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Abstract
The three-dimensional stochastic drift–diffusion–Poisson system is used to model charge transport through nanoscale devices
in a random environment. Applications include nanoscale transistors and sensors such as nanowire field-effect bio- and gas
sensors. Variations between the devices and uncertainty in the response of the devices arise from the random distributions
of dopant atoms, from the diffusion of target molecules near the sensor surface, and from the stochastic association and
dissociation processes at the sensor surface. Furthermore, we couple the system of stochastic partial differential equations
to a random-walk-based model for the association and dissociation of target molecules. In order to make the computational
effort tractable, an optimal multi-level Monte–Carlo method is applied to three-dimensional solutions of the deterministic
system. The whole algorithm is optimal in the sense that the total computational cost is minimized for prescribed total errors.
This comprehensive and efficient model makes it possible to study the effect of design parameters such as applied voltages
and the geometry of the devices on the expected value of the current.

Keywords Stochastic drift–diffusion–Poisson system · Multi-level Monte–Carlo · Optimal method · Uncertainty
quantification · Fluctuations · Noise · Transistor · Nanowire

1 Introduction

The stochastic drift–diffusion–Poisson system makes it pos-
sible to model charge transport in random environments.
Thus, it goes beyond the deterministic description provided
by the well-known drift–diffusion–Poisson system that has
been used to simulate charge transport through semiconduc-
tor devices, ion channels, and nanopores. In this work, the
stochastic drift–diffusion–Poisson systemmodels a nanowire
field-effect biosensor. This concretemodel system serves two
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purposes. First, it is amuchmore complexmodel system than
a semiconductor transistor and highlights the challenges of
developing comprehensive models and efficient numerical
methods. It includesmany other applications as special cases,
in particular nanoscale transistors such as FinFETs. Second,
it is a useful device with important applications whose fab-
rication has been demonstrated [1,2].

Themodel for field-effect sensors includes an association–
dissociation process between target and receptor molecules
at the surface of the device [3,4]. The partial charges of the
target molecules modulate the charge transport in the semi-
conductor [5–8] (see schematic diagram in Fig. 1).

In field-effect transistors (FET), the statistical variability
associated with discrete random dopants, which dominates
contemporary multi-gate metal-oxide semiconductor field-
effect transistors (MOSFET), has become a major threat to
scaling and integration [9,10]. In fact, the fluctuation due to
random discrete atoms in the source and drain regions has
been a challenging problem. In this work, three-dimensional
simulations are used to simulate the effects of random dopant
fluctuations on the device performance.

There are various sources of randomness. The distribu-
tion of the receptor molecules at the surface is random
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Fig. 1 A cross section of a (nanoscale) field-effect sensor indicating
the different materials and boundary conditions. The charged target
molecules bind to receptors on the surface in an association–dissociation
process. The random dopants (red) are located in the semiconducting
transducer. Semiconductor devices such as FinFETs are a simpler spe-
cial case, where the upper boundary is located right at the top oxide
layer (Color figure online)

and determined at fabrication time. Diffusion in the liquid
and association and dissociation at the surface receptors are
stochastic processes and occur at the time of usage. The ran-
dom distribution of the dopant atoms in the semiconductor is
again determined at fabrication time and leads to important
device variation, while charge transport obviously occurs at
the time of usage.

The simulation capability developed here is general
enough to include many situations where charge transport
occurs in a random environment. These effects due to the
random location of dopants are of increasing importance,
as the devices have been shrunk into the nanometer scale
and billions of them are required to work together despite
the unavoidable process variations. In the case of field-effect
sensors, understanding noise and fluctuations is essential to
calculate detection limits and signal-to-noise ratios.

In thiswork, the simulation results are basedon a systemof
stochastic PDE. An important feature of the model used here
is that the random coefficients in the stochastic equations are
computed from additional physical models, so that there are
essentially no free parameters or coefficient functions whose
values are unknown or have to be estimated. The system
of stochastic PDEs representing a full transport model and
the additional models for the random coefficients together
constitute the most comprehensive model for this general
type of devices developed and implemented so far.

The main numerical challenge is a large number of
stochastic dimensions. Each dopant and each receptor for
targetmolecules result in some stochastic dimensions. There-
fore, the number of stochastic dimensions is at least in the
dozens but can be in the hundreds or thousands for larger
devices. We address the numerical challenge by using a
state-of-the-art method, namely a multi-level Monte–Carlo

method (MLMC), and improve on it by determining the dis-
cretization parameters in the numerical approach such that
the computational work is minimized for a prescribed total
error. In this way, the various sources of error are balanced
optimally. In [11], these ideas were implemented only for a
simpler and two-dimensional model.

