD).
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Proof. 1. To show the existence and uniqueness, we use a fixed-point theorem and a maximum
principle. First, for the uniqueness of the solution, we assume that there are two weak solutions
u1, u2 ∈ H1(Ω) ∩ L∞(Ω). We set w := u1 − u2 and find

−∇ · (A(x)∇w) + g(x, u1) − g(x, u2) = 0 in Ω, (2.28)

∇νw = 0 on ∂ΩN , (2.29)

w = 0 on ∂ΩD (2.30)

with

−∇ · (A(x)∇w) + g(x, u1) − g(x, u2) = −∇ · (A(x)∇w) + ∂wg(x, ŵ(x))w = 0 (2.31)

using the mean-value theorem to find ŵ(x). Since ∂ug(x, ŵ(x)) ≥ 0 by assumption, we can use
the maximum principle to conclude that w = 0 a.e. Hence the two solutions are identical a.e.

2. To show the estimate κ ≤ uN ≤ λ, we use a cut-off argument similar to (Jerome, 1985;
Markowich, 1986). Suppose that uN is a solution. We start by defining

u := (uN − κ)− = min(uN − κ, 0), (2.32)

u := (uN − λ)+ = max(uN − λ, 0). (2.33)

Clearly u, u ∈ H1
0 (Ω), since uN ∈ H1(Ω). The weak formulation of the problem (2.27) is

〈A∇uN ,∇v〉 + 〈g(x, uL + uN ), v〉 = 0 ∀v ∈ H1(Ω) (2.34)

and we will be able to use u and u as test functions in this equation.

Next, we estimate g on the support of u and u. The support of u is suppu = {x ∈ Ω | uN (x) ≤ κ}
and the support of u is suppu = {x ∈ Ω | uN (x) ≥ λ}. By the definitions of κ̃ and λ̃ and the
monotonicity of g, we obtain

g(x, uN + uL) ≤ g(x, κ̃) ≤ 0 ∀x ∈ suppu, (2.35)

g(x, uN + uL) ≥ g(x, λ̃) ≥ 0 ∀x ∈ suppu. (2.36)

Due to the last two inequalities, the fact that u ≤ 0 and u ≥ 0 in Ω, and using the uniform
ellipticity of A with constant C, we deduce from the weak formulation that

0 ≥ 〈A∇uN ,∇u〉 = 〈A∇(uN − κ),∇u〉 = 〈A∇(uN − κ)−,∇u〉 = 〈A∇u,∇u〉 (2.37)

≥ C‖∇u‖2
L2(Ω) ≥ 0 (2.38)

and analogously

0 ≥ 〈A∇uN ,∇u〉 = 〈A∇(uN − λ),∇u〉 = 〈A∇(uN − λ)+,∇u〉 = 〈A∇u,∇u〉 (2.39)

≥ C‖∇u‖2
L2(Ω) ≥ 0. (2.40)

Therefore ‖∇u‖L2(Ω) = 0 and ‖∇u‖L2(Ω) = 0 hold. Using the Poincaré inequalities ‖u‖L2 ≤
C‖∇u‖L2 and ‖u‖L2 ≤ C‖∇u‖L2 , we find u = 0 and u = 0 a.e., which yields the asserted
estimate.
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3. To prove the existence of a solution, we define the cut function

vK(x) :=





K, if K ≤ v(x),

v(x), if −K ≤ v(x) ≤ K,

−K, if v(x) ≤ −K

(2.41)

for v ∈ L2(Ω). Obviously, we have vK ∈ L∞(Ω). Since uN is bounded by the estimate in the
previous step, K can be chosen large enough so that uN = uK

N .

Next, we define the operator

M : L2(Ω) × [0, 1] → L2(Ω) (2.42)

by M(v, σ) = w, where w is the solution of the boundary-value problem

−∇ · (A∇w) + σg(x, uL + vK) = 0 in Ω, (2.43)

w = σuD on ∂ΩD, (2.44)

∇νw = 0 on ∂ΩN . (2.45)

Every fixed point of M(., 1) is a solution of the semilinear problem (2.27). Due to the estimate
shown in the previous step, K can be chosen large enough so that −K ≤ w ≤ K holds a.e. in Ω
for every fixed point w = M(w, 1).

To apply the Leray-Schauder fixed-point theorem (Appendix B, Theorem B.1), the compactness
of M must be shown. The continuity of M follows from the continuity of the cut function,
the continuous dependence of σg(x, uL + vK) on (v, σ) ∈ L2(Ω) × [0, 1], and the continuous
dependence of the H1 solutions of elliptic equations on L2(Ω) right-hand sides and H1 boundary
data. Furthermore, the range of M is bounded with respect to the H1 norm, since w is the
solution of a linear elliptic equation with the inhomogeneity g(x, uL + vK) that is bounded
because g is bounded as a function of x and both uL and vK are bounded, i.e., the inequality

‖w‖H1(Ω) ≤ C(‖σg(., uL + vK)‖L2(Ω) + ‖σuD‖H1/2(∂Ω)) (2.46)

≤ C(|Ω|1/2 sup
x∈Ω

|g(x, uL +K)| + ‖uD‖H1/2(∂Ω)), (2.47)

holds. We know that H1(Ω) is compactly embedded in L2(Ω) due to the Rellich-Kondrachov
compactness theorem (Appendix B, Theorem B.3). Since the range of M is bounded, the oper-
ator M is compact.

Finally, the Leray-Schauder fixed-point theorem (Appendix B, Theorem B.1) yields the existence
of a fixed point w of M(., 1) and hence the existence of a solution uN of the original boundary-
value problem.

2.4 Proof of the Existence Theorem 2.2.2

The following proof of Theorem 2.2.2 is based on the Schauder fixed-point theorem and the
estimates are deduced from a maximum principle (see Lemma 2.3.2). The main idea of the
proof follows (Markowich, 1986), while the emphasis is on the different fixed-point map and the
different estimates.
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1. We start by defining the map G : N → N , which will be shown to satisfy the assumptions of
the fixed-point theorem, where

N :=
{
(V, u, v, α, β) ∈ L2(Ω) × L2(ΩSi)

2 × L2(Γ)2
∣∣ V ≤ V (x) ≤ V a.e. in Ω,

1

K
≤ u(x), v(x) ≤ K a.e. in ΩSi, α, β bounded a.e. on Γ

}
(2.48)

and (V1, u1, v1, α1, β1) = G
(
(V0, u0, v0, α0, β0)

)
as follows.

(i) Solve the boundary-value problem with interface conditions

−∇ · (A∇V1) =





qCdop − qni(e
V1/UT u0 − e−V1/UT v0) in ΩSi,

0 in Ωox,

−2η sinh(ξ(V1 − Φ)) in Ωliq,

(2.49a)

V1(0+, y) − V1(0−, y) = α0(y) on Γ, (2.49b)

A(0+)∂xV1(0+, y) −A(0−)∂xV1(0−, y) = β0(y) on Γ, (2.49c)

V1 = VD on ∂ΩD, (2.49d)

∇νV1 = 0 on ∂ΩN (2.49e)

for V1.

(ii) Solve the elliptic boundary-value problem

UTni∇ · (µne
V1/UT ∇u1) − ni

u1v0 − 1

τp(eV1/UT u0 + 1) + τn(e−V1/UT v0 + 1)
= 0 in ΩSi,

(2.50a)

u1 = uD on ∂ΩD, (2.50b)

∇νu1 = 0 on ∂ΩN (2.50c)

for u1.

(iii) Solve the elliptic problem

UTni∇ · (µpe
−V1/UT ∇v1) − ni

u0v1 − 1

τp(eV1/UT u0 + 1) + τn(e−V1/UT v0 + 1)
= 0 in ΩSi,

(2.51a)

v1 = vD on ∂ΩD, (2.51b)

∇νv1 = 0 on ∂ΩN (2.51c)

for v1.

(iv) Update the surface-charge density and dipole-moment density according to the microscopic
model as

α1(y) := Mα(V1), (2.52a)

β1(y) := Mβ(V1). (2.52b)
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We show that these three boundary-value problems have unique solutions and that
(V1, u1, v1, α1, β1) ∈ N so that the map G is well-defined. The three problems above can be
written in the general form considered in Lemma 2.3.2 and the first problem (2.49) includes
interface conditions. The coefficient A in the lemma equals either A, µneV1/UT , or µpe

−V1/UT and
hence the equations are uniformly elliptic. In all three cases, g(x,w) is a monotone increasing
function of w provided that u0 and v0 are positive.

Choose (V, u0, v0, α0, β0) ∈ N . Lemma 2.3.2 shows that the first problem (2.49) in the definition
of G has a unique solution V1. To get the estimates, we first set

g
˜
(V1) := min

(
2η sinh(ξ(V1 − Φ)), qni(

1

K
eV1/UT −Ke−V1/UT ) − qC

)
, (2.53)

g̃(V1) := max
(
2η sinh(ξ(V1 − Φ)), qni(KeV1/UT −

1

K
e−V1/UT ) − qC

)
(2.54)

and both g
˜

and g̃ satisfy the requirements of Lemma 2.3.2. Solving the two algebraic equations

g̃(κ̃+ sup
Ω
VL) = 0, (2.55)

g
˜
(λ̃+ inf

Ω
VL) = 0, (2.56)

where VL is the solution of the linear boundary-value problem of Lemma 2.3.1, yields

κ̃+ sup
Ω
VL = min

(
Φ, UT ln

( 1

2Kni

(
C +

√
C2 + 4n2

i

)))
, (2.57)

λ̃+ inf
Ω
VL = max

(
Φ, UT ln

( K
2ni

(
C +

√
C

2
+ 4n2

i

)))
. (2.58)

Hence we obtain the estimate

V (x) ≥ min

(
inf
∂ΩD

VD,Φ − sup
Ω
VL, UT ln

( 1

2Kni

(
C +

√
C2 + 4n2

i

))
− sup

Ω
VL

)
, (2.59)

V (x) ≤ max

(
sup
∂ΩD

VD,Φ − inf
Ω
VL, UT ln

( K
2ni

(
C +

√
C

2
+ 4n2

i

))
− inf

Ω
VL

)
(2.60)

for all x ∈ Ω from Lemma 2.3.2.

Next, we apply Lemma 2.3.2 to the second problem (2.50) to find a unique solution u1. Here we
choose

g
˜
(u1) :=

1
Ku1 − 1

τp(KeV /UT + 1) + τn(Ke−V /UT + 1)
, (2.61)

g̃(u1) :=
Ku1 − 1

τp(
1
K eV /UT + 1) + τn( 1

K e−V /UT + 1)
. (2.62)

The equation g
˜
(ũ1) = 0 yields ũ1 = K and the equation g̃(u

˜1) = 0 yields u
˜1 = 1/K.

The third problem (2.51) is treated analogously and we find unique solutions u1 and v1 with the
estimates 1/K ≤ u1(x) ≤ K and 1/K ≤ v1 ≤ K on ΩSi. Hence G maps N into itself. Note that
N is a closed and convex subset of L2(Ω) × L2(ΩSi)

2 × L2(Γ)2.
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2. We now show that G is continuous. The continuous dependence of the solution V1 of the first
problem (2.49) in the definition of G on the data is obtained from the estimate in Lemma 2.3.2
and the continuity of the right-hand side in (2.49a). The second problem (2.50) and the third
problem (2.51) in the definition of G are special cases of the first. In the fourth problem (2.52),
α1 and β1 depend continuously on α0 and β0 due to the continuous dependence of V1 and the
continuity of Mα and Mβ. Therefore G is continuous.

