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Abstract. In distributional reinforcement learning, the entire distribution of the return instead of just the
expected return is modeled. The approach with categorical distributions as the approximation
method is well-known in Q-learning, and convergence results have been established in the tabular
case. In this work, speedy Q-learning is extended to categorical distributions, a finite-time analysis
is performed, and probably approximately correct bounds in terms of the Cramér distance are
established. It is shown that also in the distributional case the new update rule yields faster policy
evaluation in comparison to the standard Q-learning one and that the sample complexity is essentially
the same as the one of the value-based algorithmic counterpart. Without the need for more state-
action-reward samples, one gains significantly more information about the return with categorical
distributions. Even though the results do not easily extend to the case of policy control, a slight
modification to the update rule yields promising numerical results.

Key words. reinforcement learning, distributional reinforcement learning, Q-learning, PAC bounds, complexity
analysis
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1. Introduction. Distributional reinforcement learning (DRL) is a subfield of reinforce-
ment learning where the entire return distribution is modeled directly, rather than just the
expected return. Bellemare, Dabney, and Munos [1] introduced a particular distributional
framework based on categorical distributions. Rowland et al. [8] established convergence
results in the tabular case for this approximation method. In 2011, Ghavamzadeh et al. [5] in-
troduced a new variant of Q-learning [11], called speedy Q-learning (SQL), which was subject
to finite-time analysis and achieved impressive experimental results. Finite-time analysis in
terms of probably approximately correct (PAC) bounds was also performed for Q-learning [3].

In this work, motivated by the results of Ghavamzadeh et al. [5] and Rowland et al. [8], the
SQL update rule is applied in the distributional framework, and PAC bounds for the resulting
algorithm are established in terms of the Cramér distance. It is shown that the sample
complexity of this algorithm is essentially the same as in the value-based case. Furthermore,
the accelerated convergence of SQL in terms of the expected return also translates to the
distributional case.

After presenting the theoretical background in section 2, the speedy categorical policy
evaluation (SCPE) algorithm is introduced, and the main theoretical results are stated in
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676 MARKUS BÖCK AND CLEMENS HEITZINGER

section 3. The corresponding proofs are given in section 4. In section 5, the problems of using
the SQL update rule in the control case are discussed. Lastly, in section 6, the theoretical
results in the policy evaluation case are confirmed experimentally, and it is shown that a slight
modification to the update rule recovers the improved convergence in the control case.

2. Background.

2.1. DRL. The reinforcement learning objective is formalised by a Markov decision process
(MDP), i.e., a tuple ⟨X ,A, r, p⟩, where X is a set of states and A is a set of actions. In this
work, we only consider finite MDPs, i.e., |X | <∞ and |A| <∞. Trajectories (Xt, At, Rt) are
obtained through the selection of actions at given states, where the probabilities of state tran-
sitions are defined by the deterministic function p and Rt are defined by the kernel r, where
r(·|x, a, x′) represents the immediate reward when transitioning from state x with action a to
state x′. The Markov property requires that Xt+1 and Rt only depend on the previous state
and action (x, a), i.e.,

P
(
Rt = s,Xt+1 = x′|Xt = x,At = a,Xt−1 = xt−1, . . .

)
= r(s|x, a, x′)p(x′|x, a).

The standard approach to reinforcement learning is to model the expected return, usually
by a state-action value function Q. As the name suggests, the core of DRL is to model the
entire distribution of the return directly.

For (x, a) ∈ X ×A, the return Zπ(x, a) is the sum of discounted rewards along a trajectory
following the policy π starting in state x and taking action a, i.e.,

Zπ(x, a) :=
∞∑
t=0

γtRt,

where X0 = x, A0 = a, Xt+1 ∼ p(·|Xt, At),

At+1 ∼ π(·|Xt+1), Rt ∼ r(·|Xt, At, Xt+1).

The function Zπ mapping state-action pairs to random variables is called the return distribu-
tion function.

The usual state-action value function Qπ can be related to the return distribution function
by observing that

Qπ(x, a) = E [Zπ(x, a)] .

Furthermore, the Bellman equation [2] can be extended to the distributional case as

Zπ(x, a)
D
= R+ γZπ(X ′, A′),(2.1)

where X ′ ∼ p(·|x, a), A′ ∼ π(·|X ′), and R ∼ r(·|x, a,X ′). Here the equal sign indicates that
the random variable on the left-hand side and the one on the right-hand side are identically
distributed.

Let η
(x,a)
π denote the underlying probability distribution of the random variable Zπ(x, a),

giving us a second representation
Zπ(x, a) ∼ η(x,a)π

of return distribution functions in terms of probability measures.D
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Let η : X × A → P(R) be an arbitrary mapping to probability measures on R. For a
given policy π, the distributional Bellman operator T π can be written in terms of cumulative
distribution functions as

FT πη(x,a)(z) = E
[
Fη(X

′,A′)

(
z −R

γ

)]
(2.2)

due to (2.1). If η corresponds to the return distributions of π, i.e., η = ηπ, it follows directly
from the Bellman equation that T πηπ = ηπ.

2.2. Categorical DRL. A challenge of DRL is to find appropriate methods to approximate
the return distributions. Bellemare, Dabney, and Munos [1] proposed to use N fixed atoms
z1, . . . , zN or grid points and defined the set of categorical distributions as

Pz :=

{
N∑
i=1

piδzi

∣∣∣∣∣ pi ≥ 0 ∧
N∑
i=1

pi = 1

}
.

As this set is not closed under the Bellman update, we have to project distributions back onto
this set. Thus the categorical projection operator ΠC was introduced, which is explained in
more detail later.