In [12], we have developed an optimal multi-level ran-
domized quasi-Monte–Carlo method to solve the stochastic
system of equations. The main idea in [12] is to replace the
randompoints by quasi-randomsequences,which have better
uniformity, in themulti-level setting; in fact, using rank-1 lat-
tice rules [13] leads to more efficient computations. In [12],
a FinFET is considered as the numerical example, while a
biosensor that poses additional complications is simulated in
three-dimensional space in the presentwork. In the biosensor,
both the random binding of target molecules to the receptors
and the random distribution of dopants in the semiconductor
are modeled.

The rest of this paper is organized as follows. In Sect. 2, the
model equations are presented. The numerical method is dis-
cussed in detail Sect. 3, and the optimal method is developed
in Sect. 4. Numerical results are shown in Sect. 5. Finally,
conclusions are drawn in Sect. 6.

2 Themodel equations

2.1 The stochastic drift–diffusion–Poisson system

The bounded, convex, and three-dimensional domain D ⊂
R
3 is divided into four subdomains DSi, Dox, Dliq, and Dmol

named after their materials (silicon, silicon oxide, liquid,
and molecule). A cross section of the domain is shown in
Fig. 1 along with the subdomains. Because of the different
material properties, different equations hold in the various
subdomains.

The basic equation for the electrostatic potential is the
Poisson equation

−∇ · (A(x)∇V (x, ω)) = ρ(x, ω) ∀x ∈ D ∀ω ∈ Ω (1)

solved on the whole domain D, where x ∈ D, ω ∈ Ω ,
(Ω,A,P) is a probability space, Ω the sample space, A
the σ -algebra of all possible events, and P the probabil-
ity measure. Furthermore, V is the electrostatic potential,
A is the permittivity, and ρ is the charge density. The charge
density ρ is split into ρ = ρi +ρf , where ρi is the concentra-
tion of immobile (fixed) charges. ρf denotes free or mobile
charges according to a Boltzmann distribution, leading to the
Poisson–Boltzmann equation in the liquid.

For every ω ∈ Ω , solving a homogenization problem at
the interface � between Dox and Dliq [5] leads to the two
interface conditions
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V (0+, y, ω) − V (0−, y, ω) = α(y, ω) on �,

(2a)

A(0+)∂x V (0+, y, ω) − A(0−)∂x V (0−, y, ω) = γ (y, ω) on �.

(2b)

In DSi, the charge concentration is

ρ(x, ω) = q(p(x, ω) − n(x, ω) + Cdop(x, ω)),

where Cdop is the doping concentration and n and p are
the concentrations of electrons and holes. In DSi, the drift–
diffusion–Poisson system

−∇ · (A∇V ) = q(p(x, ω) − n(x, ω) + Cdop(x, ω)), (3a)

∇ · Jn = qR(n, p), (3b)

∇ · Jp = −qR(n, p), (3c)

Jn = q(Dn∇n − μnn∇V ), (3d)

Jp = q(−Dp∇p − μp p∇V ) (3e)

models charge transport for every x ∈ D and ω ∈ Ω . Jn
and Jp are current densities, μn and μp are electron and hole
mobilities, and Dn and Dp are the diffusion coefficients, for
which the Einstein relations Dp = UTμp and Dn = UTμn

hold, where UT := KBT /q is the thermal voltage. Further-
more, R is the generation-recombination rate, whose precise
form is not important in the following; the popular Shockley–
Read–Hall recombination rate, given by

R(n, p) := np − n2i
τn(p + ni ) + τp(n + ni )

,

is used in the following, where τn and τp are the lifetimes of
the free carriers.

Moreover, we change the concentrations n and p to Slot-
boom variables u and v, which are defined by the equations

p := ni exp

(
− qV

KBT

)
v and n =: ni exp

(
qV

KBT

)
u (4)

and where ni is the intrinsic carrier density of the semi-
conductor, KB is the Boltzmann constant, and T is the
temperature.

UsingSlotboomvariables, the drift–diffusion equations (3)
take the form

UT∇ · (μpe
−V /UT∇u) = uv − 1

τp(eV /UTu + 1) + τn(e−V /UTv + 1)
,

(5a)

UT∇ · (μne
V /UT∇v) = uv − 1

τp(eV /UTu + 1) + τn(e−V /UTv + 1)
.

(5b)

The boundary ∂D is partitioned into Dirichlet and Neumann
boundaries. For the Dirichlet part, the boundary conditions

are

V (x, ω)|∂DD = VD(x), u(x, ω)|∂DSi,D = uD(x), and

v(x, ω)|∂DSi,D = vD(x). (6)

At the source, drain, and back-gate contacts, the Dirichlet
boundary conditions are the source voltage VS, the drain
voltage VD, and gate voltage VG, respectively. The Ohmic
contacts are charge neutral, and hence the electrostatic poten-
tial and the charge-carrier concentrations on the boundary
∂DSi,D can be determined as follows. We define

V1 := U + Vbi, (7)

where Vbi := UT ln (nD/ni) is the built-in potential and U
denotes the applied potential. Due to charge neutrality, the
values uD and vD on the boundary are then given by

uD := n−1
i e−V1/UTnD,

vD := n−1
i eV1/UT pD,

and

nD := 1

2

(
Cdop +

√
C2
dop + 4n2i

)
,

pD := 1

2

(
−Cdop +

√
C2
dop + 4n2i

)
.

