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Abstract

This work deals with the modeling and simulation of a biologically sensitive field-
effect transistor, a so called BioFET.

Since the functioning of BioFETs is not completely understood, there is a great
interest in mathematical and physical models which lead to a quantitative under-
standing. In this work, a mathematical model for a nanowire field-effect biosensor
is developed to gain insight into its physical behavior.

In the following we will describe the model equations as well as their discretiza-
tion. The basic equation of our model is the Poisson equation for the electrostatic
interaction of the charge carriers. Furthermore we use the drift-diffusion equa-
tions for the dynamics in the semiconductor and a Boltzmann model for the liq-
uid. The interface conditions are resolved with a homogenization method where
the continuity conditions at the interface are replaced with jump conditions. The
discretization methods used for this work are the finite-volume method and the
Scharfetter-Gummel method for the drift-diffusion equations. Finally the nu-
merical algorithm and simulation results are shown in detail.

This work is organized as follows:

• Chapter 1 gives an introduction to biosensors and their functionality.
Also the advantages of biosensors and the mathematical problems in their
modeling are described.

• Chapter 2 defines the model used in our simulations, based on the Poisson
equation coupled to the drift-diffusion equations. We also use the Poisson-
Boltzmann term to include screening in ionic solutions. At the end the
variables and their units are summarized.

• Chapter 3 explains the discretization methods: the finite-volume method
and the Scharfetter-Gummel algorithm.

• Chapter 4 describes the discretization of the model equations. Interface
conditions are obtained from homogenization.

• Chapter 5 illustrates the modifications of the discretization, which are on
the one hand necessary to get a linear equation system for the potential
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and on the other hand necessary for a fast implementation.

• Chapter 6 specifies the numerical algorithm used for the simulations in
pseudo-code.

• Chapter 7 varies different simulation parameters and shows the numerical
results for the electric potential, the hole and the electron density, the
current flow, and the source-drain current.



Zusammenfassung

Diese Arbeit behandelt einen biologisch sensitiven Feldeffekttransistor, einen so-
genannten BioFET.

Weil die Funktionalität solcher BioFETs noch nicht vollständig verstanden wurde
herrscht ein großes Interesse an mathematischen und physikalischen Modellen,
welche zu einem quantitativen Verständnis führen. In dieser Arbeit wurde ein
mathematisches Modell erarbeitet um mehr Einsicht in das physikalische Verhal-
ten zu bekommen.

Im Folgenden werden wir die Modellgleichungen und die Diskretisierung
beschreiben. Die Gleichung von der wir ausgehen, ist die Poisson Gleichung.
Weiters benutzen wir die Drift-Diffusions Gleichungen als Halbleitergleichungen
und ein Boltzmann Modell für die wässrige Lösung. Die Stetigkeitsbedingun-
gen an der Schnittstelle werden mittels einer Homogenisierungsmethode durch
Sprungbedingungen ersetzt. Die für die Diskretisierung benutzten Methoden
sind die finite Volumen Methode und die Scharfetter-Gummel Methode für die
Drift-Diffusionsgleichungen. Als Abschluss werden der numerische Algorithmus
sowie die numerischen Resultate präsentiert.

Diese Arbeit ist auf folgende Weise strukturiert:

• Kapitel 1 gibt eine Einführung in das Thema Biosensoren und deren Funk-
tionsweise. Weiters werden die Vorteile von Biosensoren und die mathe-
matischen Probleme, die sie verusachen, beschrieben.

• Kapitel 2 definiert das, für unsere Simulationen verwendete, Modell. Hi-
erbei verwenden wir als Grundlage die Poisson Gleichung und für den
Halbleiterteil die Drift-Diffusions-Gleichungen. Wir verwenden auch den
Poisson-Boltzmann Term um eine Rasterung in ionischen Lösungen zu er-
halten. Im Anhang werden die Variablen und ihre Einheiten zusammenge-
fasst.

• Kapitel 3 zeigt die verwendeten Methoden zur Diskretisierung. Diese sind
die finite Volumen und die Scharfetter-Gummel Methode.

• Kapitel 4 beschreibt die Diskretisierung der Modellgleichungen. Die
Schnittstellenbedingungen werden durch eine Homogenisierungsmethode
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bestimmt.

• Kapitel 5 erläutert die benutzten Modifikationen der Diskretisierung, welche
einerseites notwendig waren, um ein lineares System für die Gleichungen des
Potentials zu bekommen und andererseits notwendig um die Geschwindigkeit
des Programms zu erhöhen.

• Kapitel 6 beschreibt den, für die Simulationen benutzten, Programmal-
gorithmus.

• Kapitel 7 benutzt verschiedene Werte für Simulationen und zeigt die da-
raus folgenden numerischen Resultate für das elektrische Potential, die
Löcher- und Elektronendichte, dem Stromfluss und dem Strom zwischen
den Kontakten.
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1 Introduction

Since the first biosensor was developed by Clark in 1962, many efforts have been
made to create functional hybrid systems [9]. Hence many different types of
biosensors have been created. One of the most attractive approaches is the use
of an ISFET (ion-selective field-effect transistor). Bergveld invented the ISFET
in 1970 and up to this day the interest in ISFET-based biosensors, so called
biologically modified field-effect transistors (BioFETs), is enormous. The range
of applications reaches from biomedicine, biotechnology, food and drug industry,
environmental monitoring and process technology to defense and security [10].

These BioFETs belong to the class of electrochemical biosensors, which are sen-
sors with an electrochemical transducer. A more precise definition of a BioFET
is given by the International Union of Pure and Applied Chemistry (IUPAC):
An electrochemical biosensor is a self-contained integrated device, which is capa-
ble of providing specific quantitative or semi-quantitative analytical information
using a biological recognition element (biochemical receptor) which is retained
in direct spatial contact with an electrochemical transduction element [13]. The
idea behind such biosensors is to transform biochemical information into a phys-
ical or chemical signal. Therefore the electronic conducting, semiconducting or
ionic conducting material is coated with a biochemical film. Some examples for
such biological recognition elements are enzymes, biological ionophores, antibod-
ies, plant or animal tissues, whole cells and proteins.

Figure 1.1: Schematic diagram of a nanowire BioFET [2].
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Figure 1.1 shows how a BioFET works. The transducer is a semiconductor layer
which is surrounded by a dielectric layer. In our model it consists of silicon
and is surrounded by silicon oxide. Furthermore there is a biofunctionalized sur-
face which we call the boundary layer. For example, a DNA sensor uses ssDNA
(single-stranded deoxyribonucleic acid) as recognition elements and the comple-
mentary strands as target molecules. After hybridization of the DNA strands, the
charge distribution in the boundary layer changes and can be measured through
the conductance of the semiconductor.

The main advantage of BioFETs is label-free operation, i.e., no fluorescent or ra-
dioactive markers are needed. Further advantages are high sensitivity, real-time
operation and high selectivity [15].

Several facts have to be taken into account for the modeling and simulation
of BioFETs. First we have to connect two systems: the biological system, i.e.,
the biofunctionalized surface layer, and an electronic system, i.e., the semicon-
ductor transducer. Another fact is that we have a multiscale problem. On the
one hand, the recognition elements on the functionalized surface are only up to
a few nanometers large. On the other hand, the length of the biosensor can be
a few micrometers. The problem with these multiple length scales is that they
require an extremely fine grid. To solve this problem, we homogenize the bound-
ary layer between the oxide and the liquid solution [2].

Our biosensor model is based on experimental structures [4, 11, 12]. Figure
1.2 shows such a structure including the source contact, the drain contact, the
backgate at the bottom, and the nanowire.

Figure 1.2: An experimental BioFET structure [11].



2 The model

In this chapter we describe the model equations related to Figure 1.2.