Rowland et al. [8] connected this operator to the Cramér distance, which is defined between
two return distribution functions as

ℓ2(η, ξ) := sup
(x,a)∈X×A

ℓ2

(
η(x,a), ξ(x,a)

)
= sup

(x,a)∈X×A

(∫
R
|Fη(x,a)(z)− Fξ(x,a)(z)|

2dz

)1/2

.

The key observation was that
ΠCT π : PX×A

z → PX×A
z

is a
√
γ-contraction in ℓ2. With this fact, the convergence of categorical policy evaluation

to ηC , the unique fixed point of ΠCT π, was proven. Note that since we only approximate

distributions, we have ηC ̸= ηπ in general. However, if the return distributions η
(x,a)
π are

supported on [z1, zN ] for all (x, a) ∈ X × A, then increasing the number of atoms yields a
better precision, i.e.,

ℓ
2
2(ηC , ηπ) ≤

1

1− γ
max
1≤i<N

(zi+1 − zi).

For policy evaluation, Rowland et al. [8] considered the update rule given by the weighted
sum

η
(x,a)
k+1 := (1− αk(x, a))η

(x,a)
k + αk(x, a)ΠCT π

k η
(x,a)
k .(2.3)

Here T π
k is the stochastic Bellman operator at time k, which depends on samples x′k ∼ p(·|x, a)

and a′k ∼ π(·|x′k) as well as the reward sample rk ∼ r(·|x, a, x′k) for each (x, a) ∈ X × A. In
terms of cumulative distribution functions, the operator can be written as

FT π
k η(x,a)(z) = F

η
(x′

k
,a′

k
)

(
z − rk

γ

)
,(2.4)

D
ow

nl
oa

de
d 

07
/2

8/
22

 to
 1

28
.1

31
.2

39
.4

5 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

678 MARKUS BÖCK AND CLEMENS HEITZINGER

which is a random variable for all z ∈ R due to (2.1), and we have

FT πη(x,a)(z) = E
[
FT π

k η(x,a)(z)
]
.

In the update rule, αk(x, a) are stepsizes. If η
(x,a)
π is supported on [z1, zN ] and the Robins–

Monro conditions
∑∞

k=0 αk(x, a) = ∞ and
∑∞

k=0 αk(x, a)
2 < ∞ hold for all (x, a) ∈ X × A,

then the Cramér distance to the fixed point of ΠCT π converges to zero almost surely, i.e.,
ℓ2(ηk, ηC)→ 0 [8, Theorem 1].

In practice, the state and action samples usually come in episodes and at time k, ηk is only
updated at the current state-action pair (xk, ak) in the trajectory, and we have αk(x, a) = 0
for all (x, a) ̸= (xk, ak). This method presents the categorical distributional analogue to the
temporal difference (TD) algorithm [9, 10].

For policy control, we change T π
k in (2.3) to the stochastic optimality operator Tk given

by

FTkη(x,a)
(z) = F

η
(x′

k
,a∗

k
)

(
z − rk

γ

)
, a∗k = argmax

a∈A
E
Z∼η

(x′
k
,a)

k

[Z] ,(2.5)

and obtain the categorical distributional equivalent to Q-learning [11, 10]. In this control
case, convergence was only established with the additional assumption that a unique optimal
policy exists [8, Theorem 2].

2.3. SQL and sample complexities. For a sample x, a, r, x′, where x′ ∼ p(·|x, a), the
Q-learning [11] update rule reads

Qk+1(x, a) = (1− αk(x, a))Qk(x, a) + αk(x, a)

(
r + γmax

a∈A
Qk(x

′, a)

)
.(2.6)

Let Q∗ denote the unique optimal value function. Further, assume that the rewards are
bounded by Rmax. For γ < 1 and β := 1

1−γ , let Vmax := βRmax be the maximal attainable
return.

If the updates with (2.6) are performed synchronously, that is, at each time step k all
state-action pairs (x, a) ∈ X ×A are updated, and we have polynomial learning rates

αk =
1

(k + 1)ω
,

1

2
< ω < 1,

then for a finite state-action space n = |X ×A| and for γ < 1, the following finite-time behavior
is known [3]: with probability at least 1− δ, the inequality

∥Q∗ −QT ∥∞ ≤ ϵ(2.7)

holds for

T ≥ C

(β4R2
max log

nβ2Rmax

δϵ

ϵ2

) 1
ω

+

(
β log

βRmax

ϵ

) 1
1−ω


and for some constant C > 0.

D
ow

nl
oa

de
d 

07
/2

8/
22

 to
 1

28
.1

31
.2

39
.4

5 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SPEEDY CATEGORICAL DRL AND COMPLEXITY ANALYSIS 679

Following the reasoning of Even-Dar and Mansour [3] and Ghavamzadeh et al. [5], if γ is
close to 1, β becomes the dominant term and the bound is optimized for ω = 4/5, yielding a
complexity of

O

(β4R2
max log

nβ2Rmax

δϵ

ϵ2

)5/4
 = Õ(β5/ϵ2.5),

since g = Õ(f)⇐⇒ g ≤ C1f logC2(f) for some constants C1, C2 > 0.
The bound in probability and the derived sample complexity also hold for the evaluation

of the value function Qπ for an arbitrary policy π.
Ghavamzadeh et al. [5] introduced a faster variant of Q-learning and named it SQL. They

defined the update rule

Qk+1(x, a) := (1− αk)Qk(x, a) + αkTkQk−1(x, a) + (1− αk)(TkQk(x, a)− TkQk−1(x, a))
(2.8)

based on two previous time steps instead of just one, where

TkQ(x, a) = r + γmax
a∈A

Q(x′, a)

and the learning rate is αk = 1
k+1 . The key difference to Q-learning is that SQL uses a more

aggressive learning rate for the third term. Changing it to αk(TkQk(x, a)−TkQk−1(x, a)) would
be equivalent to Q-learning. The difference seems small; however, it yields faster convergence,
i.e., it can be shown that the inequality

∥Q∗ −QT ∥∞ ≤ 2Vmaxβ

 γ

T
+

√
2 log 2n

δ

T

(2.9)

holds with probability 1− δ, and thus for

T :=
11.66β2V 2

max log
2n
δ

ϵ2
.

we have
∥Q∗ −QT ∥∞ ≤ ϵ.

