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Abstract

We present an adaptive multilevel Monte Carlo algorithm for solving the stochastic drift–diffusion–Poisson system with
non-zero recombination rate. The a-posteriori error is estimated to enable goal-oriented adaptive mesh refinement for the
spatial dimensions, while the a-priori error is estimated to guarantee linear convergence of the H1 error. In the adaptive mesh
refinement, efficient estimation of the error indicator gives rise to better error control. For the stochastic dimensions, we use
the multilevel Monte Carlo method to solve this system of stochastic partial differential equations. Finally, the advantage of
the technique developed here compared to uniform mesh refinement is discussed using a realistic numerical example.
c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

The stochastic drift–diffusion–Poisson (DDP) system is a general model for charge transport in random
environments. A leading example is the field-effect transistor (FET), where the stochastic coefficients can describe
process variations, noise, and fluctuations in devices as diverse as transistors and sensors. Process variations, noise,
and fluctuations are significantly important especially in devices scaled into the deca-nanometer regime, as random
effects become more important in smaller devices. Among the many sources of noise, random-dopant fluctuations
(RDF) [1–3] are one of the most important. Random-dopant fluctuations stem from the fact that the doping process
in the semiconductors leads to a random number and random position of dopants. Therefore, each impurity atom
influences the charge transport and the mobilities. A schematic diagram is shown in Fig. 1.
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Fig. 1. Schematic diagram of a symmetrical double-gate metal-oxide–semiconductor field-effect transistor (DG-MOSFET) showing its
geometrical parameters and the contacts. The blue circles in the source and drain regions are the randomly distributed impurity atoms.

In this paper we analyze a standard adaptive finite element method of the form SOLVE → ESTIMATE →

MARK → REFINE [4] to discretize the stochastic drift–diffusion–Poisson. In order to do the MARK step we need
to compute the a posteriori error estimate for each element.

A-priori error estimates yield knowledge about convergence and stability of the solvers and information on the
asymptotic behavior of errors for different mesh sizes [5]. A-posteriori error estimates make it possible to control
the mesh on the entire computational domain by using adaptive algorithms, i.e., by focusing computational effort on
the parts of the domain which contribute most to the total error [6]. In adaptive mesh refinement, a-posteriori error
estimators are used to indicate where the error is particularly high, and then more mesh elements are placed in those
locations. Here we estimate the local error for a coupled system of equations. The error estimate indicates which
elements should be refined or coarsened simultaneously for the Poisson equation and the drift-diffusion equations.

The mentioned stochastic problem is computationally very expensive; in order to obtain an acceptable error,
thousands of simulations are necessary. In stochastic PDE, the Monte Carlo (MC) method is one of the most
popular and straightforward numerical techniques. However, the main drawback of the MC method is its well-known
convergence rate. The multilevel Monte Carlo finite-element (MLMC-FE) method [7–9] is an efficient numerical
alternative. In [10], we introduced an optimal MLMC-FE method to model the random effects in a charge-transport
model. In the optimal MLMC-FE method, in each level, we determine mesh sizes hℓ and the number of samples
Mℓ to minimize the computational costs such that the total error (i.e., statistical and discretization error) is less
than a prescribed error tolerance. In [11], the efficiency of the method for three-dimensional simulations of various
nanoscale devices was investigated in detail. Convergence can be improved by using a randomized rank-1 lattice
rule [12,13].

The first analysis of a finite-element method, a one-dimensional one, for solving the (deterministic) DDP system
can be found in [14]. An extension of the analysis to the two-dimensional problem was presented in [15]. In
[16], fixed points of finite-element discretizations were used to approximate the solutions of the steady-state drift–
diffusion system, and the convergence rate in the energy norm was estimated. In [17], the optimal convergence rate
and its stability were shown. However, in all these publications, the recombination rate is zero.

In [18], an adaptive stochastic Galerkin finite-element method for linear elliptic boundary-value problems was
presented. The idea of using an adaptive MLMC method for weak approximations of solutions of stochastic
differential equations was explained in [19]. In [20], an adaptive MLMC algorithm was introduced for PDEs
with stochastic data.

In [10], we showed the effectiveness of using an MLMC method as an alternative to the MC method in the
solving the stochastic DDP system. There the meshes were refined uniformly. The novelty of the present work
is computing an accurate local-error estimator based on goal oriented error estimation for the coupled system of
equations. In order to control the error, only a part of the computational geometry which has a large error must be
refined and therefore, the method is more computationally effective. Randomness in the model problem considered
here stems from the random position of dopants in a transistor, which affect the error and hence the refinement
process. Since MLMC is a variance-reduction method, the faster decay in the variance of the MLMC method leads
to a reduction of the statistical error and therefore the total computational cost. Here the effect of adaptive mesh
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refinement on the reduction of the variance is also taken into account. Finally, the developed numerical technique
can be used for other stochastic problems as well, e.g., [21–26].

The remainder of this manuscript is as follows. In Section 2, we give the system of model equations with
stochastic coefficients and explain its boundary conditions. In Section 3, we formulate a finite element method
for the space discretization of the equation. In Section 4, we present the error estimates in the finite-element
space, namely an a-priori error estimate and an a-posteriori error estimate. In Section 5, we introduce the MLMC
finite-element method for the DDP system and define an optimization problem to minimize the total computational
cost. Then, we present numerical results for a transistor and quantify the random-dopants effect in Section 6. The
adaptive MLMC-FE method is used to approximate the expected value of the solution of the system of equations
with random coefficients. Also, the method is compared with MLMC-FE method with uniform mesh refinement.
Finally, conclusions are drawn in Section 7.

2. The stochastic model problem

The stochastic Poisson equation is used generally for the electrostatic potential

− ∇ · (A(x, ω)∇V (x, ω)) = ρ(x, ω), (1)

on the bounded Lipschitz domain D ⊂ R2. In the equation, V indicates the electrostatic potential, A denotes
the dielectric constant (permittivity), and ρ is the charge concentration. In (1), x ∈ D is the spatial variable,
ω = (ω1, ω2, . . . , ωn) is an n-dimensional random variable defined on the complete probability space (Ω ,A,P)
equipped with A ⊂ 2Ω as the σ -algebra of events, P : A → [0, 1] as a probability measure, the sample space Ω .
The randomness arises from the random distribution of dopant atoms (uniformly distributed) in source and drain
areas (shown in Fig. 1). Also, the coefficient A : D × Ω → R2×2 is a matrix of real-valued functions, and ρ is a
real-valued scalar function. In a semiconductor, the charge concentration is derived by the free electron and hole
densities (i.e., n and p) and the doping concentration C ; the total charge concentration is therefore

ρ = q(p − n + C).

We change the concentrations n and p to the so-called Slotboom variables u and v, which are given by

n(x, ω) =: ni eV (x,ω)/UT u(x, ω), (2a)

p(x, ω) =: ni e−V (x,ω)/UT v(x, ω). (2b)

Here, ni is the intrinsic carrier density of the semiconductor (in the numerical examples, a value of 1.5×1010 cm−3

is used for silicon) and UT indicates the thermal voltage, which is at room temperature is about 26 mV.
A schematic diagram of a sample computational geometry is shown in Fig. 1. The domain is partitioned into

two subdomains, i.e.,

D = DSi ∪ Dox.

The first subdomain DSi consists of silicon, i.e., the channel and the source and drain areas, where the drift–
diffusion–Poisson system models the charge transport. The gate contact is separated from the channel by an
insulating silicon dioxide layer Dox. In Dox, there is no charge transport and therefore we only have the Poisson
equation.

The boundary ∂D of the domain D is separated into ∂DD and ∂DN , which denote the surfaces where the
Dirichlet and Neumann boundary conditions

V |∂DD = VD and n · ∇V |∂DN = 0 (3)

hold, where n is the outward pointing unit normal on the boundary ∂DN . Dirichlet boundary conditions V |∂DD are
applied for the potential at the source, drain, and gate contacts, i.e., V = VS, V = VD, and V = VG.

Neumann boundary conditions are applied on all other boundaries. On the Neumann parts ∂DN of the boundary
the currents and the electric field are assumed to vanish in the normal direction to the surface. This yields the three
Neumann boundary conditions

∂V (x) · n = 0 ∀x ∈ ∂DN ,

Jn(x) · n = 0 ∀x ∈ ∂DN ,

Jp(x) · n = 0 ∀x ∈ ∂DN .
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The stochastic DDP system

−∇ · (A(x, ω)∇V (x, ω)) = q (C(x, ω) + p(x, ω) − n(x, ω)) , (4a)

∇ · Jn(x, ω) = q R(x, ω), (4b)

−∇ · Jp(x, ω) = q R(x, ω), (4c)

Jn(x, ω) = q(Dn∇n(x, ω) − µnn(x, ω)∇V (x, ω)), (4d)

Jp(x, ω) = q(−Dp∇ p(x, ω) − µp p(x, ω)∇V (x, ω)) (4e)

is employed to model self-consistent charge transport, where Jn and Jp are the current densities, µn and µp are the
mobilities, and Dn and Dp are diffusion coefficients, which can be calculated by the Einstein relations Dp = UTµp

and Dn = UTµn .
Furthermore, R is Shockley–Read–Hall recombination rate, which is defined by

RSRH(n, p) :=
np − n2

i

τn(p + ni ) + τp(n + ni )
,

where τn and τp are the lifetimes of the free carriers (absolutely positive). For the purposes of the present work,
any other recombination rate can be used as long as it satisfies modest assumptions [10].