Zero Neumann conditions are used on the Neumann part
of the boundary. The boundary conditions for the different
parts of the sensor are depicted in Fig. 1.

In the subdomain Dox, the Poisson equation with a zero
right-hand side is used since there are no charge carriers,
and in the subdomain Dliq, the nonlinear Poisson–Boltzmann
equation is used to include screening.

In summary,∀ω ∈ Ω , themodel equations are the stochas-
tic boundary-value problem

− ∇ · (A(x)∇V (x, ω))

= qCdop(x, ω)

− qni(e
−(�2−V (x,ω))/UTu(x, ω)

− e(�1−V (x,ω))/UTv(x, ω)) in DSi, (8a)

− ∇ · (A(x)∇V (x, ω)) = 0 in Dox, (8b)

− ∇ · (A(x)∇V (x, ω)) = ρmol(x, ω) in Dmol, (8c)

− ∇ · (A(x)∇V (x, ω)) = −2η sinh(β(V (x, ω)

− �(x, ω))) in Dliq, (8d)

V (0+, y, ω) − V (0−, y, ω) = α(y, ω) on �, (8e)

A(0+)∂x V (0+, y, ω) − A(0−)∂x V (0−, y, ω)

= γ (y, ω) on �, (8f)
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UT∇ · (μne
−(�2(x,ω)−V (x,ω))/UT∇v(x, ω))

= u(x, ω)v(x, ω) − 1

τn(e(�1(x,ω)−V (x,ω))/UTu(x, ω) + 1) + τp(e−(�2(x,ω)−V (x,ω))/UTv(x, ω) + 1)
in DSi, (8g)

UT∇ · (μpe
(�1(x,ω)−V (x,ω))/UT∇u(x, ω))

= u(x, ω)v(x, ω) − 1

τn(e(�1(x,ω)−V (x,ω))/UTu(x, ω) + 1) + τp(e−(�2(x,ω)−V (x,ω))/UTv(x, ω) + 1)
in DSi, (8h)

α(y, ω) = Mα(V (y, ω)) in �, (8i)

γ (y, ω) = Mγ (V (y, ω)) in �, (8j)

V (x, ω) = VD(x) on ∂DD, (8k)

n · ∇V (x, ω) = 0 on ∂DN, (8l)

u(x, ω) = uD(x), v(x, ω) = vD(x) on ∂DD,Si, (8m)

n · ∇u(x, ω) = 0, n · ∇v(x, ω) = 0 on ∂DN,Si, (8n)

whereη is the ionic concentration andβ := 1/UT.Under cer-
tain assumptions, there exists a unique weak solution to the
model constructed in Sect. 2. For the definition of the weak
solution as well as for existence and uniqueness theorems,
the reader is referred to [11,14].

In real-world applications, all the coefficients in themodel
equations (8) are indeed stochastic. In the following, themod-
els for the stochastic coefficients are discussed.

2.2 Random dopants

To complete the description of the model equations, we
describe here how the dopants are distributed in space. The
source of randomness inside the transducer is the random
motion of dopant atoms through the semiconductor during
the fabrication steps of implantation and annealing, resulting
in their random locations.

Various models such as nearest-grid-point (NGP), cloud-
in-cell (CIC) [15], and the Sano method [16] may be used
to describe randomly placed dopants in semiconducting
devices. In the simplest model, the charge concentration due
to N ionized atoms is given by

ξ1(x) := C j

N∑
j=1

δ(x − x j ), (9)

where C j is the charge of the j th dopant atom, N is the
number of dopant atoms, x j is the position of j th dopant,
and δ is the Dirac delta distribution.

In [17], Gaussian distributions for the individual dopant
atoms were placed at random positions. In [18], the standard
deviation σ of the Gaussian or normal distributions was used

to adjust the size of the dopant atoms yielding the charge
concentration

ξ2(x) :=
∑
j

C j(
2πσ 2

)3/2 exp

(
− (x − x j )2

2σ 2

)
. (10)

Here, σ := 0.25 nm is used to represent a dopant; the results
are not very sensitive to the value of σ .

To make the results comparable between continuous and
discrete dopingmodels, the total dopingmust match. In other
words, the integrals over a continuous doping concentration
Cdop and over a discrete doping concentration must agree,
i.e.,

∫
DSi

Cdop(x)dx =
∫
DSi

ξ1(x)dx =
∫
DSi

ξ2(x)dx .