Again, viewing β as the dominant term, we have a convergence rate of Õ(β4/ϵ2).

3. SCPE. In the following, the update rule of SQL is extended to categorical distributions
in the policy evaluation case. We chose to extend SQL to distributions, rather than standard
Q-learning, because it yields faster convergence. However, it is worth mentioning that the
main idea of the proof is also applicable if one uses (2.3) and (2.6).

In order to translate SQL to categorical distributions, we combine (2.8) and (2.3) for the
evaluation of a fixed policy π into the update formula

η
(x,a)
k+1 = η

(x,a)
k + αk

(
ΠCT π

k η
(x,a)
k−1 − η

(x,a)
k

)
+ (1− αk)

(
ΠCT π

k η
(x,a)
k −ΠCT π

k η
(x,a)
k−1

)
,(3.1)
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680 MARKUS BÖCK AND CLEMENS HEITZINGER

where we start with two initial return distribution functions η0 = η−1 ∈ Pz. We again use the
learning rate αk := 1

k+1 .
It is straightforward to see that (3.1) can be rewritten as the convex combination

η
(x,a)
k+1 =

k

k + 1
η
(x,a)
k +

1

k + 1
Dk[ηk, ηk−1]

(x,a),

where we define the sample update as

Dk[ηk, ηk−1]
(x,a) := kΠCT π

k η
(x,a)
k − (k − 1)ΠCT π

k η
(x,a)
k−1 .

Note that it is ad hoc not clear whether Dk[ηk, ηk−1]
(x,a) is a probability measure. In general,

it is a finite signed measure, and thus we also do not know if the recursively defined η
(x,a)
k are

indeed probability measures. The consideration of this problem makes up a substantial part
of the analysis in section 4.

In the following analysis, we only consider the synchronous version of policy evaluation,
which is shown as pseudocode in Algorithm 3.1. Like the finite-time analysis of SQL and
Q-learning, it can also be extended to the asynchronous case, where we consider a policy with
finite covering time.

In order to formulate the main result below, we collect the following assumptions.

Assumption 1. The state-action space is finite with n := |X×A| elements. The categorical
distribution ηC is the unique fixed point of ΠCT π. The rewards are bounded by Rmax > 0.
The discount factor γ is smaller than 1, and we let β̄ := 1

1−√
γ . Let Vmax := 1

1−γRmax be the

maximal attainable return. For the N fixed atoms we assume z1 = −Vmax and zN = Vmax.
Lastly, the two initial return distribution functions are equal, i.e., η−1 = η0, and the ηk are
obtained by update rule (3.1).

The main result is the following.

Algorithm 3.1. Synchronous SCPE

1: Input: discount factor γ, policy π, number of iterations T , initial guess η0
2: η−1 ← η0
3: for k ∈ 0, . . . , T − 1 do
4: αk ← 1

k+1
5: for (x, a) ∈ X ×A do
6: Sample x′k ∼ p(·|x, a), a′k ∼ π(·|x′k), rk ∼ r(·|x, a, x′k)
7: T π

k η
(x,a)
k ←

∑N
i=1 p

(x′
k,a

′
k)

k,i δrk+γzi # Bellman update

8: T π
k η

(x,a)
k−1 ←

∑N
i=1 p

(x′
k,a

′
k)

k−1,i δrk+γzi # Bellman update
9: # Project onto support z1, . . . zN and calculate difference

10: D(x,a)
k ← kΠCT π

k η
(x,a)
k − (k − 1)ΠCT π

k η
(x,a)
k−1

11: # Update η

12: η
(x,a)
k+1 ← (1− αk)η

(x,a)
k + αkD

(x,a)
k

13: end for
14: end for
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Theorem 3.1. Under Assumption 1, the inequality

ℓ2(ηC , ηT ) ≤
√

2Vmaxβ̄

√γ
T

+

√
2 log 2nN

δ

T


holds with probability at least 1− δ.

We give two corollaries.

Corollary 3.2. Under Assumption 1, for any 0 < ϵ ≤
√
Vmax, the inequality ∥ηC − ηT ∥ℓ2 ≤ ϵ

holds with probability at least 1− δ after

T :=
6.53β̄2Vmax log

2nN
δ

ϵ2

steps of SCPE.

Corollary 3.3. Under Assumption 1, ηT converges to ηC almost surely in ℓ2.

The proofs are deferred to section 4.
Corollary 3.2 leads to following complexity analysis. For each time step k, we sweep over

the entire state-action space. Therefore, after T iterations, 3nT samples are available in total
(reward, next state, and next action in each time step). For γ close to 1, we have β̄ ≈ 2β.
Recall that Vmax = βRmax. Therefore, the sample complexity of SCPE is

Õ(nβ3/ϵ2)

(omitting the logarithmic factor). The number N of atoms only contributes to the logarithmic
factor. Thus, increasing the accuracy of the distribution approximation causes only a small
penalty.

Further, SCPE has essentially the same sample complexity as value-based SQL, which is

Õ(nβ4/ϵ2).