3. The continuous dependence of (V1, u1, v1, α1, β1) on the data of the three problems (2.49),
(2.50), and (2.51) implies that there is a positive and continuous function F such that

‖V1‖H1(Ω) + ‖u1‖H1(ΩSi) + ‖v1‖H1(ΩSi)

≤ F (‖Cdop‖L2(Ω), ‖VD‖H1(∂Ω), ‖uD‖H1(∂ΩSi), ‖vD‖H1(∂ΩSi), ‖α0‖H1/2(Γ), ‖β0‖L2(Γ)).

(2.63)

Hence we find for (V0, u0, v0, α0, β0) ∈ N that the inequality

‖V1‖H1(Ω) + ‖u1‖H1(ΩSi) + ‖v1‖H1(ΩSi) ≤ C (2.64)

holds for a constant C. Furthermore, ‖α1‖H1(Γ) and ‖β1‖H1(Γ) are bounded due to the assump-
tions on Mα and Mβ .

This yields that the image G(N), consisting of all (V1, u1, v1, α1, β1), is bounded as a subset of
H1(Ω) ×H1(ΩSi)

2 ×H1(Γ)2. Now the Rellich-Kondrachov compactness theorem (Appendix B,
Theorem B.3) implies that the image G(N) is precompact in L2(Ω) × L2(ΩSi)

2 × L2(Γ)2.

4. In summary, all the assumptions of the Schauder fixed-point theorem (Appendix B, Theo-
rem B.2) are satisfied and hence we obtain the existence of a fixed-point of G, i.e., the existence
of a weak solution of the original problem.

2.5 Local Uniqueness Theorem

In general, the solution in Theorem 2.2.2 is not unique. Recalling the derivation of the drift-
diffusion equations from the Boltzmann transport equation, it is clear that the drift-diffusion
equations implicitly assume that the particle velocities are distributed according to a Maxwellian
distribution, i.e., they are in thermal equilibrium. However, large applied voltages and corre-
spondingly large currents result in fast particles for which Maxwellian distributions centered at
v = 0 are certainly not adequate.

Uniqueness of the solution therefore holds only in a neighborhood around thermal equilibrium
with respect to the Dirichlet boundary conditions. Thermal equilibrium is the solution where
the fluxes Jn and Jp in the semiconductor vanish, where the fluxes of the ions and molecules
into and out of the boundary layer at the sensor surface vanish as well, i.e., the surface reactions
have reached the equilibrium state, and where the voltages U ∈ R

k, that are applied at each of
the k contacts that constitute ∂ΩD, are equal to the Fermi level.

The equilibrium potential is called Ve and the equilibrium surface densities are called αe and βe;
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the equilibrium potential is then the solution of the equilibrium boundary-value problem

−∇ · (A∇Ve) = qCdop − qni(e
Ve/UT − e−Ve/UT ) in ΩSi, (2.65a)

−∇ · (A∇Ve) = 0 in Ωox, (2.65b)

−∇ · (A∇Ve) = −2η sinh(ξ(Ve − Φ)) in Ωliq, (2.65c)

Ve(0+, y) − Ve(0−, y) = αe on Γ, (2.65d)

A(0+)∂xVe(0+, y) −A(0−)∂xVe(0−, y) = βe on Γ, (2.65e)

Ve = VD(0) on ∂ΩD,
(2.65f)

∇νVe = 0 on ∂ΩN

(2.65g)

and it exists uniquely due to Lemma 2.3.2.

In order to state the uniqueness result, we need the following assumptions on the data.

Assumptions 2.5.1.

(i) The recombination rate R has the form R = F (x, V, u, v)(uv − 1), where F (x, ., ., .) ∈
C2(R×R

2
+) holds for all x ∈ Ω and where the derivatives ∂κ

(V,u,v)F (., V, u, v) are in L∞(Ω)

uniformly for all (V, u, v) in bounded subsets of R × R
2
+ and for all multiindices κ with

|κ| ≤ 2.

Furthermore, there are constants ω and ω such that either 0 < ω ≤ F (x, Ve(x), 1, 1) ≤ ω or
F (x, Ve(x), 1, 1) = 0 holds for all x ∈ Ω.

(ii) The Dirichlet data (VD, uD, vD) are a Lipschitz-continuously differentiable map of U from
R

k into H2(Ω) ×H2(ΩSi)
2 and uD(0) = vD(0) = 1 holds in ΩSi.

(iii) The solution u of the boundary-value problem −∇ · (A∇u) = f in Ω, u = 0 on ∂ΩD, and
∇νu = 0 on ∂ΩN , satisfies the inequality

‖u‖W 2,q(Ω) ≤ C‖f‖Lq(Ω)

for all f ∈ Lq(Ω) with q = 2 and q = 3/2. This is actually a condition on the boundary
segments ∂ΩD and ∂ΩN ; it excludes boundaries where Dirichlet and Neumann segments
meet under angles larger than π/2.

(iv) The Fréchet derivatives M ′
α and M ′

β of the interface models Mα and Mβ with respect to V

exist, they are in H1/2(Γ) and L2(Γ), respectively, and they satisfy the inequality

‖M ′
α(V )‖H1/2(Γ) + ‖M ′

β(V )‖L2(Γ) ≤ C‖V ‖H2(Ω)

in a neighborhood of the equilibrium potential Ve with a sufficiently small constant C.

The following theorem yields the local uniqueness of the solution of (2.13). The proof is based
on the implicit-function theorem.
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Theorem 2.5.2 (Local uniqueness).
Under Assumptions 2.2.1 and 2.5.1, there exists a sufficiently small σ ∈ R with |U | < σ such
that the problem in Theorem 2.2.2 has a locally unique solution

(
V ∗(U), u∗(U), v∗(U), α∗(U), β∗(U)

)
∈ H2(Ω) ×H2(ΩSi)

2 ×H1/2(Γ) × L2(Γ).

The solution satisfies

(
V ∗(0), u∗(0), v∗(0), α∗(0), β∗(0)

)
= (Ve, 1, 1, αe, βe)

and it depends continuously differentiably on U as a map from
{
U ∈ R

k
∣∣ |U | < σ

}
into

H2(Ω) ×H2(ΩSi)
2 ×H1/2(Γ) × L2(Γ).

Proof. 1. We start with the substitution Ṽ := V −VD(U), ũ := u−uD(U), and ṽ := v− vD(U).
For notational simplicity, we denote Ṽ , ũ, and ṽ again by V , u, and v. After the substitution,
the system (2.13) becomes

−∇ · (A∇(V + VD))

= qCdop − qni(e
(V +VD)/UT u− e−(V +VD)/UT v) in ΩSi,

−∇ · (A∇(V + VD)) = 0 in Ωox,

−∇ · (A∇(V + VD)) = −2η sinh(ξ(V + VD − Φ)) in Ωliq,

V (0+, y) − V (0−, y) = α on Γ,

A(0+)∂xV (0+, y) −A(0−)∂xV (0−, y) = β on Γ,

UTni∇ · (µne(V +VD)/UT ∇(u+ uD))

= F (x, V + VD, u+ uD, v + vD)((u+ uD)(v + vD) − 1) in ΩSi,

UTni∇ · (µpe
−(V +VD)/UT ∇(v + vD))

= F (x, V + VD, u+ uD, v + vD)((u+ uD)(v + vD) − 1) in ΩSi,

α = Mα(V ) on Γ,

β = Mβ(V ) on Γ,

V = 0 on ∂ΩD,

u = v = 0 on ∂ΩD,Si,

∇νV = 0 on ∂ΩN ,

∇νu = ∇νv = 0 on ∂ΩN,Si.

We write this boundary-value problem as the operator equation

G(V, u, v, α, β, U) = 0, (2.66)

where the map

G : B × Sσ1
(0) → L2(Ω) × L2(ΩSi)

2 ×H1/2(Γ) × L2(Γ) (2.67)

is given by the boundary-value problem above. Here B is an open subset ofH2
∂(Ω\Γ)×H2

∂(ΩSi)
2×

H1/2(Γ) × L2(Γ) with

H2
∂(Ω) :=

{
φ ∈ H2(Ω)

∣∣ ∇νφ = 0 on ∂ΩN , φ = 0 on ∂ΩD

}
(2.68)
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and the sphere Sσ1
(0) with radius σ1 and center 0 is a subset of R

k. The domain must be chosen
such that u = ũ+ uD > 0 and v = ṽ + vD > 0 for all (V, u, v, α, β) ∈ B and for all U ∈ Sσ1

(0),
because u and v are positive and the recombination rate R is defined only for positive u and v.

Since uD(0) = 1 (this is the boundary condition for U = 0 of the equilibrium solution), we have
to ensure that ‖ũ‖L∞(ΩSi) is small enough so that u is positive. To ensure this, we choose B
bounded and small enough; if ‖ũ‖H2(ΩSi) is small enough, this indeed implies that ‖ũ‖L∞(ΩSi)

is small enough due to the inequality ‖u‖L∞(U) ≤ C‖u‖H2(U) for all f ∈ H2(U). The same
argument ensures that v is positive if B is bounded and small enough.

Since G(V, u, v, α, β, U) ∈ L2(Ω)×L2(ΩSi)
2×H1/2(Γ)×L2(Γ) implies that (V, u, v, α, β) ∈ B and

U ∈ Sσ1(U) and since products of functions in B are in L2(Ω) due to the inequality ‖uv‖L2(U) ≤
C‖u‖H1(U)‖v‖H1(U) for all u and v ∈ H1(U), the map G, as stated in (2.67), is well-defined.

2. The equilibrium solution (Ve − VD(0), 0, 0, αe, βe, 0) is obviously a solution of the equation
G = 0. To apply the implicit-function theorem, the Fréchet derivative

D(V,u,v,α,β)G(Ve − VD(0), 0, 0, αe , βe, 0) (2.69)

must have a bounded inverse. To find the inverse of the Fréchet derivative, we solve the equation

D(V,u,v,α,β)G(Ve − VD(0), 0, 0, αe , βe, 0)(a1, a2, a3, a4, a5) = (g1, g2, g3, g4, g5) (2.70)

for ai, where (g1, g2, g3, g4, g5) ∈ L2(Ω)×L2(ΩSi)
2×H1/2(Γ)×L2(Γ). This equation is equivalent

to the boundary-value problem

−∇ · (A∇a1) = − qni

(
(
eVe/UT + e−Ve/UT

UT
)a1

+ e−Ve/UT a2 − eVe/UT a3

)
+ g1 in ΩSi, (2.71a)

−∇ · (A∇a1) = g1 in Ωox, (2.71b)

−∇ · (A∇a1) = −2ηβ sinh(ξ(Ve − Φ))a1 + g1 in Ωliq, (2.71c)

a1(0+, y) − a1(0−, y) = a4 on Γ, (2.71d)

A(0+)∂xa1(0+, y) −A(0−)∂xa1(0−, y) = a5 on Γ, (2.71e)

ni∇ · (µneVe/UT ∇a2) = ω(x)a2 + ω(x)a3 + g2 in ΩSi, (2.71f)

ni∇ · (µpe
−Ve/UT ∇a3) = ω(x)a2 + ω(x)a3 + g3 in ΩSi, (2.71g)

a4 = M ′
α(Ve)a1 + g4 on Γ, (2.71h)

a5 = M ′
β(Ve)a1 + g5 on Γ, (2.71i)

a1 = 0 on ∂ΩD, (2.71j)

a2 = a3 = 0 on ∂ΩD,Si,
(2.71k)

∇νa1 = 0 on ∂ΩN , (2.71l)

∇νa2 = ∇νa3 = 0 on ∂ΩN,Si,
(2.71m)

where ω(x) := F (x, Ve(x), 1, 1) and either 0 < ω ≤ f(x) ≤ ω or ω = 0 holds in ΩSi due to the
assumptions on the recombination rate.
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In the case ω = 0 in Ω, the equations (2.71f) and (2.71g) are decoupled from the first equation
and from each other. Hence the existence of a unique solution and the boundedness of the inverse
are seen immediately.

