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Abstract. In this work, the multiscale problem of modeling fluctuations in boundary layers
in stochastic elliptic partial differential equations is solved by homogenization. A homogenized
equation for the covariance of the solution of stochastic elliptic PDEs is derived. In addition to
the homogenized equation, a rate for the covariance and variance as the cell size tends to zero is
given. For the homogenized problem, an existence and uniqueness result and further properties are
shown. The multiscale problem stems from the modeling of the electrostatics in nanoscale field-effect
sensors, where the fluctuations arise from random charge concentrations in the cells of a boundary
layer. Finally, numerical results and a numerical verification are presented.
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1. Introduction
A motivation for the present study of stochastic elliptic pdes is to provide the

quantitative understanding of field-effect nanowire sensors. Elliptic equations, such
as the Poisson equation and the linearized Poisson-Boltzmann equation, are the basic
equations for their electrostatics, and the stochastic equations considered here make
it possible to quantify fluctuations and noise in nanostructures. A multiscale problem
is inherent in these nanoscale structures and therefore homogenization is used.

To see where the homogenization problem arises, we introduce the physical prob-
lem first. Recently, nanoscale field-effect biosensors [30, 31, 33, 36] and gas sen-
sors [22, 25, 29, 34, 37] have been demonstrated experimentally. A schematic diagram
of such a sensor structure is shown in Fig. 1.1. The length scale of the molecules is
in the Angstrom or nanometer range, whereas the length of the nanowire is in the
micrometer range. This naturally gives rise to a multiscale problem [19, 20], since it
is not possible to resolve both the boundary layer and the whole simulation domain
using a single numerical grid.

This simulation problem also gives rise to a stochastic problem, since binding and
unbinding events (in the case of biosensors), chemical reactions (in the case of gas
sensors), and other stochastic processes occur in the boundary layer. Additionally,
the movement of the molecules in the boundary layer can be modeled by calculating
their electrostatic free energy and by using a Boltzmann distribution [18]. These
effects imply that the charge concentrations in the boundary layer should be modeled
by random variables.
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Fig. 1.1. Schematic diagram of a typical structure considered in this work. A nanowire field-
effect sensor consists of a semiconductor nanowire with two contacts at the left and at the right,
a boundary layer split into cells containing random charge distributions due to biomolecules or gas
molecules, and a bulk liquid or a gas atmosphere. In a DNA sensor, shown here, the immobilized
probe molecules are single-stranded DNA and the target molecules are the complementary strands.
After hybridization of the two strands at the sensor surface to form double-stranded DNA, the
charge distribution in the biofunctionalized boundary layer is changed and hence it modulates the
conductance of the semiconductor transducer. The conductance is measured between the source and
drain contacts on the left and on the right.

In previous work, we used deterministic pde models and solved the multiscale
problem for the deterministic Poisson equation −∇·(A∇uε) =ρε with a boundary
layer in [19]. Homogenization made it possible to replace the fast varying charge
concentration ρε in the boundary layer by two interface conditions for the electrostatic
potential and field. The interface conditions are essentially determined by the surface-
charge density and the dipole-moment density of the boundary layer.

Based on this homogenization result [19], we have shown existence and local
uniqueness for a self-consistent model of field-effect sensors [8], we have developed
a parallel 3d simulator for field-effect sensors [9], and we have performed realistic
simulations in order to elucidate the influence of design parameters and to optimize
the devices [10–13,28].

In this work, we consider the stochastic Poisson equation

−∇·
(
A(x)∇uε(x,ω)

)
=ρ(x,

x

ε
,ω)

and generalizations thereof [2, 24, 27]. Here ω is a random variable and ε�1 is the
ratio of the size of a cell in the boundary layer to the size of the simulation domain.
The ultimate goal in realistic simulations, when the model equation is a stochastic
pde, is to calculate the ratio

Eu√
varu

,
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where u is the solution of the stochastic pde and E and var are the expectation
and variance operators with respect to ω, respectively. This ratio of expectation and
standard deviation is a dimensionless quantity and it is often called the signal-to-
noise ratio. In engineering applications such as field-effect sensors, the stochastic pde
is the stochastic linearized Poisson-Boltzmann equation and the signal-to-noise is to
be maximized [18].

The main result of this work given in §3 is a deterministic, homogenized equation
for the covariance of u. This equation immediately yields a way to calculate the
variance as the diagonal and hence the signal-to-noise ratio. We also obtain a rate
for the covariance as ε→0+ as a corollary. The rate has implications for the design
of field-effects sensors, since it allows to calculate noise levels.

Rigorous analysis for related problem was presented, e.g., in [5–7]. Here, the em-
phasis is on the presence of a boundary layer and the derivation of effective equations.

This paper is organized as follows. In §2, the stochastic Poisson-type model
equations are introduced. In §3, the homogenization problem is defined and solved.
The main result is the limiting equation for the covariance after homogenization; a
corollary is given and some important properties of the limiting equations are shown.
In §4, a discretization and numerical results are presented. Finally, §5 concludes the
paper.