The difference in the power of β stems from the fact that a different metric was used. To see
how the difference in expected values and the Cramér distance relate, consider two measures
µ, ν supported on [z1, zN ]. Then,

|EZµ∼µ [Zµ]− EZν∼ν [Zν ] |

=

∣∣∣∣∫ ∞

0
(1− Fµ(z))− (1− Fν(z))dz −

∫ 0

−∞
Fµ(z)− Fν(z)dz

∣∣∣∣
≤
∫
R
|Fµ(z)− Fν(z)|dz

≤ ∥Fµ − Fν∥2
∥∥1[z1,zN ]

∥∥
2

= (zN − z1)
1/2 ∥Fµ − Fν∥2 =

√
2Vmax ℓ2(µ, ν).

This inequality precisely captures the relationship of inequality (2.9) and Theorem 3.1. As
Vmax = βRmax this also explains the difference in the power of β in the sample complexities.D
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It is quite an interesting result that the sample complexity remains the same when switch-
ing to distributions. One does not need more samples when modeling the entire distribu-
tion. Further, the sample complexity is independent of the number of atoms—the precision
with which the return distributions are modeled. However, the computational complexity
Õ(nNβ3/ϵ2) is higher, of course, and a table with nN elements is needed to store the return
distributions.

4. Analysis. The analysis follows the outline of Ghavamzadeh et al. [5]. Since in DRL the
return distributions depend on state, action, and reward samples, it is imperative to extend
the notion of random variables to random distributions. We define signed random measures
according to Kallenberg [6].

Definition 4.1. Let (Ω,A,P) be a probability space, and define

M :=
{
ν signed measure on (R,B)

∣∣ |ν(B)| <∞ for all bounded B ∈ B
}
,

where B is the Borel-σ-field on R. M is equipped with the σ-field M, which is the smallest
σ-field such that ν 7→ ν(B) is measurable for all B ∈ B.

Measurable functions X : (Ω,A,P) → (M,M), ω 7→ Xω, are called signed random mea-
sures.

The expected measure E [X] ∈M is given by

E [X] (A) := E [X(A)] , where X(A) : Ω→ R, ω 7→ Xω(A).

Further, FX(z) := (ω 7→ FXω(z)) is a random variable for all z ∈ R, and we have

FE[X](z) = E [X] ((−∞, z]) = E [X(−∞, z]] = E [FX(z)] .(4.1)

The set of all signed random measures on E ⊆M is denoted by

P(E) := {f : (Ω,A,P)→ (E,M|E) measurable}.

4.1. Step 1: Stability. As mentioned, we do not know whether η
(x,a)
k are indeed probabil-

ity measures. For that reason, we first define a vector space of finite signed measures, which
allows us to freely perform addition and scalar multiplication.

Definition 4.2. Let L be the set of finite signed Borel measures

L =
{
ν signed measure | ∃Fν : R→ R right continuous,

ν((a, b]) = Fν(b)− Fν(a), |ν(R)| <∞, lim
z→−∞

Fν(z) = 0, | lim
z→∞

Fν(z)| <∞
}
.

L becomes a real vector space by defining

(aµ+ bν)(A) := aµ(A) + bν(A), µ, ν ∈ L, a, b ∈ R, A a measurable set.(4.2)

Equation (4.2) immediately implies that

Faµ+bν = aFµ + bFν .(4.3)
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The categorical distributions are also extended to a subspace of signed measures,

Pz ⊆ Lz :=

{
N∑
i=1

ciδzi

∣∣∣∣∣ ci ∈ R

}
⊆ L.

The categorical projection operator ΠC can be easily applied to elements of L by defining

ΠC : L → Lz, FΠCν(zi) =
1

zi+1 − zi

∫ zi+1

zi

Fν(z)dz, FΠCν(zN ) = lim
z→∞

Fν(z).(4.4)

From (4.4) and (4.3), it is not difficult to see that ΠC : L → Lz is a linear projection.
Furthermore, from characterisation (2.4) and (4.3) it follows that also T π

k : LX×A → LX×A is
a linear mapping.

Recall that P(Pz) in the next lemma is the set of random measures with values in Pz.

Lemma 4.3. For all k ≥ 0, it holds that Dk[ηk, ηk−1]
(x,a) ∈P(Pz) and η

(x,a)
k ∈P(Pz).

Proof. This result is proved by induction. Since we only extended ΠCT π
k to signed mea-

sures, it is still true that when passed a (random) probability measure ΠCT π
k outputs a random

probability measure.
Recall that Dk[ηk, ηk−1] = kΠCT π

k ηk−(k−1)ΠCT π
k ηk−1. As the initial return distributions

are identical, we have

D0[η0, η−1]
(x,a) = ΠCT π

0 η
(x,a)
−1 = ΠCT π

0 η
(x,a)
0 .

D0[ηk, ηk−1]
(x,a) is a random probability measure and an element of P(Pz), since η

(x,a)
0 ∈ Pz.

Of course, η
(x,a)
0 ∈ P(Pz) also (interpreted as a random measure which takes η

(x,a)
0 with

probability 1).

Assume that Dk[ηk, ηk−1]
(x,a) and η

(x,a)
k are random probability measures. To show the

induction step, we can relate Dk+1[ηk+1, ηk] to Dk[ηk, ηk−1] by observing that

Dk+1[ηk+1, ηk]
(x,a)

= (k + 1)ΠCT π
k+1η

(x,a)
k+1 − kΠCT π

k+1η
(x,a)
k

= (k + 1)ΠCT π
k+1

(
k

k + 1
ηk +

1

k + 1
Dk[ηk, ηk−1]

)(x,a)

− kΠCT π
k+1η

(x,a)
k

= kΠCT π
k+1η

(x,a)
k +ΠCT π

k+1Dk[ηk, ηk−1]
(x,a) − kΠCT π

k+1η
(x,a)
k

= ΠCT π
k+1Dk[ηk, ηk−1]

(x,a),

where we used the fact that ΠCT π
k is linear. Thus, Dk+1[ηk+1, ηk]

(x,a) ∈P(Pz) also.
Since

ηk+1 =
k

k + 1
ηk +

1

k + 1
Dk[ηk, ηk−1]

and Pz is a convex set, we have η
(x,a)
k+1 ∈P(Pz).D
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4.2. Step 2: Error martingale. The history of the algorithm at time k can be captured
in the form of the filtration

Fk := σ-field generated by r1, x
′
1, a

′
1, . . . , rk, x

′
k, a

′
k, (x, a) ∈ X ×A.