In the case 0 < ω ≤ f(x) ≤ ω in ΩSi, the unique existence of the solutions a2 and a3 of the
equations (2.71f) and (2.71g) are be shown as in the proof of Theorem 3.3.1 in (Markowich,
1986).

In both cases, the estimate

‖a2‖H2(ΩSi) + ‖a3‖H2(ΩSi) ≤ C(‖g2‖L2(ΩSi) + ‖g3‖L2(ΩSi)) (2.72)

holds.

3. By substituting a2 and a3 into (2.71a), we find the estimate

‖a1‖H2(Ω) ≤ C1(‖g1‖L2(Ω) + ‖g2‖L2(ΩSi) + ‖g3‖L2(ΩSi) + ‖g4‖H1/2(Γ) + ‖g5‖L2(Γ)

+ ‖a4‖H1/2(Γ) + ‖a5‖L2(Γ)) (2.73)

using Lemma 2.3.1. Equations (2.71h) and (2.71i) and assumption 2.5.1(iv) on Mα and Mγ

yields the existence of a sufficiently small constant C2 such that the inequality

‖a4‖H1/2(Γ) + ‖a5‖L2(Γ) ≤ C2‖a1‖H2(Ω) + ‖g4‖H1/2(Γ) + ‖g5‖L2(Γ) (2.74)

holds. For sufficiently small C2, i.e., if C1C2 < 1, the last two inequalities yield

(1 − C1C2)‖a1‖H2(Ω) ≤ C1(‖g1‖L2(Ω) + ‖g2‖L2(ΩSi) + ‖g3‖L2(ΩSi)

+ 2‖g4‖H1/2(Γ) + 2‖g5‖L2(Γ)). (2.75)

Hence we have shown that the Fréchet derivative has a bounded inverse, i.e., there is a constant C
such that the inequality

‖(D(V,u,v,α,β)G(Ve − VD(0), 0, 0, αe , βe, 0))
−1‖ ≤ C (2.76)

holds, where the norm is the operator norm of

L2(Ω) × L2(ΩSi)
2 ×H1/2(Γ) × L2(Γ) → H2(Ω\Γ) ×H2(ΩSi)

2 ×H1/2(Γ) × L2(Γ). (2.77)

Finally, the implicit-function theorem (Appendix B, Theorem B.4) yields the assertion.

2.6 Summary

The here observed PDE system serves as a model for the self-consistent simulation of field-
effect sensors such as bio- and gas sensors and is based on the drift-diffusion equations and
the Poisson-Boltzmann equation. Additionally two interface conditions for the electric potential
and the electric displacement are implemented. From previous studies it is known that the
drift-diffusion equations have a solution which is unique around thermal equilibrium.

We showed that this properties are still valid for the system of equations including the jump
conditions. Therefore we firstly proved existence of a solution of elliptic boundary-value problems
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with interface conditions and a estimate for the solution of it. Here the jump conditions affect
the estimate of the solution comparable to Dirichlet and Neumann boundary conditions.

With this result the existence of a solution of semilinear elliptic boundary-value problems with
interface conditions and a estimate for the solution were proved. Using these two lemmata,
the Rellich-Kondrachov compactness theorem, and the Leray-Schauder fixed-point theorem the
existence of a solution of our system of equations including jump conditions satisfying reasonable
assumptions is obtained.

Starting with an equilibrium solution for our system of equations by assuming equilibrium in-
terface conditions we proved uniqueness around this thermal equilibrium by an implicit function
theorem. Summarized all properties of the drift-diffusion equations remain valid assuming rea-
sonable conditions for the jumps at the interface.

Since the analysis for our system of equations is now completed we turn to the numerics and
especially to the parallelization algorithm based on the feti method.
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Chapter 3

A One Level FETI Method

The feti (finite element tearing and interconnect) and Neumann-Neumann algorithms are the
best known and most tested domain-decomposition methods for elliptic partial differential

equations (Toselli and Widlund, 2005). They are suitable for Dirichlet and Neumann boundary-
value problems as well as for highly heterogeneous equations, show a high scalability, and are
applicable for computations with a large number of processors (Bhardwaj et al., 1999; Klawonn
and Widlund, 2001). Consequently many variants (Dostál et al., 2006; Farhat et al., 2001) have
been developed for different applications (Avery et al., 2004; Dureisseix and Farhat, 2001; Farhat
et al., 2005; Toselli and Klawonn, 2002). In this chapter we extend the field of applications
to our system of partial differential equations (1.28). With the extensions developed in this
chapter, namely the consideration of a self-consistent system, the inclusion of discontinuities
at an interface, and the Poisson-Boltzmann equation in a subdomain, it is possible to simulate
nwfet devices, with a geometry as in Fig. 1.6, in parallel.

Therefore, the convergence of the feti method and the condition-number estimate, are stated
in Section 3.2. The extension of the feti scheme to the model equations is given in Section 3.3.
The scheme is based on the one-level feti method according to the work by Farhat and Roux

(Farhat and Roux, 1991).

Three examples for the method are presented in Section 3.4 to show that simulation of nwfet de-
vices with this algorithm is the best approach. The first example shows the use of constant
interface conditions in two spatial dimensions. The second example is the simulation of the half
of a nanowire sensor, to show the right implementation of the different materials and the correct
implementation even in the cases when the material interfaces are corners. The third example is
based on the geometry of a real nwfet device. Only the length scales are chosen to be small to
simplify the description. Here we also tested different preconditioners. All the calculations are
done fully self consistently by the following algorithm.
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3.1 Self-Consistent Loop

We are going to parallelize the system (1.28) numerically. Therefore we use the Scharfetter-
Gummel iteration scheme which consists of three steps: the derivation of the electrostatic po-
tential V , of the electron density n, and of the hole density p. The dipole moment density and
the surface charge density are included in this scheme by adding the derivation of the boundary
layer charge which is dependent on the surface potential. The first iteration with initial values
n0, p0, α0, and β0 works as follows:

1. Solve the boundary-value problem with interface conditions

−∇ · (ε∇V1) =





q(p0 − n0 + Cdop) in ΩSi,

0 in Ωox,

−2η sinh(ξV1) in Ωliq,

V1(0+,y) − V1(0−,y) = α0(y) on Γ,

ε(0+)∂x1
V1(0+,y) − ε(0−)∂x1

V1(0−,y) = β0(y) on Γ,

V1 = VD on ∂ΩD,

∇νV1 = 0 on ∂ΩN

for V1.

2. Solve the elliptic boundary-value problem

∇ · (Dn∇n1 − µnn1∇V ) =
n1p0 − n2

i

τp(n1 + ni) + τn(p0 + ni)
in ΩSi,

n1 = nD on ∂ΩD,

∇νn1 = 0 on ∂ΩN

for n1. Here the n1 in the denominator can be replaced by n0 which makes the discretized
system linear.

3. Solve the elliptic boundary-value problem

∇ · (Dp∇p1 + µpp1∇V ) =
n1p1 − n2

i

τp(n1 + ni) + τn(p1 + ni)
in ΩSi,

p1 = pD on ∂ΩD,

∇νp1 = 0 on ∂ΩN

for p1.

4. Update the surface-charge density and dipole-moment density according to a boundary
model

α1(y) := Mα(V1),

β1(y) := Mβ(V1),

where Mα and Mβ are the functions giving the densities according to the surface potentials.
In the case of Monte-Carlo simulations, this can be done by generating a look-up table with
density values for different surface voltages.
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It should be mentioned that we can rewrite all the equations in the self consistent loop, especially
the drift-diffusion equations, to the general form

∇ · (c1(w)∇w) + ∇ ·
(
wc2(w)

)
+ f(w) = 0, (3.5)

where c1 is a constant and c2 is a vector with constant components in both cases w = n and
w = p. Furthermore f is a linearized version of the recombination rate. Since the feti method is
applicable for equations of this type this shows how it can be applied away from the interface Γ.
At the interface Γ, the Lagrangians must be modified because of the interface conditions (1.2b)
and (1.2c). The detailed description follows in the next section.

3.2 The FETI algortihm

In order to describe the FETI algorithm, the coefficients and boundary conditions of the problem

−∇ · (ε(x, y, z)∇V (x, y, z)) =

{
q(p− n+ Cdop) in Ω1,

0 in Ω2,
(3.6a)

∇ · (Dn∇n− µnn∇V ) =
np− n2

i

τp(n+ ni) + τn(p+ ni)
in Ω1, (3.6b)

∇ · (Dp∇p+ µpp∇V ) =
np− n2

i

τp(n+ ni) + τn(p+ ni)
in Ω1, (3.6c)

with the discontinuities

V (0+, y, z) − V (0−, y, z) = α(y, z) on Γ, (3.7a)

ε+∂xV (0+, y, z) − ε−∂xV (0−, y, z) = β(y, z) on Γ, (3.7b)

must satisfy the following assumptions (cf. Assumptions 2.2.1 or (Baumgartner and Heitzinger,
2012a)).

Assumptions 3.2.1.

(i) The bounded domain Ω ⊂ R
3 has a C2 Dirichlet boundary ∂ΩD, the Neumann boundary

∂ΩN consists of C2 segments, and the Lebesgue measure of the Dirichlet boundary ∂ΩD is
nonzero.

The C2 hypersurface Γ ⊂ Ω splits the domain Ω into two nonempty domains Ω+ and Ω−

so that meas(Γ ∩ ∂Ω) = 0 and Γ ∩ ∂Ω ⊂ ∂ΩN hold.

(ii) The coefficient functions ε, µn, and µp are uniformly elliptic and bounded with ε|Ω+ ∈
C1(Ω+,R3×3), ε|Ω− ∈ C1(Ω−,R3×3), and µn, µp ∈ C1(ΩSi,R

3×3).

For the Dirichlet data VD of the potential VD ∈ H1/2(∂ΩD) ∩ L∞(Γ) holds, and for the
Dirichlet data of the charge carriers nD, pD ∈ H1/2(∂ΩD) holds.

(iii) The doping concentration Cdop as well as the Dirichlet data nD(x) and pD(x) for the charge
carriers are bounded above and below.

(iv) For the interface conditions, α ∈ H1/2(Γ) ∩ L∞(Γ) and β ∈ L∞(Γ) hold.
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Using these assumptions and similar assumptions as for the local uniqueness, we can state the
result of the parallel algorithm that is given in detail in Section 3.3.

Theorem 3.2.2 (feti algorithm for the drift-diffusion-Poisson system with discontinuities).
Under Assumptions 3.2.1 and Assumptions 2.5.1, the system (3.6–3.7) has a unique solution
around thermal equilibrium and can be solved by the one-level feti algorithm defined in Sec-
tion 3.3.3 with a preconditioned conjugate gradient method.

Remark 3.2.3. Using a preconditioner M , a projection P , and the product F of the connectivity
matrices with the block-diagonal Schur complement matrix, all as defined in Section 3.3, the
condition number of a one-level feti method usually satisfies

κ(PM−1P TF ) ≤ C(1 + log(H/h))2, (3.8)

where h is the maximum size of the finite elements, H is the maximum size of the subdomains,
and C is a constant independent of h and H. A proof of the condition-number estimate can be
found in (Klawonn and Widlund, 2001; Toselli and Widlund, 2005). Since the jump conditions
are inherently included in the feti algorithm this estimate holds true which is shown for an
example in Section 3.4.2.3.

3.3 The Algorithm

To show how the interface conditions are included in the feti method, we discuss the simpler
case of only two subdomains first (see Fig. 1.4). After a brief synopsis of the Schur complement
for our purposes, the algorithm for an arbitrary number of domains will be derived in this section.