2. The model equations
We consider linear stochastic pdes of the form

Lu(x,ω) =ρ(x,ω) (2.1)

on a domain U ⊂Rd, where x is the spatial variable, ω is a random variable defined
on the probability space (Ω,Σ,P ), ρ is a given function, u is the unknown, and L
is a linear differential operator with respect to x. An important special case is the
Poisson-Boltzmann equation

−∇·
(
A(x)∇u(x)

)
=ρi(x)+ρf (x), (2.2a)

ρf (x) :=
∑
j∈I

zjcj(x)qexp
(
−zjq(u(x)−φF )/(kBT )

)
, (2.2b)

where A is the permittivity, u is the electrostatic potential, ρi is the concentration of
immobile charges, and ρf is the concentration of free charges according to a Boltzmann
distribution. I is the set of charge species (ions in liquids or electrons and holes
in semiconductors), zj ∈Z is the valence of species j, cj is the bulk concentration
of species j, q is the elementary (proton) charge, φF is the Fermi level, kB is the
Boltzmann constant, and T is the temperature. Here the bulk concentration depends
on the position x meaning that only certain sub-domains are accessible by the free
charges. For physical systems such as 1:1 electrolytes (containing one species of cations
and one of anions) and positive and negative charge carriers in semiconductors, we
set I :={−1,+1} and zj := j and we assume c−1(x) = c1(x) =: c(x). This yields

ρf (x) =
∑

j∈{−1,+1}

jc(x)qexp
(
−jq(u(x)−φF )/(kBT )

)
=−2c(x)q sinh

q(u−φF )

kBT
. (2.3)

It is well-known that the following result holds for the semilinear Poisson-Boltz-
mann equation (2.2).
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Proposition 2.1 (Poisson-Boltzmann equation). Suppose that the domain U ⊂
Rd is open and bounded, that A is uniformly elliptic, that κ∈L∞(U,R+

0 ), that β∈R
and φF ∈R, and that f ∈L∞(U). Then the boundary-value problem

−∇·(A∇u)+κsinh(β(u−φF )) =f in U,
u=uD on ∂UD,

ν ·∇u= 0 on ∂UN

has a unique solution u∈H1(U)∩L∞(U). Furthermore, if f = 0 almost everywhere,
the estimate

min( inf
∂UD

uD,φF )≤u(x)≤max(sup
∂UD

uD,φF )

holds for all x∈U .
The Poisson-Boltzmann equation for arbitrary Fermi levels can be linearized as

follows. Taylor expansion of (2.3) in u around a general potential φ0 so that u−φ0�1
yields

ρf (x) =α(x)−γ(x)u(x)+O
(
(u−φ0)2

)
with

α(x) := 2c(x)q sinh
q(φF −φ0)

kBT
+

2c(x)q2φ0

kBT
cosh

q(φF −φ0)

kBT
, (2.4a)

γ(x) :=
2c(x)q2

kBT
cosh

q(φF −φ0)

kBT
. (2.4b)

The advantage of this general form is that the expansion point φ0 is not necessarily
equal to the Fermi level φF [18]. Now the choice

Lu(x,ω) :=−∇·
(
A(x)∇u(x,ω)

)
+γ(x)u(x,ω), (2.5a)

ρ(x,ω) :=ρi(x,ω)+α(x) (2.5b)

corresponds to the stochastic linearized Poisson-Boltzmann equation

−∇·
(
A(x)∇u(x,ω)

)
+γ(x)u(x,ω) =ρ(x,ω) in U×Ω, (2.6a)

u(x,ω) =uD on ∂U×Ω (2.6b)

for arbitrary Fermi levels. Much of the following pertains to general linear stochastic
pdes of the form (2.1), while the leading application is equation (2.6). Whenever fur-
ther assumptions on the operator L are necessary, they include the physical situation
of (2.4) and (2.6).

Regarding the existence and uniqueness of solutions of (2.6), we mention the
following result. A weak formulation of (2.6) is to find u∈H :=H1

0 (U×Ω), H being
a Hilbert space, so that a(u,v) = 〈ρ,v〉 for all v∈H, where a is the bilinear form

a(u,v) :=

∫
Ω

∫
U

A(x)∇u(x,ω) ·∇v(x,ω)+γ(x)u(x,ω)v(x,ω)dxdP (ω)

and ρ∈H−1. Using this weak formulation, it is straightforward to obtain the following
proposition using the Lax-Milgram theorem.
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Proposition 2.2. Suppose U is an open and bounded subset of Rd and (Ω,Σ,P ) is
a probability space with a bounded domain Ω. Suppose further that A∈L∞(U,Rd×d)
is uniformly elliptic and that γ∈L∞(U) is nonnegative. Then the boundary-value
problem (2.6) has a unique weak solution u∈H and it depends continuously on ρ∈
H−1.

This weak formulation is an extension of the theory of deterministic elliptic equa-
tions to random fields with finite variance [1–4,17,23]. Different choices for the Hilbert
space H are possible and other theories for stochastic elliptic equations have been de-
veloped [15,16,21,24,26,35].

In the following, we consider only operators L that do not depend on the ran-
dom variable ω, i.e., A depends only on position. Regarding the physical aspects
of the problem, this means for Poisson-type equations that random fluctuations in
the permittivity A are negligible compared to the random fluctuations in the charge
distribution ρ. This is the case in the field-effect sensors considered here, as they rely
on changes in the electrostatic potential (cf. Fig. 1.1).

3. The multiscale problem and homogenization
In this section, the multiscale problem and the boundary layer are defined first.

Then the main result is stated and proved by a homogenization procedure. Finally,
important properties of the resulting limiting equation are shown.

3.1. The boundary layer and its fine structure
We choose a Cartesian coordinate system with coordinates x= (x1,x2,x3) and

the domain U is the bounded and open subset U := (−L1,L1)×(0,L2)×(0,L3)⊂R3

(cf. Fig. 1.1). The boundary layer is located on the positive side of the plane x1 = 0
so that x1 is the direction normal to the surface and x2 and x3 are parallel to the
surface. The boundary layer at x1≥0 is characterized by the charge concentration
ρ(x,ω) which exhibits a random and fast varying spatial structure. Since the fine
spatial structure cannot be resolved due to computational constraints—especially in
view of the stochastic nature of the problem—, the goal is to replace the original
problem (2.6) by a homogenized problem.