The expected update is given by

D[ηk, ηk−1]
(x,a) := E

[
Dk[ηk, ηk−1]

(x,a)
∣∣∣Fk−1

]
(2.4)
= kΠCT πη

(x,a)
k − (k − 1)ΠCT πη

(x,a)
k−1 .

The error ϵ
(x,a)
k and the cumulative error to the sample update E

(x,a)
k are given by

ϵ
(x,a)
k := D[ηk, ηk−1]

(x,a) −Dk[ηk, ηk−1]
(x,a),

E
(x,a)
k :=

k∑
j=0

ϵ
(x,a)
j .

Again, we can rewrite the update rule in terms of the expected update and the error as

η
(x,a)
k+1 =

k

k + 1
η
(x,a)
k +

1

k + 1

(
D[ηk, ηk−1]

(x,a) − ϵ
(x,a)
k

)
.(4.5)

It is not immediately clear how one can turn the errors into a martingale. The following
lemma shows that we have to look at the cumulative distribution function at each atom.
Lemma 4.3 and Lemma 4.4 are the core results that allow us to extend the analysis of SQL
[5] to categorical distributions. One can extend the result (2.7) from Even-Dar and Mansour
[3] in a similar fashion.

Lemma 4.4. The inclusions ϵ
(x,a)
k ∈ P(Lz) and E

(x,a)
k ∈ P(Lz) hold for all k ≥ 0. For

each atom zi, it holds that the cumulative distribution functions of the error ϵk evaluated at
zi form a uniformly bounded martingale difference sequence, i.e.,

for all k ≥ 0, E
[
F
ϵ
(x,a)
k

(zi)
∣∣∣Fk−1

]
= 0 ∧

∣∣∣F
ϵ
(x,a)
k

(zi)
∣∣∣ ≤ 1.(4.6)

Proof. By Lemma 4.3, Dk[ηk, ηk−1]
(x,a) ∈P(Pz) holds. It follows from (4.1) that the ex-

pected measure D[ηk, ηk−1]
(x,a) ∈ Pz. This makes ϵ

(x,a)
k the difference of a random probability

measure in P(Pz) and a probability measure in Pz. Therefore it is an element of P(Lz).
Further, E

(x,a)
k is the sum of elements of P(Lz) and thus also in P(Lz).

By definition,

E
[
ϵ
(x,a)
k

∣∣∣Fk−1

]
= E

[
D[ηk, ηk−1]

(x,a) −Dk[ηk, ηk−1]
(x,a)

∣∣∣Fk−1

]
= D[ηk, ηk−1]

(x,a) − E
[
Dk[ηk, ηk−1]

(x,a)
∣∣∣Fk−1

]
= 0 ∈ Lz,

and therefore

E
[
F
ϵ
(x,a)
k

(zi)
∣∣∣Fk−1

]
= F

E
[
ϵ
(x,a)
k

∣∣∣Fk−1

](zi) = 0 ∈ R.

Furthermore, we have that

F
ϵ
(x,a)
k

(zi) = FD[ηk,ηk−1](x,a)
(zi)− FDk[ηk,ηk−1](x,a)

(zi)

is the difference of a real value in [0, 1] and a random variable with values in [0, 1]. This makes
it a random variable which is bounded by 1.D

ow
nl

oa
de

d 
07

/2
8/

22
 to

 1
28

.1
31

.2
39

.4
5 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SPEEDY CATEGORICAL DRL AND COMPLEXITY ANALYSIS 685

4.3. Step 3: Upper bound. The following lemma shows that ηk ≈ ΠCT πηk−1.

Lemma 4.5. For all k ≥ 1, the equality

ηk =
1

k

(
ΠCT πη0 + (k − 1)ΠCT πηk−1 − Ek−1

)
holds.

Proof. The equation is proved by induction. The result holds for k = 1, since

η1 = D[η0, η−1]− ϵ0 = ΠCT πη−1 − ϵ0 = ΠCT πη0 − E0.

Assume that the equation holds for k ≥ 1. The definitions of D[ηk, ηk−1] and Ek imply

ηk+1

=
k

k + 1
ηk +

1

k + 1
(D[ηk, ηk−1]− ϵk)

=
k

k + 1
ηk +

1

k + 1
(kΠCT πηk − (k − 1)ΠCT πηk−1 − ϵk)

=
k

k + 1

(
1

k
(ΠCT πη0 + (k − 1)ΠCT πηk−1 − Ek−1)

)
+

1

k + 1
(kΠCT πηk − (k − 1)ΠCT πηk−1 − ϵk)

=
1

k + 1
(ΠCT πη0 + kΠCT πηk − Ek−1 − ϵk) =

1

k + 1
(ΠCT πη0 + kΠCT πηk − Ek),

which concludes the proof.

As Lz is a vector space, it is more convenient to work with norms instead of metrics. For
that matter, we define

∥ν∥ℓ2 :=

(
N−1∑
i=1

(zi+1 − zi)Fν(zi)
2 + Fν(zN )2

)1/2

(4.7)

for all ν ∈ Lz. It is not difficult to see that ∥.∥ℓ2 is a norm on Lz and induces the metric ℓ2
on Pz. By taking the supremum over all state-action pairs, this property extends to ℓ2.