Using the Slotboom variables u and v defined in (2), the DDP system (4) takes the form

−∇ · (A(x)∇V (x, ω)) = q
(
C(x, ω) − ni

(
eV (x,ω)/UT u(x, ω) − e−V (x,ω)/UT v(x, ω)

))
, (5a)

UT ni∇ · (µneV/UT ∇u(x, ω)) = R(x, ω), (5b)

UT ni∇ · (µpe−V/UT ∇v(x, ω)) = R(x, ω) (5c)

with the Shockley–Read–Hall recombination rate

RSRH(x, ω) = ni
u(x, ω)v(x, ω) − 1

τp(eV/UT u(x, ω) + 1) + τn(e−V/UT v(x, ω) + 1)
.

The Dirichlet boundary conditions for the Slotboom variables are

u(x, ω)|∂DD,Si = u D(x) and v(x, ω)|∂DD,Si = vD(x). (6)

Zero Neumann boundary conditions hold on the Neumann part ∂DN of the boundary. The interface conditions

V (0+, y, ω) − V (0−, y, ω) = 0 on Γ ,

A(0+)∂x V (0+, y, ω) − A(0−)∂x V (0−, y, ω) = 0 on Γ

can be used to model the presence of a layer of charge carriers at the surface of a FET after homogenization [27].
Here Γ is the interface or surface between DSi and Dox, and the notation 0+ and 0− denotes the limits from both
sides of the interface Γ located at x = 0. The directions of y are along the interface. The model has been used to
model charge transport [28] in modern nanoscale devices, see, e.g., [29–32].

Finally, for all ω ∈ Ω , we can write the boundary-value problem (BVP)

−∇ · (A(x)∇V (x, ω)) = q
(

C(x, ω) − ni

(
eV (x,ω)/UT u(x, ω) − e−V (x,ω)/UT v(x, ω)

))
in DSi, (7a)

−∇ · (A(x)∇V (x, ω)) = 0 in Dox, (7b)

UT ∇ ·

(
µne

V (x,ω)
UT ∇u (x, ω)

)
=

u (x, ω) v (x, ω)− 1

τp

(
e

V (x,ω)
UT u (x, ω)+ 1

)
+ τn

(
e−

V (x,ω)
UT v (x, ω)+ 1

) in DSi, (7c)

UT ∇ ·

(
µpe−

V (x,ω)
UT ∇v (x, ω)

)
=

u (x, ω) v (x, ω)− 1

τp

(
e

V (x,ω)
UT u (x, ω)+ 1

)
+ τn

(
e−

V (x,ω)
UT v (x, ω)+ 1

) in DSi, (7d)

V (0+, y, ω) − V (0−, y, ω) = 0 on Γ , (7e)

A(0+)∂x V (0+, y, ω) − A(0−)∂x V (0−, y, ω) = 0 on Γ , (7f)

V (x, ω) = VD(x) on ∂DD, (7g)

n · ∇V (x, ω) = 0 on ∂DN , (7h)
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u(x, ω) = u D(x), v(x, ω) = vD(x) on ∂DD,Si, (7i)

n · ∇u(x, ω) = 0, n · ∇v(x, ω) = 0 on ∂DN ,Si. (7j)

In order to state the main result, the coefficients and boundary conditions in the boundary-value problem (7)
have to satisfy the following assumptions.

Assumptions 1.

1. The bounded computational domain D ⊂ R2 has a C2 Dirichlet boundary ∂DD , the Neumann boundary
∂DN consists of C2 segments, and the Lebesgue measure of the Dirichlet boundary ∂DD which is nonzero.
The C2 manifold Γ ⊂ D separates the domain D into two nonempty regions D+ and D−; therefore,
meas(Γ ∩ ∂D) = 0 and Γ ∩ ∂D ⊂ ∂DN hold.

2. The coefficient A(x, ·) is assumed to be a strongly measurable mapping from Ω into L∞(Ω ). Also, the
coefficient A is symmetric, satisfying the ellipticity condition, and bounded w.r.t. position x ∈ D and
elementary events ω ∈ Ω . Moreover, A|D+×Ω ∈ C1(D+

× Ω ,R2×2) and A|D−×Ω ∈ C1(D−
× Ω ,R2×2).

3. The doping concentration Cdop(x, ω) is bounded above and below with the bounds

C := inf
x∈D

Cdop(·, ω) ≤ Cdop(·, ω) ≤ sup
x∈D

Cdop(·, ω) =: C ∀ω ∈ Ω .

4. There is a constant K ≥ 1 which satisfies

1
K

≤ u D(x), vD(x) ≤ K ∀x ∈ ∂DSi,D.

5. The electron and hole mobilities are uniformly bounded functions of x ∈ D and ω ∈ Ω . Therefore, ∀x ∈ D
as well as ∀ω ∈ Ω we have

0 < µ−

n ≤ µn(x, ω) ≤ µ+

n < ∞,

0 < µ−

p ≤ µp(x, ω) ≤ µ+

p < ∞,

where µp, µn ∈ C1(DSi × Ω ,R2×2). Moreover, the inclusions VD ∈ H 1/2(∂D) ∩ L∞(Γ ) and u D, vD ∈

H 1/2(∂DSi) hold.

Remark 1. For all ω ∈ Ω , the matrix A(·, ω) is uniformly elliptic, i.e., there is Â(·, ω) ∈ C1(D,R2×2) such that
A(·, ω) = Â(·, ω) Â(·, ω).

3. Formulation of the finite element method

This section is devoted to present a finite element method for solving (7) and separated into two subsections. In
the first one, we obtain a variational formulation and provide some results regarding the existence and uniqueness
of the weak solutions. In the second subsection, the finite element discretization based on the mentioned variational
formulation is presented.

3.1. The random variable dependent weak formulation

Assume D ⊂ R2 satisfies Assumptions 1. To present the variational formulation of Eq. (7), we consider the
Hilbert space L2 (D) equipped with the inner product

(u, v)D :=

∫
D

u(x)v(x)dx ∀u, v ∈ L2(D)

and hence the norm

∥u∥D =

(∫
D

u(x)2dx
) 1

2
∀u ∈ L2(D).
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Also, we denote the Hilbert space equipped with the inner product

(u, v)k,D :=

∑
0≤|m|≤k

(∫
D

Dmu(x) Dmv(x)dx
)

and the norm

∥u∥Hk (D) :=

⎛⎝∑
|α|≤k

∥Dαu∥
2
L2(D)

⎞⎠ 1
2

by H k(D).
Moreover, we define

X1 := {V ∈ H 1(D) | V |∂DD = VD},

X2 := {u ∈ H 1(DSi ) | u|∂DD,Si = uD},

X3 := {v ∈ H 1(DSi ) | v|∂DD,Si = vD}.

The random variable dependent weak formulation of (7a)–(7d), i.e., the Poisson equation on D and the
drift-diffusion equations for electrons and holes on DSi for a fixed random variable ω ∈ Ω can be written as(

Â∇V (ω), Â∇ϕ1

)
DSi

= (qC(ω), ϕ1)DSi
−

(
qni e

V (ω)
UT u(ω) − qni e

−
V (ω)
UT v(ω), ϕ1

)
DSi

∀ϕ1 ∈ X1, (8a)(
Â∇V (ω), Â∇ϕ1

)
Dox

= 0 ∀ϕ1 ∈ X1, (8b)

−

(
UTµne

V (ω)
UT ∇u (ω) ,∇ϕ2

)
DSi

=

⎛⎜⎜⎝ u(ω)v(ω) − 1

τp

(
e

V (ω)
UT u(ω) + 1

)
+ τn

(
e−

V (ω)
UT v(ω) + 1

) , ϕ2

⎞⎟⎟⎠
DSi

∀ϕ2 ∈ X2, (8c)

−

(
UTµpe−

V (ω)
UT ∇v (ω) ,∇ϕ3

)
DSi

=

⎛⎜⎜⎝ u(ω)v(ω) − 1

τp

(
e

V (ω)
UT u(ω) + 1

)
+ τn

(
e−

V (ω)
UT v(ω) + 1

) , ϕ3

⎞⎟⎟⎠
DSi

∀ϕ3 ∈ X3. (8d)

We mention the following lemma to state existence and uniqueness of the continuous solution.

Lemma 1 ([10,27]). Considering Assumptions 1, for VD ∈ H 1/2(∂D) and u D, vD ∈ H 1/2(∂DSi ), there exists a
unique random variable-dependent weak solution

V (·, ω) ∈ H 1(D \Γ ) ∩ L∞(D \Γ ), u(·, ω) ∈ H 1(DSi) ∩ L∞(DSi), v(·, ω) ∈ H 1(DSi) ∩ L∞(DSi)

for Eq. (8)

3.2. The random variable dependent finite element formulation

Assume D is triangulated by a regular (in the sense of Ciarlet), locally quasi-uniform mesh Tℓ with mesh width
hℓ. Also, we assume that the mesh is γ -shape regular in the sense that diam(T ) ≤ γ |T |

1/2 for all T ∈ Tℓ. Let
P1(T ) be the space of first degree polynomials on T ∈ Tℓ. Then, we define

X i,ℓ := {u ∈ X i : u|T ∈ P1(T ) ∀T ∈ Tℓ} ∀i ∈ {1, 2, 3}. (9)

Hence, based on the weak formulation (8), we arrive at the random variable dependent Galerkin discretization of
finding (Vℓ(·, ω), uℓ(·, ω), vℓ(·, ω)) ∈ (X1,ℓ, X2,ℓ, X3,ℓ) such that(

Â∇Vℓ(ω), Â∇ψ1

)
DSi

= (qC(ω), ψ1)DSi
−

(
qni e

Vℓ
UT uℓ(ω) − qni e

−
Vℓ(ω)
UT vℓ(ω), ψ1

)
DSi

∀ψ1 ∈ X1,l , (10a)(
Â∇Vℓ(ω), Â∇ψ1

)
Dox

= 0 ∀ψ1 ∈ X1,l , (10b)
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−

(
UTµne

Vℓ(ω)
UT ∇uℓ(ω),∇ψ2

)
DSi

=

⎛⎜⎜⎝ uℓ(ω)vℓ(ω) − 1

τp

(
e

Vℓ(ω)
UT uℓ(ω) + 1

)
+ τn

(
e−

Vℓ(ω)
UT vℓ(ω) + 1

) , ψ2

⎞⎟⎟⎠
DSi

∀ψ2 ∈ X2,ℓ, (10c)

−

(
UTµpe−

Vℓ(ω)
UT ∇vℓ(ω),∇ψ3

)
DSi

=

⎛⎜⎜⎝ uℓ(ω)vℓ(ω) − 1

τp

(
e

Vℓ(ω)
UT uℓ(ω) + 1

)
+ τn

(
e−

Vℓ(ω)
UT vℓ(ω) + 1

) , ψ3

⎞⎟⎟⎠
DSi

∀ψ3 ∈ X3,ℓ. (10d)

The existence and uniqueness of a FEM formulation of (10) is shown in [33].