3.3.1 The Case of Two Subdomains

We start with the variational form of the system (3.6–3.7). Using the definition

u ∈ H1
Γ(Ω) := {v ∈ H1(Ω) : v(0+, y, z) − v(0−, y, z) = α(y, z) on Γ}, (3.9)

the variational form of (3.6–3.7) is

a(u, v) = f(v) ∀v ∈ H1
Γ(Ω), (3.10)

where

a(u, v) :=

∫

Ω

ε(x)∇u · ∇vdx−

∫

Γ

βvdy, (3.11a)

f(v) :=

∫

Ω

fvdx. (3.11b)

The energy functionals of the variational problem then are

J1(v1) =
1

2
a(v1, v1)Ω1

− f(v1)Ω1
, (3.12a)

J2(v2) =
1

2
a(v2, v2)Ω2

− f(v2)Ω2
− β(v2)Γ (3.12b)
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for v1, v2 ∈ H1
Γ where

a(u, v)Ωi :=

∫

Ωi

ε(x)∇u · ∇vdx, (3.13a)

f(v)Ωi :=

∫

Ωi

fvdx, (3.13b)

β(v)Γ :=

∫

Γ

βvdy. (3.13c)

The additional term (v2, β) arises from the interface condition (1.2c) for the electric displacement
which is due to the extra term in the bilinear form a in (3.11a). Hence the interface condition
(1.2c) for the electric displacement is already incorporated, while the condition (1.2b) for the
electric potential arises only in H1

Γ. To respect the interface condition (1.2b) for the electric
potential, we obtain the saddle point of the Lagrangian

J∗(v1, v2, µ) = J1(v1) + J2(v2) +

∫

Γ

µ(v1 − v2 − α)dy. (3.14)

We now turn to a finite-element discretization of the problem (3.12), following (Farhat and Roux,
1991). Therefore we define A1 and A2 as the stiffness matrices of aΩ1

and aΩ2
, respectively.

Furthermore we define f1 and f2 as the discretized right-hand sides of the Poisson equation and
B1 and B2 as the connectivity matrices at the interface Γ with entries in {0, 1,−1}. Then the
problem (3.12) with the interface condition (1.2b) for the electric potential becomes

A1u1 = f1 +BT
1 λ, (3.15a)

A2u2 = f2 −BT
2 λ−BT

2 β, (3.15b)

B1u1 = B2(u2 + α), (3.15c)

where λ are the Lagrange multipliers. For non-singular Ai, i ∈ {1, 2}, this system can be solved
according to the original feti method

(
B1A

−1
1 BT

1 +B2A
−1
2 BT

2

)
λ = B2A

−1
2 f2 −B1A

−1
1 f1 −B2A

−1
2 BT

2 β +B2α, (3.16a)

u1 = A−1
1

(
f1 +BT

1 λ
)
, (3.16b)

u2 = A−1
2

(
f2 −BT

2 λ−BT
2 β
)

(3.16c)

by first solving equation (3.16a) for the Lagrange multipliers and then substituting into equations
(3.16b) and (3.16c).

3.3.2 Schur Complement

For the algorithm in Section 3.3.3 below, it is convenient to use the Schur complement. Conse-
quently we give a brief synopsis for our purposes.

The structure of the stiffness matrices makes it possible to separate the entries for the inner points
of the domain and the points at the interface Γ. Hence the stiffness matrices Ai, i ∈ {1, 2}, of
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the linear systems Aiui = fi, i ∈ {1, 2}, can be written as

Ai =

(
Ai

II Ai
IΓ

Ai
ΓI Ai

ΓΓ

)
. (3.17)

These matrices are obtained by splitting the stiffness matrix A of the linear system on the whole
domain Ω, where the variables are ordered as (Ω1,Ω2,Γ), i.e.,

A =



A1

II 0 A1
IΓ

0 A2
II A2

IΓ

A1
ΓI A2

ΓI AΓΓ


 , (3.18)

where AΓΓ = A1
ΓΓ + A2

ΓΓ. Similarly, the components of u and f of the whole system can be
arranged as

u =



u1

I

u2
I

uΓ


 and f =




f1
I

f2
I

fΓ + β


 , (3.19)

where uΓ = u1
Γ + u2

Γ and fΓ = f1
Γ + f2

Γ. To obtain the Schur matrix S of the linear system
Au = f , we make use of the LU -decomposition of A, i.e.,

A = LU =




I 0 0

0 I 0

A1
ΓIA

1
II

−1
A2

ΓIA
2
II

−1
I






A1

II 0 A1
IΓ

0 A2
II A2

IΓ

0 0 S


 , (3.20)

where

S = AΓΓ −A1
ΓIA

1
II

−1
A1

IΓ −A2
ΓIA

2
II

−1
A2

IΓ. (3.21)

By multiplication with L−1, we then obtain the linear system


A1

II 0 A1
IΓ

0 A2
II A2

IΓ

0 0 S


u =



f1

I

f2
I

gΓ


 , (3.22)

where

gΓ = fΓ + β −A1
ΓIA

1
II

−1
f1

I −A2
ΓIA

2
II

−1
f2

I . (3.23)

Hence the linear system Au = f can be solved by block Gaussian elimination, solving first

SuΓ = gΓ (3.24)

and then substituting uΓ in

ui
I = (Ai

II)
−1 (

f i
I −Ai

IΓuΓ

)
. (3.25)

In summary, solving the equations (3.16) can be reduced from a linear system involving all
discretization points in Ω to a linear system on Γ. Now we are able to prove Theorem 3.2.2 for
any number of subdomains.
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3.3.3 A One-Level FETI Algorithm for the Drift-Diffusion-Poisson System

with Discontinuities

For an arbitrary number N of subdomains, we consider the minimization problem for equation
(3.6a) with the discontinuities (3.7). The minimization problem in Schur complement form
(Klawonn and Widlund, 2001; Toselli and Widlund, 2005) then reads

J(u) :=
1

2
〈Su, u〉 − 〈g, u〉 = min!, (3.26a)

Bu = α, (3.26b)

where

u =




u1

u2
...

uN



, g =




g1
g2
...

gN



, S =




S1 0 · · · 0

0 S2
. . .

...
...

. . .
. . . 0

0 · · · 0 SN



, (3.27)

where the

Si := Ai
ΓΓ −Ai

ΓI

(
Ai

II

)−1
Ai

IΓ (3.28)

are the local Schur complement matrices for i ∈ {1, . . . , N}, and B is the connectivity matrix
analogous to the connectivity matrices in (3.15). The interface condition for the normal derivative
is already incorporated in the vector g as in the last section. Note that the interface condition α
is in general not defined at all interfaces with variable ui, i ∈ {1, . . . , n}, i.e., we would usually
define

α∗(x) :=

{
α(x) for x ∈ Γ,

0 elsewhere.
(3.29)

For the sake of simplicity, however, we call this variable again α.

The saddle-point formulation of (3.26) is to find (u, λ) such that

Su+BTλ = g, (3.30a)

Bu = α. (3.30b)

In the case of insufficient boundary conditions or floating subdomains, we must also consider
matrices Ri, i ∈ {1, . . . , N}, of the null-space elements of S with

R :=




R1 0 · · · 0

0 R2
. . .

...
...

. . .
. . . 0

0 · · · 0 RN




(3.31)

and range(R) = ker(S). Hence equation (3.30a) becomes

u = S†(g −BTλ) −Rγ, if g −BTλ ⊥ ker(S), (3.32)
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where S† is the pseudoinverse of S. To solve this equation, λ has to be computed first and then
γ. If we now substitute this equation into (3.30b), we obtain

BS†BTλ = BS†g −BRγ − α (3.33)

and hence (Toselli and Widlund, 2005, p. 146 ff.) we can rewrite the system (3.30) as

Fλ+Gγ = d, (3.34a)

GTλ = e, (3.34b)

where F := BS†BT , G := BR, d := BS†g − α, and e := RT g. Here the second equation arises
from the condition g −BTλ ⊥ ker(S). This system can be solved by using a projection

P T := I −G(GTQG)−1GTQ (3.35)

from range(B) onto the subspace of Lagrange multipliers which are orthogonal to range(G) using
a scaling matrix Q. The matrix Q can be chosen, e.g., as the Dirichlet preconditioner defined in
Klawonn and Rheinbach (2010). This turns (3.34) into the system

P TFλ = P Td, (3.36)

GTλ = e, (3.37)

which can be solved by the following standard preconditioned conjugate-gradient method

Initialize the first Lagrange multiplier and the first residuum

λ0 = QG(GTQG)−1e+ µ, µ ∈ range(P )

r0 = d− Fλ0

For k = 1, 2, . . . until convergence

Project : qk−1 = P T rk−1

Precondition : zk−1 = M−1qk−1

Project : yk−1 = Pzk−1

β1 = 0 and βk = 〈yk−1, qk−1〉/〈yk−2, qk−2〉

p1 = y0 and pk = yk−1 + βkpk−1

αk = 〈yk−1, qk−1〉/〈pk, Fpk〉

λk = λk−1 + αkpk

rk = rk−1 − αkFpk

as also stated in (Toselli and Widlund, 2005, p. 149) and which is used for the simulations in
Section 3.4.

In every step of (1)-(3) in the self-consistent loop we have to use the CG method. Hence it is of
interest to keep the number of iterations in every CG computation small, which can be improved
by using a preconditioner M , i.e., we have to solve the equations

PM−1P TFλ = PM−1P Td, (3.38a)

GTλ = e. (3.38b)
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For heterogeneous systems it is recommended to use the Dirichlet preconditioner

M−1 = BDSB
T
D (3.39)

or the lumped preconditioner

M−1 = BDAΓΓB
T
D (3.40)

where BD is the connectivity matrix B multiplied with a scaling matrix D including the permit-
tivity ε or the multiplicity of the boxes involved in the degrees of freedom at the interface for
redundant Lagrange multipliers and the Dirichlet preconditioner

M−1 =
(
BD−1BT

)−1
BD−1SD−1BT

(
BD−1BT

)−1
(3.41)

for non-redundant Lagrange multipliers as defined in (Klawonn and Rheinbach, 2010). The
iteration count of the Dirichlet preconditioner for non-redundant Lagrange multipliers is given
in Section 3.4.2.2 and a comparison of these preconditioners can be found in (Rixen and Farhat,
1999).

Since the jumps in the potential and in the electrical displacement are inherently incorporated
in this one-level feti method, i.e., they arise as additional terms on the right-hand sides, the
standard condition number estimate

κ(PM−1P TF ) ≤ C
(
1 + log(H/h)

)2
(3.42)

for one-level feti methods with Dirichlet preconditioner M holds (Klawonn and Rheinbach,
2010; Klawonn and Widlund, 2001), which concludes the proof of Theorem 3.2.2.

3.4 Numerical Results

In this section, three numerical examples for the feti method developed in the previous section
are given. The first example is two dimensional and the domain consists of 8 subdomains arranged
in a 2 times 4 grid, where constant interface conditions separate the four subdomains on each side
of the interface. On one side, the drift-diffusion-Poisson system is solved on the four subdomains
and on the other side, the Poisson equation with a vanishing right-hand side is solved.

The second and third example are realistic examples and show how this method is used for the
simulation of a nanowire transistor or nanowire sensor. The simulation domain is three dimen-
sional and the subdomains are arranged according to the geometry of three different materials
arising in real-world devices where the second example only simulates a half device and the third
example the whole device.

3.4.1 A Two-Dimensional Example

We consider a two-dimensional domain consisting of 8 subdomains as the first example. As
depicted in Fig. 3.1, the simulation domain consists of two parts divided by the interface.

Each part is again divided in 4 subdomains. In the green domains, the drift-diffusion-Poisson
system is solved and the blue domains are homogenized, i.e., the Poisson equation holds there.
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Jumps

VD = 0.1V

VD = 0.1V

VD = 0.05V VD = 0.05V

VD = 0.05V VD = 0.05V

Drift Diffusion

Poisson
Ω1

Ω2

Ω3

Ω4

Ω5

Ω6

Ω7

Ω8

Figure 3.1: 2d simulation domain divided into 8 subdomains. In Ω1, Ω2, Ω3, and Ω4,
the drift-diffusion-Poisson system holds and in Ω5, Ω6, Ω7, and Ω8, the
Poisson equation holds. The interface is situated between the subdomains
Ω3 and Ω4 on the one side and Ω5 and Ω6 on the other side. At the
interface, jumps in the electric potential and the electric displacement
occur. The boundary conditions are Dirichlet conditions.