We proceed by dividing the two-dimensional interface at x1 = 0 into periodically
repeated two-dimensional cells Ck by defining

Ck :=C(k2,k3) := [εk2,ε(k2 +1))× [εk3,ε(k3 +1))

for k= (k2,k3)∈Z×Z. The cells Ck are of size ε2 so that they cover the whole interface,
i.e.,

[0,L2)× [0,L3)⊂
⋃

1≤k2≤K2
1≤k3≤K3

Ck

holds with K2 := dL2/εe and K3 := dL3/εe. We use multi-indices k= (k2,k3) with
k2∈{0,. ..,K2−1} and k3∈{0,. ..,K3−1} for the cells Ck, and we denote the total
number of cells in the boundary layer by K :=K2K3 and the index set of the cell
indices by K :={(0,0),. ..,(K2−1,K3−1)} so that |K|=K.

Three-dimensional cells are denoted by [0,L1]×Ck. The positive real number
ε�1 denotes the ratio of the cell size to the whole simulation domain U . We use a
homogenization ansatz where we scale the boundary layer by introducing fast vari-
ables. We stretch the x1-, x2-, and x3-coordinates at the interface x1 = 0 by a factor
of 1/ε and hence obtain the fast variables η1 :=x1/ε, η2 :=x2/ε, and η3 :=x3/ε in
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contrast to the slow variables x1, x2, and x3. The idea of the multiscale ansatz is to
write the charge concentration ρε as a function

ρε=
1

ε2
ρ
(x1

ε
,
x2

ε
,
x3

ε
,x2,x3,ω

)
=

1

ε2
ρ(η1,η2,η3,x2,x3,ω) (3.1)

of both the fast and the slow variables. The dependence of ρ on the slow variables x2

and x3 includes slow variations in the boundary layer. Furthermore, the function ρ
is quasi-periodic: it is 1-periodic in its second argument η2 and in its third argument
η3, i.e., the equation

ρ(η1,η2,η3,x2,x3,ω) =ρ(η1,η2 +k2,η3 +k3,x2,x3,ω) ∀(k2,k3)∈Z×Z (3.2)

holds. This is consistent with the definition of the cells Ck. Additionally, the charges
in the boundary layer are concentrated close to the interface at x1 = 0, i.e.,

lim
η1→∞

ρ(η1,η2,η3,x2,x3) = 0 (3.3)

holds.
The significance of the factor 1/ε2 in the multiscale ansatz (3.1) is explained after

Corollary 3.4 at the end of this section, where an alternative scaling is discussed as
well.

We now describe the dependence of the charge concentration ρ on the random
variable ω. For each cell Ck, there is a random variable ωk so that the charge con-
centration ρk of the cell Ck depends on ωk. In reality, the different states of the
random variable ωk correspond to the presence of different molecules and to different
orientations thereof the boundary layer. We define the random variable

ω := (ω1,. ..,ωK)

that includes the states of all cells in the boundary layer. It is assumed that the
molecules in each cell do not affect the molecules in the other cells. This assumption
is satisfied in realistic structures, since their distance is large enough to ensure full
electrostatic screening, and it is well supported by Monte-Carlo simulations [14] and
Poisson-Boltzmann simulations [32] of screening. Thus we assume that ρk and ρ` are
independent for k 6= ` and hence uncorrelated, i.e.,

k 6= ` =⇒ cov
(
ρk(y,.),ρ`(z,.)

)
= 0 ∀y,z∈U, ∀k,`∈K.

In other words, (ρ1,. ..,ρK) is a K-dimensional random vector with mutually inde-
pendent components.

In the following, we will need the definition of a joint moment.
Definition 3.1 (joint moment). Suppose α is a multi-index of dimension J :=

dimα. The joint moment Mα of the J random variables Xj is defined as

Mα(X1,. ..,XJ) :=E

( J∏
j=1

(Xj−EXj)
αj

)
.

The covariance of two random variables X1 and X2 is defined as cov(X1,X2) :=
M(1,1)(X1,X2). To simplify notation, we write

(covu)(x,y) := cov
(
u(x,.),u(y,.)

)
for the covariance of u evaluated at x and y∈U . In the following, we denote centered
random variables by X̃, i.e., X̃ :=X−EX.
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3.2. The main result and the limiting equations
In order to state the main result, the following assumptions are needed.

Assumptions 3.2.
(i) The domain U ⊂R3 is open and bounded.
(ii) The function ρ∈L∞(U) satisfies (3.2) and (3.3).
(iii) The functions ρk and ρ` are uncorrelated for k 6= `.
(iv) The linear differential operator L is independent of ε and has a sufficiently

smooth Green’s function G.
The assumption on the linear operator L includes the important case of elliptic

operators. The following result will be shown formally.
Theorem 3.3 (limiting problem for the covariance). Suppose that Assump-

tions 3.2 hold. Then the limiting problem as ε→0+ for the covariance of the so-
lutions uε of the boundary-value problem

Luε(x,ω) =ρε(x,ω) in U, (3.4a)
u=uD on ∂U (3.4b)

is the boundary-value problem

LzLy(covu)(y,z) = δ(y1,z1,y2−z2,y3−z3)R̄(y2,y3)2 in U×U, (3.5a)
covu= 0 on ∂U×U, (3.5b)
covu= 0 on U×∂U (3.5c)

for covu, where R̄ is defined by

R(k,ωk) :=

∫ ∞
0

∫ 1

0

∫ 1

0

ρ̃k(η1,η2,η3,ωk)dη3η2η1, (3.6a)

R̄(εk2,εk3) :=

(∫
Ω

R(k,ωk)2dP (ωk)

)1/2

. (3.6b)

Note that due to the delta distributions on the right-hand side of (3.5a), the
equation is symmetric in y and z.