4. A priori and a posteriori error estimation

In this section, we derive both a-priori and a-posteriori error estimates. The main feature of an a-priori
error estimate is providing knowledge about the asymptotic behavior of the discretization error. Considering an
a-posteriori error estimator, an adaptive mesh-refinement process consists of the following steps:

1. Define an initial mesh Tℓ. Let ℓ = 0.
2. Solve the discrete problem (10) on T0.
3. For each element T ∈ Tℓ, obtain the computed error estimate.
4. If the computed global error is sufficiently small, then stop. Otherwise, determine which elements have to

be refined and obtain the next mesh ℓ+ 1 and return to the second step (2).

For the sake of simplicity, from here we use h instead of hℓ to denote the mesh width.

Theorem 2 (A-priori Error Estimate). Let (V (ω), u(ω), v(ω)) ∈
(
H 2(D \ Γ ) ∩ L∞(D \ Γ )

)
×(

H 2(DSi) ∩ L∞(DSi)
)2 be the solution of (8) and (Vℓ(ω), uℓ(ω), vℓ(ω)) ∈ X1,ℓ × X2,ℓ × X3,ℓ be the solution of

(10). Then, there exists a constant c ∈ R+ depending on the doping concentration as well as the shape regularity
of the mesh such that the inequality

∥∇(V (ω) − Vℓ(ω))∥2
L2(D) + ∥∇(u(ω) − uℓ(ω))∥2

L2(DSi)
+ ∥∇(v(ω) − vℓ(ω))∥2

L2(DSi)

≤ ch2
(
∥u(ω)∥2

H2(DSi)
+ ∥v(ω)∥2

H2(DSi)
+ ∥V (ω)∥2

H2(D)

)
(11)

holds for a fixed random variable ω ∈ Ω .

Proof. For the sake of simplicity, the proof is done in four steps.

Step 1: In this step, we provide four equations containing the error terms. Let

e1,ℓ(ω) := Vℓ(ω) − Π1,ℓV (ω),
e2,ℓ(ω) := uℓ(ω) − Π2,ℓu(ω),
e3,ℓ(ω) := vℓ(ω) − Π2,ℓv(ω),

where Π1,ℓ is the L2 projector of L2(D) onto X1,ℓ and Πi,ℓ projects L2(DSi ) onto X i,ℓ for i = 2, 3. To simplify the
notations, we drop the random variable ω from the arguments of all functions in the following.

Substituting ϕ1 = e1,ℓ into (8a) and ψ1 = e1,ℓ into (10a) as well as subtracting these two equations, we have the
following error equation(

Â∇e1,ℓ, Â∇e1,ℓ

)
DSi

= qni

((
e
Π1,ℓV

UT Π2,ℓu − e
Vℓ
UT uℓ

)
−

(
e−

Π1,ℓV
UT Π3,ℓv − e−

Vℓ
UT vℓ

)
, e1,ℓ

)
DSi

+ qni

((
e−

Π1,ℓV
UT Π3,ℓv − e−

V
UT v

)
−

(
e
Π1,ℓV

UT Π2,ℓu − e
V

UT u
)
, e1,ℓ

)
DSi

+

(
Â∇

(
V − Π1,ℓV

)
, Â∇e1,ℓ

)
DSi
. (12)

Substituting ϕ1 = e1,ℓ into (8b) and ψ1 = e1,ℓ into (10b) as well as subtracting these two equations results in(
Â∇e1,ℓ, Â∇e1,ℓ

)
Dox

=

(
Â∇

(
V − Π1,ℓV

)
, Â∇e1,ℓ

)
Dox
. (13)
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Furthermore, substituting ϕ2 = e2,ℓ into (8c) and ψ2 = e2,ℓ into (10c) and subtracting these two equations leads to

(
UTµne

Vℓ
UT ∇uℓ − e

Π1,ℓV
UT ∇Π2,ℓu,∇e2,ℓ

)
DSi

=

⎛⎜⎜⎝ 1 − uℓvℓ

τp

(
e

Vℓ
UT uℓ + 1

)
+ τn

(
e−

Vℓ
UT vℓ + 1

)

−
1 − Π2,ℓu Π3,ℓv

τp

(
e
Π1,ℓV

UT Π2,ℓu + 1
)

+ τn

(
e−

Π1,ℓV
UT Π3,ℓv + 1

) , e2,ℓ

⎞⎟⎟⎠
DSi

+

⎛⎜⎜⎝ uv − 1

τp

(
e

V
UT u + 1

)
+ τn

(
e−

V
UT v + 1

)

−
Π2,hu Π3,ℓv − 1

τp

(
e
Π1,ℓV

UT Π2,ℓu + 1
)

+ τn

(
e−

Π1,ℓV
UT Π3,ℓv + 1

) , e2,ℓ

⎞⎟⎟⎠
DSi

+

(
e

V
UT ∇u − e

Π1,ℓV
UT ∇Π2,ℓu, e2,h

)
DSi

.

Again, substituting ϕ3 = e3,ℓ into (8d) and ψ3 = e3,ℓ into (10d) and subtracting these two equations yields

(
UTµpe−

Vℓ
UT ∇vℓ − e−

Π1,ℓV
UT ∇Π3,ℓv,∇e3,ℓ

)
DSi

=

⎛⎜⎜⎝ 1 − uℓvℓ

τp

(
e

Vℓ
UT uℓ + 1

)
+ τn

(
e−

Vℓ
UT vℓ + 1

)

−
1 − Π2,ℓu Π3,ℓv

τp

(
e
Π1,ℓV

UT Π2,ℓu + 1
)

+ τn

(
e−

Π1,ℓV
UT Π3,ℓv + 1

) , e3,ℓ

⎞⎟⎟⎠
DSi

+

⎛⎜⎜⎝ uv − 1

τp

(
e

V
UT u + 1

)
+ τn

(
e−

V
UT v + 1

)

−
Π2,ℓu Π3,hv − 1

τp

(
e
Π1,ℓV

UT Π2,ℓu + 1
)

+ τn

(
e−

Π1,ℓV
UT Π3,ℓv + 1

) , e3,ℓ

⎞⎟⎟⎠
DSi

+

(
e−

V
UT ∇v − e−

Π1,ℓV
UT ∇Π3,ℓv, e2,ℓ

)
DSi

.

Step 2: In this step, we simplify some terms of the error equations from the previous step. For this purpose, we
consider the following notations

L1(u, v, w) := e
u

UT (v − w), (14)

L2(u, v, w, z) :=

(
e

u
UT − e

v
UT

)
(w − z), (15)

L3(u, v, w) :=

(
e

u
UT − e

v
UT

)
w. (16)
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Then, using the notations from (14)–(16), we can write

e
Vℓ
UT ∇uℓ − e

Π1,ℓV
UT ∇Π2,ℓu =L1(V,∇uℓ,∇Π2,ℓu) + L2(Vℓ,Π1,ℓV,∇uℓ,∇Π2,ℓu)

+ L1(Π1,ℓV,∇uℓ,∇Π2,ℓu) + L3(Π1,ℓV, Vℓ,∇Π2,ℓu), (17)

and

e
−Vℓ
UT ∇vℓ − e

−Π1,ℓV
UT ∇Π3,ℓv =L1(−V,∇vℓ,∇Π3,ℓv) + L2(−Vℓ,−Π1,ℓV,∇vℓ,∇Π3,ℓv)

+ L1(−Π1,ℓV,∇vℓ,∇Π3,ℓv) + L3(−Π1,ℓV,−Vℓ,∇Π3,ℓv). (18)

Also, it can be easily seen that

e
V

UT u − e
Π1,ℓV

UT Π2,ℓu = e
Π1,ℓV

UT (u − Π2,ℓu) + (e
V

UT − e
Π1,ℓV

UT )u, (19)

and

e
−V
UT v − e

−Π1,ℓV
UT Π3,ℓv = e

−Π1,ℓV
UT (v − Π3,ℓv) + (e

−V
UT − e

−Π1,ℓV
UT )v. (20)

Moreover, for the sake of simplicity we then define

F (u, v, w) :=
1 − vw

τp

(
e

u
UT v + 1

)
+ τn

(
e−

u
UT w + 1

) .
Substituting (17)–(19) into (12)–(13), together with the above notation we infer that Â∇e1,ℓ