2.3 Association and dissociation processes of
biomolecules

In field-effect sensors, the charge concentration in the bound-
ary layer is changed as target molecules bind to receptor
molecules, and therefore the current through the semicon-
ducting transducer is modulated. The binding of target
molecules to the probe molecules is indicated in Fig. 1.
In DNA sensors, the binding and unbinding events are the
hybridization and dehybridization of single-stranded DNA
oligomers to be detected with immobilized single-stranded
DNA oligomers of known sequence. The electrical current
through the nanowire is measured and provides quantitative
information, while the sensor is selective due to the spe-
cific binding to the receptor molecules. In the simulations,
chemical equilibrium as a balance between association and
dissociation is assumed.

The association and dissociation processes of target
molecules at the surface can be described by the reaction
equations

T + P
ra
� PT, (11a)

PT
rd
� P + T. (11b)
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Fig. 2 A cross section of the field-effect sensor indicating the three
different regions of the surface

Here, T denotes a target molecule, P denotes a receptor
molecule, PT denotes a probe-target complex at the sen-
sor surface, and ra and rd are the reaction constants of the
association and dissociation processes, respectively. Equa-
tion (11a) describes the binding of target molecules T to
probemoleculesP. Analogously, Eq. (11b) describes the dis-
sociation process.

In [3], we coupled a random-walk-based model for diffu-
sive transport to the association–dissociation processes at the
sensor surface in order to optimize the sensor design. It was
found in [3] that the number PT of probe-target complexes
satisfies the stochastic ordinary differential equation

dPTt = (raT(P − PTt ) − rdPT)dt

+ √
raT(P − PTt )dB1 − √

rdPTtdB2, (12a)

PT0 = 0, (12b)

where dBi indicates a Wiener process. The initial condition
means that there is no probe-target complex present at the
surface in the beginning. The reaction parameters are taken
from [3]. The simulation was performed for a receptor den-
sity of 3 × 1012 cm−2 and 40 target molecules in the liquid
for a nanowire with 80 nm diameter. The surface was parti-
tioned into three different regions, called edge, middle, and
corner regions as illustrated in Fig. 2. In addition, the average
probe-target concentration at the surface is called the overall
concentration. Table 1 gives the equilibrium values of PT in
these regions and Fig. 3 shows the probability density distri-
butions; these values are used in the numerical experiments.

3 Multi-level Monte–Carlo finite-element
method (MLMC-FEM)

In this section, themulti-levelGalerkinfinite-elementmethod,
whose optimal variant will be developed in Sect. 4, is
described.

Table 1 The expected values
and variances of the probe-target
concentration PT at the
nanowire sensor surface [4]

Region Mean Variance

Edge 1.3089 0.5816

Middle 0.9817 0.4732

Corner 0.6061 0.4743

Overall 1.0180 0.0862

All values are in the unit
1012 cm−2

We partition the domain D into quasi-uniform tetrahedra
and construct a regular mesh τh0 , which is the coarsest one.
Here h0 denotes the maximum diameter of the tetrahedra in
themesh. Then, themesh is regularly refined using a geomet-
ric sequence of maximum diameters. Thus, a nested family
{τh�

}∞�=0 of regular tetrahedra is constructed. We define

h� := max
K∈τh�

{diam(K )}, (13)

where

h� = r−�h0, r > 1, (14)

holds for the �th refined mesh according to construction.
To avoid deteriorating mesh quality during refinement, its

shape regularity of meshes is essential. The regular meshes
are κ-shape regular. This means that there exists a constant
κ ∈ R independent of � such that

hK
ρK

≤ κ ∀K ∈ τh�

holds, where ρK is the radius of the largest ball that can be
inscribed into K ∈ τh�

.
The Hilbert spaces

X := H1
g (D) and X0 := H1

0 (D)

are used as solution and test spaces, where g is the Dirichlet
boundary value. For a mesh τh , we define the finite-element
space Xh�

⊂ X as

Xh�
:= Pk(D, τh�

) := {u ∈ X | u|K ∈ Pk(K ) ∀K ∈ τh�
},

where Pk(K ) := span{xα | |α| ≤ k} is the space of polyno-
mials of total degree k. We use Xh�

:= P1(τh�
) here.

To define the weak formulations and the Galerkin approx-
imations of the model equations (8), we consider the abstract
boundary-value problem

− ∇ · (A∗(x)∇w(x, ω)) + h(x, w(x, ω)) = f (x, ω) ∀x ∈ D \ �,

(15a)

w(x, ω) = wD(x) ∀x ∈ ∂DD, (15b)

n · ∇w(x, ω) = 0 ∀x ∈ ∂DN, (15c)
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Fig. 3 Histograms of the PT-complex density in equilibrium at the corners (top left), in the middle (top right), at the edges (bottom left), and overall
(bottom right). The green lines show a Gaussian distribution with the parameters in Table 1 (Color figure online)

w(0+, y, ω) − w(0−, y, ω) = α(y, ω) ∀x ∈ �, (15d)

A∗(0+)∂xw(0+, y, ω) − A∗(0−)∂xw(0−, y, ω) = γ (y, ω) ∀x ∈ �

(15e)

for all ω ∈ Ω , which includes all the elliptic problems that
constitute the system (8) of equations: (15a) includes (8a)–
(8d) if A∗ is replaced by the permittivity A, and it includes
(8g)–(8h) if A∗ is replaced, respectively, by μne−(�2−V )/UT

and μpe(�1−V )/UT .
We define the Galerkin approximation of the solution of

(15) as follows.