Further we define the norm

∥ν∥ℓ∞ := sup
(x,a)∈X×A

∥ν∥ℓ∞ := sup
(x,a)∈X×A

max
1≤i≤N

|Fν(zi)|

for all ν ∈ Lz. The inequalities

ℓ2(µ, ν) = ∥µ− ν∥ℓ2 ≤
√
2Vmax ∥µ− ν∥ℓ∞ ≤

√
2Vmax(4.8)

hold for all µ and ν ∈ Pz. Lastly, since ϵ(x,a)k is the difference of a random probability measure
and a probability measure in Pz (see proof of Lemma 4.4), F

ϵ
(x,a)
k

(zN ) = 0 holds, and thus

F
E

(x,a)
k

(zN ) = 0 also. The inequality

∥Ek∥ℓ2 ≤
√
2Vmax ∥Ek∥ℓ∞(4.9)

follows from (4.7).D
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Lemma 4.6. For all k ≥ 1, the inequalities

∥ηC − ηk∥ℓ2 ≤
√
γβ̄

k

√
2Vmax +

1

k

k∑
j=1

√
γk−j ∥Ej−1∥ℓ2

hold.

Proof. Again, this is proved by induction. We use the fact that ΠCT π is a
√
γ-contraction

in ℓ2, substitute the equality from Lemma 4.5, and apply the norm inequality (4.8).
For k = 1, the inequality holds as

∥ηC − η1∥ℓ2 = ∥ΠCT πηC −ΠCT πη0 + E0∥ℓ2
≤ √γ ∥ηC − η0∥ℓ2 + ∥E0∥ℓ2
≤ √γ

√
2Vmax + ∥E0∥ℓ2

≤ √γβ̄
√
2Vmax + ∥E0∥ℓ2 .

Assume that the equation holds for k ≥ 1. It also holds for k + 1, since

∥ηC − ηk+1∥ℓ2

=

∥∥∥∥ΠCT πηC −
1

k + 1
(ΠCT πη0 + kΠCT πηk − Ek)

∥∥∥∥
ℓ2

=

∥∥∥∥ 1

k + 1
(ΠCT πηC −ΠCT πη0) +

k

k + 1
(ΠCT πηC −ΠCT πηk) +

1

k + 1
Ek

∥∥∥∥
ℓ2

≤
√
γ

k + 1
∥ηC − η0∥ℓ2 +

k
√
γ

k + 1
∥ηC − ηk∥ℓ2 +

1

k + 1
∥Ek∥ℓ2

≤
√
γ

k + 1

√
2Vmax +

k
√
γ

k + 1

√γβ̄
k

√
2Vmax +

1

k

k∑
j=1

√
γk−j ∥Ej−1∥ℓ2

+
1

k + 1
∥Ek∥ℓ2

=

√
γ−√

γ2

1−√
γ

k + 1

√
2Vmax +

√
γ2β̄

k + 1

√
2Vmax +

1

k + 1

k+1∑
j=1

√
γk+1−j ∥Ej−1∥ℓ2

=

√
γβ̄

k + 1

√
2Vmax +

1

k + 1

k+1∑
j=1

√
γk+1−j ∥Ej−1∥ℓ2 ,

which concludes the proof.

4.4. Step 4: Bounding the error in probability. Applying the Hoeffding–Azuma inequal-
ity is the crucial step in proving Theorem 3.1.

Lemma 4.7 (maximal Hoeffding–Azuma inequality [5]). Let V := {V1, . . . , VT } be a martin-
gale difference w.r.t. to the filtration Fk (E [Vk|Fk−1] = 0) such that V is uniformly bounded
by L > 0. Then for any ϵ > 0, the inequality

P

(
max
1≤k≤T

∣∣∣∣∣
k∑

i=1

Vi

∣∣∣∣∣ > ϵ

)
≤ 2 exp

(
−ϵ2

2TL2

)
holds.D
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Lemma 4.8. For all ϵ > 0 and all time steps T , the inequality

P
(

max
1≤k≤T

∥Ek−1∥ℓ∞ > ϵ

)
≤ 2nN exp

(
−ϵ2

2T

)
holds.

Proof. Fix (x, a) ∈ X ×A, and define

Ei
k := F

E
(x,a)
k

(zi) =
k∑

j=0

F
ϵ
(x,a)
j

(zi).

By Lemma 4.4, Vj = F
ϵ
(x,a)
j

(zi), j = 0, . . . , T , is a martingale difference sequence w.r.t.

Fj and uniformly bounded by 1. Therefore, we can apply the maximal Hoeffding–Azuma
inequality, which takes the form

P
(

max
1≤k≤T

|Ei
k−1| > ϵ

)
≤ 2 exp

(
−ϵ2

2T

)
.

By taking the union over all atoms, we have

P
(

max
1≤k≤T

∥∥∥E(x,a)
k−1

∥∥∥
ℓ∞

> ϵ

)
= P

(
max
1≤k≤T

max
1≤i≤N

|Ei
k−1| > ϵ

)
= P

(
N⋃
i=1

{
max
1≤k≤T

|Ei
k−1| > ϵ

})

≤ 2N exp

(
−ϵ2

2T

)
.

Similarly, taking the union over all (x, a) ∈ X ×A, we find

P
(

max
1≤k≤T

∥Ek−1∥ℓ∞ > ϵ

)
≤ 2nN exp

(
−ϵ2

2T

)
,

which concludes the proof.

4.5. Step 5: Concluding the Proof of Theorem 3.1.

Proof of Theorem 3.1. By Lemma 4.6 and inequality (4.9), we find

∥ηC − ηT ∥ℓ2 ≤
√
γβ̄

T

√
2Vmax +

1

T

T∑
k=1

√
γT−k ∥Ek−1∥ℓ2

≤
√
γβ̄

T

√
2Vmax +

β̄

T

√
2Vmax max

1≤k≤T
∥Ek−1∥ℓ∞ .

