
ParticleScattering: Solving and optimizing
multiple-scattering problems in Julia
Boaz Blankrot1 and Clemens Heitzinger1

1 Vienna University of Technology, A-1040 Vienna, AustriaDOI: 10.21105/joss.00691

Software
• Review
• Repository
• Archive

Submitted: 16 April 2018
Published: 14 May 2018

Licence
Authors of papers retain copyright
and release the work under a Cre-
ative Commons Attribution 4.0 In-
ternational License (CC-BY).

Summary

ParticleScattering is a Julia (Bezanson et al. 2017) package for computing the elec-
tromagnetic fields scattered by a large number of two-dimensional particles, as well as
optimizing particle parameters for various applications. Such problems naturally arise in
the design and analysis of metamaterials, including photonic crystals (Jahani and Jacob
2016). Unlike most solvers for these problems, ours does not require a periodic structure
and is scalable to a large number of particles. In particular, this software is designed for
scattering problems involving TM plane waves impinging on a collection of homogeneous
dielectric particles with arbitrary smooth shapes. Our code performs especially well when
the number of particles is substantially larger than the number of distinct shapes, where
particles are considered indistinct if they are identical up to rotation.

Solver overview

Given a scattering problem consisting of a collection of penetrable particles in a homo-
geneous medium, the software performs the following steps to calculate the total electric
field:

• For each distinct non-circular shape, a single- and double-layer potential formulation
is constructed.

• The potential formulations are transformed to a multipole basis of Hankel functions,
reducing the degrees of freedom by at least an order of magnitude.

• Analytical multipole basis is computed for circular particles.
• A multiple-scattering system of equations is constructed, and then solved with the

Fast Multipole Method.
• Electric field is computed at any point of interest.

In addition, ParticleScattering can plot near- and far-field results using the popular frame-
work PyPlot, create publication-level plots with PGFPlots integration, and compute min-
imum parameters for a desired error level.

Optimization

ParticleScattering is especially targeted at users who wish to design metamaterials belong-
ing to the class described above. While the large number of variables such metamaterials
contain allows for a variety of devices that meet different objectives, it also creates a large
search space for choosing them. Therefore, a fast and automated approach can be benefi-
cial for both inventing new designs and improving existing ones. As the results of many
ParticleScattering computations can be recycled between optimization iterations, a large

Blankrot et al., (2018). ParticleScattering: Solving and optimizing multiple-scattering problems in Julia. Journal of Open Source Software, 3(25),
691. https://doi.org/10.21105/joss.00691

1

https://doi.org/10.21105/joss.00691
https://github.com/openjournals/joss-reviews/issues/691
https://github.com/bblankrot/ParticleScattering.jl
http://dx.doi.org/10.5281/zenodo.1241368
http://creativecommons.org/licenses/by/4.0/
https://github.com/bblankrot/ParticleScattering.jl
https://github.com/JuliaPy/PyPlot.jl
https://github.com/KristofferC/PGFPlotsX.jl
https://doi.org/10.21105/joss.00691


Figure 1: Scattering problem before optimization, after minimization, and after maximization.

number of parameters can be optimized simultaneously in reasonable time. ParticleScat-
tering performs gradient-based optimization of rotation angle for arbitrarily-shaped parti-
cles, and radius of circular particles, in conjunction with the Optim optimization package
(Mogensen and Riseth 2018), where the objective is to minimize or maximize the electric
field intensity at chosen points. Figure 1 shows an example of angle optimization of 20
particles, where the objective is the electric field intensity at the origin. From left to right,
we see the electric field before optimization, after minimization, and after maximization.
The field intensity at the origin is clearly different in both optimization results, with
minimization decreasing the intensity by 95%, and maximization increasing it by over
700%. The total run time for both optimizations and all necessary precomputations was
35 seconds.
For a detailed description of our approach, including several numerical examples generated
by ParticleScattering, see our recent publication (Blankrot and Heitzinger 2018).

Acknowledgments

This work was supported by the Austrian Science Fund (FWF) through the START
Project Y 660 PDE Models for Nanotechnology.

References

Bezanson, Jeff, Alan Edelman, Stefan Karpinski, and Viral B Shah. 2017. “Julia: A
Fresh Approach to Numerical Computing.” SIAM Review 59 (1). SIAM:65–98. https:
//doi.org/10.1137/141000671.
Blankrot, Boaz, and Clemens Heitzinger. 2018. “Efficient Computational Design and
Optimization of Dielectric Metamaterial Devices.” https://arxiv.org/abs/1804.09489.
Jahani, Saman, and Zubin Jacob. 2016. “All-Dielectric Metamaterials.” Nature Nan-
otechnology 11 (1). Nature Research:23–36. https://doi.org/10.1038/nnano.2015.304.

Blankrot et al., (2018). ParticleScattering: Solving and optimizing multiple-scattering problems in Julia. Journal of Open Source Software, 3(25),
691. https://doi.org/10.21105/joss.00691

2

https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://arxiv.org/abs/1804.09489
https://doi.org/10.1038/nnano.2015.304
https://doi.org/10.21105/joss.00691


Mogensen, Patrick K, and Asbjørn N Riseth. 2018. “Optim: A Mathematical Optimiza-
tion Package for Julia.” Journal of Open Source Software 3 (24). The Open Journal:615.
https://doi.org/10.21105/joss.00615.

Blankrot et al., (2018). ParticleScattering: Solving and optimizing multiple-scattering problems in Julia. Journal of Open Source Software, 3(25),
691. https://doi.org/10.21105/joss.00691

3

https://doi.org/10.21105/joss.00615
https://doi.org/10.21105/joss.00691

	Summary
	Solver overview
	Optimization

	Acknowledgments
	References