The interface between the green and the blue domains comprises the homogenized boundary
layer, and the interface conditions are given by

V (0+, y) − V (0−, y) = 0.01 on Γ, (3.43a)

ε+∂xV (0+, y) − ε−∂xV (0−, y) = −0.001 on Γ, (3.43b)

where the relative permittivities ε+ = 11.9 and ε− = 80 multiplied by the vaccuum permit-
tivity are chosen as the permittivities of silicon and water, respectively. Furthermore Dirichlet
boundary conditions hold as shown in Fig. 3.1.

To verify the correctness of the implementation of the interface conditions, the electric potential
at the interface is considered. The jump in the electric potential is shown in Fig. 3.2 and its
value is exactly 0.01 as stated in Table 3.1. Furthermore, the 8 subdomains, which are glued
together, in every step, by the Lagrange multipliers, are indicated in Fig. 3.2 as well.

V V10,1, V10,9 V10,2, V10,8 V10,3, V10,7 V10,4, V10,6 V10,5

In Ω3 ∪ Ω4 0.05735 0.05643 0.05513 0.05423 0.05392

In Ω5 ∪ Ω6 0.04735 0.04643 0.04513 0.04423 0.04392

Table 3.1: Values of the solution at points on both sides of the interface (Ω3 ∪Ω4 and
Ω5 ∪ Ω6). The indices denote the x- and y-coordinates of the potential
in the discretization grid, i.e., the interface is situated at x = 10 and
y ∈ (1, 9). Due to symmetric boundary conditions, the solution is also
symmetric with symmetry axis at y = 5. The difference is always 0.01 and
hence the jump in the potential given by (3.43a) is verified.

In order to verify the jump in the electric displacement as well, we consider the discrete formu-
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Potential

[V]

x [nm]

y [nm]

(a) Electric potential V .

Electron
concentration

[nm−3]

x [nm]

y [nm]

(b) Electron concentration n.

Figure 3.2: (a) Electric potential in all 8 subdomains. (b) Electron density in the 4
subdomains where the drift-diffusion-Poisson system holds.

lation of the normal derivative (Toselli and Widlund, 2005)

λi = Ai
ΓIu

i
I +Ai

ΓΓu
i
Γ − f i

Γ, (3.44)

where Ai
ΓI and Ai

ΓΓ are the submatrices in the stiffness matrices Ai corresponding to the interface
Γ. Similarly, ui

I are the discrete solution inside the domains and ui
Γ are the solution on the

interface, i.e.,

Ai =

(
Ai

II Ai
IΓ

Ai
ΓI Ai

ΓΓ

)
, ui =

(
ui

I

ui
Γ

)
, (3.45)

when the linear system of the finite-element discretization is of the form Aiui = fi.

The values of the discrete normal derivatives on the interface computed by (3.44) are shown in
Table 3.2.

λ λ10,1, λ10,9 λ10,2, λ10,8 λ10,3, λ10,7 λ10,4, λ10,6 λ10,5

In Ω3 ∪ Ω4 0.001539 0.001321 0.001262 0.001231 0.001221

In Ω5 ∪ Ω6 0.000539 0.000321 0.000262 0.000231 0.000221

Table 3.2: Values of the normal derivative of the solution on both sides of the inter-
face Γ. The indices denote the x- and y-coordinates of the potential in the
discretization grid. Due to symmetric boundary conditions, the normal
derivative is also symmetric with symmetry axis at y = 5. The difference
between the normal derivatives satisfies exactly the interface condition for
the electric displacement given by (3.43b).

Due to the symmetric boundary conditions and geometry, the values with the same distance
from V10,5 coincide. The difference between the normal derivatives on both sides is exactly the
interface condition β = −0.001 in (3.43b).
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3.4.2 Two 3D Examples

Two examples are chosen two show the implementation of the interface conditions in the calcu-
lations of the different materials. Since the interface conditions come from the boundary-layer
model they can be assumed to be constant on each grid point on the interface.

The first example describes a half of an nwfet device where we show the jumps at the interface,
the correct implementation at the corners of the interface, the jumps in the electrical potential
at different cross sections, and the ideal speed-up of this feti technique.

The second example describes the real geometry, although we use a smaller geometry to keep
the explanations simple. Here we show again the jumps in the electrical potential at different
cross sections and a comparison of different preconditioners.

Both examples are in 3d and use the Dirichlet and Neumann conditions proposed in Fig. 1.7.

3.4.2.1 A 3D Example – One Half of a Symmetric Device

We are now going to simulate nanowire field-effect sensors. These sensors consist of three mate-
rials as shown schematically (not to scale) in Fig. 3.3.

Interface

Material 1

Material 2

Material 3

Ω1 Ω2 Ω3

Ω4 Ω5 Ω6

Ω7 Ω8 Ω9

Ω10 Ω11 Ω12

0 10 20 30

10

20

30

40

Figure 3.3: A cross section of the simulation domain with the 12 blocks of the feti al-
gorithm in the x- and y-directions. The interface is indicated as well.

Using the present feti method together with models for the surface charge concentrations, it
is now possible to perform realistic simulations of nanowire bio- and gas sensors such as DNA
sensors, cancer-marker sensors, and metal-oxide gas sensors. Here results for a 3d simulation
domain with a width of 30, a height of 40, and a length of 20 are shown. The decomposition of
the domain in the x- and y-directions is depicted in Fig. 3.3, and in the z-direction the domain
is sliced once. Due to the chosen grid spacing of length 1 every block is of size 11 × 11 × 11.
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Ω24Ω23

Ω20 Ω21

Ω8 Ω9

Ω11

Ω12

Ω20

Ω21

Ω23 Ω24

Figure 3.4: Non-redundant connection of 8 blocks at the vertex (20, 30, 10).

Furthermore, different boundary conditions are incorporated: at the top and bottom of the sim-
ulation domain and also at the beginning and at the end (in z-direction) of material 1 (the
red region) in Fig. 3.3, Dirichlet conditions for ohmic contacts hold, while everywhere else Neu-
mann conditions hold. These boundary conditions correspond to the real-world situation. The
points where more than two blocks contribute are glued non-redundantly, e.g., at (20, 30, 10) the
connection between the points is as shown in Fig. 3.4.

As in the first example, we verify the correctness of the interface conditions. Therefore the
potential V and its normal derivatives were computed at the points (20, i, 10), i ∈ [20, 30], and
are shown in Table 3.3 and Table 3.4. These data verify that the jump conditions

V (0+, y, z) − V (0−, y, z) = −0.01 on Γ, (3.46a)

ε+∂xV (0+, y, z) − ε−∂xV (0−, y, z) = 0.0001 on Γ, (3.46b)

hold at each point.

V V20,20,10 V20,21,10 V20,22,10 V20,23,10 V20,24,10 V20,25,10

Ω8 ∪ Ω20 0.00223 0.00224 0.00225 0.00228 0.00234 0.00247

Ω9 ∪ Ω21 −0.00777 −0.00776 −0.00775 −0.00772 −0.00766 −0.00752

V20,26,10 V20,27,10 V20,28,10 V20,29,10 V20,30,10

Ω8 ∪ Ω20 0.00272 0.00313 0.00380 0.00499 0.00846

Ω9 ∪ Ω21 −0.00728 −0.00687 −0.00620 −0.00501 −0.00154

Table 3.3: Numerical values for the potential V at the surface points (20, i, 10), i ∈
(20, 30). A jump of the potential of −0.01 is observed for all the points as
expected.

The jumps can also be seen in cross sections of the electric potential V . The cross section at
z = 10 is shown in Fig. 3.5 and the jump in the potential can be clearly seen. The different
materials are in the same color as in Fig. 3.3, where the red region corresponds to silicon, the
green region corresponds to silicon dioxide, and the blue region corresponds to the aqueous
solution or air.
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λ [10−6] λ20,20,10 λ [10−6] λ20,30,10

Ω5 ∪ Ω8 ∪ Ω17 ∪ Ω20 −27.091 Ω8 ∪ Ω20 −189.4

Ω6 ∪ Ω9 ∪ Ω18 ∪ Ω21 72.909 Ω9 ∪ Ω11 ∪ Ω12 ∪ Ω21 ∪ Ω23 ∪ Ω24 −89.4

λ [10−6] λ20,21,10 λ20,22,10 λ20,23,10 λ20,24,10 λ20,25,10

Ω8 ∪ Ω20 −28.8631 −30.7564 −33.1229 −36.4034 −41.1923

Ω9 ∪ Ω21 71.1368 69.2436 66.8771 63.5967 58.8077

λ [10−6] λ20,26,10 λ20,27,10 λ20,28,10 λ20,29,10

Ω8 ∪ Ω20 −48.3434 −59.1586 −75.7685 −101.9625

Ω9 ∪ Ω21 51.6566 40.8414 24.2315 −1.9625

Table 3.4: Numerical values for the normal derivatives λ of the potential V at the
surface points (20, i, 10), i ∈ (20, 30). A jump of the derivative of 0.0001 V
has been obtained for all the points. The magnitude of the derivatives are
of 10−6.

Potential

[V]

y [nm]

x [nm]

Figure 3.5: Electric potential V in the cross section z = 10 nm.

The potential in the silicon region is larger due to the Dirichlet conditions at the beginning and
at the end of the nanowire, i.e., at z = 0 and z = 20, which can also be seen in Fig. 3.6, where
a cross section of the simulation domain at x = 5 is shown. On the left-hand side of Fig. 3.6,
the electric potential is depicted, while the right-hand side shows the corresponding electron
density. The electron density, the electric potential, and the interface conditions are calculated
self-consistently in an enhanced Scharfetter-Gummel iteration scheme.

The speedup of such 3d simulations with 45 blocks and 720 000 d.o.f. shows an almost ideal
behavior as illustrated in Fig. 3.7. The speedup is significant even for 64 processors, although
we are simulating on only 45 blocks.
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Figure 3.6: (a) Electric potential V in the cross section at x = 5. (b) Corresponding
electron concentration n in the same cross section.
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Figure 3.7: Actual speedup vs. ideal speedup of a 3d simulation.

3.4.2.2 A 3D Example – Whole Device

For the following example, with a cross section as shown in Fig. 3.8, we keep the dimensions small
and take boxes with the size 10×10×10 and a total length, in z-direction, of 20. Hence the whole
simulation domain consists of 18 blocks. Furthermore we apply 0.01 V backgate voltage, i.e., at
y = 0, and 0.05 V at the source, i.e., in ΩSi at z = 0. All other constants in the drift-diffusion
equations are chosen as in Markowich et al. (1990) where room temperature is assumed.

As aforementioned the jump conditions are defined by the boundary layer model. For the sake
of simplicity we neglect this part and take the following constant jump conditions:

V (0+,y)−V (0−,y) = −0.003, (3.47a)

εliq∂x1
V (0+,y) − εox∂x1

V (0−,y) = 0.00001. (3.47b)

At the cross section z = 10 in Figure 3.9 we can see the backgate condition on the left, the
electrostatic potential of the Poisson drift-diffusion system in the middle and the aqueous solution
(dark green). The jump conditions are clearly depicted between the oxide and the aqueous
solution.
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x = 15 nm
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Figure 3.8: Schematic diagram of the nwfet device. The different equations used in
the simulations and the cross section x = 15 used in the remaining figures
are indicated. The blocks for parallelization have a size of 10 × 10 × 10
nm3 (Fig. 2, 3) or 10 × 10 × 5 nm3 (Fig. 4, 5, 6).
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Figure 3.9: Cross section of the electrostatic potential at z = 10.