2.1 The three-dimensional model of the nanowire
biosensor

Figure 2.1 shows the cross section through the biosensor which is marked in
Figure 1.2 by a yellow line. To simplify the following descriptions, we define the

Figure 2.1: A cross section through the nanowire biosensor.

following domains:

• The silicon-oxide domain:
ΩOx := [−xLiq, xLiq]×(0, yOx1)× [O,Lz]∪(−xOx,−xSi)× [yOx1, ySi]× [0, Lz]
∪ (xSi, xOx)× [yOx1, ySi]× [0, Lz] ∪ (−xOx, xOx)× (ySi, yOx2)× [0, Lz].
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• The silicon domain:
ΩSi := [−xOx, xOx]× [yOx1, ySi]× [0, Lz].

• The liquid domain:
ΩLiq := [−xLiq, xLiq]× [yOx2, yLiq]× [0, Lz] ∪ [−xLiq,−xOx]× [yOx1, yOx2]×
[0, Lz]
∪ [xOx, xLiq]× [yOx1, yOx2]× [0, Lz].

• The whole biosensor Ω := ΩOx ∪ ΩSi ∪ ΩLiq.

• The interface between the liquid area and the oxide area ∆ := ∂ΩOx∩∂ΩLiq.

2.2 The model equations

In this section we give equations for the electric potential V , the concentration
n of the electrons, and the concentration p of the holes. All other values are
constants which are shown in Table 2.1 at the end of this section.
The main equation for the electric potential V is the mean-field Poisson equation

−∇ · (ε(x)∇V (x)) = ñ(x) (2.1)

where x ∈ R3, ε is the permittivity, and ñ is the charge distribution.
The permittivity ε is defined as the piecewise constant function

ε(x) :=


εOx ∈ R for x ∈ ΩOx,

εSi ∈ R for x ∈ ΩSi,

εLiq ∈ R for x ∈ ΩLiq.

(2.2)

For the charge distribution ñ we have three different models: the doping of the
semiconductor and the electrons and the holes in the domain ΩSi, the ions in the
liquid in the domain ΩLiq, and the equation for the dielectric layer in the domain
ΩOx. Hence we have the partition

ñ(x) :=


nOx(x) for x ∈ ΩOx,

nSi(x) for x ∈ ΩSi,

nLiq(x) for x ∈ ΩLiq.

(2.3)

For the silicon domain we use the drift-diffusion model [5], which is the set of
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equations

nSi(x) = C(x) + p(x)− n(x),

∇ · Jn = R,

∇ · Jp = −R,
Jn = Dn∇n− µnn∇V,
Jp = −Dp∇p− µpp∇V,

(2.4)

where C is the doping concentration, n and p are the concentrations of the free
carriers, namely electrons and holes, Jn and Jp are the densities of the electron
and hole currents, Dn and Dp are the diffusion coefficients, and µn and µp are
the mobilities of electrons and holes. The second and the third equation are for
the charge sources given by the recombination rate R, which is in our model the
Shockley-Read-Hall term

R =
np− n2

i

τp(n+ ni) + τn(p+ ni)
, (2.5)

where τn and τp are the lifetimes of electrons and holes and ni is the intrinsic
charge density of the semiconductor material. Furthermore we use the Einstein
relations

Dn = UTµn,

Dp = UTµp,
(2.6)

for the diffusion coefficients where UT is the thermal voltage and has a value of
≈ 0.025V for silicon at room temperature.
In the oxide we set only nOx(x) := 0 and in the liquid we have

nLiq(x) :=
∑

σ∈{−1,1}

ασfσe
−σβV (x), (2.7)

which is a Boltzmann model. This Boltzmann model describes the screening in
ionic solutions. Here fσ stands for the exponential of the chemical potentials
Φσ, i.e., fσ = eσβΦσ and β := q/(kT ), where q is the elementary charge, k is the
Boltzmann constant, and T is the temperature. Furthermore α is the Na+Cl−

concentration in the liquid.
At the interface ∆ we replace the continuity condition for the potential and the
continuity condition for the electric displacement using a homogenization method
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[2] by the following jump conditions

V (x+)− V (x−) =
D

ε(x+)
, (2.8)

εLiq∇V (x+)− εOx∇V (x−) = −Cs (2.9)

where x+ denotes the limes from the liquid to the interface and x− denotes the
limes from the silicon oxide to the interface (see Figure 2.2).

Figure 2.2: Vectors pointing to the interface.

Here D is the macroscopic dipole moment density and Cs is the macroscopic
surface charge density which are shown in [2]. Here we treat them as given con-
stants.
The boundary ∂Ω of the biosensor has Dirichlet conditions at the backgate, at
the electrode, and at the source and drain contacts, and Neumann boundary
conditions everywhere else. The source and the drain contacts are Ohmic con-
tacts, hence the space charge vanishes, i.e., C + p− n = 0, and the system is in
thermal equilibrium, i.e., np = n2

i . The quasi Fermi levels Φn and Φp are defined
by

Φn := V − UT ln

(
n

ni

)
,

Φp := V + UT ln

(
p

ni

) (2.10)
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and the values of the applied voltage U at Ohmic contacts are assumed as Φn =
U = Φp. Hence we get the boundary conditions

n(x) =
1

2
(C +

√
C2 + 4n2

i ),

p(x) =
1

2
(−C +

√
C2 + 4n2

i ),

V (x) = U + UT log

(
n(x)

ni

)
= U − UT ln

(
p(x)

ni

) (2.11)

at the Ohmic contacts.

Figure 2.3: Boundary conditions at the electrode and at the backgate and the
outward pointing normal vector t.

The Neumann conditions

∇V (x) · t = 0 (2.12)

are used everywhere else, where t is the outward pointing normal vector. At last
we have the Dirichlet conditions

V (x) = Vb,

V (x) = Ve
(2.13)

at the boundaries of the backgate and the electrode.
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2.3 Variables and units

The following table shows the variables and their units used in this model.

Meaning Variable Unit or value

Temperature T K
Elementary charge q q = 1.60218 · 10−19C
Boltzmann constant k 8.31452 · 10−3kJ ·mol−1 ·K−1

Electric potential V, U,Φ kJ ·mol−1 · q−1 = 0.010364272V
Charge density n, p q · nm−3

Macroscopic surface charge density Cs q · nm−2

Macroscopic dipole moment density D q · nm−1

Electron lifetime τn 106ps (silicon)
Hole lifetime τp 107ps (silicon)
Electron low-field mobility µn 1.5 · 105nm2 · V−1 · ps−1 (silicon)
Hole low-field mobility µp 4.5 · 104nm2 · V−1 · ps−1 (silicon)
Diffusion coefficient Dn, Dp nm2 · ps−1

Current flow J q · nm2 · ps−1

Recombination rate R q · nm2 · ps−1

Permittivity of silicon εSi 11.9ε0

Permittivity of silicon oxide εOx 3.9ε0

Permittivity of water εLiq 80.1ε0

Thermal voltage UT 0.025V
Doping concentration C q · nm−3

Table 2.1: The variables and their units.
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3.1 The finite-volume method

In this section we follow the explanations of [3]. The finite-volume method is a
discretization method that is especially advantageous for numerical investigations
of partial differential equations in divergence form

∂tS(u) +∇ · (M(u)−K(∇u)) = Q(u), (3.1)

where S is a storage term, M is a convective part, K is a diffusive part, and Q is
a source term. S,M,K, and Q can depend linearly or nonlinearly on u. It is also
useful for partial differential equations where parts are in divergence form, for
instance parabolic partial differential equations. In the category of second-order
linear elliptic partial differential equations the form

Lu := −∇ · (K∇u− cu) + ru = f (3.2)

with K : Ω→ Rd,d, c : Ω→ Rd and r, f : Ω→ R is common. Also the parabolic
version

∂u

∂t
+ Lu = f, (3.3)

partial differential equations of first order

∇ · q(u) = 0 (3.4)

with nonlinear q : R → Rd, partial differential equations of higher order and
systems of partial differential equations can be solved numerically with the finite-
volume method.