2

L2(D)
+
(
UTµn L1(V,∇uℓ,∇Π2,ℓu),∇e2,ℓ

)
DSi

+
(
UTµp L1(V,∇vℓ,∇Π3,ℓv),∇e3,ℓ

)
DSi

+
(
µTµn L3(Π1,ℓV,∇uℓ,∇Π2,ℓu),∇e2,h

)
DSi

+
(
µTµp L3(−Π1,ℓV,∇vℓ,∇Π3,ℓv),∇e3,ℓ

)
DSi

=qni

((
e

Π1,ℓV
UT Π2,ℓu − e

Vℓ
UT uℓ

)
−

(
e−

Π1,ℓV
UT Π3,ℓv − e−

Vℓ
UT vℓ

)
, e1,ℓ

)
DSi

+ qni

((
e−

Π1,ℓV
UT Π3,ℓv − e−

V
UT v

)
−

(
e

Π1,ℓV
UT Π2,ℓu − e

V
UT u

)
, e1,ℓ

)
DSi

+

(
Â∇(V − Π1,ℓV ), Â∇e1,ℓ

)
DSi

+
(
F(Vℓ, uℓ, vℓ) − F(Π1,ℓV,Π2,ℓu,Π2,ℓv), e2,ℓ

)
DSi

+
(
F(V, u, v) − F(Π1,ℓV,Π2,ℓu,Π2,ℓv), e2,ℓ

)
DSi

+
(
F(Vℓ, uℓ, vℓ) − F(Π1,ℓV,Π2,ℓu,Π2,ℓv), e3,ℓ

)
DSi

+
(
F(V, u, v) − F(Π1,ℓV,Π2,ℓu,Π2,ℓv), e3,ℓ

)
DSi

+

(
e

Π1,ℓV
UT ∇Π2,ℓu − e

V
UT ∇u,∇e2,ℓ

)
DSi

+

(
e

−Π1,ℓV
UT ∇Π2,ℓv − e−

V
UT ∇v,∇e3,ℓ

)
DSi

−
{(
µTµn L2(Vℓ,Π1,ℓV,∇uℓ,∇Π2,ℓu)

+L1(Π1,ℓV,∇uℓ,∇Π2,ℓu),∇e2,ℓ
)

DSi

}
−

{(
µTµp L2(−Vℓ,−Π1,ℓV,∇vℓ,∇Π3,ℓv) + L1(−Π1,ℓV,∇vℓ,∇Π3,ℓv),∇e3,ℓ

)
DSi

}
. (21)

Step 3: In this step, we strive to find an upper bound for the terms given on the right hand side of (21).
We denote the functional M1 : X1,ℓ × X1,ℓ × X3,ℓ → R by

M1(Π1,ℓV, Vh)(e3,ℓ) :=
(
F(Π1,ℓV,Π2,ℓu,Π3,ℓv) − F(Vℓ, uℓ, vℓ), e3,ℓ

)
DSi
.

Moreover, we define

θ1 := θ Vℓ + (1 − θ )Π1,ℓV = θ e1,ℓ + e1,ℓ − Vℓ = (1 + θ ) e1,ℓ − Vℓ,

where 0 < θ < 1. Using the Taylor expansion for the functional M1 over Π1,ℓV leads to

M1(Π1,ℓV, Vℓ)(e3,ℓ) = M1(Π1,ℓV,Π1,ℓV )(e3,ℓ) +

∫ 1

0
M ′

1

(
Π1,ℓV, θ1

)
(e3,ℓ) d θ. (22)
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Since the F is differentiable, considering the directional derivative of M1 in the direction of projection of V leads
to

M ′

1(Π1,ℓV, θ1)(e3,ℓ) = lim
r→0

M1(Π1,ℓV, θ1 + r Π1,ℓV )(e3,ℓ) − M1(Π1,ℓV, θ1)(e3,ℓ)
r

≤ lim
r→0

(
F(Π Vℓ,Π2,ℓu,Π3,ℓv) − F(θ1 + rΠ1,ℓV, uℓ, vℓ), e3,ℓ

)
DSi

r

− lim
r→0

(
F(Π1,ℓV,Π2,ℓu,Π3,ℓv) − F(θ1, uℓ, vℓ), e3,ℓ

)
DSi

r
≤ c(θ1) |(e1,ℓ, e3,ℓ)DSi |. (23)

Here, we should note that F is Lipschitz continuous (see Eq. (3.13) of [33]) and the constant c(θ1) is independent
of the mesh width. Considering (22) and (23), we conclude that⏐⏐M1(Π1,ℓV, Vℓ)(e3,ℓ)

⏐⏐ ≤

⏐⏐⏐(F(Π1,ℓV,Π2,ℓu,Π2,ℓv) − F(Π1,ℓV, uℓ, vℓ), e3,ℓ
)

DSi

⏐⏐⏐
+

⏐⏐⏐⏐∫ 1

0
M ′

1(Π1,ℓV, θ1)(e3,ℓ) dθ
⏐⏐⏐⏐ .

Therefore, Eq. (23) and the triangle inequality give rise to⏐⏐M1(Π1,ℓV, Vℓ)(e3,ℓ)
⏐⏐ ≲ ⏐⏐(F(Π1,ℓV,Π2,ℓu,Π1,ℓV ) − F(Π1,ℓV, uℓ, vℓ), e3,ℓ)DSi

⏐⏐+ ⏐⏐(e2,ℓ, e3,ℓ)DSi

⏐⏐ . (24)

In the next step, we define the functional

M2(Π2,ℓu, uℓ)(e3,ℓ) :=
(
F(Π1,ℓV,Π2,ℓu,Π3,ℓv) − F(Π1,ℓV, uℓ, vℓ), e3,ℓ

)
DSi
.

Similarly, we define the variable

θ2 := (1 + θ )e1,ℓ − uℓ,

where 0 < θ < 1. Taylor expansion of M2 over Π2,ℓu shows that

M2(Π2,ℓu, uℓ)(e3,ℓ) = M2(Π2,ℓu,Π2,ℓu) (e3,ℓ) +

∫ 1

0
M ′

2

(
Π2,ℓu, θ2

)
(e3,ℓ) d θ. (25)

Again, since the function f is differentiable, the directional derivative of M2 is given by

M ′

2(Π2,ℓu, θ2)(e3,ℓ) = lim
r→0

M2(Π2,ℓu, θ2 + r Π2,ℓu)(e3,ℓ) − M2(Π2,ℓu, θ2)(e3,ℓ)
r

= lim
r→0

(
F(Π Vℓ,Π2,ℓu,Π3,ℓv) − F(Vℓ, θ2 + rΠ2,ℓu, vℓ), e3,ℓ

)
DSi

r

− lim
r→0

(
F(Π1,ℓV,Π2,ℓu,Π3,ℓv) − F(Vℓ, θ2, vℓ), e3,ℓ

)
DSi

r
≤ c(θ2) |(e1,ℓ, e3,ℓ)DSi |, (26)

where again the constant c(θ2) is independent of h. Therefore, we have⏐⏐M2(Π2,ℓu, uℓ)(e3,ℓ)
⏐⏐ ≤

⏐⏐⏐(F(Π1,ℓV,Π2,ℓu,Π3,ℓv) − F(Π1,ℓV, uℓ, vℓ), e3,ℓ
)

DSi

⏐⏐⏐+⏐⏐⏐⏐∫ 1

0
M ′

2(Π2,ℓu, θ2)(e3,ℓ) dθ
⏐⏐⏐⏐ ,

and applying the triangle inequality to (25) results in⏐⏐M2(Π2,ℓu, uℓ)(e3,ℓ)
⏐⏐ ≲ ⏐⏐⏐(F(Π1,ℓV,Π2,ℓu,Π3,ℓv) − F(Π1,ℓV, uℓ, vℓ), e3,ℓ

)
DSi

⏐⏐⏐+ ⏐⏐(e1,ℓ, e3,ℓ)DSi

⏐⏐ . (27)

Now using the triangle inequality and applying the approximation and the stability properties of Π1,ℓ, Π2,ℓ, and
Π3,ℓ, we have

|
(
L2(Vℓ,Π1,ℓV,∇uℓ,∇Π2,ℓu) + L1(Π1,ℓV,∇uℓ,∇Π2,ℓu),∇e2,ℓ

)
DSi

|

≤
(
∥e1,ℓ∥L2(DSi)∥∇e2,ℓ∥L2(DSi) + ∥e1,ℓ∥L2(DSi)∥∇e3,ℓ∥L2(DSi)

)
∥∇e2,ℓ∥L2(DSi)
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as well as

|
(
L2(−Vℓ,−Π1,ℓV,∇vℓ,∇Π3,ℓv) + L1(−Π1,ℓV,∇vℓ,∇Π3,ℓv),∇e3,ℓ

)
DSi

|

≤
(
∥e1,ℓ∥L2(DSi)∥∇e3,ℓ∥L2(DSi) + ∥e1,ℓ∥L2(DSi)∥∇e3,ℓ∥L2(DSi)

)
∥∇e3,ℓ∥L2(DSi)

and

|
(
L3(Π1,ℓV, Vℓ,∇Π2,ℓu),∇e2,h

)
DSi

+
(
L3(−Π1,ℓV,−Vℓ,∇Π3,ℓv),∇e3,ℓ

)
DSi

| ≲
(
∥∇e2,h∥L2(DSi)∥∇Π2,ℓu∥L2(DSi)

+∥∇e3,h∥L2(DSi)∥∇Π2,ℓv∥L2(DSi)
)
∥Vℓ − Π1,ℓV ∥L2(DSi)

≲
(
∥∇e2,h∥L2(DSi)∥∇u∥L2(DSi)

+∥∇e3,h∥L2(DSi)∥∇v∥L2(DSi)
)
∥Vℓ − Π1,ℓV ∥L2(DSi).