Proof. To simplify the calculations, we will use the centered solution ũ and the
centered right-hand sides ρ̃k and ρ̃. For the centered quantities, the identities Eũ= 0,
Eρ̃= 0, Eρ̃k = 0, and

ρ̃(x,ω) =
∑
k∈K

χk(x)ρ̃k(x,ωk) (3.7)

hold, where χk(x) is the characteristic function of the cell Ck. We immediately find

Lũε= ρ̃ε. (3.8)

It is straightforward to show that the equations covuε= cov ũε and varuε= varũε hold
for the centered covariance and variance.

G is a Green’s function of L on U , i.e.,

LG(x,y) = δ(x−y) ∀x,y∈U

holds. Note that L and therefore G is independent of ε. Using the Green’s function G,
the solution ũ of (3.8) is given by

ũε(x,ω) =

∫
U

G(x,y)ρ̃ε(y,ω)dy.
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To calculate the joint moments of Xj := ũ(xj ,ω), we first write the integrand as

J∏
j=1

ũε(xj ,ω)αj =

∫
U |α|

J∏
j=1

αj∏
ν=1

(
G(xj ,ξjν)ρ̃ε(ξjν ,ω)

)
dξ11 .. .ξ1α1 .. .ξJ1 .. .ξJαJ ,

where |α|=
∑J
j=1αj , and use (3.7) to find

Mα

(
ũε(xj ,ω)

)
=

∫
Ω

J∏
j=1

ũε(xj ,ω)αjdP (ω)

=

∫
Ω

∫
U |α|

J∏
j=1

αj∏
ν=1

(
G(xj ,ξjν)

∑
kjν∈K

χkjν (ξjν)ρ̃εkjν (ξjν ,ωkjν )
)
dξ11 .. .ξJαJdP (ω).

We denote the characteristic function of the interval [0,1) by χ and hence we have

χk(x) =χ(k2,k3)(x2,x3) =χ
(x2

ε
−k2

)
χ
(x3

ε
−k3

)
for the characteristic function χk of cell Ck. Now the moment Mα is given by

Mα

(
ũε(xj ,ω)

)
=

∫
Ω

∫
U |α|

( J∏
j=1

αj∏
ν=1

G(xj ,ξjν)

)
·

·
∑
k11∈K

.. .
∑

kJαJ∈K

χk11(ξ11) ·· ·χkJαJ (ξJαJ )ρ̃εk11(ξ11,ωk11) ·· · ρ̃εkJαJ (ξJαJ ,ωkJαJ )

dξ11 .. .ξJαJdP (ω)

=
∑
k11∈K

.. .
∑

kJαJ∈K

∫
Ω

∫ ∞
0

∫ ε(k11,2+1)

εk11,2

∫ ε(k11,3+1)

εk11,3

.. .

.. .

∫ ∞
0

∫ ε(kJαJ ,2+1)

εkJαJ ,2

∫ ε(kJαJ ,3+1)

εkJαJ ,3( J∏
j=1

αj∏
ν=1

G(xj ,ξjν)

)
ρ̃εk11(ξ11,ωk11) ·· · ρ̃εkJαJ (ξJαJ ,ωkJαJ )

dξJαJ ,3ξJαJ ,2ξJαJ ,1 .. .ξ11,3ξ11,2ξ11,1dP (ω).

We use the multiscale ansatz from §3.1 for ρ̃εk so that

ρ̃εk(x,ωk) =
1

ε2
ρ̃k

(x1

ε
,
x2

ε
−k2,

x3

ε
−k3,ωk

)
=

1

ε2
ρ̃
(x1

ε
,
x2

ε
−k2,

x3

ε
−k3,εk2,εk3,ωk

)
.

The function ρ̃k depends on the cell index k, whereas ρ̃ depends on the slow vari-
ables x2 = εk2 and x3 = εk3 instead of the cell index k.
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For the moment Mα, this yields

Mα

(
ũε(xj ,ω)

)
= ε−2|α|

∑
k11∈K

.. .
∑

kJαJ∈K

∫
Ω

∫ ∞
0

∫ ε(k11,2+1)

εk11,2

∫ ε(k11,3+1)

εk11,3

.. .

.. .

∫ ∞
0

∫ ε(kJαJ ,2+1)

εkJαJ ,2

∫ ε(kJαJ ,3+1)

εkJαJ ,3

( J∏
j=1

αj∏
ν=1

G(xj ,ξjν)

)
·

· ρ̃k11
(
ξ11,1
ε ,

ξ11,2
ε −k2,

ξ11,3
ε −k3,ωk11

)
·· · ρ̃kJαJ

(
ξJαJ ,1
ε ,

ξJαJ ,2
ε −k2,

ξJαJ ,3
ε −k3,ωkJαJ

)
dξJαJ ,3ξJαJ ,2ξJαJ ,1 .. .ξ11,3ξ11,2ξ11,1dP (ω). (3.9)

After substituting

ξ̄jν,1 :=
1

ε
ξjν,1,

ξ̄jν,2 :=
1

ε
ξjν,2−kjν,2,

ξ̄jν,3 :=
1

ε
ξjν,3−kjν,3

and renaming, we find

Mα

(
ũε(xj ,ω)

)
= ε|α|

∑
k11∈K

.. .
∑

kJαJ∈K

∫
Ω

∫ ∞
0

∫ 1

0

∫ 1

0

.. .