3.1.1 The general idea of the finite-volume method

To deliver insight into the finite-volume method we consider the equation

∇ · q(u) = f. (3.5)
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The first step of the finite-volume method is to partition the simulation domain
Ω. The sub-domains Ωi have to fulfill the following properties:

• each Ωi is open, simply connected, and has a polygonal border,

• Ωi ∩ Ωj = 0/ for (i 6= j),

•
⋃M
i=1 Ω̄i = Ω̄.

The sub-domains are called control volumes or control areas. The next step is
to integrate (3.5) over the control volume Ωi and use the divergence theorem
yielding ∫

∂Ωi

ν · q(u)dσ =

∫
Ωi

fdx, i ∈ {1, ...,M}, (3.6)

where ν is the outward pointing normal vector on ∂Ωi. Because of our require-
ments, the border ∂Ωi consists of ni lines. So we can write (3.6) as

ni∑
j=1

∫
Γij

νij · q(u)dσ =

∫
Ωi

fdx. (3.7)

The last step is to discretize the integrals in (3.7). This can be done in various
ways.

3.1.2 Example

For our purposes we consider the linear elliptic PDE with homogeneous boundary
condition in Ω ∈ R2

−∇ · (k∇u− cu) + ru = f for x ∈ Ω,

u = 0 for x ∈ ∂Ω
(3.8)

with k, r, f : Ω → R and c : Ω → R2. For our application we need a two-
dimensional grid, but also a Delaunay triangulation or other triangulations are
also possible. Integrating both sides yields

−
∫

Ωi

∇ · (k∇u− cu)dx+

∫
Ωi

rudx =

∫
Ωi

fdx ∀i ∈ Λ, (3.9)

where Ωi is a control volume and Λ is the set of points of our two-dimensional
grid. Now we use the divergence theorem and for the first integral we get

−
∫

Ωi

∇ · (k∇u− cu)dx = −
∑
j∈Λi

∫
Γij

νij · (k∇u− cu)dσ, (3.10)
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where Λi are the neighboring points of the node i and νij is the outward pointing
normal of Γij. In the next step we approximate k and νij · c on Γij by constants
µij and γij so that the integral becomes

−
∫

Ωi

∇ · (k∇u− cu)dx ≈ −
∑
j∈Λi

∫
Γij

µij(νij · ∇u)− γijudσ. (3.11)

We approximate the normal derivatives by differential quotients, i.e.,

νij · ∇u ≈
u(aj)− u(ai)

dij
with dij := |ai − aj|. (3.12)

For the approximation of the integral of u we use the linear interpolation

u|Γij ≈ riju(ai) + (1− rij)u(aj) (3.13)

with rij ∈ [0, 1]. The other two integrals are approximated by∫
Ωi

rudx ≈ r(ai)u(ai)mi =: riu(ai)mi∫
Ωi

fdx ≈ f(ai)mi =: fimi

(3.14)

with mi := |Ωi|. In summary we have the system of equations∑
j∈Λi

(
µij

ui − uj
dij

+ γij (rijui + (1− rij)uij)
)
mij + riuimi = fimi, i ∈ Λ.

(3.15)
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3.2 The Scharfetter-Gummel method

We use the Scharfetter-Gummel discretization [8] for the drift-diffusion equations

∇ · Jn = R,

∇ · Jp = −R,
Jn = Dn∇n− µnn∇V,
Jp = −Dp∇p− µpp∇V.

(3.16)

To discretize the first two equations we use the finite-volume method. Hence we
have

m1(Jn
i+ 1

2
,j,k
− Jn

i− 1
2
,j,k

) +m2(Jn
i,j+ 1

2
,k
− Jn

i,j− 1
2
,k

)

+m3(Jn
i,j,k+ 1

2
− Jn

i,j,k− 1
2
) = R(i, j, k) ·m,

m1(Jp
i+ 1

2
,j,k
− Jp

i− 1
2
,j,k

) +m2(Jp
i,j+ 1

2
,k
− Jp

i,j− 1
2
,k

)

+m3(Jp
i,j,k+ 1

2

− Jp
i,j,k− 1

2

) = −R(i, j, k) ·m,

(3.17)

where m1, m2, and m3 are the areas of the boundary surfaces of the control vol-
ume and m is the volume of the whole control volume. To simplify the following
explanations, we rewrite the third and fourth equation in the form

J = −(a∇u+ bu), (3.18)

where a = −Dn and a = Dp, respectively, u = n and u = p, respectively, and
b = µn∇V and b = µp∇V , respectively. Now we set ψ := b

a
and have

J = −(a∇u+ bu)

= −a∇ueψe−ψ − au1

a
beψe−ψ

= −ae−ψ(eψ∂u+ u∂eψ)

= −ae−ψ∂(eψu).

(3.19)

In the next step we use the assumption that J is constant on every surface of our
control volume. Then we have to integrate over the edges of our discretization.
To illustrate the method we take the edge between xi and xi+1 and get

−a−1J

∫ xi+1

xi

eψdx =

∫ xi+1

xi

∂(eψu) = δ(eψu). (3.20)
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The other edges are analogeous. For the last computation we use linear interpo-
lation for ψ and have ∫ xi+1

xi

eψdx =
eψ

ψ

∣∣∣∣xi+1

xi

· (xi+1 − xi), (3.21)

so that we have, for ψ = − µn
Dn
V and ψ = − µp

Dp
V , respectively, the formulas

Jn
i+ 1

2
,j,k

= −µn(Vi+1,j,k − Vi,j,k)(ecnVi+1,j,kni+1,j,k − ecnVi,j,kni,j,k)
(ecnVi+1,j,k − ecnVi,j,k)(xi+1 − xi)

,

Jp
i+ 1

2
,j,k

= −µp(Vi+1,j,k − Vi,j,k)(ecpVi+1,j,kpi+1,j,k − ecpVi,j,kpi,j,k)
(ecpVi+1,j,k − ecpVi,j,k)(xi+1 − xi)

,

(3.22)

where cn := − µn
Dn

and cp := µp
Dp

. The formulas for the discretization of the flows

in y and in z directions are analogeous. Finally we substitute (3.22) into (3.17)
to get the entire discretization.

In the next chapter we will use this method to discretize the model equations.





4 Discretization of the model
equations

For the discretization of the model equations we use a 3-dimensional mesh which
is equidistant in each coordinate direction. Therefore we use the same axes as
in Figure 2.1. We call the distance between two points dx, dy, and dz. Further-
more we call the value of the potential V at the mesh point (i, j, k) Vi,j,k and
similarly the density of the holes ni,j,k, the density of the electrons pi,j,k, and the
related current flows, Jn

i+ 1
2
,j,k

and Jp
i+ 1

2
,j,k

, Jn
i,j+ 1

2
,k

and Jp
i,j+ 1

2
,k

, and Jn
i,j,k+ 1

2

and

Jp
i,j,k+ 1

2

, respectively. To discretize the whole biosensor we consider each domain

separately. The left-hand side of the Poisson equation (2.1) is the same for each
domain, and therefore we use the finite-volume method. We have to define a
control volume Ωi,j,k for every mesh point (i, j, k).

Figure 4.1: Five control volumes with grid points at the centers of the boxes.



26 4 Discretization of the model equations

Here we use the control volumes

Ωi,j,k := {x := (x1, x2, x3) ∈ Ω : |x1 − i · dx| ≤
dx

2
and |x2 − j · dy| ≤

dy

2

and |x3 − k · dz| ≤
dz

2

}
.