Definition 1 (Galerkin approximation) Let Xh�
⊂ X be the

discrete solution space and let X0h�
⊂ X0 be discrete test

space. The Galerkin approximation of Eq. (15) is the set of
functions wh�

(x, ω) ∈ L2(Ω; Xh�
) that satisfies

B(wh�
, φh�

) = F(φh�
) ∀φh�

∈ L2(Ω; X0h�
), (16)

where B : L2(Ω; Xh�
) × L2(Ω; X0h�

) → R and
F : L2(Ω; X0h�

) → R are defined by

B(wh�
, φh�

) := E

[∫
D
A∗∇wh�

· ∇φh�
dx

]

+E

[∫
D
h

(
wh�

)
φh�

dx

]

and

F(φh�
) := E

[∫
D

f φh�
dx

]
+ E

[∫
�

γφh�
dx

]
.

Equation (15) will be solved later for fixed ω ∈ Ω using
Scharfetter–Gummel iteration for solving (8). The iteration
continues until the condition

max{‖Vk+1 −Vk‖L∞ , ‖uk+1 −uk‖L∞ , ‖vk+1 −vk‖L∞} < δ

(17)
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Fig. 4 Statistical and discretization errors for different mesh sizes. The coefficients α and β behave according to (20)

is satisfied, where δ ∈ R is a given error tolerance, and Vk, uk
and vk are the approximations of the solutions of system (8)
in the kth iteration.

Now the multi-level Monte–Carlo (MLMC) approxima-
tion can be introduced. Instead of calculating the expected
valueE[u] byE[uh] on a constant triangulation τh , the multi-
level Monte–Carlo method calculates the expected value
E[u] using several E[uh�

], � ∈ {0, 1, . . . , L}, calculated
on a nested family {τh�

}∞�=0 with h� = r−�h0. Obviously
h0 > h1 > · · · > hL holds, where h0 denotes the mesh size
of the coarsest level 0 and r > 1 is independent of the level
�.

On each level �, the standard Monte–Carlo estimator is
used to calculate E[uh]. The expected value of the solution
on level L can be written as the telescoping sum

E[uhL ] = E[uh0 ] +
L∑

�=1

E[uh�
− uh�−1], (18)

involving the solutions uh�
calculated using the mesh τh�

.
On each level �, the standard Monte–Carlo estimator uses

M� samples to approximateE[uh�
−uh�−1 ]. Hence the multi-

level Monte–Carlo estimator for E[u] is defined as

EMLMC[u] := ûhL := 1

M0

M0∑
i=1

u(i)
h0

+
L∑

�=1

1

M�

M�∑
i=1

(
u(i)
h�

− u(i)
h�−1

)
,

(19)

where the solutions u(i)
h�

and u(i)
h�−1

correspond to the same
sample ω ∈ Ω with number i , but are calculated on dif-
ferent meshes, namely on τh�

and τh�−1 , respectively. It can
be shown [11, Theorem 5] that if the convergence orders
of the finite-element approximation and of the variance are
assumed to be α and β, respectively, i.e., if the inequalities

‖E[u − uh�
]‖L2(Ω;X) ≤ C1h

α
� ∃C1 ∈ R

+, (20a)

σ 2[uh�
− uh�−1 ] ≤ C0h

β
�−1 ∃C0 ∈ R

+, (20b)

σ 2[uh0 ] ≤ C00 ∃C00 ∈ R
+ (20c)

hold for all � ∈ {0, 1, . . . , L}, then the mean-square error
of the MLMC approximation of the expected value of the
solution of (8) satisfies

‖E[u]−ûhL ‖2L2(Ω;X)
= O(h2αL )+O(M−1

0 )+
L∑

�=1

O(M−1
� )O(hβ

�−1),

(21)

which will be used later in Sect. 4.
The assumptions (20) hold indeed, as the convergence

orders illustrated in Fig. 4 show.Additionally, the coefficients
C0 andC1 are estimated in this figure as well. The coefficient
C00 in (20c) is an upper bound for the variance of the solution
using the coarsest mesh size h0.