∫ ∞
0

∫ 1

0

∫ 1

0( J∏
j=1

αj∏
ν=1

G
(
xj ,(εξjν,1,ε(ξjν,2 +kjν,2),ε(ξjν,3 +kjν,3))

))
·

· ρ̃k11(ξ11,ωk11)·· · ρ̃kJαJ (ξJαJ ,ωkJαJ )

dξJαJ ,3ξJαJ ,2ξJαJ ,1 .. .ξ11,3ξ11,2ξ11,1dP (ω). (3.10)

The product involving the Green’s function G on the right-hand side can be simplified
by noting that L and hence G do not depend on ε (apart from the arguments above)
and that G is smooth enough by assumption. Since ξjν,i∈ [0,1], εξjν,i=O(ε) holds for
all i∈{1,. ..,d}. Furthermore, kjν,i=O(1/ε) holds for i∈{2,3} by the definition of Ki

and therefore εkjν,i=O(1). Hence Taylor expansion of the Green’s function G yields

G
(
xj ,(εξjν,1,ε(ξjν,2 +kjν,2),ε(ξjν,3 +kjν,3))

)
=G

(
xj ,(0,εkjν,2,εkjν,3)

)
+εξjν ·∇2G

(
xj ,(0,εkjν,2,εkjν,3)

)
+O(ε2),

where ∇2 denotes the gradient with respect to the second variable.
We therefore obtain

Mα

(
ũε(xj ,ω)

)
= ε|α|

∑
k11∈K

.. .
∑

kJαJ∈K

∫
Ω

∫ ∞
0

∫ 1

0

∫ 1

0

.. .

∫ ∞
0

∫ 1

0

∫ 1

0( J∏
j=1

αj∏
ν=1

G
(
xj ,(0,εkjν,2,εkjν,3)

))
ρ̃k11(ξ11,ωk11)·· · ρ̃kJαJ (ξJαJ ,ωkJαJ )

dξJαJ ,3ξJαJ ,2ξJαJ ,1 .. .ξ11,3ξ11,2ξ11,1dP (ω)+O(ε|α|+1) (3.11)
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and further

Mα

(
ũε(xj ,ω)

)
= ε|α|

∑
k11∈K

.. .
∑

kJαJ∈K

J∏
j=1

αj∏
ν=1

G
(
xj ,(0,εkjν,2,εkjν,3)

)
·

·
∫ ∞

0

∫ 1

0

∫ 1

0

.. .

∫ ∞
0

∫ 1

0

∫ 1

0

Mα(ρ̃k11 ,. .., ρ̃kJαJ )dξJαJ .. .ξ11 +O(ε|α|+1) (3.12)

for |αj |≤1 for all j∈{1,. ..,J}. This is a general representation of the joint moment
Mα(ũ(xj ,ω)) of ũ(xj ,ω) in terms of the joint moment Mα(ρ̃kjν ) of the data ρ.

To obtain specific results for the covariance M(1,1), we use that ρ̃k and ρ̃` are
uncorrelated for k 6= `. This implies∫

Ω

ρ̃k(y,ωk)ρ̃`(z,ω`)dP (ω) = δk`

∫
Ω

ρ̃k(y,ωk)ρ̃k(z,ωk)dP (ω) ∀y,z∈U,

where δk` is the Kronecker delta. Using this last equation and definition (3.6a) of R,
the covariance simplifies to

(covuε)(y,z) =M(1,1)

(
ũε(y,ω),ũε(z,ω)

)
= ε2

∑
k∈K

∑
`∈K

G
(
y,(0,εk2,εk3)

)
G
(
z,(0,ε`2,ε`3)

)
·

·
∫ ∞

0

∫ 1

0

∫ 1

0

∫ ∞
0

∫ 1

0

∫ 1

0

∫
Ω

ρ̃k(y,ωk)ρ̃`(z,ω`)dP (ω)dz3z2z1y3y2y1 +O(ε3)

= ε2
∑
k∈K

G
(
y,(0,εk2,εk3)

)
G
(
z,(0,εk2,εk3)

)
·

·
∫ ∞

0

∫ 1

0

∫ 1

0

∫ ∞
0

∫ 1

0

∫ 1

0

∫
Ω

ρ̃k(y,ωk)ρ̃k(z,ωk)dP (ω)dz3z2z1y3y2y1 +O(ε3)

= ε2
∑
k∈K

G
(
y,(0,εk2,εk3)

)
G
(
z,(0,εk2,εk3)

)∫
Ω

R(k,ωk)2dP (ωk)+O(ε3). (3.13)

We convert the Riemann sum over k2 and k3 into a two-dimensional integral over y2

and y3 to find

(covuε)(y,z) =

∫ L3

0

∫ L2

0

G
(
y,(0,x2,x3)

)
G
(
z,(0,x2,x3)

)
R̄(x2,x3)2dx2x3 +O(ε).

(3.14)
Here R̄ is defined by (3.6b) and it is evaluated at the point (x2,x3) that lies in cell
k= (k2,k3) determined by the equations x2 = εk2 and x3 = εk3.

Finally, we apply Ly, i.e., the operator L with derivatives with respect to y, to
find

Ly(covuε)(y,z)

=

∫ L3

0

∫ L2

0

δ(y1,y2−x2,y3−x3)G
(
z,(0,x2,x3)

)
R̄(x2,x3)2dx2x3 +O(ε),
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and we apply Lz, the operator with respect to z, to find

LzLy(covu)(y,z)

=

∫ L3

0

∫ L2

0

δ(y1,y2−x2,y3−x3)δ(z1,z2−x2,z3−x3)R̄(x2,x3)2dx2x3

= δ(y1,z1,y2−z2,y3−z3)R̄(y2,y3)2.

This concludes the proof.
Note that due to the factor δ(y1,z1) on the right-hand side, the covariance is

concentrated at the interface x1 = 0. Regarding the physics of the problem, R can be
interpreted as the surface-charge density of the boundary layer as a function of the
slow variables for a given ωk. Then R̄2 is the variance of the surface-charge density R.

The proof also yields the following rate when the scaling (3.1) is replaced by the
alternative scaling (3.15).