(4.1)

As the next step in the finite-volume method we integrate the Poisson equation
over the control volumes and use the divergence theorem to get

−
∫

Ωi,j,k

∇ · (ε(x)∇V (x)) dx = −
∑

l∈Λi,j,k

∫
Γl

νlε(x)∇V (x)dσ, (4.2)

where Λi,j,k is the set of the neighbor points of the node (i, j, k), Γl is the bound-
ary of the control volume on which the point l is provided and νl is the outwards
pointing normal on Γl (see Figure 4.2).

Figure 4.2: A control volume with 3 outward pointing normal vectors.

Now we consider a single neighboring point l and approximate the normal deriva-
tive by the differential quotient

νl · ∇V ≈
Vl1,l2,l3 − Vi,j,k

d
, (4.3)

where d is dx, dy or dz depending on the direction where the normal vector
νl points. To complete the discretization of the left-hand side of the Poisson
equation we use our assumption that the permittivity ε is a piecewise constant
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function and get∑
j∈Λi

∫
Γij

νijε(x)∇V (x)dσ =

−
(
εi+ 1

2
,j

Vi+1,j,k − Vi,j,k
xi+1 − xi

− εi− 1
2
,j

Vi,j,k − Vi−1,j,k

xi − xi−1

)
· dy · dz

−
(
εi,j+ 1

2

Vi,j+1,k − Vi,j,k
yj+1 − yj

− εi,j− 1
2

Vi,j,k − Vi,j−1,k

yj − yj−1

)
· dx · dz

−
(
εi,j

Vi,j,k+1 − Vi,j,k
zk+1 − zk

− εi,j
Vi,j,k − Vi,j,k−1

zk − zk−1

)
· dx · dy.

(4.4)

As mentioned before, we now have to consider the different models for the do-
mains to arrive at the discretizations of the right-hand side of equation (2.1).
We discuss the discretization in the silicon domain ΩSi first.

4.1 The silicon domain

In the silicon domain ΩSi we have to solve the drift-diffusion equations (2.4).
To discretize the electron and hole densities, we use the Scharfetter-Gummel
discretization. Hence we have

m1

(
µ(Vi,j,k − Vi−1,j,k(e

cVi,j,kui,j,k − ecVi−1,j,kui−1,j,k)

(ecVi,j,k − ecVi−1,j,k)dx

−µ(Vi+1,j,k − Vi,j,k(ecVi+1,j,kui+1,j,k − ecVi,j,kui,j,k)
(ecVi+1,j,k − ecVi,j,k)dx

)
+m2

(
µ(Vi,j,k − Vi,j−1,k(e

cVi,j,kui,j,k − ecVi,j−1,kui,j−1,k)

(ecVi,j,k − ecVi,j−1,k)dy

−µ(Vi,j+1,k − Vi,j,k(ecVi,j+1,kui,j+1,k − ecVi,j,kui,j,k)
(ecVi,j+1,k − ecVi,j,k)dy

)
+m3

(
µ(Vi,j,k − Vi,j,k−1(ecVi,j,kui,j,k − ecVi,j,k−1ui,j,k−1)

(ecVi,j,k − ecVi,j,k−1)dz

−µ(Vi,j,k+1 − Vi,j,k(ecVi,j,k+1ui,j,k+1 − ecVi,j,kui,j,k)
(ecVi,j,k+1 − ecVi,j,k)dz

)
=σRi,j,k ·m,

(4.5)

where u stands for n or p and σ = +1 for u = n and σ = −1 for u = p. Similarly
c stands for cn or cp and µ for µn or µp, which are the values from Chapter 3.
For the recombination rate we use the Shockley-Read-Hall term with the values
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of n and p at the mesh points

Ri,j,k =
ni,j,kpi,j,k − n2

i

τp(ni,j,k + ni) + τn(pi,j,k + ni)
. (4.6)

Finally we use the finite-volume method for the right-hand side of the Poisson
equation. Therefore we integrate the right side over the control volume Ωi,j,k

which was used at the left-hand side and approximate C, n and p to have∫
Ωi,j,k

C + n(x)− p(x)dx = (C + ni,j,k − pi,j,k) ·m, (4.7)

where ni,j,k and pi,j,k are given by the Scharfetter-Gummel discretization, C is
the doping concentration and m is again the volume of the control volume Ωi,j,k.

4.2 The liquid and the oxide domain

We discuss the other two domains, the liquid and the oxide, together, because we
have to obtain the discretization of the interface conditions where both domains
are involved.

4.2.1 The liquid domain

To discretize the right-hand side of the Poisson equation for the liquid we could
use ∫

Ωi

∑
σ∈{−1,1}

ασfσe
−σβV (x)dx =

∑
σ∈{−1,1}

ασfσe
−σβVi,j,k ·m. (4.8)

There are two problems, however. First the homogenization method works only
for linear operators. Second, this yields a system of nonlinear equations, whereas
the following linearization allows us to simplify the problem to a system of linear
equations.

4.2.2 Linearization of the Boltzmann term

To linearize the Boltzmann term around V0 we rewrite it as∑
σ∈{−1,1}

ασe−σβ(V−Φ) =
∑

σ∈{−1,1}

ασe−σβ(V−V0)e−σβ(V0−Φ)

(4.9)
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and replace e−σβ(V−V0) by the Taylor series. Hence we get∑
σ∈{−1,1}

ασe−σβ(V−V0)e−σβ(V0−Φ) =
∑

σ∈{−1,1}

ασe−σβ(V0−Φ)(1− σβ(V − V0) +O(V 2))

= 2(−α sinh β(V0 − Φ) + αβV0 cosh β(V0 − Φ)− αβV cosh β(V0 − Φ)).

(4.10)

For the linearization around V0 = 0 we have∑
σ∈{−1,1}

ασe−σβ(V−Φ) ≈ 2α(sinh βΦ− βV cosh βΦ) (4.11)

as the Boltzmann term in the discretization.

4.2.3 The oxide domain and the interface conditions

In the oxide, the right-hand side is equal to zero and so we have only to obtain
the discretization for the jump conditions

V (x+)− V (x−) =
D

εLiq
, (4.12)

εLiq∇V (x+)− εOx∇V (x−) = −Cs (4.13)

at the interface ∆.

Figure 4.3: The parts of the interface.

Therefore we divide the interface into 4 parts (see Figure 4.3): the horizontal
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interface ∆1, the vertical interface ∆2, the interface vertices ∆3 on the right side
of the nanowire, and the interface vertices ∆4 on the left side of the nanowire.
We denote the left- and right-hand side limits by substracting and adding 1

4
in

the index. This yields

Vi,j+ 1
4
,k − Vi,j− 1

4
,k =

D

εLiq
,

εLiq
Vi,j+1,k − Vi,j+ 1

4
,k

dy
− εOx

Vi,j− 1
4
,k − Vi,j−1,k

dy
= −Cs,

(4.14)

at the interface ∆1,

Vi− 1
4
,j,k − Vi+ 1

4
,j,k =

D

εLiq
,

εLiq
Vi−1,j,k − Vi− 1

4
,j,k

dx
− εOx

Vi+ 1
4
,j,k − Vi+1,j,k

dx
= −Cs,

(4.15)

at the left side of the interface ∆2,

Vi+ 1
4
,j,k − Vi− 1

4
,j,k =

D

εLiq
,

εLiq
Vi+1,j,k − Vi+ 1

4
,j,k

dx
− εOx

Vi− 1
4
,j,k − Vi−1,j,k

dx
= −Cs,

(4.16)

at the right side of the interface ∆2,

Vi+ 1
4
,j+ 1

4
,k − Vi− 1

4
,j− 1

4
,k =

D

εLiq
,

εLiq
2(Vi+1,j+1,k − Vi+ 1

4
,j+ 1

4
,k)√

dx2 + dy2
− εOx

2(Vi− 1
4
,j− 1

4
,k − Vi−1,j−1,k)√

dx2 + dy2
= −Cs,

(4.17)

at the interface ∆3 and

Vi− 1
4
,j+ 1

4
,k − Vi+ 1

4
,j− 1

4
,k =

D

εLiq
,

εLiq
2(Vi−1,j+1,k − Vi− 1

4
,j+ 1

4
,k)√

dx2 + dy2
− εOx

2(Vi+ 1
4
,j− 1

4
,k − Vi+1,j−1,k)√

dx2 + dy2
= −Cs,

(4.18)

at the interface ∆4. Now we have the discretization for the inner points of the
simulation domain and only the boundary conditions are left to complete the
discretization.
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4.3 The boundary conditions