By Lemma 4.8 the inequality

P
(

max
1≤k≤T

∥Ek−1∥ℓ∞ > ϵ

)
≤ 2nN exp

(
−ϵ2

2T

)
=: δ
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holds. Setting δ as above and solving for ϵ yields

P

(
max
1≤k≤T

∥Ek−1∥ℓ∞ ≤
√
2T log

2nN

δ

)
≥ 1− δ.

Therefore, with probability at least 1− δ, we have

ℓ2(ηC , ηT ) = ∥ηC − ηT ∥ℓ2 ≤
√
2Vmaxβ̄

√γ
T

+

√
2 log 2nN

δ

T

 ,

which concludes the proof of the theorem.

Proof of Corollary 3.2. Define

T :=
Cβ̄2Vmax log

2nN
δ

ϵ2
,

t :=
β̄2Vmax log

2nN
δ

ϵ2
≥ 1,

implying
1

t
≤ 1√

t
.

For C = 2 +
√
2 + 2

√
1 +
√
2 ≤ 6.53, it follows that

ℓ2(ηC , ηT ) ≤ ϵ
√
2

 √
γ

C
√

log 2nN
δ

+

√
2

C

 ≤ ϵ
√
2

(
1

C
+

√
2

C

)
≤ ϵ.

Proof of Corollary 3.3. After rearranging, we have

P
(
ℓ2(ηC , ηT ) > ϵ

)
≤ 2nN exp

( √
γϵ

√
2Vmaxβ̄

− γ

2T
− Tϵ2

4Vmaxβ̄2

)
.

As γ
2T ≥ 0, we can omit this term. Since exp(− ϵ2

4Vmaxβ̄2 ) < 1, we find an inequality of the form

P
(
ℓ2(ηC , ηT ) > ϵ

)
≤ CqT , C > 0, 0 < q < 1.

Therefore
∑∞

T=0 P
(
ℓ2(ηC , ηT ) > ϵ

)
< ∞, and by the Borel–Cantelli lemma we have almost

sure convergence.

5. Policy control. Unfortunately, the analysis cannot be easily extended to categorical
distributions in the control case. There are several reasons.

First, the Bellman optimality operator T is not a contraction in ℓ2. Bellemare et al. [1] pro-
vided a counterexample for the Wasserstein distance that also works for the Cramér distance.
Therefore Lemma 4.6 does not hold if T π is replaced by T .D
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Nevertheless, we consider the update rule for the control case,

ηk+1 := ηk + αk(ΠCT
πk−1

k ηk−1 − ηk) + (1− αk)
(
ΠCT πk

k ηk −ΠCT
πk−1

k ηk−1

)
.(5.1)

Here πk denotes the greedy policy w.r.t. the expected values of ηk, and it holds that T πk
k ηk =

Tkηk.
It can be shown that such update rules produce the same expected values as their value-

based algorithmic counterpart [7]. Therefore, we can be sure that Qk(x, a) := E
Z∼η

(x,a)
k

[Z]

converges to the unique optimal value function Q∗, because Qk satisfies (2.8).
If we assume a unique optimal policy π∗, then Qk comes close enough to Q∗ such that

πk = π∗ after some time, and it remains to evaluate the return distributions of π∗ for which
convergence holds. This is the reasoning Rowland et al. [8] used to prove their control theorem.

This approach does not work in the present control case, as the update rule (5.1) does not
necessarily yield probability measures anymore, which can be seen as follows by revisiting the
proof of Lemma 4.3 and calculating

Dk+1[ηk+1, ηk]
(x,a)

= (k + 1)ΠCT
πk+1

k+1 η
(x,a)
k+1 − kΠCT πk

k+1η
(x,a)
k

= (k + 1)ΠCT
πk+1

k+1

(
k

k + 1
ηk +

1

k + 1
Dk[ηk, ηk−1]

)(x,a)

− kΠCT πk
k+1η

(x,a)
k

= kΠCT
πk+1

k+1 η
(x,a)
k +ΠCT

πk+1

k+1 Dk[ηk, ηk−1]
(x,a) − kΠCT πk

k+1η
(x,a)
k

for the control case. But if πk+1 ̸= πk, this is not equal to ΠCT
πk+1

k+1 Dk[ηk, ηk−1]
(x,a) in general,

and hence k
k+1η

(x,a)
k + 1

k+1Dk[ηk, ηk−1]
(x,a) is not necessarily an element of P(Pz), meaning

that we now obtain signed measures in the general case.
In order to fix this problem, one could alter the update rule to become

ηk+1 := ηk + αk(ΠCT πk
k ηk−1 − ηk) + (1− αk)(ΠCT πk

k ηk −ΠCT πk
k ηk−1).(5.2)

With this changed definition, Lemma 4.3 holds again, but we run into different problems. The
first problem is that Lemma 4.5 does not hold any more, as we now have

ηk =
1

k
(ΠCT π0η0 + (k − 1)ΠCT πk−1ηk−1 − Ek−1)

+
1

k

k−1∑
j=0

(j − 1)(ΠCT πj−1ηj−1 −ΠCT πjηj−1).

But if the policies do not change anymore after time step T , the summands are zero for k > T ,
and the second term becomes small as k tends to infinity. Thus, ηk ≈ ΠCT ηk−1 holds again,
which indicates this problem to be minor. However, it leads to the second, more serious,

problem, namely, showing that the expected values of η
(x,a)
k obtained by (5.2) still converge

to the optimal value function Q∗.
Nevertheless, this adjusted update rule shows good experimental results, as discussed in

the next section.D
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6. Experimental results.