Corollary 3.4 (rate for the covariance). Under Assumptions 3.2, but with the
scaling

ρε=ρ
(x1

ε
,
x2

ε
,
x3

ε
,x2,x3,ω

)
=ρ(y1,y2,y3,x2,x3,ω) (3.15)

instead of the previous scaling (3.1), the covariance cov ũ= covu scales like ε4 as
ε→0.

Proof. The corollary follows by inspecting the proof of Theorem 3.3 and making
the changes due to the new scaling (3.15). In equation (3.9), the factor ε−2|α| be-
comes 1 now. In equation (3.10), the factor ε|α| becomes ε3|α|. In equations (3.11)
and (3.12), the factor ε|α| becomes ε3|α| and the order becomes O(ε3|α|+1). In equa-
tion (3.13), the factor ε6 becomes ε2 and the order becomes O(ε7). In equation (3.14)
and in the remaining equations, there is an additional factor ε4 now and the order is
O(ε5).

The difference compared to the previous scaling in (3.1) is the omission of the
factor 1/ε2. The interpretation of the two cases is that in the scaling in (3.1) the
charge concentration is increased by the factor 1/ε2 as ε→0+ so that the right-hand
side in equation (3.5a) is precisely of order O(1). In the alternative scaling in (3.15),
the cells just become smaller, but the charge concentration is not increased. Since
there is no additional factor, the right-hand side in equation (3.5a) converges to zero
as ε→0+. Hence the covariance and variance vanish as well and the present corollary
gives the rate as ε4.

3.3. Existence, uniqueness, and further properties
Having found the limiting problem, the properties of its solution are investigated

here. It is expected that its solution, being interpreted as a covariance, is unique.
A priori bounds are also given. Furthermore, it will be shown that the covariance is
symmetric as expected.

Since the covariance is symmetric in its two arguments by definition, it is expected
that symmetry is preserved by homogenization, i.e., that the solution covu of the
homogenized equation (3.5a) in Theorem 3.3 is symmetric in y and z. This is indeed
the case as shown in the following proposition. For notational simplicity we write u
for covu.
Proposition 3.5. Suppose that the boundary conditions of the boundary-value prob-
lem

LzLyu(y,z) =f(y,z)
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and the right-hand side f are symmetric in y and z and that u is a weak solution of
this problem. Then u is symmetric a.e.

Proof. We denote the symmetric part of u(y,z) by v(y,z) :=
(
u(y,z)+u(z,y)

)
/2

and its antisymmetric part by w(y,z) :=
(
u(y,z)−u(z,y)

)
/2. The weak formulation

of the problem is ∫∫
Lyu(y,z)L∗zφ(y,z)−f(y,z)φ(y,z)dyz= 0 (3.16)

for all test functions φ. Interchanging y and z yields∫∫
Lzu(z,y)L∗yφ(z,y)−f(z,y)φ(z,y)dyz= 0

and swapping Ly and Lz using their adjoints, using the symmetry of f , and replacing
φ(z,y) by φ(y,z) (since the equation holds for all test functions) yields∫∫

Lyu(z,y)L∗zφ(y,z)−f(y,z)φ(y,z)dyz= 0. (3.17)

Finally subtracting (3.17) from (3.16) yields
∫∫
Lyw(y,z)L∗zφ(y,z)dyz= 0 and hence∫∫

w(y,z)L∗yL
∗
zφ(y,z)dyz= 0

holds for all test functions φ. Therefore the antisymmetric part w vanishes a.e.
Proposition 3.6. Suppose that U ⊂Rd is an open and bounded domain and that
∂U is C2, suppose that f ∈H−1(U×U), and suppose that Lx=−∇x ·(A(x)∇x) is an
elliptic operator with aij ∈C1(Ū) and that A is uniformly elliptic with constant α.
Then the boundary-value problem

LzLyu(y,z) =f(y,z) in U×U,
u(y,z) = 0 on ∂U×U,
u(y,z) = 0 on U×∂U

has a unique solution u∈H1(U×U) and the estimate

‖u‖H1(U×U)≤
√

2

α2
‖f‖H−1(U×U)

holds.
Proof. We use the Lax-Milgram theorem twice. First, we consider the boundary-

value problem Lzw(y,z) =f(y,z) for all y∈U . It has a unique solution w(y,.)∈H2(U)
for all y∈U , since f ∈H−1(U×U) and the data are smooth, and the inequality

‖w‖L2(U×U)≤
1

α
‖f‖H−1(U×U) (3.18)

follows immediately.
Second, we consider the boundary-value problem Lyu(y,z) =w(y,z) for all z∈U .

Similarly, it has a unique solution u(.,z)∈H2(U) for all z∈U and the estimate

‖u(.,z)‖H2(U)≤
1

α
‖w(.,z)‖L2(U) (3.19)
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holds for all z∈U .
Third, the problem LyLzu(y,z) =f(y,z) is equivalent to the original problem

(note that Ly and Lz are interchanged). To show this claim, we calculate using the
definition of the weak derivative that∫

U

(LzLyu)φdydz=

∫
U

uL∗yL
∗
zφdydz=

∫
U

uL∗zL
∗
yφdydz=

∫
U

(LyLzu)φdydz

for all φ∈C∞c (U). Therefore the equation LzLyu=LyLzu holds a.e. This yields the
symmetric estimate

‖u(y,.)‖H2(U)≤
1

α
‖w(y,.)‖L2(U) (3.20)

for all y∈U .
Finally, these three inequalities yield the asserted estimate: Integrating esti-

mate (3.19) with respect to z and (3.20) with respect to y gives

‖u‖2H1(U×U)≤
2

α2
‖w‖2L2(U×U),

and this inequality with (3.18) concludes the proof.
To see that Proposition 3.6 applies to the limiting problem in Theorem 3.3, we

set

f(y,z) := δ(y1,z1,y2−z2,y3−z3)g(y2,y3),

where g∈L2(U×U). We define a functional F and calculate

F (v) :=

∫
U

∫
U

f(y,z)v(y,z)dydz

=

∫
U

∫
U

δ(y1,z1,y2−z2,y3−z3)g(y2,y3)v(y,z)dydz

=

∫∫
g(y2,y3)v(0,y2,y3,0,y2,y3)dy2dy3.