As mentioned in Chapter 1, we have Dirichlet boundary conditions at the source,
drain, and back-gate contacts and at the electrode and Neumann boundary con-
ditions everywhere else. The Dirichlet conditions at the electrode and at the
back-gate are

Vi,0,k = Vb,

Vi,yLiq,k = Ve
(4.19)

for every i and k in our mesh, where Vb and Ve are the same constants as in
Chapter 1. The boundary conditions at the source and the drain contacts are

Vi,j,0 = Vs + UT ln
nDi,j,0
ni

,

Vi,j,zL = Vd + UT ln
nDi,j,zL
ni

,

ni,j,0 = nDi,j,0,

ni,j,zL = nDi,j,zL,

pi,j,0 = pDi,j,0,

pi,j,zL = pDi,j,zL

(4.20)

for every i and j in our mesh where

nDi,j,k =
1

2
(Ci,j,k +

√
C2
i,j,k + 4n2

i )

and

pDi,j,k =
1

2
(−Ci,j,k +

√
C2
i,j,k + 4n2

i )

are the values of the electron and hole densities at the boundary. The Neumann
conditions are

VxLiq,j,k = VxLiq−1,j,k,

V−xLiq,j,k = V−xLiq+1,j,k,

Vi,j,1 = Vi,j,2,

Vi,j,zL = Vi,j,zL−1

(4.21)
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for every i, j and k in our mesh and in the silicon domain we have Neumann
conditions for the current flow, which are

Ju
i,ySi+ 1

2
,k

= 0,

Ju
i,yOx1− 1

2
,k

= 0,

Ju
xSi+ 1

2
,j,k

= 0,

Ju−xSi− 1
2
,j,k

= 0

(4.22)

for every k in the mesh, i ∈ [−xSi, xSi] and j ∈ [yOx1, ySi], where u = n or u = p.



5 Improvements for 3D
simulations

We developed two improvements for the discretization in Chapter 3. The first
change is that we halve the number of grid points by using the symmetry of the
biosensor. The second improvement is needed because we have to implement the
interface conditions efficiently on an equidistant grid.

5.1 Exploiting the symmetry

A quick look on Figure 1.1 is enough to understand the symmetry of the biosensor
and the idea is obvious that we reflect the biosensor about the y-axis. The
advantage of this reflection is that we only need a bit more than half of the
points and so the computation is much faster. To get the right conditions for
the points on the y-axis we only have to set

V−1,j,k := V1,j,k

n−1,j,k := n1,j,k

p−1,j,k := p1,j,k

(5.1)

for every index j and k on the grid. As a consequence we can limit the following
explanations to points with x ≥ 0.

5.2 Efficient implementation of the interface
conditions

In Chapter 3 we started with an equidistant grid, but we need additional grid
points for the interface conditions. For instance at the interface ∆1, we call
the two limits Vi,j+ 1

4
,k and Vi,j− 1

4
,k. The idea is now to use the points Vi,j,k and

Vi,j−1,k instead of the points Vi,j+ 1
4
,k and Vi,j− 1

4
,k. This can be done similarly for
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the points at the interface ∆2. So we have the equations

Vi,j,k − Vi,j−1,k =
D

εLiq
,

εLiq
Vi,j+1,k − Vi,j,k

dy
− εOx

Vi,j−1,k − Vi,j−2,k

dy
= −Cs

(5.2)

at the interface ∆1 and

Vi,j,k − Vi−1,j,k =
D

εLiq
,

εLiq
Vi+1,j,k − Vi,j,k

dx
− εOx

Vi−1,j,k − Vi−2,j,k

dx
= −Cs,

(5.3)

at the interface ∆2.

Figure 5.1: Linking of the grid points at the interface. The red points are addi-
tional points which are treated in Figure 5.2.

At the interface ∆3 we have the equations

Vi,j,k − Vi−1,j−1,k =
D

εLiq
,

εLiq
2(Vi+1,j+1,k − Vi,j,k)√

dx2 + dy2
− εOx

2(Vi−1,j−1,k − Vi−2,j−2,k)√
dx2 + dy2

= −Cs.
(5.4)

But now we have the problem that we have additional points at (xOx − 1, j, k)
where (j, k) ∈ [yOx2, yLiq−1]×[1, Lz−1], (i, yOx2−1, k) where (i, k) ∈ [xOx, xLiq−
1]× [1, Lz − 1], (i, yOx1, k) where (i, k) ∈ [0, xOx − 1]× [1, Lz − 1], and (xOx, j, k)
where (j, k) ∈ [1, yOx1 − 1] × [1, Lz − 1] which are shown in Figure 5.2 as red
points. These points does not exist in our original discretization, so we combine
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these points with points nearby. First we identify them with existing points by
adding the equations

VxOx−1,j,k = VxOx,j,k for (j, k) ∈ ([1, yOx1 − 1] ∪ [yOx2, yLiq − 1])× [1, Lz − 1],

Vi,yOx2,k = Vi,yOx2−1,k for (i, k) ∈ [xOx, xLiq − 1]× [1, Lz − 1],

Vi,yOx1,k = Vi,yOx1−1,k for (i, k) ∈ [0, xOx − 1]× [1, Lz − 1]

(5.5)

and then we have to connect the points in the original grid via the Poisson
equation

−
(
εi+ 1

2
,j

Vi+1,j,k − Vi,j,k
dx

− εi− 3
2
,j

Vi,j,k − Vi−2,j,k

dx

)
· dy · dz

−
(
εi,j+ 1

2

Vi,j+1,k − Vi,j,k
dy

− εi,j− 1
2

Vi,j,k − Vi,j−1,k

dy

)
· dx · dz

−
(
εi,j

Vi,j,k+1 − Vi,j,k
dz

− εi,j
Vi,j,k − Vi,j,k−1

dz

)
· dx · dy = rhs

(5.6)

Figure 5.2: The red points are additional points which identified with black
points. The other arrows show the points which are affected by the
Poisson equation.

at the points i = xOx and (j, k) ∈ [yOx2+1, yLiq−1]×[1, zL−1], via the equations



36 5 Improvements for 3D simulations

−
(
εi+ 3

2
,j

Vi+2,j,k − Vi,j,k
dx

− εi− 1
2
,j

Vi,j,k − Vi−1,j,k

dx

)
· dy · dz

−
(
εi,j+ 1

2

Vi,j+1,k − Vi,j,k
dy

− εi,j− 1
2

Vi,j,k − Vi,j−1,k

dy

)
· dx · dz

−
(
εi,j

Vi,j,k+1 − Vi,j,k
dz

− εi,j
Vi,j,k − Vi,j,k−1

dz

)
· dx · dy = rhs

(5.7)

at the points i = xOx and (j, k) ∈ [1, yOx1 − 2]× [1, zL− 1], via the equations

−
(
εi+ 1

2
,j

Vi+1,j,k − Vi,j,k
dx

− εi− 1
2
,j

Vi,j,k − Vi−1,j,k

dx

)
· dy · dz

−
(
εi,j+ 1

2

Vi,j+1,k − Vi,j,k
dy

− εi,j− 3
2

Vi,j,k − Vi,j−2,k

dy

)
· dx · dz

−
(
εi,j

Vi,j,k+1 − Vi,j,k
dz

− εi,j
Vi,j,k − Vi,j,k−1

dz

)
· dx · dy = rhs

(5.8)

at the points j = yOx2 and (i, k) ∈ [xOx + 1, xLiq− 1]× [1, zL− 1], and finally via
the equations