The symmetric structure of the device can be seen at the cross section y = 15 in Figure 3.10.
Here we have the solution of the Poisson drift-diffusion system and the Poisson equation with
vanishing right-hand side in the middle, and the aqueous solution on the left and right of it.
Between 12 ≤ x ≤ 18 at z = 0 the Dirichlet conditions for the source contact hold. Again the
jump conditions can be clearly seen.

The same Dirichlet conditions for the source contact are visible at the cross section x = 15 in
Figure 3.10. Here we have at the left the oxide, in the middle the silicon covered by an oxide
layer, and at the right the aqueous solution separated from the oxide by the jump conditions.
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Figure 3.10: Left: Cross section of the electrostatic potential at y = 15. Right: Cross
section of the electrostatic potential at x = 15.

As aforementioned the choice of the preconditioner is important for the reduction of computation
time. In our case it is recommended to use the Dirichlet preconditioner. We will show in the
following that the condition number estimate is valid for a test problem with jump conditions.

3.4.2.3 Condition Number Estimate

In this subsection we show the iteration number, the smallest, and the largest eigenvalue of a
model problem similar to (Toselli and Widlund, 2005, p. 187) with and without jumps. We use
the unit cube as domain with N ×N × N subdomains. The permittivity alternates between 1
and 104 and we have homogeneous Dirichlet conditions at the front, left, and bottom side of the
cube and homogeneous Neumann conditions everywhere else. On each subdomain we solve the
Poisson equation with constant right-hand side and the stopping criterion for the residual is the
reduction of the initial residual by 10−7.

Subdomains Dof/Subdom. Dof It. λmin λmax It. jumps λjumps
min λjumps

max

27 125 2197 9 1 4.16718 14 1 4.61454

125 125 9261 12 1 4.64205 19 1 4.64386

343 125 24389 13 1 4.68298 19 1 4.68597

Table 3.5: Iteration number of the Dirichlet preconditioner for non-redundant La-
grange multipliers with jumps and without jumps.

As seen in Table 3.5 the condition number is nearly constant for fixed H/h and the condition
number estimate is valid for this example. Since this example includes all the relevant ingredients
for our nwfet simulator the condition estimate holds for our problem.

3.5 Summary

The feti method of Farhat and Roux has been extended to the nonlinear drift-diffusion-Poisson
system including discontinuities, i.e., jumps of the solution and its normal derivative at an
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interface. feti algorithms have been presented for the case of two subdomains and for an
arbitrary number of subdomains. In the latter case, the Schur matrix form was presented. A
condition-number estimate was given as well.

Three numerical examples have been presented in order to verify the method. Firstly, a 2d
problem was presented which verified the correct implementation of the interface conditions
numerically. Since the motivation of this work is to use this feti method for the simulation
of nanowire sensors and semiconductor devices in general two 3d exampless were given. The
subdomains modeled the structure of a real sensor device. The correctness of the 3d algorithm
was verified as well.

Since the boundary layer model is chosen, the different physical and geometrical properties of
nwfet devices can be tested for their influence on the sensitivity of the sensor. Simulations for
two different sensors, a dna sensor and a psa sensor, are given in Chapter 4.
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Chapter 4

Simulation Results

The simulations of two different nwfet sensors, a dna sensor and a psa sensor, are
presented in the following. In both examples, the simulator is calibrated to real-world mea-

surements of current-voltage characteristics. In the case of the dna sensor, not all geometric
properties are given and hence the geometric properties as well as physical properties are cal-
ibrated. In the case of the psa sensor the geometric properties are given and hence only two
physical physical properties of the nanowire, namely the mobility of the charge carriers and the
thermal voltage, are adjusted. This is reasonable since the nanowire is not expected to have bulk
properties of silicon (see Section 4.2.2). With these adjustments very good agreement is found.
The boundary layer models used are the mmc algorithm from Section 1.4.2.1 for the surface
charge of dna and the propka algorithm from Section 1.4.2.3 for the surface charge of psa.
After calibration, we show how sensitivity can be improved by changing different geometric or
physical properties of the nwfet sensor.

4.1 DNA Sensor

In this section, we simulate an nwfet-dna sensor and determine optimal points for sensitiv-
ity. To that end, the surface charge density γ and the dipole moment density ζ are computed
by Monte-Carlo simulations as described in Section 1.4.2.1 or more detailed in (Bulyha and
Heitzinger, 2011). A brief recapitulation of the method in Section 1.4.2.1 is given in Section 4.1.1.
The charge concentration, as result from the Monte-Carlo simulations, depends on the surface
potential. Hence we use a look-up table with surface charges and dipole moments for different
surface potentials. Using the look-up tables, the computation is done self consistently by the
loop in Section 4.1.2.
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The simulator is calibrated to measured values in Section 4.1.3 and the operating conditions for
the optimal sensitivity for different sensor properties are found in Section 4.1.4.

4.1.1 The Boundary Layer Model

The critical issue for the modeling of the sensitivity of nwfet sensors is the screening of the
partial charges of the target molecules by the free ions. The biomolecules and their partial
charges are fixed at the bottom of the simulation box containing the electrolyte (see Fig. 1.5).
In the case of dna, the strands are modeled as cylinders that exclude free ions and the partial
charges of the phosphate groups of the backbone are situated on a helix at the cylinder surface.
The biomolecules are arranged in 50 nm high boxes, where the bottom corresponds to the sensor
surface. The free ions are Na+ and Cl−.

x

y

z

Figure 4.1: The simulation domain of a Monte-Carlo simulation. Here it contains
2×2 biomolecules.

The top and the bottom of the simulation boxes are impenetrable walls with given charge den-
sities, which control the desired electric field determined in the self-consistent loop (see below).
Due to the surface charge of silicon oxide in water, the wall at the bottom carries an additional
charge density (−0.2q/nm2 for SiO2).

The immobilized biomolecules at the bottom wall can be, e.g., pna (peptide nucleic acid),
ssdna (single-stranded dna), or dsdna (double-stranded dna) oligomers of arbitrary length.
If there is a single molecule in the simulation box, it is immobilized at the center of the bottom
wall. If the simulation box contains several oligomers, they are arranged in a square grid and
each molecule is centered in its grid cell (see Fig. 4.1).

Finally, the surface-charge density γ and the dipole-moment density ζ are calculated from the
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integrals

γ =
∫
χ(x, y, z)dxyz, (4.1)

ζ =
∫
xχ(x, y, z)dxyz, (4.2)

where the charge concentration χ is obtained in the mmc simulation.

Figure 4.2: Concentration profiles for a 1:1 electrolyte for no molecules, pna, ssdna,
and dsdna on a logarithmic scale as a function of distance from the surface
(Baumgartner et al., 2011a).

Due to the importance of the biofunctionalized surface layer and the screening by free ions, a
numerical example of a mmc simulation is shown here. In this example, nine strands of ssdna,
dsdna, or pna are attached to a silicon-oxide surface by 1 nm long linkers at a distance of
8 nm; a non-functionalized surface is simulated as well. The silicon-oxide surface carries a charge
density of −0.2 q/nm2. The angle of the oligomers with respect to the surface is 45◦, the Na+Cl−

concentration is 0.01 M, the temperature is 300 K, and the applied potential is −250mV. The
resulting concentration profiles are shown in Fig. 4.2.

Based on these concentration profiles, the surface-charge density γ and dipole-moment density ζ
are shown in Fig. 4.3 as a function of the applied voltage varying from −250 mV to 250 mV. It is
noted that the screening of the surface charge by counter ions is about 50% for a nonfunctionalized
surface without an applied voltage, i.e., the oxide charge density ρ = −0.2 q/nm2 effectively
decreases to γ = −0.1 q/nm2.

In a working sensor, probe molecules (p) and probe-target complexes (pt) are always present.
For example, sspna probes can be used to detect ssdna oligomers, and hence there will be
sspna probes and sspna-ssdna complexes. Therefore the surface-charge and dipole-moment
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Figure 4.3: Surface-charge density γ and dipole-moment density ζ as a function of
applied voltage for no molecules and for 10-mers of pna, ssdna, and
dsdna. The angle of the oligomer is α = 45◦ with respect to the surface,
the surface-charge density is ρ = −0.2 q/nm2, the ionic bulk concentration
is 0.01 M, and the applied potentials varies between −250 mV to 250 mV.
The surface-charge and dipole-moment densities are of the same order of
magnitude.

densities include in fact two terms, i.e.,

γ = κγpt + (1 − κ)γp, (4.3)

ζ = κζpt + (1 − κ)ζp, (4.4)

where κ is the binding efficiency. In this thesis, the value κ = 1 is used corresponding to an
optimal binding efficiency. A value of κ ≈ 1 can be obtained experimentally at the probe densities
considered here (Peterson et al., 2001).

4.1.2 The Self-Consistent Loop

We are now able to compute the electrostatic potential V and the charge carriers n and p in a
self-consistent loop. Initial values n0, p0, ζ0, and γ0 are chosen and then the following steps in a
Scharfetter-Gummel type (Scharfetter and Gummel, 1969) iteration scheme are performed.
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1. In iteration k + 1, solve the homogenized boundary value problem

−εSi∆Vk+1 = q(Cdop + pk − nk) in ΩSi,

−εox∆Vk+1 = 0 in Ωox,

−εliq∆Vk+1 = 2ηξVk+1 in Ωliq,

Vk+1(0+) − Vk+1(0−) =
ζk

ε(0+)
on Γ,

εliq∇Vk+1(0+) − εox∇Vk+1(0−) = −γk on Γ,

Vk+1 = VD on ∂ΩD,

∇νVk+1 = 0 on ∂ΩN

to obtain the electrostatic potential Vk+1.

2. Then solve the boundary-value problem

∇ · (Dn∇nk+1 − µnnk+1∇Vk) =
nk+1pk − n2

i

τp(nk+1 + ni) + τn(pk + ni)
in ΩSi,

nk+1 = nD on ∂ΩD,

∇νnk+1 = 0 on ∂ΩN

to obtain the electron concentration nk+1.

3. Then solve the boundary-value problem

∇ · (Dp∇pk+1 + µppk+1∇Vk) =
nk+1pk+1 − n2

i

τp(nk+1 + ni) + τn(pk+1 + ni)
in ΩSi,

pk+1 = pD on ∂ΩD,

∇νpk+1 = 0 on ∂ΩN

to obtain the hole concentration pk+1.

4. Get ζk+1 = ζ(Vk+1) and γk+1 = γ(Vk+1) from a look-up table computed by the Monte-
Carlo simulator.

5. Increase k and go to the first step.

In the fourth step, the surface-charge density and dipole-moment density are computed depending
on the electric surface potential. Since the surface charges are small, the fourth step has only a
small effect on the number of iterations and hence computation time; good convergence behavior
is observed.

Furthermore, solving the boundary-value problems is very fast if the grid points near the inter-
face Γ are numbered suitably (Baumgartner and Heitzinger, 2012a).

4.1.3 Simulator Calibration

Now we are able to compare simulated and measured current-voltage characteristics in order
to verify the model. We investigate a 500 nm long n-doped nanowire in the simulation domain
shown in Fig. 1.6.
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Figure 4.4: Current-voltage characteristics for an n-doped non-functionalized
nanowire field-effect biosensor. The solid line corresponds to a back-gate
voltage of 5V, the dashed line to 4V, and the dotted line to 3V. The
crosses are the corresponding measurements for a back-gate voltage of
5V, the triangles for 4V, and the circles for 3V (Li et al., 2006).

The current-voltage characteristics of this device with a non-functionalized surface is shown in
Fig. 4.4 for various back-gate voltages and they are compared with the current-voltage char-
acteristics from experiments (Li et al., 2006). Very good agreement is found although not all
geometric parameters are known.