Moreover, using the approximation and stability properties of Πi,ℓu, i=1,2,3, we can write

∥( Â∇(V − Π1,ℓV ), Â∇e1,ℓ)∥L2(DSi) ≲ h∥∇e1,ℓ∥L2(DSi)∥V ∥H2(DSi), (28)

⏐⏐⏐⏐⏐
(

e−
Π1,ℓV

UT Π3,ℓv − e−
V

UT v, e1,ℓ

)
DSi

⏐⏐⏐⏐⏐ ≲ ∥Π1,ℓV − V ∥L2(DSi)∥e1,ℓ∥L2(DSi)

+ ∥Π3,ℓv − v∥L2(DSi)∥e1,ℓ∥L2(DSi)

≲ h∥V ∥H1(DSi)∥e1,ℓ∥L2(DSi)

+ h∥v∥H1(DSi)∥e1,ℓ∥L2(DSi). (29)⏐⏐⏐⏐⏐
(

e−
Π1,ℓV

UT Π3,ℓv − e−
Vℓ
UT vℓ, e1,ℓ

)
DSi

⏐⏐⏐⏐⏐ ≲ ∥Π1,ℓV − Vℓ∥L2(DSi)∥e1,ℓ∥L2(DSi)

+ ∥Π3,ℓv − vℓ∥L2(DSi)∥e1,ℓ∥L2(DSi)

≲ h∥V ∥H2(DSi)∥e1,ℓ∥L2(DSi), (30)⏐⏐⏐⏐⏐
(

e
−Π1,ℓV

UT ∇Π3,ℓv − e
−V
UT ∇v,∇e3,ℓ

)
DSi

⏐⏐⏐⏐⏐ ≲ ∥Π1,ℓV − V ∥L2(DSi)∥∇e3,ℓ∥L2(DSi)

+ ∥∇(Π3,ℓv − v)∥L2(DSi)∥∇e3,ℓ∥L2(DSi)

≲ h∥V ∥H2(DSi)∥∇e3,ℓ∥L2(DSi)

+ h∥v∥H2(DSi)∥∇e3,ℓ∥L2(DSi), (31)

Also, we can get the similar results for

⏐⏐⏐⏐⏐
(

e
Π1,ℓV

UT Π2,ℓu − e
V

UT u, e1,ℓ

)
DSi

⏐⏐⏐⏐⏐,
⏐⏐⏐⏐⏐
(

e
Π1,ℓV

UT ∇Π2,ℓu − e
V

UT ∇u,∇e2,ℓ

)
DSi

⏐⏐⏐⏐⏐ as

well as

⏐⏐⏐⏐⏐
(

e
Π1,ℓV

UT Π2,ℓu − e
Vℓ
UT uℓ, e1,ℓ

)
DSi

⏐⏐⏐⏐⏐.
Step 4: Combination of the above arguments gives us

∥ Â ∇e1,ℓ∥
2
L2(D) + ∥∇e2,ℓ∥

2
L2(DSi)

+ ∥∇e3,ℓ∥
2
L2(DSi)

≲ h2
(
∥V ∥

2
H2(DSi)

+ ∥u∥
2
H2(DSi)

+ ∥v∥2
H2(DSi)

)
.

Finally, using the triangle inequality yields the desired results. □

In the next step, we use a residual based a-posteriori error estimation technique to estimate the local error ηT

on each finite element T ∈ Tℓ. The error indicator will serve as the foundation for a refinement strategy in order
to control and minimize the errors in the Poisson equation (7a)–(7b) and in the continuity equations (7c)–(7d).

Theorem 3 (A-posteriori Error Estimate). For ω ∈ Ω let (V (ω), u(ω), v(ω)) ∈
(
H 1(D \ Γ ) ∩ L∞(D \ Γ )

)
×(

H 1(DSi) ∩ L∞(DSi)
)2 be the solution of (8) and (Vℓ(ω), uℓ(ω), vℓ(ω)) ∈ X1,ℓ × X2,ℓ × X3,ℓ be the solution of

(10). Then, for sufficiently small h, there exist constants ci , i ∈ {1, . . . , 6}, depending on the doping concentration
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as well as the shape regularity of the mesh such that

∥∇ (Vℓ − V ) (ω)∥2
L2(D) + ∥∇ (uℓ − u) (ω)∥2

L2(DSi)
+ ∥∇ (vℓ − v) (ω)∥2

L2(DSi)
≤ c1

∑
ζ∈Tℓ

h2
ζ ∥r1(ω)∥2

ζ + c2

∑
ζ∈T Si

ℓ

h2
ζ ∥r2(ω)∥2

ζ

+ c3

∑
ζ∈T Si

ℓ

h2
ζ ∥r3(ω)∥2

ζ + c4

∑
γ∈∂Tℓ

⏐⏐⏐⏐⏐
[

Â
∂Vℓ
∂ν

(ω)
]
γ

⏐⏐⏐⏐⏐
2

h2
γ

+ c5

∑
γ∈∂T Si

ℓ

⏐⏐⏐⏐⏐
[

UTµn
∂uℓ
∂ν

(ω)
]
γ

⏐⏐⏐⏐⏐
2

h2
γ + c6

∑
γ∈∂T Si

ℓ

⏐⏐⏐⏐⏐
[

UTµp
∂vℓ

∂ν
(ω)
]
γ

⏐⏐⏐⏐⏐
2

h2
γ

(32)

holds for a fixed event ω ∈ Ω where T Si
ℓ := Tℓ ∩ DSi and

r1(ω) := −∇ · (A∇Vℓ(ω))− qC(ω) + qni

(
e

Vℓ(ω)
UT uℓ(ω) − e−

Vℓ(ω)
UT vℓ(ω)

)
,

r2(ω) := UT ∇ ·

(
µne

Vℓ(ω)
UT ∇uℓ(ω)

)
−

uℓ(ω)vℓ(ω) − 1

τp

(
e

Vℓ(ω)
UT uℓ(ω) + 1

)
+ τn

(
e−

Vℓ(ω)
UT vℓ(ω) + 1

) ,
r3(ω) := UT ∇ ·

(
µpe−

Vℓ(ω)
UT ∇vℓ(ω)

)
−

uℓ(ω)vℓ(ω) − 1

τp

(
e

Vℓ(ω)
UT uℓ(ω) + 1

)
+ τn

(
e−

Vℓ(ω)
UT vℓ(ω) + 1

) .
Here ζ denotes the area of an element in Tℓ or T Si

ℓ , γ denotes the boundary of the element, and the brackets [·]
indicate the jump at the element boundary.

Proof. In the following, the dependence of the solutions on the random variable ω is not indicated in order to
simplify notation. We first define

ε1,ℓ := V − Vℓ, ε2,ℓ := u − uℓ, ε3,ℓ := v − vℓ.

Using the test functions ϕ1 ∈ X1, ϕ2 ∈ X2, and ϕ3 ∈ X3, the weak formulation (8) yields(
Â∇ε1,ℓ, Â∇ϕ1

)
DSi

= (qC, ϕ1)DSi
−

(
qni e

V
UT u − qni e

Vℓ
UT uℓ, ϕ1

)
DSi

+

(
qni e

−
V

UT v − qni e
−

Vℓ
UT vℓ, ϕ1

)
DSi

−

(
qni e

Vℓ
UT uℓ − qni e

−
Vℓ
UT vℓ, ϕ1

)
DSi

−

(
Â∇Vh, Â∇ϕ1

)
DSi
,

(33a)(
Â∇ε1,ℓ, Â∇ϕ1

)
Dox

= −

(
Â∇Vℓ, Â∇ϕ1

)
Dox
, (33b)(

UTµne
V

UT ∇u − UTµne
Vℓ
UT ∇uℓ,∇ϕ2

)
DSi

= −

(
UTµne

Vℓ
UT ∇uℓ,∇ϕ2

)
DSi

−

⎛⎜⎜⎝ uv − 1

τp

(
e

V
UT u + 1

)
+ τn

(
e−

V
UT v + 1

)

−
uℓvℓ − 1

τp

(
e

Vℓ
UT uℓ + 1

)
+ τn

(
e−

Vℓ
UT vℓ + 1

) , ϕ2

⎞⎟⎟⎠
DSi
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−

⎛⎜⎜⎝ uℓvℓ − 1

τp

(
e

Vℓ
UT uℓ + 1

)
+ τn

(
e−

Vℓ
UT vℓ + 1

) , ϕ2

⎞⎟⎟⎠
DSi

, (33c)

(
UTµpe

−V
UT ∇v − UTµpe

−Vℓ
UT ∇vℓ,∇ϕ3

)
DSi

= −

(
UTµpe

−Vℓ
UT ∇vℓ,∇ϕ3

)
DSi

−

⎛⎜⎜⎝ uv − 1

τp

(
e

V
UT u + 1

)
+ τn

(
e−

V
UT v + 1

)

−
uℓvℓ − 1

τp

(
e

Vℓ
UT uℓ + 1

)
+ τn

(
e−

Vℓ
UT vℓ + 1

) , ϕ3

⎞⎟⎟⎠
DSi

−

⎛⎜⎜⎝ uℓvℓ − 1

τp

(
e

Vℓ
UT uℓ + 1

)
+ τn

(
e−

Vℓ
UT vℓ + 1

) , ϕ3

⎞⎟⎟⎠
DSi

. (33d)