−
(
εi+ 1

2
,j

Vi+1,j,k − Vi,j,k
dx

− εi− 1
2
,j

Vi,j,k − Vi−1,j,k

dx

)
· dy · dz

−
(
εi,j+ 3

2

Vi,j+2,k − Vi,j,k
dy

− εi,j− 1
2

Vi,j,k − Vi,j−1,k

dy

)
· dx · dz

−
(
εi,j

Vi,j,k+1 − Vi,j,k
dz

− εi,j
Vi,j,k − Vi,j,k−1

dz

)
· dx · dy = rhs

(5.9)

at the points j = yOx1− 1 and (i, k) ∈ [0, xOx− 2]× [1, zL− 1]. Here rhs stands
for the right-hand side of the respective Poisson equation.
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5.3 Matrix structure

After these improvements the linear system has the structure shown in Figure
5.3, which is similar to the usual band structure of discretizations of the Poisson
equation.

Figure 5.3: Structure of the linear system.

It also shows that there are non-zero points which are not in the usual band
structure. These points are the equations for the vertical interface ∆2. Because
of the small parameters used in the simulation shown in Figure 5.3, not all of
the 7 bands of the discretization of the 3D Poisson equation are seen.

Figure 5.4: Structure of the linear system with larger parameters.
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In Figure 5.4 larger parameters are used and the 7-band structure is clearly seen.
It is also observed in Figure 5.4 that the band structure of the equations with
the interface conditions is not worse than the band structure of the discretization
of the 3D Poisson equation. This means that our implementation works very
efficiently.



6 The program

Listing 6.1 shows the Mathematica program in pseudo code where we use a
stepping method for the boundary conditions to improve convergence. In Listing
6.1 we use as example the boundary conditions at the back-gate and the source.

Listing 6.1: Numerical algorithm.

1 for(i=0,i<iterB , i++){
2 Vb=startB+i∗stepB
3 for(j=0,j<iterS , j++){
4 Vs=startS+j∗stepS
5 if(i==0 && j==0){ n [0 ]=p [0 ]=0 }
6 else if{i>0 && j==0){
7 n [0 ]= soln [ i−1,j ]
8 p [0 ]= solp [ i−1,j ]
9 }

10 else{
11 n [0 ]= soln [ i , j−1]
12 p [0 ]= solp [ i , j−1]
13 }
14

15 k = V [ 0 ] = 0
16

17 while(k<maxIterations){
18 V [ k+1] = B(n [ k ] , p [ k ] )
19 n [ k+1] = N(V [ k+1] ,n [ k ] , p [ k ] )
20 p [ k+1] = N(V [ k+1] ,n [ k+1] ,p [ k+1])
21 deltaV = | | V [ k+1] − V [ k ] | |
22

23 if(deltaV < maxDelta) : break
24 k++
25 }
26 soln [ i , j ] = n [ k ]
27 solp [ i , j ] = p [ k ]
28 solV [ i , j ] = V [ k ]
29 }
30 }
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Here we compute n and p with the Newton method and V with the Bi-CGSTAB
method which is a Krylov method. For more details to the Newton method and
the Bi-CGSTAB method see [1, 7, 14].
This schematic program will start with the boundary conditions Vb = startB and
Vs = startS and will make iterB steps with step size stepB for the back-gate
and iterS steps with step size stepS for the source contact. The setting of the
start values of n and p provides a better approximation in the loop where k = 0.
Furthermore we use the infinity norm for the computation of deltaV and the
tolerance limit maxDelta := 10−6V.



7 Simulation and numerical
results

For the simulations shown in this chapter we consider a leading example. The
parameters of the reference structure are shown in Table 7.1.

dx = 1 dy = 1 dz = 1

xSi = 9nm yOx1 = 9nm Lz = 19nm

xOx = 12nm ySi = 17nm

xLiq = 24nm yOx2 = 20nm

yLiq = 34nm

Table 7.1: The length scales of the example.

If not noted otherwise, the values of Table 7.2 will be used.

Φ = 0 Cs = −2 · 10−19q · nm−2 α = 6.02214 · 10−5mole · nm−3

C = 10−5q · nm−3 D = 0q · nm−2

Table 7.2: Basic setting.

In the following we will often compute the current ISD between source and drain.
It is computed by the formula

ISD =

xSi∑
i=−xSi

ySi∑
j=yOx1+1

(
Jp
i,j,k− 1

2

+ Jn
i,j,k− 1

2

)
, (7.1)

where k is an integer in [2, Lz − 1].
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7.1 Boundary conditions

In this paragraph we discuss the hole density p, the electron density n, and the
electric potential V for varying boundary conditions. Therefore we use different
cross sections in the plots. The cross sections in x and y-directions are shown in
Figure 7.1.

Figure 7.1: Cross sections shown in simulations.

Furthermore the current ISD for varying boundary conditions is summarized in
Table 7.3. We chose the parameters in Table 7.3 to investigate the influence of
the different boundary conditions separately and some of their interactions.

Settings ISD [A]

Vb = 0V, Ve = 0V, Vs = 0V, Vd = 0V
Vb = −3V, Ve = 0V, Vs = 0V, Vd = 0V
Vb = 0V, Ve = −1V, Vs = 0V, Vd = 0V
Vb = 0V, Ve = 0V, Vs = 5V, Vd = 0V
Vb = 0V, Ve = 0V, Vs = 0V, Vd = 5V
Vb = 0V, Ve = 0V, Vs = −5V, Vd = 5V
Vb = −2V, Ve = 1V, Vs = 0V, Vd = 0V
Vb = −2.5V, Ve = 2.5V, Vs = −5V, Vd = 5V

5.93208 · 10−23

9.85995 · 10−28

−1.12338 · 10−26

1.43795 · 10−6

−1.43795 · 10−6

−33.3354 · 10−6

4.13576 · 10−22

−40.3515 · 10−6

Table 7.3: Current for varying boundary conditions.
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Results for Vb = 0V, Ve = 0V, Vs = 0V, Vd = 0V

Figure 7.2 shows the electric potential in cross sections in x-direction. The three
cross sections at the top (always from left to right) are for the values x = 0nm,
x = 10nm, and x = 12nm and the three cross sections at the bottom are for the
values x = 14nm, x = 19nm, and x = 23nm. The common of all six pictures
are that we see the boundary condition for the back-gate at the left side of the
pictures and the boundary condition for the electrode at the right side of the
pictures. In the three figures at the top we see how the semiconductor (from
y = 9nm to y = 17nm) influences the electric potential V and that the boundary
conditions at the source and the drain for the Ohmic contacts depend not only
on the applied voltage, see (2.11). The three pictures at the bottom show the
results at the surface with zero-flux boundary conditions at the left- and on the
right-hand side (at x = −24nm and x = 24nm) of the biosensor in contrast to
Dirichlet boundary conditions.

Figure 7.2: Cross sections at x = 0nm, x = 10nm, x = 12nm, x = 14nm, x = 19
nm, and x = 23nm showing the electric potential V .

The cross sections at z = 5nm, z = 10nm, and z = 15nm are shown in Figure 7.3
where the semiconductor part from x = −9nm to x = 9nm and from y = 9nm
to y = 17nm is clearly seen.

Figure 7.4 shows the cross sections (from left to right and top to bottom) at
y = 2nm, y = 5nm, y = 10nm, y = 14nm, y = 19nm, y = 21nm, y = 25nm,
y = 30nm, and y = 34nm. Here we see again the influence of the semiconductor
(from x = −9nm to x = 9nm) on the electric potential V .