4 The optimal multi-level Monte–Carlo
approximation

The multi-level Monte–Carlo approximation in Sect. 3 still
contains several as yet unknown discretization parameters,
namely the number of levels L , the mesh sizes h� on each
level �, and the number M� of samples to be used on each
level �. Here we determine these parameters by solving an
optimization problem: the total computational work is min-
imized for a prescribed total error. It turns out that this
approach reduces the total computational work compared to
the standard Monte–Carlo method by orders of magnitude.
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We start by modeling the computational work. Since the
model equations (8) are a system of equations, the compu-
tational work consists of the sum of the work necessary to
solve each of the three equations, i.e., the Poisson equation
for V and the drift–diffusion equations for u and v. Because
the computational work for each of the two drift–diffusion
equations is the same, the computational work for solving
the system (8) once is given by

W� := WP + 2WD = WP,a + WP,s + 2WD,a + 2WD,s, (22)

where the index P indicates the Poisson equation, the
index D indicates the drift–diffusion equations, the index a
denotes the assembly of the system matrix, and the index s
denotes solving the systemmatrix. Since assembling the sys-
tem matrix and solving the system scale differently, these
steps are modeled by separate terms.

Each of the four parts of the computational work has the
form μkh

−γk
� , k ∈ {1, . . . , 4}, with μk > 0 and γk > 0,

which are multiplied by the number M� of samples at level �.
Hence, the total work W is

W :=
L∑

�=0

M�W�

=
L∑

�=0

M�(W�,P,a + W�,P,s + 2W�,D,a + 2W�,D,s)

=
L∑

�=0

M�(μ1h
−γ1
� + μ2h

−γ2
� + μ3h

−γ3
� + μ4h

−γ4
� ),

(23)

where the exponents are determined by the algorithms
and implementations used for assembling the finite-element
matrix and by the order of the finite-element discretization.
Additionally, the constantsμi > 0 depend on the implemen-
tation.

In order tominimize the computational cost, we determine
the optimal parameters {h�}L�=0 (via the optimal h0 and r ) and
{M�}L�=0 by solving the minimization problem

minimize
M�,h0,r

f (M�, h0, r , L) :=
L∑

�=0

M�W�

subject to g(M�, h0, r , L) := C00

M0
+ C0

L∑
�=1

hβ
�−1

M�

+ (C1h
α
L)2 ≤ ε2,

(24)

where h0 > 0, r > 1, M� ≥ 1, and ε2 is the prescribed total
error, i.e., the sum of the statistical and discretization errors.

In order to calculate the optimal number M� of samples
at level �, we consider the equation

∂

∂M�

( f + ξ2g) = 0, � ∈ {0, . . . , L}, (25)

where ξ2 is the Lagrange multiplier. Equation (25) results in

M� = ξ
√
V�/W�,

where V0 = C00 and V� = C0h
β
�−1. In order to simplify the

optimization problem (24), we define a new variable 0 <

θ < 1 such that the equations

C00

M0
+C0

L∑
�=1

hβ
�−1

M�

= θε2 and (C1h
α
L)2 = (1− θ)ε2

(26)

hold. Since the Lagrange multiplier is ξ = (θε2)−1

∑L
�=0

√
V�W�, and h0 =

(√
1−θε
C1

)1/α
r L due to (26), the

problem (24) is reduced to a simpler, two-dimensional opti-
mization problem for θ and r .

Since the optimization problem is a constrained nonlinear
optimization problem, we use a gradient-based technique,
namely the nonlinear interior-point method, in order to solve
the problemnumerically. Furthermore, the optimal necessary
number of levels is found once the computational cost is
calculated for various levels using the optimal values of M�

and h�. Since the optimal numbers M� of samples at level �
are in general not integers, they are rounded up and replaced
by �M��.

5 Three-dimensional numerical results

Having discussed the optimal numerical approach, numeri-
cal results for two three-dimensional structures are shown in
this section. The two applications are nanowire field-effect
biosensors and FinFETs.

5.1 Nanowire field-effect biosensors

As mentioned in the introduction, a nanowire field-effect
biosensor is a field-effect transistor that is gated by changes
in the surface potential induced by the binding of molecules
[12,19,20]. The geometry of the device is shown in Fig. 1
and the random binding of the molecules at different regions
of the device is illustrated in Fig. 2. The corresponding 3D
meshes for a nanowire sensor 50 nm thick, 60 nm wide,
500 nm long, and containing 15 dopants are depicted in
Fig. 5.
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Fig. 5 The meshes for the nanowire field-effect sensor for � = 0 (left)
and � = 1 (right). The subdomains are depicted with gray (substrate),
golden (nanowire), and green (electrolyte) meshes. The randomly dis-

tributed molecules and the dopants are inside the electrolyte and the
nanowire, respectively (Color figure online)

Table 2 The measured constants in (23)

μ1 γ1 μ2 γ2 μ3 γ3 μ4 γ4

0.611 3.11 0.76 3.09 0.42 3.08 0.35 3.07

As aforementioned, solving the optimization problem (24)
with respect to a given error bound yields h� and M� on
each level �. The optimization problem depends on the con-
stants μk and γk , k ∈ {1, . . . , 4}. They are measured by
running three-dimensional simulations and saving the CPU
time needed for assembling the system matrices and solv-
ing the three elliptic equations that constitute (8). The values
are shown in Table 2 and depend on the implementation and
hardware used. The values shown in the table stem from
simulations using a computer with an Intel Core i5-4430
3.00GHz processor with four cores and 8GB of memory.