Let Ii,ℓ be the projection operator on X i,ℓ defined in Theorem 4.8.7 of [34].
Next we substitute ψ1 := I1,ℓϕ1 into (10a) and (10b), ψ2 := I2,ℓϕ2 into (10c), and ψ3 := I3,ℓϕ3 into (10d), and

sum up the equations. Then we subtract them from (33a)–(33d), which leads to(
Â∇ε1,ℓ, Â∇ϕ1

)
L2(D)

+

(
UTµne

V
UT ∇u − UTµne

Vℓ
UT ∇uℓ,∇ϕ2

)
DSi

−

(
UTµpe−

V
UT ∇v − UTµpe−

Vℓ
UT ∇vℓ,∇ϕ3

)
DSi

+

(
qni e

V
UT u − qni e

Vℓ
UT uℓ, ϕ1

)
DSi

+

(
qni e

−
V

UT v − qni e
−

Vℓ
UT vℓ, ϕ1

)
DSi

=
(
qC, ϕ1 − I1,ℓϕ1

)
DSi

−

(
qni e

Vℓ
UT uℓ − qni e

−
Vℓ
UT vℓ, ϕ1 − I1,ℓϕ1

)
DSi

−

(
Â∇Vℓ, Â∇

(
ϕ1 − I1,ℓϕ1

))
Dox

+

(
UTµne

Vℓ
UT ∇uℓ,∇

(
I2,ℓϕ2 − ϕ2

))
DSi

+

(
UTµpe−

Vℓ
UT ∇vℓ,∇

(
I3,ℓϕ3 − ϕ3

))
DSi

−

⎛⎜⎝ uv−1

τp

(
e

V
UT u+1

)
+τn

(
e
−

V
UT v+1

) −
uℓvℓ−1

τp

(
e

Vℓ
UT uℓ+1

)
+τn

(
e
−

Vℓ
UT vℓ+1

) , ϕ2

⎞⎟⎠
DSi

−

⎛⎜⎝ uv−1

τp

(
e

V
UT u+1

)
+τn

(
e
−

V
UT v+1

) −
uℓvℓ−1

τp

(
e

Vℓ
UT uℓ+1

)
+τn

(
e
−

Vℓ
UT vℓ+1

) , ϕ3

⎞⎟⎠
DSi

+

⎛⎜⎝ uℓvℓ−1

τp

(
e

Vℓ
UT uℓ+1

)
+τn

(
e
−

Vℓ
UT vℓ+1

) , I2,ℓϕ2 − ϕ2

⎞⎟⎠
DSi

+

⎛⎜⎝ uℓvℓ−1

τp

(
e

Vℓ
UT uℓ+1

)
+τn

(
e
−

Vℓ
UT vℓ+1

) , I2,ℓϕ3 − ϕ3

⎞⎟⎠
DSi

.

(34)

Explicit error estimation involves the direct computation of the interior element residuals and the jumps at the
element boundaries to find an estimate for the error. Now using Green’s theorem and the Cauchy–Schwarz inequality
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on (34) leads to(
Â∇ε1,ℓ, Â∇ϕ1

)
L2(D)

−

(
UTµne

V
UT ∇u − UTµne

Vℓ
UT ∇uℓ,∇ϕ2

)
DSi

−

(
UTµne−

V
UT ∇v − UTµne−

Vℓ
UT ∇vℓ,∇ϕ3

)
DSi

+

(
qni e

V
UT u − qni e

Vℓ
UT uℓ, ϕ1

)
DSi

+

(
qni e

−
V

UT v − qni e
−

Vℓ
UT vℓ, ϕ1

)
DSi

≤

∑
ζ∈Tℓ

∥r1∥ζ

ϕ1 − I1,ℓϕ1

ζ
+

∑
ζ∈T Si

ℓ

∥r2∥ζi

ϕ2 − I2,ℓϕ2

ζ

+

∑
ζ∈T Si

ℓ

∥r3∥ζ

ϕ3 − I2,ℓϕ3

ζ
+

∑
γ∈∂Tℓ

⏐⏐⏐⏐⏐
[

Â
∂Vℓ
∂ν

]
γ

⏐⏐⏐⏐⏐ϕ1 − I1,ℓϕ1

γ

+

∑
γ∈∂T Si

ℓ

⏐⏐⏐⏐⏐
[

UTµn
∂uℓ
∂ν

]
γ

⏐⏐⏐⏐⏐ϕ2 − I2,ℓϕ2

γ

+

∑
γ∈∂T Si

ℓ

⏐⏐⏐⏐⏐
[

UTµp
∂vℓ

∂ν

]
γ

⏐⏐⏐⏐⏐ϕ3 − I3,ℓϕ3

γ
, (35)

where

r1 : = −∇ · (A∇Vℓ)− qC + qni

(
e

Vℓ
UT uℓ − e−

Vℓ
UT vℓ

)
,

r2 : = UT ∇ ·

(
µne

Vℓ
UT ∇uℓ

)
−

uℓvℓ − 1

τp

(
e

Vℓ
UT uℓ + 1

)
+ τn

(
e−

Vℓ
UT vℓ + 1

) ,
r3 : = UT ∇ ·

(
µne−

Vℓ
UT ∇vℓ

)
−

uℓvℓ − 1

τp

(
e

Vℓ
UT uℓ + 1

)
+ τn

(
e−

Vℓ
UT vℓ + 1

) .
It can be easily seen that

e
V

UT u − e
Vℓ
UT uℓ = e

V
UT ε2,ℓ −

(
e

V
UT − e

Vℓ
UT

)
ε2,ℓ +

(
e

V
UT − e

Vℓ
UT

)
u, (36a)

e
V

UT ∇u − e
Vℓ
UT ∇uℓ = e

V
UT ∇ε2,ℓ −

(
e

V
UT − e

Vℓ
UT

)
∇ε2,ℓ +

(
e

V
UT − e

Vℓ
UT

)
u, (36b)

e
V

UT v − e−
Vℓ
UT vℓ = e−

V
UT ε3,ℓ −

(
e−

V
UT − e−

Vℓ
UT

)
ε3,ℓ +

(
e−

V
UT − e−

Vℓ
UT

)
v, (36c)

e−
V

UT ∇v − e−
Vℓ
UT ∇vℓ = e−

V
UT ∇ε3,ℓ −

(
e−

V
UT − e−

Vℓ
UT

)
∇ε3,ℓ +

(
e−

V
UT − e−

Vℓ
UT

)
v. (36d)

Now substituting ϕi = εi,ℓ for i ∈ {1, 2, 3} into (35) and using (36a)–(36d), Eqs. (24), (27), [34, Corollary 4.8.15
on page 123], and Cauchy–Schwarz inequality yield∇ε1,ℓ

2
L2(D) +

∇ε2,ℓ
2

L2(DSi)
+
∇ε3,ℓ

2
L2(DSi)

≲
∑
ζ∈Tℓ

h2
ζ∥r1∥

2
ζ +

∑
ζ∈T Si

ℓ

h2
ζ∥r2∥

2
ζ

+

∑
ζ∈T Si

ℓ

h2
ζ∥r3∥

2
ζ +

∑
γ∈∂Tℓ

⏐⏐⏐⏐⏐
[

Â
∂Vℓ
∂ν

]
γ

⏐⏐⏐⏐⏐
2

h2
γ

+

∑
γ∈∂T Si

ℓ

⏐⏐⏐⏐⏐
[

UTµn
∂uℓ
∂ν

]
γ

⏐⏐⏐⏐⏐
2

h2
γ +

∑
γ∈∂T Si

ℓ

⏐⏐⏐⏐⏐
[

UTµp
∂vℓ

∂ν

]
γ

⏐⏐⏐⏐⏐
2

h2
γ

+
ε1,ℓ

2
L2(DSi)

+
ε2,ℓ

2
L2(DSi)

+
ε3,ℓ

2
L2(DSi)

, (37)
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where T Si
ℓ := Tℓ ∩ DSi. Finally, applying an inverse estimate, for sufficiently small h we get∇ε1,ℓ

2
L2(D) +

∇ε2,ℓ
2

L2(DSi)
+
∇ε3,ℓ

2
L2(DSi)

≤ c1
∑
ζ∈Tℓ

h2
ζ ∥r1∥

2
ζ + c2

∑
ζ∈T Si

ℓ

h2
ζ ∥r2∥

2
ζ

+ c3
∑
ζ∈T Si

ℓ

h2
ζ ∥r3∥

2
ζ + c4

∑
γ∈∂Tℓ

⏐⏐⏐⏐⏐
[

Â
∂Vℓ
∂ν

]
γ

⏐⏐⏐⏐⏐
2

h2
γ

+ c5
∑

γ∈∂T Si
ℓ

⏐⏐⏐⏐⏐
[

UTµn
∂uℓ
∂ν

]
γ

⏐⏐⏐⏐⏐
2

h2
γ + c6

∑
γ∈∂T Si

ℓ

⏐⏐⏐⏐⏐
[

UTµp
∂vℓ

∂ν

]
γ

⏐⏐⏐⏐⏐
2

h2
γ , (38)

which concludes the proof. □

5. Multilevel Monte Carlo finite-element method

In a Monte Carlo finite-element (FE) method several evaluations are combined to obtain an approximation of the
solution of the model equation or equations. Considering the Bochner space L2(Ω; X ) for the mappings Y : Ω → X ,
we can define

∥Y∥L2(Ω;X ) :=

(∫
Ω

∥Y(·, ω)∥2
X dP(ω)

)1/2
= E

[
∥Y(·, ω)∥2

X

]1/2
. (39)

The standard MC estimator EMC for E[uℓ] is the sample mean

EMC[uℓ] := ûℓ :=
1
M

M∑
i=1

u(i)
ℓ , (40)

where u(i)
ℓ = uℓ(x, ω(i)) is the i th sample (independent random variable) of the solution u.