6.1. Combination-lock. Consider the combination-lock environment [4]. We have a set of
500 states xi, which are arranged in a chain. In each state, we can choose between two actions
left or right; see Figure 1. Choosing right takes the agent to state xi+1 but yields a reward
of−0.01. Taking left takes the agent to a previous state with probability p(xk|xi, left) ∝ 1

i−k
and yields reward 0. Transitioning to the goal state x500 gives the reward +15.

The action right brings us closer to the goal state but yields a negative reward, whereas
the action left has no immediate negative reward but moves us further from x500. The
rewards are set up such that choosing right in all states is the unique optimal policy. This
makes an interesting control problem, because the long chain has to be essentially solved right
to left. It is also a good benchmark for policy evaluation, because the trajectories are long
and when choosing left there are a lot of possible successor states.

In the experiment, γ = 0.999 and 51 equally spaced atoms or grid points between −10 and
15 were chosen. The SCPE algorithm was run 10 times for 5000 iterations with random initial
distributions (51 random numbers were drawn independently from the uniform distribution
[0, 1] for all (x, a) and then divided by their sum to form probabilities). For comparison, the
TD update rule (2.3) with polynomial learning rates ω ∈ {0.55, 0.8, 1} was tested. The limiting
return distribution ηC was estimated by performing SCPE for 50 000 iterations, denoted by η̂C .

In Figure 2(a), the maximum Cramér distance ℓ2(ηk, η̂C) to the estimated limiting return
distribution function and the maximum absolute distance of the corresponding expected re-
turns, averaged over the 10 runs, are shown. This confirms that indeed about the same sample
complexity holds in both cases.

In Figure 2(b) the clear performance benefit of the speedy update rule (3.1) over the TD
one (2.3) is visible. This plot resembles the results of Ghavamzadeh et al. [4].

The same experiment was performed in the control case. The instability problem of using
the unadjusted update rule (5.1) is illustrated in Figure 2(a). Here, measures with negative
probabilities were indeed produced. Using the adjusted update rule (5.2) yields almost exactly
the same performance improvements as in the policy evaluation case; see Figures 2(b) and
3(b).

6.2. Gridworld. In order to put the adjusted update rule (5.2) to the test, we investigated
the convergence of the expected values to the optimal value function Q∗ in an environment
with multiple optimal policies. We consider an n × n gridworld, where the agent can move
up, down, left, and right. If the agent moves to the cell with coordinates (x, y) ∈ {1, . . . , n}2,
it receives reward ±(|(n− x+ 1)− y|+ 1) with equal probability. Only at the goal cell (n, n)
is the positive reward n always obtained. Figure 4 shows an overview of this environment.

x1 . . . xi−1 xi xi+1 . . . x500
right

left

Figure 1. Combination-lock environment.
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(a) Convergence in Cramér distance vs. convergence
in expectation
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(b) SCPE and polynomial learning rates

Figure 2. Policy evaluation in the combination-lock environment.
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(b) Improved convergence for adjusted algorithm

Figure 3. Q-learning in the combination-lock environment.

±n ±(n− 1) . . . ±3 ±2 ±1

±(n− 1)±(n− 2) . . . ±2 ±1 ±2
...

...
. . .

...
...

...

±2 ±1 . . . ±(n− 3)±(n− 2)±(n− 1)

±1 ±2 . . . ±(n− 2)±(n− 1) n

Figure 4. Gridworld with rewards given at each cell.

The difficulty for the agent is to recognize that wandering around in the environment gives
an expected return of zero and that the optimal strategy is to reach the goal cell as quickly
as possible. This can be done along multiple paths in the grid, and lucky immediate rewards
causes the agent to often change direction.

For this environment we used the same experiment setup as in section 6.1 with n = 25 and
γ = 0.9. While it was possible to compute the expected values simply from the categorical
distributions for update rules (2.3) and (5.2), this was not the case for rule (5.1) in the
gridworld environment. The unadjusted update rule (5.1) led to such instabilities that the
signed probabilities under- and overflowed the 64 bit double value range. For this reason, weD
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(5.2) Speedy adjusted
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(a) Combination-Lock
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Figure 5. Comparison of the adjusted (5.2) versus the unadjusted (5.1) update rule by the maximum
absolute difference to the theoretical optimal value function.

directly used the update rule for Q values (2.8) in this case, where the initial Q-tables were
uniformly sampled from [−n, n].

In Figure 5, the maximum absolute difference to the theoretical optimal value function
Q∗ is shown for both environments. For the combination-lock environment, the expected
values were obtained from the distributional updates of the control experiment of section 2;
for the gridworld, the expected values were obtained as described in the last paragraph. While
the adjusted update rule is slightly better than the unadjusted one in the combination-lock
environment, it lags behind in the gridworld example.

Both the adjusted (5.2) and the unadjusted (5.1) SQL update rules are convincingly faster
than the standard Q-learning update rule in both environments. Further, the greedy policies
changed up to around time step 600 in the combination-lock environment, whereas in the
gridworld they change in over 85% of the steps up to the last iteration. This suggests that the
adjusted update rule is still robust under frequent policy changes, but they may slow down
convergence.

7. Conclusions. In this paper, SQL was extended from the value-based case to categori-
cal distributions. For evaluating a fixed policy, PAC bounds in terms of the Cramér distance
were established. This led to the observation that even though the computational and space
complexity scale linearly in the number of atoms N , the sample complexity scales only loga-
rithmically in N . Thus, switching from standard reinforcement learning to DRL or increasing
the accuracy of the distribution approximation yields only a small penalty in terms of tran-
sition samples needed. An application in two simple environments confirmed the theoretical
results empirically.

The reasons as to why the finite-time analysis could not be easily extended to the case of
policy control were stated. Experiments showed that a slight modification to the update rule
results in the same performance improvements as in the policy evaluation case. An in-depth
analysis of this adjusted updated rule remains for future work.
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