4.1.4 Optimization of Device Parameters

As mentioned above, the Monte-Carlo simulations yield the ionic concentration in the biofunc-
tionalized surface layer. A change from a non-functionalized surface to a surface with dna strands
decreases the current due to the negative partial charges of dna strands. This is the behavior
known from nanowire field-effect transistors (cf. Section 1.2 or (Cui et al., 2001; Patolsky et al.,
2007)). The current change is in this section defined as

∆ISD =
In − If
If

, (4.5)

where In and If are the currents of the non-functionalized and functionalized device, respectively.

The value of ∆ISD will be used to measure sensitivity in the following. Our aim is to find optimal
design parameters by varying device parameters. To that end, the lengths and thicknesses of the
nanowire, the gate and source voltages, and the doping concentrations are varied.
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Figure 4.5: Top left: The current change ∆ISD is shown as a function of the length
of the nanowire for three situations: the change from non-functionalized
to dsdna (top), the change from non-functionalized to ssdna (middle),
and the change from ssdna to dsdna (bottom). The back-gate voltages
are 4V and 5V and the source/drain voltage is 0.5 V.
Top right: The current change ∆ISD is shown as a function of the gate
voltage with the scale on the left-hand side for the same three situations
as in Fig. 4.5. The source/drain current ISDG (black, solid line) is shown
as a function of the gate voltage as well with the scale on the right-hand
side. The threshold voltage is indicated by a vertical black line. The
source/drain voltage is 0.1 V.
Bottom left: Current change ∆ISD for gate voltages of 4V and 5V for the
three situations non-functionalized/dsdna, non-functionalized/ssdna,
and ssdna/dsdna as a function of the nanowire thickness. The
source/drain voltage is 0.1 V.
Bottom right: Current change from non-functionalized surface to
dsdna for gate voltages of 4V and 5V at a source/drain voltage of 0.5 V
as a function of the doping concentration.
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Simulations show that increasing the length of the nanowire improves sensitivity due to the
reduced influence of the source and drain contacts and the larger influence of the partial charges
in the surface layer (see top left of Fig. 4.5). This is comparable to a larger gate structure on
top of a fet.

Furthermore it is found that increasing the back-gate voltage results in an increase of sensitivity
(see top right of Fig. 4.5). However, when increasing the back-gate voltage above the optimal
point, the back-gate voltage dominates the potential (see Fig. 4.6), i.e., the increase of the electric
potential is larger away from the functionalized surface and hence the electrons away from the
surface are more important than the electrons closer to the surface, which results in a decrease
of sensitivity (see top right of Fig. 4.5). Note that in the top right of Fig. 4.5 the source/drain
voltage differs from the top left. Below the optimal point, i.e., below a back-gate voltage of 3V,
the sensitivity decays slightly. Additionally, the transfer characteristic shows that the optimal
sensitivity is in the sub-threshold regime. Consequently a careful manipulation of the back-gate
voltage is recommended.

Figure 4.6: Electric potential and electron density in a cross section of the silicon
nanowire at z = 250 nm. The figures at the top correspond to a back-gate
voltage of 4V and the figures at the bottom correspond to a back-gate
voltage of 5V. The source/drain voltage is 0.1 V.

A similar effect has been found regarding the nanowire thickness. Here an optimal thickness
of 40 nm has been obtained and the sensitivity shows a steep decline for thicker semiconductor
layers (see bottom left of Fig. 4.5). Again the back-gate voltage plays an important role. The
optimal point itself results from the influence of the partial charges of the target molecules which
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can control the whole volume of the nanowire at a certain thickness and whose influence decreases
when a certain limit is exceeded (cf. (Gao et al., 2010)).

Another parameter affecting the sensitivity is the doping concentration (see bottom right of
Fig. 4.5). Here the doping is varied between 1016cm−3 and 1017cm−3 and the sensitivity ∆ISD

shows an arch structure where the optimal point changes with the back-gate voltage. It is
noteworthy that the sensitivity remains rather flat below the optimal doping concentration,
whereas for doping concentrations above the optimal point a steep decay is observed.

4.2 PSA Sensor

The advantage of the pde model described in this thesis is that only the boundary layer model
needs to be changed when simulating a different sensor. In the case of a psa sensor we use the
very fast propka algorithm explained in Section 1.4.2.3. This simulator is online available and
the computation of the charge lasts only seconds. The results of the propka simulator is shown
in Section 4.2.1. Here the screening of the psa charges is not inherently included, as it was for
the mmc algorithm. Hence we show a simple screening model which has been already used for
the simulation of nwfet devices. Then, after calibration in Section 4.2.2 the sensitivity is tested
for different parameters in Section 4.2.2.

4.2.1 Boundary Layer Model

Since the structure of proteins is more difficult to simulate than the structure of dna, we use a
probabilistic method, the propka algorithm explained in Section 1.4.2.3, instead of Monte-Carlo
calculations. With this method we can use the structure from psa from the protein database
(see also the left-hand side of Fig. 4.7) to get the protein charge from propka within seconds.
The psa charge obtained by propka is depicted in the right-hand side of Fig. 4.7.

For calibration we compare with measurements at a ph value of 7.4 and hence we obtain a
point charge of −8 q from the propka simulator. Using a footprint of 10 nm this results in an
unscreened surface charge of −0.8 q · nm−2.

4.2.1.1 Screening

The liquid surrounding the nanowire is a ionic solution. From ionic solutions it is known that
the effective charge of the biomolecules is lowered due to Debye screening (Stern et al., 2007b;
Vacic et al., 2011). This screening is exponential, i.e., it follows exp(−x/λD) where

λD =
1√

4πlB
∑

i ρiz2
i

, (4.6)

lB = 0.7 nm is the Bjerrum length while ρi and zi are the density and valence of the ion species
i.

When we simulate the protein as a point charge, i.e., the charge of the protein is homogeneously
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Figure 4.7: Left: Structure of protein 1ezx from the protein database
(http://www.pdb.org/pdb/explore/explore.do?pdbId=1ezx) with pri-
mary citation (Huntington et al., 2000). Right: Charge of protein 1ezx

calculated by propka (http://propka.ki.ku.dk/) (see Section 1.4.2.3).

distributed, with distance l away from the nanowire surface, we can use the sensitivity factor

Γl ≈ 2
R

R+ l

(
1 +

√
R

R+ l
exp

(
l

λD

))−1

(4.7)

for a radial nanowire with radius R (Sørensen et al., 2007). This model has been used for the
simulation of nwfet sensors in (De Vico et al., 2011). In our case of a rectangular nanowire we
get the factor

Γl ≈ 2

(
1 + exp

(
l

λD

))−1

(4.8)

for the Debye screening. For antibody-antigen sensors this value is ≈ 50% for C-termini func-
tionalized antibodies and ≈ 65% using N-terminal functionalization (Vacic et al., 2011).

4.2.2 Simulator Calibration

The basic geometry for the simulations in Section 4.2.2 and in Section 4.2.3, unless otherwise
stated, is depicted in Fig. 4.8. The length of the nanowire is 1000 nm, the doping concentration
is −1016 cm−3 and the source voltage is VS = −0.2.

Since the geometry is fixed, we can calibrate our simulator to measured current-voltage char-
acteristics by only changing the electron and hole mobilities and the thermal voltage. This is
physically justified because small silicon nanowires are not expected to have bulk properties, e.g.,
due to surface-roughness effects.
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Figure 4.8: Schematic diagram of the nwfet-psa sensor.

Again we use current-voltage characteristics as the basis for the calibration of our simulator. In
the case of the dna sensor not all geometries were known. Due to the many adjustable parameters
it was difficult to find the right physical properties of the dna sensor. Now, for the psa sensor
nearly all geometries are known; only the thickness of the silicon can vary between 40 nm and
50 nm and the thickness of the silicon dioxide can vary between 8 nm and 20 nm. Once we have
fixed the geometry two physical parameters are left to adjust: the mobility (only the mobility
of the majority charge carrier is important) and the thermal voltage. The adjusted parameters
used in Fig. 4.9 are given in Table 4.1. The best agreement was found for a nwfet device with

Top Oxide Nanowire Thickness Hole Mobility Thermal Voltage

Top Left 8 nm 50 nm 100 cm−2V−1s−1 0.021 V

Top Right 14 nm 50 nm 50 cm−2V−1s−1 0.023 V

Bottom Left 8 nm 40 nm 220 cm−2V−1s−1 0.021 V

Bottom Right 14 nm 40 nm 50 cm−2V−1s−1 0.023 V

Table 4.1: Parameters used in Fig. 4.9.

8 nm top oxide and a 50 nm thick nanowire as depicted in the top left of Fig. 4.9. Here we used a
hole mobility of 100 cm−2V−1s−1 and a thermal voltage of 0.021 V. We compared the simulation
results to measured current-voltage characteristics for a sensor with a 60 nm and 100 nm wide
nanowire. The other simulations are calibrated to the current-voltage characteristic of the device
with a 100 nm nanowire but the agreement of the corresponding current-voltage characteristic
of a device with the same physical properties with a 60 nm wide nanowire is comparatively bad.
We can further validate our calibration by comparison of the sensitivity of such devices with
simulations which is shown in Section 4.2.3.
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Figure 4.9: Top left: Current-Voltage characteristic for an nwfet device with a
60 nm and a 100 nm wide nanowire with 8 nm top oxide and 50 nm high
silicon. The hole mobility is 100 cm2V−1s−1 and the thermal voltage is
0.021 V.
Top right: Current-Voltage characteristic for an nwfet device with a
60 nm and a 100 nm wide nanowire with 14 nm top oxide and 50 nm high
silicon. The hole mobility is 50 cm2V−1s−1 and the thermal voltage is
0.023 V.
Bottom left: Current-Voltage characteristic for an nwfet device with a
60 nm and a 100 nm wide nanowire with 8 nm top oxide and 40 nm high
silicon. The hole mobility is 220 cm2V−1s−1 and the thermal voltage is
0.021 V.
Bottom right: Current-Voltage characteristic for an nwfet device with
a 60 nm and a 100 nm wide nanowire with 14 nm top oxide and 40 nm
high silicon. The hole mobility is 50 cm2V−1s−1 and the thermal voltage
is 0.023 V.
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4.2.3 Sensitivity

If our model is correct, we should have the same increase or decrease of sensitivity when changing
device properties. Now we look at the sensitivity of the devices simulated in Fig. 4.9 with the
parameters of Table 4.1 for different surface charges. As expectd, the best result for sensitivity
is achieved with the best result of the current-voltage characteristics. The devices with 14 nm
oxide on top have the same decrease when changing from 60 nm wide nanowires to 100 nm wide
nanowires, but then the surface charge is higher than the unscreened surface charge of psa.
Hence this cannot be a realistic oxide thickness. For the devices with 8 nm top oxide and a
40 nm thick nanowire the decrease is not realistic and the value for 60 nm wide nanowires is too
high.

Hence we will restrict ourselves to the device with 8 nm top oxide, 50 nm thickness of the
nanowire, a doping concentration of 100 cm−2V−1s−1, and a thermal voltage of 0.021 V for
which we have the same decrease and correct values for sensitivity for a surface charge of
γ = −0.76 nm−2. In the following we observe how the sensitivity is influenced by different
physical and geometrical properties.

As aforementioned, the chosen nanowire devices are 60 nm and 100 nm wide and 50 nm high.
So one can ask if we can improve the sensitivity by changing the thickness of the nanowire.
We cannot compare this to the results depicted in the figures at the bottom of Fig. 4.10 since
there a different mobility and a different thermal voltage are used. Changing the thickness of
the nanowire shows that the sensitivity depends on both, the thickness and the wideness as
seen in the top left of Fig. 4.11. Both nanowire devices show that sensitivity decreases when
the thickness becomes too small. Furthermore the sensitivity is improved when we use thicker
nanowires except the case in which the gate voltage is too low. But a low gate voltage does
not necessarily decrease the sensitivity. In the case of narrow nanowires, we obtain that a low
gate voltage increases the sensitivity (see top right of Fig. 4.11). The charge of the psa oligomer
is assumed to be homogeneously distributed and of course devices with 20 nm wide nanowires
would have some drawbacks, e.g., problems with the functionalization.