Figure 7.5, Figure 7.6, and Figure 7.7 shows cross sections for the electron density
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n and the hole density p. The hole density p will be always very small because
we have a n-doped nanowire and hence the electrons are the major carriers. The
following paragraphs show the same cross sections for varying boundary condi-
tions.

Figure 7.3: Cross sections at z = 5nm, z = 10nm, and z = 15nm showing the
electric potential V .

Figure 7.4: Cross sections at y = 2nm, y = 5nm, y = 10nm, y = 14nm, y =
19nm, y = 21nm, y = 25nm, y = 30nm, and y = 34nm showing the
electric potential V .
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Figure 7.5: Cross sections at x = 5nm showing the electron density n and the
hole density p.

Figure 7.6: Cross sections at y = 14nm showing the electron density n and the
hole density p.

Figure 7.7: Cross sections at z = 10nm showing the electron density n and the
hole density p.
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Results for Vb = −3V, Ve = 0V, Vs = 0V, Vd = 0V

Figure 7.8 shows the effect of the boundary condition at the back-gate which we
can see at the left side of the pictures.

Figure 7.8: Cross sections at x = 0nm, x = 10nm, x = 12nm, x = 14nm, x = 19
nm, and x = 23nm showing the electric potential V .

In Figure 7.9 we see the same effect as in Figure 7.8. Hence we have a decrease
of the electric potential in direction to the bulk.

The same effect as in Figure 7.8 is seen in the first three pictures of Figure
7.10. In the other pictures we see no effect.

In Figure 7.12 we have a increase of the hole density p. We have this effect
if we have less current ISD.

Figure 7.9: Cross sections at z = 5nm, z = 10nm, and z = 15nm showing the
electric potential V .
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Figure 7.10: Cross sections at y = 2nm, y = 5nm, y = 10nm, y = 14nm, y =
19nm, y = 21nm, y = 25nm, y = 30nm, and y = 34nm showing the
electric potential V .

Figure 7.11: Cross sections at x = 5nm showing the electron density n and the
hole density p.
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Figure 7.12: Cross sections at y = 14nm showing the electron density n and the
hole density p.

Figure 7.13: Cross sections at z = 10nm showing the electron density n and the
hole density p.
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Results for Vb = 0V, Ve = −1V, Vs = 0V, Vd = 0V

Figure 7.14 shows the influence of the boundary condition at the electrode at the
right side of the pictures.

Figure 7.14: Cross sections at x = 0nm, x = 10nm, x = 12nm, x = 14nm, x = 19
nm, and x = 23nm showing the electric potential V .

Figure 7.15 shows an decrease of the potential in direction to the electrode.

The first 5 pictures of Figure 7.16 are not influenced by the electrode bound-
ary condition. In the other pictures we see a decrease of the average electric
potential V .

The hole density p and the electron density n are as expected.

Figure 7.15: Cross sections at z = 5nm, z = 10nm, and z = 15nm showing the
electric potential V .
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Figure 7.16: Cross sections at y = 2nm, y = 5nm, y = 10nm, y = 14nm, y =
19nm, y = 21nm, y = 25nm, y = 30nm, and y = 34nm showing the
electric potential V .

Figure 7.17: Cross sections at x = 5nm showing the electron density n and the
hole density p.
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Figure 7.18: Cross sections at y = 14nm showing the electron density n and the
hole density p.

Figure 7.19: Cross sections at z = 10nm showing the electron density n and the
hole density p.
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Results for Vb = 0V, Ve = 0V, Vs = 5V, Vd = 0V

Figure 7.20 shows an increase of the electric potential V in the silicon domain at
the source and nearby.

Figure 7.20: Cross sections at x = 0nm, x = 10nm, x = 12nm, x = 14nm, x = 19
nm, and x = 23nm showing the electric potential V .

In Figure 7.21 we have on the first picture an increase of the average electric
potential V .

Figure 7.22 is clearly influenced from the boundary condition at the source.
This results in an increase of the electric potential V at the source.

Since we have a n-doped nanowire only the density of the electrons at the source
increases in Figure 7.23, 7.24, and 7.25.

Figure 7.21: Cross sections at z = 5nm, z = 10nm, and z = 15nm showing the
electric potential V .
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Figure 7.22: Cross sections at y = 2nm, y = 5nm, y = 10nm, y = 14nm, y =
19nm, y = 21nm, y = 25nm, y = 30nm, and y = 34nm showing the
electric potential V .

Figure 7.23: Cross sections at x = 5nm showing the electron density n and the
hole density p.
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Figure 7.24: Cross sections at y = 14nm showing the electron density n and the
hole density p.

Figure 7.25: Cross sections at z = 10nm showing the electron density n and the
hole density p.
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Results for Vb = 0V, Ve = 0V, Vs = 0V, Vd = 5V

Here we can see the same effect as in the previous paragraph. The difference is
the direction of the increasing electric potential V .

Figure 7.26: Cross sections at x = 0nm, x = 10nm, x = 12nm, x = 14nm, x = 19
nm, and x = 23nm showing the electric potential V .

Figure 7.27: Cross sections at z = 5nm, z = 10nm, and z = 15nm showing the
electric potential V .
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Figure 7.28: Cross sections at y = 2nm, y = 5nm, y = 10nm, y = 14nm, y =
19nm, y = 21nm, y = 25nm, y = 30nm, and y = 34nm showing the
electric potential V .

Figure 7.29: Cross sections at x = 5nm showing the electron density n and the
hole density p.
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Figure 7.30: Cross sections at y = 14nm showing the electron density n and the
hole density p.

Figure 7.31: Cross sections at z = 10nm showing the electron density n and the
hole density p.
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Results for Vb = 0V, Ve = 0V, Vs = −5V, Vd = 5V

Figure 7.32 and Figure 7.34 show the decrease of the electric potential V in the
direction to the source and an increase of the electric potential V in the direction
to the drain.

Figure 7.32: Cross sections at x = 0nm, x = 10nm, x = 12nm, x = 14nm, x = 19
nm, and x = 23nm showing the electric potential V .

The same effect can be observed in Figure 7.33 where we have a low average
electric potential V on the first picture and a higher average electric potential V
at the third picture.

In Figure 7.35, 7.36, and 7.37 we see that we have indeed a current flow from
source to drain which results that the hole density p equals zero and the electron
density n is positive.

Figure 7.33: Cross sections at z = 5nm, z = 10nm, and z = 15nm showing the
electric potential V .
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Figure 7.34: Cross sections at y = 2nm, y = 5nm, y = 10nm, y = 14nm, y =
19nm, y = 21nm, y = 25nm, y = 30nm, and y = 34nm showing the
electric potential V .

Figure 7.35: Cross sections at x = 5nm showing the electron density n and the
hole density p.
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Figure 7.36: Cross sections at y = 14nm showing the electron density n and the
hole density p.

Figure 7.37: Cross sections at z = 10nm showing the electron density n and the
hole density p.
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Results for Vb = −2V, Ve = 1V, Vs = 0V, Vd = 0V

Figure 7.38 shows −2V at the right-hand side and 1V at the left-hand side of
the pictures.

Figure 7.38: Cross sections at x = 0nm, x = 10nm, x = 12nm, x = 14nm, x = 19
nm, and x = 23nm showing the electric potential V .

The same behavior as in Figure 7.38 can be observed in Figure 7.39.

In Figure 7.40 we see that the average electric potential V increases from picture
to picture.

The electron density n is again positive and the hole density p has a value nearby
zero.

Figure 7.39: Cross sections at z = 5nm, z = 10nm, and z = 15nm showing the
electric potential V .
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Figure 7.40: Cross sections at y = 2nm, y = 5nm, y = 10nm, y = 14nm, y =
19nm, y = 21nm, y = 25nm, y = 30nm, and y = 34nm showing the
electric potential V .