If there is only one level (L = 0), then the multi-level
Monte–Carlomethod simplifies to the standardMonte–Carlo
method. A comparison between the optimized Monte–Carlo
and the optimizedmulti-levelMonte–Carlomethods is drawn
in Fig. 6. The effectiveness of the MLMC method is more
pronounced for smaller tolerance levels. At the smallest
error tolerance in this figure, the MLMC method is more
efficient by more than two orders of magnitude. The coef-
ficients and the exponents, i.e., α and β in (20), are shown
in Fig. 4, where C00 = 2.95. The estimated exponents (here
γ ≈ 3.0875) also agree well with the three-dimensional sim-
ulations. The optimal number of samples and the mesh sizes
for the optimized Monte Carlo and multi-level Monte–Carlo
are summarized in Tables 3 and 4, respectively.

The measured constants satisfy the assumptions of the
standard complexity theorem [21], i.e., α ≥ 1

2 min(β, γ ).
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Fig. 6 A comparison of the total computational work necessary in the
MC and MLMC methods as a function of the prescribed total error

Table 3 Optimal parameters for the Monte–Carlo method

ε 0.100 0.050 0.020 0.010 0.005

h 0.918 0.600 0.350 0.231 0.153

M 578 2309 14,431 57,725 230,902

According to this theorem, the computational cost of the
MLMC method is O(ε−2) agreeing with the numerical
results. Furthermore, the total cost of the Monte–Carlo
method is O(ε−3.5) according to the figure, which agrees
with [22].

As already mentioned, only the biological noise (random
movement and random orientation) is taken into account in
the continuum model, whereas the effect of random dopants
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Table 4 Optimal parameters for
the MLMC method

ε h0 r M0 M1 M2 M3 M4 M5 M6

0.100 1.526 1.802 941 149 24 4 – – –

0.050 1.382 2.001 3761 431 49 6 – – –

0.020 1.405 1.967 27,894 3366 405 49 6 – –

0.010 1.608 1.749 146,482 26,249 792 156 27 5 –

0.005 1.608 1.749 584,957 87,555 12,603 1814 296 42 6
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Fig. 7 The expected value of the electrical current as a function of
back-gate voltage for 60 nm width (left) and 100 nm width (right) for
continuum and discrete models. Here, the discrete model points out
the biological noise in addition to the RDF and in continuum model

only the RDF is considered. In the simulation, the results are with the
experimental data [23] with the same main parameters, i.e., tox = 8 nm,
Cdop = 1 × 1016cm−3, VSD = 0.2V, the nanowire thickness of 50 nm
and μp = 100 cm−2 V−1 s−1
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0.6V for both the continuum and the discrete model

is also included in the discrete model. Figure 7 shows the
expected value of the electrical current as a function of differ-
ent gate voltages for two devices that are 60 and 100 nmwide.
The results are compared with experimental data [23]. In the
simulation, the thermal voltage UT is 21mV. In the contin-
uummodelCdop = 1×1016cm−3, the thickness of the oxide
layer is 8 nm, the source-to-drain voltage is VSD = 0.2V, the
salt concentration is 30mM, and themolecule surface charge
is − 0.8 q nm−2.

Very good agreement between the experiments and the
simulations was found for both the discrete and the contin-
uum model. The results show that the discrete model agrees
better with the experiments than the continuum model. This
is probably due to the fact that including the effect of the

random dopants is a better model for the current compared
to just taking the average doping as in the continuum model.

Figure 8 depicts the fluctuation of the current in the dis-
crete model for two doping concentrations, namely Cdop =
1 × 1016cm−3 and Cdop = 1 × 1017cm−3. Here, the effects
of random molecules and random dopants on the current are
taken into account. For the lower doping concentration, the
expected value of the current is E(I ) = 2.17 × 10−13 A
and its standard deviation is σ(I ) = 2.38 × 10−14 A,
while the values are E(I ) = 2.34 × 10−12 A and σ(I ) =
2.90 × 10−12 A for the higher doping concentration. The
simulations show that more dopants increase the variance of
the current. The figure shows that for Cdop = 1× 1016cm−3

approximately 95% of the simulated currents are between
2 × 10−13 and 2.4 × 10−13 A, resulting in a small fluctua-
tion. On the other hand, the results obtained for the higher
doping concentration fluctuate between 1.80 × 10−13 and
1.08 × 10−11 A, indicating a larger variation.

Generally, applying a source-to-drain voltage VSD results
in a low-resistance conducting path between the source and
drain contacts. Figure 9 shows the current for the different
source-to-drain voltages. Here, both models are used and the
back-gate voltage varies between VG = − 1V and VG =
− 2V.