In a multilevel Monte Carlo (MLMC) method, instead of calculating the expected value E[u] by E[uℓ] on
a constant triangulation Tℓ, the MLMC method approximates the expected value E[u] using several E[uℓ], ℓ ∈

{0, 1, . . . , L}, estimated on the nested family {Tℓ}∞ℓ=0. In fact, to overcome the drawback of the MC method, the
MLMC estimator avoids prohibitively many expensive evaluations of E[uℓ] on the finest level L .

The FE approximation of the expected value of uL at level L can be written as

E[uL ] = E[u0] + E

[
L∑
ℓ=1

(uℓ − uℓ−1)

]
= E[u0] +

L∑
ℓ=1

E[uℓ − uℓ−1]. (41)

Therefore, for different numbers Mℓ of samples at level ℓ ∈ {0, . . . , L}, we have

EMLMC[u] := ûL =
1

M0

M0∑
i=1

u(i)
0 +

L∑
ℓ=1

1
Mℓ

Mℓ∑
i=1

(u(i)
ℓ − u(i)

ℓ−1).

The mean square error (MSE) is estimated by

MSE ≤ M−1
0 σ 2[u0] +

L∑
ℓ=1

M−1
ℓ σ 2[uℓ − uℓ−1] + ∥E[uL ] − E[u]∥2

L2(Ω;D), (42)

as shown for example in [10], where the variance is given by σ [u]2
:= ∥E[u] − u∥

2
L2(Ω;D)

. The first and second
terms of (42) are the statistical error, while the last term is the discretization error. In the next section, we study
the effect of mesh refinement, i.e., uniform refinement and adaptive refinement (using the error indicator (38)) on
both terms of errors.

Here, we strive to use the a priori and a posteriori error estimates obtained above for the stochastic drift–diffusion–
Poisson system. To do so, we consider the convexity of the norms and employ Jensen’s inequality as well as the
Poincaré inequality. Therefore, taking the expectation in Theorems 2 and 3 with respect to a random variable leads
to the following corollaries.
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Corollary 3.1. The error boundE[e1,ℓ]
2

L2(D) +
E[e2,ℓ]

2
L2(DSi)

+
E[e3,ℓ]

2
L2(DSi)

≤ E
(e1,ℓ

2
L2(D) +

e2,ℓ
2

L2(DSi)
+
e3,ℓ

2
L2(DSi)

)
≲ h2E

(
∥V ∥

2
H2(DSi)

+ ∥u∥
2
H2(DSi)

+ ∥v∥2
H2(DSi)

)
, (43)

holds for a priori error estimation.

Corollary 3.2. The error boundE[ε1,ℓ]
2

L2(D) +
E[ε2,ℓ]

2
L2(DSi)

+
E[ε3,ℓ]

2
L2(DSi)

≤ E
(ε1,ℓ

2
L2(D) +

ε2,ℓ
2

L2(DSi)
+
ε3,ℓ

2
L2(DSi)

)
≤

c1
∑
ζ∈Tℓ

h2
ζE
[
∥r1(ω) ∥

2
ζ

]
+ c2

∑
ζ∈T Si

ℓ

h2
ζE
[
∥r2(ω) ∥

2
ζ

]
+ c3

∑
ζ∈T Si

ℓ

h2
ζE
[
∥r3(ω) ∥

2
ζ

]

+ c4
∑
γ∈∂Tℓ

E

⏐⏐⏐⏐⏐
[

Â
∂Vℓ
∂ν

(ω)
]
γ

⏐⏐⏐⏐⏐
2

h2
γ + c5

∑
γ∈∂T Si

ℓ

E

⏐⏐⏐⏐⏐
[

UTµn
∂uℓ
∂ν

(ω)
]
γ

⏐⏐⏐⏐⏐
2

h2
γ

+ c6
∑

γ∈∂T Si
ℓ

E

⏐⏐⏐⏐⏐
[

UTµp
∂vℓ

∂ν

]
γ

⏐⏐⏐⏐⏐
2

h2
γ , (44)

holds for a posteriori error estimation.

Corollary 3.2 makes it possible to estimate the a posteriori error estimator for the expected value of the solutions.
Marking strategies such as the Dörfler strategy [35] can now be used to drive mesh adaptivity.

In order to estimate the computational errors, we continue with the degrees of freedom. It enables us to draw
a fair comparison between adaptive MLMC-FE and uniform MLMC-FE methods. According to the error bound
given in Corollary 3.1, we define the discretization error as

Eℓ :=

(E[e1,ℓ]
2

L2(D) +
E[e2,ℓ]

2
L2(DSi)

+
E[e3,ℓ]

2
L2(DSi)

)1/2
. (45)

Furthermore, at level ℓ, we assume that

E2
ℓ ≤ C1N−2α

ℓ := C1
(
NPℓ + 2NDℓ

)−2α
, (46)

where NPℓ is the number of unknowns or the (degrees of freedom) for the Poisson equation and NDℓ
indicates the

number of unknowns for the two continuity equations. The exponent α is the convergence rate of the error. For the
statistical error, the inequality

σ 2[∆Vhℓ ] + σ 2[∆uhℓ ] + σ 2[∆vhℓ ] ≤ C2N−β

ℓ , (47)

is assumed to show the convergence of the statistical error (at level ℓ). For ℓ = 0, the assumption

σ 2[∆Vh0 ] + σ 2[∆uh0 ] + σ 2[∆vh0 ] ≤ C0,

is used as well.
Due to the computational challenge of solving a system of SPDEs, an effective computational strategy is crucial.

We strive to determine the optimal number Mℓ of samples which minimize the computational work when MSE ≤ ε2.
In other words, the optimal number of samples are defined such that the statistical error is less than ε2/2. The optimal
value of L (the lowest possible number) determined in the sense that the discretization error (EL ) is less than ε/

√
2.

For this, the optimization problem

minimize
Mℓ

f (Mℓ) :=

L∑
ℓ=0

MℓNℓ,

subject to g(Mℓ) :=
C0

M0
+ C2

L∑
ℓ=1

N−β

ℓ

Mℓ

≤
ε2

2
,

(48)

is solved, where the optimization is over all Mℓ > 0. Moreover, since the optimal numbers Mℓ of samples at level ℓ
are in general not integers, they are rounded up and replaced by ⌈Mℓ⌉. The details of the optimal approach were
given in Giles’s MLMC paper [12].
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6. Numerical example and results

In this work, we have chosen a double-gate MOSFET (DG-MOSFET) as a realistic example to implement the
multilevel adaptive method developed above and to investigate its behavior. In these semiconductor transistors, the
width of the silicon channel is very small and two gate contacts are used in the both sides of the channel to control
the channel efficiently [36–38]. Hence, the current can potentially be twice the current through a single-gate device,
since inversion layers can exist at both gates. This device structure suppresses short-channel effects and leads to
higher currents as compared to the usual MOSFET structure having only one gate. In this work we assumed that
there is no charge fluctuation in the oxide layer (see (7b)). However, due to charges in the dielectric subdomain and
its boundaries (interface to the channel region), the right-hand side in Eq. (7b) can also be assumed to be non-zero.
In digital and non-digital applications, the sensitivity of nanowire conduction to trapping and de-trapping of charges
at interface states can be considered as well.

The FET device (see Fig. 1 for a schematic diagram) consists of two materials, namely silicon (DSi) in the
channel and source and drain regions and silicon dioxide (Dox) as the insulator. The purpose of the insulator is
to suppress direct charge flow from the gate into the channel and vice versa. The permittivities of the materials
are ASi = 11.7A0 and Aox = 3.9A0, where the vacuum permittivity (dielectric constant) is 8.85 · 10−12 Fm−1.
Moreover, the gates have a length of 30 nm and are separated from the silicon channel by a 2 nm thick oxide layer.
The channel width is W = 15 nm and it is connected to the heavily n-type doped source and drain regions of length
LSD := 10 nm in each region.

Regarding the boundary conditions of the model equations, we apply Dirichlet boundary conditions at the gates
(Vg = 0.2 V) and, the source-to-drain voltage is VSD = 0.1 V. Also, the thermal voltage is UT = 0.026 V. The
contacts are illustrated in Fig. 1. For the rest of the transistor, we apply zero Neumann boundary conditions. In the
highly doped source and drain regions, the dopant atoms are randomly distributed and indicated in the figure by
blue circles. Therefore, random-dopant effects are included due to the random position of the dopant atoms.

In the common models, the doping concentration is modeled as a macroscopic, deterministic quantity which
averages out any microscopic non-uniformities due to the random placement and random number of dopants. For
large devices with a large number of dopants, this continuum model is physically reasonable, since the electrostatic
potential appears spatially homogeneous and is sufficiently well described by the averaged charge density. However,
in nanoscale transistors, the randomly distributed dopant atoms lead to inevitable variations between the billions of
transistors in an integrated circuit.