If v∈H1(U×U), then F (v) is bounded by the Cauchy-Schwarz inequality and hence
f ∈H−1(U×U).

4. Numerical approximation
In this section, a discretization for the limiting problem for the covariance in

Theorem 3.3 is given in the important case where the original equation is the Poisson
equation. Furthermore, numerical results as obtained by Monte-Carlo solutions are
presented as a verification of the rate in Corollary 3.4.

4.1. A compact fourth-order FD discretization for the covariance equa-
tion for the stochastic Poisson equation

In view of the fact that the covariance equation lives on twice the dimensions than
the original problem, a discretization of high order is advantageous. In the following,
we consider the Laplace operator

L := ∆
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in two spatial dimensions and use the fourth-order discretization
1
6

2
3

1
6

2
3 −

10
3

2
3

1
6

2
3

1
6


i,j

ui,j =h2


0 1

12 0

1
12

2
3

1
12

0 1
12 0


i,j

fi,j (4.1)

of the equation ∆u=f . The values in the brackets indicate 9-point discretization
stars, and the indices (i,j) indicate that the discretization star is applied to these
variables. This discretization has a fourth-order truncation error and is often called
compact, since it only involves neighboring grid points of (i,j).

Proposition 4.1 (Fourth-order compact FD scheme for the 2d Poisson equa-
tion). The local truncation error of the FD scheme in (4.1) for the 2d Poisson equa-
tion ∆u=f is of fourth order.

Proof. We denote the (second-order) central-difference operator with respect to x
by

D2
xui,j :=

ui+1,j−2ui,j+ui−1,j

h2
.

Taylor expansion around ui,j yields

D2
xui,j =uxx+

h2

12
uxxxx+O(h4)

and therefore the truncation error τi,j in the discretization

D2
xui,j+D2

yui,j =fi,j+τi,j

of the 2d Poisson equation equals

τi,j =
h2

12
(uxxxx+uyyyy)+O(h4).

In order to obtain more information about the second-order term in the last equation,
we differentiate the Poisson equation to find

uxxxx=fxx−uxxyy,
uyyyy =fyy−uxxyy

and can rewrite the truncation error as

τi,j =
h2

12
(fxx+fyy)− h

2

6
uxxyy+O(h4). (4.2)

Approximating its second-order terms by the second-order schemes

fxx=D2
xfi,j+O(h2),

uxxyy =D2
xD

2
yui,j+O(h2),

the second-order terms in (4.2) are eliminated and the discretization becomes fourth
order. In summary, the FD discretization is

D2
xui,j+D2

yui,j+
h2

6
D2
xD

2
yui,j =fi,j+

h2

12
(D2

x+D2
y)fi,j+O(h4)
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and some manipulations yield (4.1).
Using Proposition 4.1, a discretization of the covariance equation (3.5) for L= ∆

is given by
1
6

2
3

1
6

2
3 −

10
3

2
3

1
6

2
3

1
6


i,j


1
6

2
3

1
6

2
3 −

10
3

2
3

1
6

2
3

1
6


k,l

ui,j,k,l=h4


0 1

12 0

1
12

2
3

1
12

0 1
12 0


i,j


0 1

12 0

1
12

2
3

1
12

0 1
12 0


k,l

fi,j,k,l.

This discretization is a fourth-order scheme and only neighboring grid points are used,
which simplifies the implementation of boundary conditions. It has 81 terms for u on
the left-hand side and 25 terms for f on the right-hand side.1

In Figures 4.1 and 4.2, variances are calculated for two different right-hand sides.
The 2d variances are calculated as the diagonals of the 2×2-dimensional covariance
problem. As expected, the variances are nonnegative and have their global maximum
where the covariance of the data is concentrated.

In three spatial dimensions, the following proposition is useful.
Proposition 4.2 (Fourth-order compact FD scheme for the 3d Poisson equa-

tion). The local truncation error of the FD scheme

−4ui,j,k+ 1
3 (ui+1,j,k+ui−1,j,k+ui,j+1,k+ui,j−1,k+ui,j,k+1 +ui,j,k−1)

+ 1
6 (+ui,j+1,k+1 +ui,j+1,k−1 +ui,j−1,k+1 +ui,j−1,k−1

+ui+1,j,k+1 +ui+1,j,k−1 +ui−1,j,k+1 +ui−1,j,k−1

+ui+1,j+1,k+ui+1,j−1,k+ui−1,j+1,k+ui−1,j−1,k)

=h2
(

1
2fi,j,k+ 1

12 (fi+1,j,k+fi−1,j,k+fi,j+1,k+fi,j−1,k+fi,j,k+1 +fi,j,k−1)
)

for the 3d Poisson equation ∆u=f is of fourth order.
Proof. Analogously to the proof of Proposition 4.1, the truncation error is

τi,j,k =
h2

12
(uxxxx+uyyyy+uzzzz)+O(h4)

1In view of the large number of terms, the following Mathematica (Wolfram Research Inc.) code
is useful to calculate all the 81+25 terms in the discretization.