The nanowire length seems to have only a minor influence on the sensitivity. However a small
increase is obtained when changing to longer nanowires as depicted in the bottom left of Fig. 4.11.
The doping concentration affects the sensitivity only when the doping concentration is chosen to
be high (see bottom right of Fig. 4.11). Here we see again a correlation between the decrease of
the sensitivity and the magnitude of the gate voltage.

In Fig. 4.12, it becomes obvious that the crucial influence on sensitivity is the gate voltage.
Whenever a property is changed such that the gate voltage has more control over the nanowire
than the surface charge, the sensitivity decreases. Hence we have decreasing sensitivity for a
thicker top oxide and a thinner bulk oxide (top of Fig. 4.12) especially in the case of high
negative gate voltage (see also bottom left of Fig. 4.12). However, not every applied voltage to
the device turns out to decrease the sensitivity. In the case of the source voltage the sensitivity
seems to remain at a certain value as depicted at the bottom right of Fig. 4.12.
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Figure 4.10: All subfigures: The sensitivity is shown for 60 nm, 80 nm, and
100 nm wide nanowires with surface charge γ = −0.4 q · nm−2, γ =
−0.6 q · nm−2, and γ = −0.8 q · nm−2. Measured values from an exper-
iment are shown as well.
Top left: Sensitivity of a sensor with the same configuration used in the
top left of Fig. 4.9.
Top right: Sensitivity of a sensor with the same configuration used in
the top right of Fig. 4.9.
Bottom left: Sensitivity of a sensor with the same configuration used in
the bottom left of Fig. 4.9.
Bottom right: Sensitivity of a sensor with the same configuration used
in the bottom right of Fig. 4.9.
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Figure 4.11: Top left: Sensitivity as a function of nanowire thickness for a 60 nm and
100 nm wide nanowire and gate voltages VG = −1V, VG = −2 V, and
VG = −3V.
Top right: Sensitivity as a function of nanowire width for a sensor with
gate voltages of VG = −1V, VG = −2 V, and VG = −3 V.
Bottom left: Sensitivity as a function of nanowire length for a 60 nm
and 100 nm wide nanowire and gate voltages VG = −1 V, VG = −2 V,
and VG = −3V.
Bottom right: Sensitivity as a function of doping concentration for a
60 nm and 100 nm wide nanowire and gate voltages VG = −1 V, VG =
−2V, and VG = −3V.

71



CHAPTER 4. SIMULATION RESULTS 4.2. PSA Sensor

5 10 15 20
25

30

35

40

45

50

55

60

Top Oxide @nmD

S
en

si
tiv

ity
@%
D

VG=-3V
VG=-2V
VG=-1V

100nm wide
60nm wide

100 110 120 130 140 150 160
30

35

40

45

50

55

60

Bulk Oxide @nmD

S
en

si
tiv

ity
@%
D

VG=-3V
VG=-2V
VG=-1V

100nm wide
60nm wide

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0

30

35

40

45

Gate Voltage VG @VD

S
en

si
tiv

ity

100nm wide
60nm wide

0.1 0.2 0.3 0.4 0.5
30

35

40

45

50

55

Drain-Source Voltage V DS @VD

S
en

si
tiv

ity
@%
D

VG=-3V
VG=-2V
VG=-1V

100nm wide
60nm wide

Figure 4.12: Top left: Sensitivity as a function of top oxide for a 60 nm and 100 nm
wide nanowire and gate voltages VG = −1V, VG = −2V, and VG =
−3V.
Top right: Sensitivity as a function of bulk oxide for a 60 nm and 100 nm
wide nanowire and gate voltages VG = −1V, VG = −2V, and VG =
−3V.
Bottom left: Sensitivity as a function of gate voltage for a 60 nm and
100 nm wide nanowire.
Bottom right: Sensitivity as a function of drain-source voltage for a
60 nm and 100 nm wide nanowire and gate voltages VG = −1 V, VG =
−2V, and VG = −3V.
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4.3 Summary

In summary, the self-consistent 3d pde model can reproduce experimental current-voltage char-
acteristics very well. The charge concentration in the surface layer which contains the receptor
and target molecules is calculated by a Monte-Carlo algorithm for the dna sensor and by the
propka algorithm for the psa sensor. A precise theoretical treatment of this surface layer is
important, since the free ions in the liquid screen the partial charges of the target molecules
in the surface layer. The screening is inherently included in the mmc algorithm and a simple
screening model is used for the propka simulator. The model contains no fitting parameter.

We have also performed simulations in order to investigate different device designs regarding
maximum sensitivity. Parameters such as the length and thickness of the nanowire transducer,
the back-gate voltage, and the doping concentration were investigated for different states of the
dna sensor (non-functionalized, ssdna, and dsdna).

Additional informations from experiments are given for the psa sensor. Again, physical and
design properties are studied on their influence on sensitivity.

Optimal device parameters could be identified in all cases. In the simulations of both devices the
sensitivity depends strongly on the backgate voltage. The geometry is influencing the sensitivity
by the width and the height of the nanowire while the length plays only a minor role.
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Chapter 5

Conclusion

The aim of this thesis was to describe nwfet sensors by a system of partial differential
equations and to develop a 3d parallel simulation code. The system consists of the drift-

diffusion-Poisson system, a Poisson-Boltzmann model, and a homogenization method leading
to discontinuities (jump conditions) at the sensor surface. These jump conditions describe the
surface charge and the dipole moment at the nanowire surface. Hence we can use different
boundary layer models for the molecules attached at the surface and the screening from ions
in the aqueous solution. Three models are recommended, namely Monte-Carlo simulations,
Poisson-Boltzmann calculations, and empirically determined computations.

We have proved that under reasonable assumptions on the jump conditions a solution for our
system describing nwfet sensors exists and is locally unique around thermal equilibrium. The
proof is based on Schauder fixed-point theorem and the inverse function theorem.

Based on these results we started to discretize the system of pdes and found that parallelization
with the feti method is the best way to include the jump conditions of the homogenization
method. The feti algorithm has been derived and examples for the correctness of it have
been demonstrated. This algorithm is applicable to all semiconducting devices described by the
drift-diffusion-Poisson system.

Finally we simulated real devices where we adjusted, without fitting parameters, our model to
measured current-voltage characteristics. To investigate the best sensitivity of these devices we
used Monte-Carlo simulations and the propka algorithm determining the surface charge and
the dipole moment which in turn change the current through the device.
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Summarized, we fully investigated a new 3d pde model for nanowire field-effect biosensors re-
garding analytical and numerical questions. Furthermore we developed the simulation capability
to achieve quantitative understanding of the sensing mechanism of nwfet devices including all
necessary geometric and physical properties.
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Appendix A

Sobolev Spaces

In the following we give the definitions of the Lebesgue spaces Lp and of the Sobolev spaces Hk.
The domain Ω denotes a subset of R

d. We refer to (Adams, 1975; Grisvard, 1985; Kufner et al.,
1977) for details.

Definition A.1 (Lp spaces). The Lp spaces are defined as

Lp(Ω) :=



f : Ω → R : f Lebesgue measurable,

∫

Ω

|f |p dx <∞





with norm

‖f‖Lp :=



∫

Ω

|f |p dx




1/p

and the L∞ space is defined as

L∞(Ω) :=
{
f : Ω → R : f Lebesgue measurable, ∃ null set N : f |Ω\N is bounded

}

with norm

‖f‖L∞ := inf
null sets N

sup
x∈Ω\N

|f(x)|.

The Lp spaces are then the sets of equivalence classes Lp := Lp/N where N is the kernel regrading
‖ · ‖Lp .
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By using a mulit-index α with α = (α1, . . . , αd) and |α| =
∑d

i=1 αi the partial differentiation of
order |α| is defined as

Dαu =
∂|α|u

∂xα1

1 · · · ∂xαd
d

. (A.1)

Definition A.2 (Weak derivative). Let α be a mulit-index and u ∈ L2(Ω). Then g ∈ L2(Ω) is
called the weak derivative of u if

∫

Ω

gφ dx = (−1)|α|
∫

Ω

uDαφ dx, ∀φ ∈ D(Ω)

where

D(Ω) = {φ ∈ C∞(Ω) : supp(φ) ⊂ Ω is compact}

is the space of test functions. The weak derivative g is called Dαu in the following.

With the weak derivative we can now define the Sobolev spaces.

Definition A.3 (Sobolev spaces). The space of k-times weakly differentiable functions whose
weak derivatives are Lebesgue p-integrable are the Sobolev spaces

W k,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) for 0 ≤ |α| ≤ k}

for 1 ≤ p ≤ ∞. The corresponding norms are

‖u‖W k,p(Ω) =




∑

0≤|α|≤k

‖Dαu‖p
Lp(Ω)




1/p

, for 1 ≤ p <∞ and

‖u‖W k,∞(Ω) = max
0≤|α|≤k

ess sup
x∈Ω

|Dαu|.

In the case of p = 2 we define Hk(Ω) := W k,2(Ω).

Until now, k in W k,p has been always an integer. We can also define the spaces W s,p where s is
any positive real number.

Definition A.4 (Sobolev spaces of fractional order). The Sobolev space W s,p, where s is any
positive, non-integer real number written as s = k+ σ where k is a positive integer, is defined as

W s,p(Ω) =



u ∈W k,p(Ω) :

∫

Rd

∫

Rd

|Dαu(x) −Dαu(y)|p

|x− y|d+σp
dx dy <∞ for α = k





with norm

‖u‖W s,p(Ω) = (‖u‖p
W k,p(Ω)

+
∑

α=k

∫

Rd

∫

Rd

|Dαu(x) −Dαu(y)|p

|x− y|d+σp
dx dy)1/p.

78



Appendix B

Results from Functional Analysis

For completeness, we state the two Schauder-type fixed-point theorems (see, e.g., (Gilbarg and
Trudinger, 1977)), a compactness theorem used in Section 2.3, and the implicit-function theorem
for Banach spaces used in Section 2.5 here.

Theorem B.1 (Leray-Schauder fixed-point theorem). Let T be a compact mapping of a Banach
space B into itself, and suppose there exists a constant M such that ‖x‖B ≤ M holds for all
x ∈ B and σ ∈ [0, 1] satisfying x = σT (x). Then T has a fixed point.

Theorem B.2 (Schauder fixed-point theorem). Suppose X is a Banach space and K ⊂ X is
a convex and closed subset of X. Suppose further that T : K → K is a continuous map whose
image T (K) is precompact. Then T has a fixed point.

Theorem B.3 (Rellich-Kondrachov compactness theorem). Assume U is a bounded open subset
of R

d and ∂U is C1. Suppose 1 ≤ p < d. Then W 1,p(U) is compactly embedded in Lq(U) for
each 1 ≤ q < (pd)/(d − p).

Theorem B.4 (Implicit-function theorem for Banach spaces). Let X, Y , and Z be Banach
spaces. Let the function f : X×Y → Z be continuously Fréchet differentiable. If (x0, y0) ∈ X×Y ,
f(x0, y0) = 0, and the mapping y 7→ Dyf(x0, y0)(0, y) is a Banach space isomorphism from Y
into Z, then there exist neighborhoods U of x0 and V of y0 and a Fréchet differentiable function
g : U → V such that f(x, g(x)) = 0 and f(x, y) = 0 hold if and only if y = g(x) for all
(x, y) ∈ U × V .
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