As mentioned already, the main source of device variation is the random motion of impurity atoms during the
fabrication procedure of implantation and annealing. In order to model the stochastic coefficients in the model
equations, each dopant is modeled as a Gaussian distribution such that the doping concentration at point x is given
by [39]

C(x, ω) :=

∑
j

C j(
2πσ 2

)3/2 exp
(

−
(x − x j (ω))2

2σ 2

)
, (49)

where x j and C j are the position and the charge of the j th dopant, respectively. In the source and drain, to determine
the position of random dopant, two random points (according to the two-dimensional problem) are used to translate
it. For instance, the random variable ω = ( 1

2 ,
1
2 ) transforms the dopants to the center of a region (x j (ω)). Here, we

assume that both regions have same equal number of dopants. Also, σ := 0.35 nm corresponds to the extent of
the electrostatic influence, and the results are not significantly sensitive to the value of σ . Finally, the source and
drain regions contain n-type dopants corresponding to a continuous doping concentration of 1 · 1019 cm−3 (heavily
doped) and the doping concentration of the channel is 1 · 1016 cm−3.

In the following, we strive to draw a comparison between adaptive and uniform MLMC-FE methods.
Uniform and refined meshes corresponding to the device shown in Fig. 1 are depicted in Fig. 2. In adaptive

refinement, we use the marking strategy introduced in [35]. Here, for each element T ∈ Tℓ, the local refinement
indicator ηT satisfies∑

T ∈M

η2
T ≥ θη2, (50)
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Fig. 2. Initial mesh (left) and uniformly refined mesh (right) for a DG-MOSFET.

where M is the set of elements marked for refinement and the associated error estimator is defined as

η :=

(∑
T ∈T

η2
T

)1/2

.

In other words, we refine the smallest subset of elements whose corresponding error indicators in sum exceed the
threshold θη2.

The adaptive algorithm for the boundary-value problem is shown Algorithm 1. In the multilevel setting, the
mesh is refined as long as E2

L is greater than or equal to ε2/2 and the number of samples are obtained according
to the optimization problem (48). Also, the same number and positions of random variables are used on all levels
ℓ ∈ {1, . . . , L}. In the numerical example, we set θ := 0.6 and the initial mesh T0 and its uniform refinement are
depicted in Fig. 2.
Initialization (ℓ = 0):
Initial mesh T0.
while E2

ℓ > ϵ2/2 do
for i = 1, . . . ,Mℓ

(i) Solve the boundary-value problem Eq. (7) to find V (i)
hℓ

, v(i)
hℓ

and u(i)
hℓ

according to Mℓ.
(ii) Compute the error indicator by Eq. (32) for the i th sample on all elements.

end
Compute the a posteriori error estimator for the expected values of the solutions according to Eq. (44).
Determine the triangles to be refined using the marking strategy Eq. (50).
Tℓ+1 := refine (Tℓ,Mℓ) where Mℓ determined by Eq. (50).
ℓ := ℓ+ 1.
Estimate the discretization error (Eℓ) according to the refined meshes.

end
Algorithm 1: The adaptive MLMC-FE strategy for the coupled system of equations Eq. (7).

The adaptively refined meshes for ℓ ∈ {1, . . . , 6} for the coupled system of equations are shown in Figs. 3,
4, and 5. As shown, most of the meshes have been refined due to the randomness in the source and drain areas.
Similarly, the interface condition between the insulator and the channel Γ gives rise to more refinements, where less
mesh refinement occurred in the channel (green triangles). The corresponding degree of freedom for the Poisson
(NPℓ ) and drift-diffusion (NDDℓ

) equations are summarized in Tables 1 and 2, respectively. We compare the
obtained degrees of freedom for adaptive and uniform refinement, where the initial mesh is the same in both cases.

In the next step, we compare the discretization error of uniform and adaptive refinement with 100 samples. Fig. 6
indicates that the adaptive refinement reduces the discretization error, i.e., Eℓ (with respect to a reference solution),
and obtains a convergence rate of α = 1.46. However, the uniform refinement leads to a smaller convergence rate
of α = 1.11. Obviously, using adaptive refinement enables us to obtain a rate closer to the optimal convergence
rate given in Corollary 3.1. Here, we also show the error estimator (η) for adaptive and uniform mesh-refinement
to confirm its efficiency and reliability.
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Fig. 3. Adaptive mesh refinement for a DG-MOSFET with random dopants at ℓ = 1 (left) and ℓ = 2 (right).

Fig. 4. Adaptive mesh refinement for a DG-MOSFET with random dopants at ℓ = 3 (left) and ℓ = 4 (right).

Fig. 5. Adaptive mesh refinement of a DG-MOSFET with random dopants at ℓ = 5 (left) and ℓ = 6 (right).

Table 1
Degrees of freedom NPℓ

for different levels comparing uniform MLMC-FE and adaptive MLMC-FE methods.

ℓ 0 1 2 3 4 5 6

Uniform 1 685 4 749 11 626 27 084 60 569 131 819 280 264
Adaptive 1 685 2 839 5 531 10 876 22 128 45 885 98 123

Table 2
Degrees of freedom NDDℓ

for different levels comparing uniform MLMC-FE and adaptive MLMC-FE methods.

ℓ 0 1 2 3 4 5 6

Uniform 755 2 141 5 293 12 372 27 743 60 509 128 833
Adaptive 755 898 1 640 3 166 6 614 13 553 29 305

Moreover, we compare the statistical error of both multilevel methods. Fig. 7 illustrates the decay of the variance
for different degrees of freedom. The results show that similar to the discretization error, the variance in the adaptive
approach is reduced faster (β = 2.27) compared to uniform refinement (β = 1.73). Again, the efficiency of the
adaptive method is shown by the numerical results indicating error and error estimator for adaptive and uniform
refinements. Also, C0 = 0.041 is obtained as the variance of level ℓ = 0.

In order to estimate the optimal computational complexity, we solve the optimization problem (48). An interior
point method can be used to solve the global optimization problem [10], where the results are the optimal number
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Fig. 6. The discretization error and error estimator (η) of the drift–diffusion–Poisson system (46) as a function of the degrees of freedom.
Here, we consider uniform mesh-refinement as well as the adaptive strategy.

Fig. 7. The statistical error (using error and error estimator (η)) of the drift–diffusion–Poisson system (47) as a function of the degrees of
freedom. Here, we consider uniform mesh-refinement as well as the adaptive strategy.

Table 3
The optimal number of samples for the uniform MLMC-FE method.

ε M0 M1 M2 M3 M4 M5

0.080 17 5 – – – –
0.040 90 26 8 – – –
0.020 418 121 35 11 – –
0.010 1 671 481 137 42 – –
0.007 3 759 1 080 308 94 30 –
0.005 7 366 2 117 604 183 58 –
0.002 5 3764 17 113 4 163 1 012 573 57

of samples. For different tolerances ε, the optimal values are summarized in Tables 3 and 4 for uniform and adaptive
refinements, respectively. In multilevel methods, most of the work is performed on coarse levels. The main reason
is the reduction of variance on the finer grids.

The computational work
∑L

ℓ=0 MℓNℓ for both refinement methods are depicted in Fig. 8. We here observe a
significantly better efficiency of the adaptive model compared with the uniform approach. As depicted in the figure,
the computational cost asymptotically behaves like O(ε−2) for both multilevel techniques, which agrees with [40].
A more interesting computational result is achieved regarding the CPU time. As Fig. 8 shows since in the adaptive
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Table 4
The optimal number of samples for the adaptive MLMC-FE method.

ε M0 M1 M2 M3 M4 M5 M6

0.080 18 6 3 – – – –
0.040 78 26 10 4 – – –
0.020 334 111 44 14 5 – –
0.010 1 369 472 186 41 20 – –
0.007 2 856 949 372 119 42 14 –
0.005 5 597 1 859 729 233 81 27 –
0.002 36 068 11 979 4 692 1 502 520 170 54

Fig. 8. The computational cost (left) and computational cost (right) of uniform MLMC-FE and adaptive MLMC-FE methods for different
prescribed tolerances.

approach (compared to the uniform refinement) fewer degrees of freedom are needed, in different levels, lower
computational time is used (to obtain same error tolerance). The difference between two computational times is
more pronounced for lower prescribing errors that indicates the adaptive technique efficiency.

7. Conclusions

We have presented an adaptive MLMC-FE method for the numerical solution of the stochastic drift–diffusion–
Poisson system. First, we proved an a-priori error estimate for the coupled system of equations with non-zero
recombination rate. The error estimate points out how fast the error decreases as the mesh size decreases and can
be considered as a useful measure of the efficiency of a given finite-element method. Also, using the stochastic
numerical example, we estimated the convergence rate of the discretization error.

Secondly, a practically useful a-posteriori error indicator to bound the discretization error for the coupled system
of equations was derived. From a computational point of view, the error estimator is inexpensive to estimate and
guarantees the bounds on the error on all points of the geometry. The error indicator was used to design an adaptive
refinement strategy to refine the mesh, where all coefficients in the system of equations can be random. In future
works, the error analysis performed here can be implemented for extended systems of equations accounting for
quantum effects at first order in the direction perpendicular to the gate (e.g., density gradient corrections to the
charge term in the Poisson equation).

Regarding numerical examples, we implemented this adaptive MLMC-FE method to quantify noise and variations
in nanoscale transistors as a real-world example. To this end, we defined a strategy to refine the meshes in the
stochastic setting. The new technique was compared to the multilevel method with uniform refinement as a useful
benchmark. Better convergence of the discretization error and better decay of variance were observed indicating
the efficiency of the new approach. Finally, we employed an optimization problem to minimize the computational
complexity. The optimal numbers of samples are obtained as the solution of the global optimization problem. The
results indicate that in addition to a better control of error, a noticeable reduction of the computational work/time
is achieved by the adaptive method.
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