U[u_, i_, j_] := (1/6) ((u /. {i -> i + 1, j -> j + 1})
+ (u /. {i -> i + 1, j -> j - 1})
+ (u /. {i -> i - 1, j -> j + 1})
+ (u /. {i -> i - 1, j -> j - 1}))

+ (2/3) ((u /. {i -> i + 1}) + (u /. {i -> i - 1})
+ (u /. {j -> j + 1}) + (u /. {j -> j - 1}))

- (10/3) u
Expand[U[U[u[i, j, k, l], i, j], k, l]]

F[f_, i_, j_] := (1/12) ((f /. {i -> i + 1}) + (f /. {i -> i - 1})
+ (f /. {j -> j + 1}) + (f /. {j -> j - 1}))

+ (2/3) f
Expand[F[F[f[i, j, k, l], i, j], k, l]]
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0.00

0.01

0.02

Fig. 4.1. The variance as the diagonal u(y1,y2,y1,y2) of the solution of ∆y∆zu(y1,y2,z1,z2) =
δ(y1− 1

2
)δ(z1− 1

2
) on the domain (0,1)4. This corresponds to R̄(y2,y3) =1 in (3.5a).

and we have

uxxxx=fxx−uxxyy−uxxzz,
uyyyy =fyy−uxxyy−uyyzz,
uzzzz =fzz−uxxzz−uyyzz.

This yields

τi,j,k =
h2

12
(fxx+fyy+fzz)−

h2

6
(uxxyy+uxxzz+uyyzz)+O(h4),

and the discretization

D2
xui,j,k+D2

yui,j,k+D2
zui,j,k+

h2

6
(D2

xD
2
y+D2

xD
2
z +D2

yD
2
z)ui,j,k

=fi,j,k+
h2

12
(D2

x+D2
y+D2

z)fi,j,k+O(h4)

is of fourth order.

4.2. Numerical verification of the rate
To verify the homogenization result in Theorem 3.3 and the rate in Corollary 3.4,

Monte-Carlo calculations are discussed in the following.
We consider a three-dimensional example for Corollary 3.4 with the scaling (3.15)

in Corollary 3.4. We set U := (0,1)3⊂R3, define L :=−∆, and use an equidistant
grid for the finite-difference discretization of L. For symmetry, the boundary layer is
located at x= 1

2 so that the cells are

Ck =C(k2,k3) = [εk2,ε(k2 +1))× [εk3,ε(k3 +1)).
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0.015

Fig. 4.2. The variance as the diagonal u(y1,y2,y1,y2) of the solution of ∆y∆zu(y1,y2,z1,z2) =
δ(y1− 1

2
)δ(z1− 1

2
)[y2≥ 1

2
][z2≥ 1

2
] on the domain (0,1)4. Here [y2≥ 1

2
] is the characteristic function

of the set where y2≥ 1
2
holds true. This corresponds to R̄(y2,y3) = [y2≥ 1

2
][z2≥ 1

2
] in (3.5a).

The number of cells in each direction in this example is chosen as K2 =K3 and as a
power of two. In order to decrease the influence of the Dirichlet boundary conditions
on the shape of the solution and hence to accelerate the calculation of the rate, mixed
Dirichlet and Neumann boundary conditions are used: The boundary conditions are
zero Dirichlet boundary conditions at x1 = 0 and x1 = 1 and zero Neumann boundary
conditions at x2 = 0, x2 = 1, x3 = 0, and x3 = 1. The charge concentrations ρ(x,ω) are
constant and uniformly distributed in the interval [0,1] in each cell of the boundary
layer.

The numerical verification for a large number of cells in the boundary layer is
hampered by the fact that the direct or Monte-Carlo calculation of the variance re-
quires many solutions of Lu(x,ω) =ρ(x,ω) for randomly chosen ω. Calculations for
total numbers of cells K ∈{22,42,82,162} were performed with a grid size of 1/16 in
the finite-difference approximation. To calculate the variance, 8192 realizations were
used in all four cases.

To verify that the number of realizations is sufficient for the calculation of the
variance, the integral of the variance over the domain U is shown as a function of the
number of realizations in Fig. 4.3 for the case K= 162. Fig. 4.4 shows plots of the
variances for K ∈{22,42,82,162} after 8192 realizations as the cell size is halved.

The results of the numerical calculations for the parameters described above are
summarized in Table 4.1. As the number of cells in each direction is doubled in
every refinement step, i.e., ε is halved, the scaling factor for the variance is given by
Corollary 3.4 as 1/16. The numerically approximated values of 7.8, 13.3, and 14.0 in
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0 2000 4000 6000 8000
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4.75 ´ 10-8

4.8 ´ 10-8

4.85 ´ 10-8

4.9 ´ 10-8

4.95 ´ 10-8

Fig. 4.3. The integral
∫
U varudx of the variance as a function of the number of realizations in

a Monte-Carlo calculation for the case K= 162.

ε number of cells integral scaling factor
in boundary layer of variance for variance

1/2 K= 22
∫

varu= 7.0553 ·10−5

7.8
1/4 K= 42

∫
varu= 9.0360 ·10−6

13.3
1/8 K= 82

∫
varu= 6.7742 ·10−7

14.0
1/16 K= 162

∫
varu= 4.8414 ·10−8

Table 4.1. Overview of the factors in the numerical verification. The predicted scaling factor
for the variance is 16.

Table 4.1 agree well with the theoretical value even for these small numbers of cells.
The computational requirements for larger numbers of cells would be enormous due
to the stochastic nature of the problem, which underlines the importance of the rate
in Corollary 3.4.

5. Conclusion
In this work, we have treated the homogenization of boundary layers in stochastic

elliptic partial differential equations. The main result is a limiting problems for the
covariance of the solution of the stochastic equation. We have also deduced a rate
for the covariance from the limiting problem. An existence and uniqueness result
and further properties of the limiting equation for the covariance have also been
shown. The numerical approximation of solutions of the covariance equation have
also been discussed. Applications of this work include the simulation of electrostatics
in nanotechnological devices such as field-effect sensors [18].
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