5.2 Fin field-effect transistor (FinFET)

In the second example, we investigate the effect of ran-
dom dopant atoms on the device conductivity in a FinFET.
Since the scaling of conventional MOSFET devices is
limited due to short-channel effects and gate-insulator tun-
neling, FinFETs (fin field-effect transistors) [24], which are
a genuinely three-dimensional structure, have replaced con-
ventional MOSFETs in modern processors. FinFETs are a
type of multi-gate MOSFETs. Due to the surrounding gate,

Fig. 10 The three-dimensional
geometry of the FinFET
investigated here. The dopant
atoms are distributed in the
source and drain regions
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Fig. 11 The three-dimensional meshes for the FinFET in Fig. 10 for levels � = 0 (left) and � = 1 (right). The subdomains are indicated by red for
the substrate, by yellow for the insulator, by black for the channel, by green for the source and drain regions, and blue gate (Color figure online)
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Fig. 12 Histogram of the current in the discrete model with 482 simulations for Vg = 0.1V (left) and Vg = 0.2V (right). The number of dopants
is Ndop = 80

better control over the channel is obtained and therefore less
channel doping is necessary.

We consider a three-gate FinFET structure with a 20 nm
thick and 20 nm high silicon fin. The channel length is 50 nm
with a doping concentration of 1016 cm−3. We assume that
the acceptors and donors are distributed identically and inde-
pendently in source and drain regions. The number of donors
and acceptors is constant. In the continuum version of the
model, a doping concentration of 1019 cm−3 is used for these
regions.

The silicon-on-insulator (SOI) FinFET considered here
and its subdomains are shown in Fig. 10. Corresponding
three-dimensional meshes are shown in Fig. 11. The channel

is surrounded by a 1 nm thick layer of silicon dioxide. The
thermal voltage isUT = 26mV and VSD = 0.1V is applied.

Here we simulate the subthreshold current. In the sub-
threshold regime, the gate voltage is below the threshold
voltage so that no inversion channel is formed. In this regime,
the diffusion component of the current is more pronounced
than the drift component. The number Ndop of dopants and
the doping concentrationCdop are related by Ndop = V ·Cdop

of course, where V is the volume of the subdomain. The
occupation probability follows a Poisson distribution with
the parameter λ = √

Ndop.
In the continuum model, both the doping in the source

and drain regions and the doping in the channel are uni-
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Fig. 13 Histogram of the current in the discrete model with 482 simulations for Vg = 0.1V (left) and Vg = 0.2V (right). The number of dopants
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form. In the discrete model, the random locations of the
dopants in the source and drain regions as well as random-
ness in the number of dopants result in device variations. For
Vg = 0.1V and Vg = 0.2V, these variations are shown in
Figs. 12 and 13, respectively, for Ndop = 20 and Ndop = 80
(number of dopants in the source and drain regions). The
results indicate that in the discrete model, the higher number
of dopants decreases current fluctuation. As an example, for
the lower gate voltage, the simulation for Ndop = 80 yields
σ(I ) = 8.99 × 10−9 A, while the simulation for Ndop = 20
yields σ(I ) = 1.27 × 10−8 A.

Figure 14 depicts the subthreshold current obtained by
both models for different gate voltages varying from Vg =
− 0.1V toVg = 0.4V for three different numbers of dopants,
namely Ndop = 20, Ndop = 40, and Ndop = 80. The results
show that for different gate voltages, the difference between
the higher number of dopants and the continuummodel is not
significant. However, a noticeable discrepancy is obtained
with Ndop = 20.

6 Conclusions

We have developed an efficient three-dimensional multi-
level Monte–Carlo finite-element method for the stochastic
drift–diffusion–Poisson system to simulate randomness and
process variations due to target molecules (in biosensors)
and dopant atoms (in FinFET devices). The most noticeable
advantage of thismethod compared to classicalmethods such
as Monte Carlo is the much reduced computational expense.
An optimization problem is solved for a given tolerance level
to find the optimal parameters M�, h�, and L .
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Fig. 14 The expected value of the current as a function of different gate
voltages calculated using the continuum and discrete models

We studied the effect of random dopant fluctuation as a
concrete example. In the (classical) continuum model, the
doping concentration is considered as a macroscopic quan-
tity and the effect of the dopants is averaged out. In the
discrete model, the dopant atoms have microscopic structure
and the device variation due to the individual dopants was
quantified. We calculated the fluctuation of the current in the
subthreshold regime in a FinFET for different gate voltages
and compared the results with the continuum model.

In another example, namely in nanowire field-effect sen-
sors, we used a fully three-dimensional system of stochastic
PDE, namely the stochastic drift–diffusion–Poisson system,
to model the effects of random DNA oligomers in a liq-
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uid on a semiconductor. We first compared the simulation
results with experimental data, where very good agreement
was found. The results obtained by the discrete model, i.e,
the stochastic PDE, agree better with the experiments than
the (classical, deterministic) continuummodel. The distribu-
tions of the molecules were obtained from a physical model,
namely from a random-walk-based stochasticmethod to sim-
ulate the association–dissociation processes of themolecules
in three specific surface regions of the nanowire.
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