Figure 7.41: Cross sections at x = 5nm showing the electron density n and the
hole density p.
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Figure 7.42: Cross sections at y = 14nm showing the electron density n and the
hole density p.

Figure 7.43: Cross sections at z = 10nm showing the electron density n and the
hole density p.



64 7 Simulation and numerical results

Results for Vb = −2.5V, Ve = 2.5V, Vs = −5V, Vd = 5V

Figure 7.44 shows in the first picture the boundary conditions for source and
drain in the silicon domain. Furthermore we can see back-gate and electrode
boundary conditions at the left and at the right side of the pictures.

Figure 7.44: Cross sections at x = 0nm, x = 10nm, x = 12nm, x = 14nm, x = 19
nm, and x = 23nm showing the electric potential V .

The same behavior like in Figure 7.44 can be observed in Figure 7.45 and in
Figure 7.46.

The hole density p and the electron density n are similar to the figures 7.35,
7.36, and 7.37.

Figure 7.45: Cross sections at z = 5nm, z = 10nm, and z = 15nm showing the
electric potential V .
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Figure 7.46: Cross sections at y = 2nm, y = 5nm, y = 10nm, y = 14nm, y =
19nm, y = 21nm, y = 25nm, y = 30nm, and y = 34nm showing the
electric potential V .

Figure 7.47: Cross sections at x = 5nm showing the electron density n and the
hole density p.
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Figure 7.48: Cross sections at y = 14nm showing the electron density n and the
hole density p.

Figure 7.49: Cross sections at z = 10nm showing the electron density n and the
hole density p.
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7.2 Current flow

Here we show the current flow in three cross sections for each coordinate direction
with the boundary conditions Vb = −2.5V, Ve = 2.5V, Vs = −5V, and Vd = 5V.
The majority carriers are the electrons and therfore the current flow of the holes
vanishes. Hence we show only the electron flow.
The current flow is shown in the three coordinate directions. As an example we
can take the current flow in x-direction

Jn
i+ 1

2
,j,k

= −qµn
Vi+1,j,k − Vi,j,k

dx
· e

cnVi+1,j,kni+1,j,k − ecnVi,j,kni,j,k
ecnVi+1,j,k − ecnVi,j,k

and the current flow in y and z-direction are computed analogously.

Figure 7.50: Electron flow in x-direction at y = 10nm, y = 13nm, and y = 17nm.

Figure 7.51: Electron flow in x-direction at z = 5nm, z = 10nm, and z = 15nm.
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Figure 7.52: Electron flow in y-direction at x = 0nm, x = 4nm, and x = 8nm.

Figure 7.53: Electron flow in y-direction at z = 5nm, z = 10nm, and z = 15nm.

Figure 7.54: Electron flow in z-direction at x = 0nm, x = 4nm, and x = 8nm.
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Figure 7.55: Electron flow in z-direction at y = 10nm, y = 13nm, and y = 17nm.
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7.3 Influence of Na+Cl− concentration

This paragraph shows the electric potential V and the current in three cross
sections for varying Na+Cl− concentration with Vb = −2.5V, Ve = 2.5V, Vs =
−5V, and Vd = 5V.
We see in the cross sections x = 0nm and z = 10nm that with decreasing Na+Cl−

concentration the influence of the boundary condition Ve at the electrode on the
electric potential V and the electric potential V at the cross section y = 30nm
increases. This results in a decreasing current ISD which is shown in Table 7.4.

α (in mole · nm−3) I [µA]

6.02214 · 10−2 −31.7023
6.02214 · 10−3 −31.5678
6.02214 · 10−4 −35.033
6.02214 · 10−5 −40.3515
6.02214 · 10−6 −41.6232

Table 7.4: Current for varying Na+Cl− concentration.

Figure 7.56: Cross sections at x = 0nm, y = 30nm, and z = 10nm showing
the electric potential V with Na+Cl− concentration α = 6.02214 ·
10−2mol · nm−3.
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Figure 7.57: Cross sections at x = 0nm, y = 30nm, and z = 10nm showing
the electric potential V with Na+Cl− concentration α = 6.02214 ·
10−3mol · nm−3.

Figure 7.58: Cross sections at x = 0nm, y = 30nm, and z = 10nm showing
the electric potential V with Na+Cl− concentration α = 6.02214 ·
10−4mol · nm−3.

Figure 7.59: Cross sections at x = 0nm, y = 30nm, and z = 10nm showing
the electric potential V with Na+Cl− concentration α = 6.02214 ·
10−5mol · nm−3.
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Figure 7.60: Cross sections at x = 0nm, y = 30nm, and z = 10nm showing
the electric potential V with Na+Cl− concentration α = 6.02214 ·
10−6mol · nm−3.
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7.4 Interface

Here we discuss the source-drain current for varying macroscopic surface charge
density Cs and varying macroscopic dipole moment density D. Therefore we use
the boundary conditions Vb = −2.5V, Ve = 2.5V, Vs = −5V, and Vd = 5V.
In Figure 7.61 and Figure 7.62 the macroscopic dipole moment density varies
from −1q · nm−1 to 1q · nm−1 in 0.25q · nm−1 steps. The lines in Figure 7.61
from top to bottom and in Figure 7.62 from bottom to top are the currents for
different values of the macroscopic surface charge density from −0.1q · nm−2 to
0.15q · nm−2 in 0.025q · nm−2 steps. The difference between these two figures is
that in Figure 7.61 the semiconductor is p-doped with C = −1016q · nm−3 and
in Figure 7.62 the semiconductor is n-doped with C = 1016q · nm−3.

Figure 7.61: Source-drain current for a p-doped nanowire biosensor with vary-
ing macroscopic surface charge density and varying dipole moment
density.

Figure 7.62: Source-drain current for a n-doped nanowire biosensor with vary-
ing macroscopic surface charge density and varying dipole moment
density.
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7.5 Current

In order to relate the simulations to measurements, we show the IV characteristics
of the sensor structure. Figure 7.63 shows the source-drain current for varying
back-gate voltage and varying source voltage. Furthermore we set Vd := 0V and
Ve := 0V. The blue line on the top of the left side of the figure is for Vb = −3V.
The lines beneath are for Vb = −2V, Vb = −1V, Vb = 0V, Vb = 1V, Vb = 1.2V,
Vb = 1.5V, Vb = 1.8V, and Vb = 2V.

Figure 7.63: Current from Vs = −1V to Vs = 1.4V for varying back-gate voltage
from Vb = −3V to Vb = 1V in 1 V steps and Vb = 1.2V, Vb = 1.5V,
Vb = 1.8V, and Vb = 2V.

Table 7.5 shows the current for different lengths. Here we used Vs = −0.75V,
Vd = 0V, and Ve = 0V. We see that the difference between the currents of
biosensors with Lz = 80nm and Lz = 100nm is for Vb = −3nm bigger than for
Vb = 0nm.
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Vb [V] Lz = 20nm Lz = 40nm Lz = 60nm Lz = 80nm Lz = 100nm

−3 −0.464569 −0.0456427 −0.0128917 −0.00675331 −0.00450685
−2 −0.921903 −0.530093 −0.410956 −0.33454 −0.28108
−1 −1.69527 −1.35971 −1.32128 −1.30011 −1.2802

0 −2.79327 −2.5672 −2.54012 −2.52439 −2.51022

Table 7.5: ISD [µA] for different boundary conditions at the back-gate and varying
Lz.

Finally we show in Figure 7.64 varying back-gate voltage and varying source
voltage for a p-doped nanowire with C = −1016q · nm−3. The voltages at the
drain and the electrode are again Ve = 0V and Vd = 0V. Furthermore the
back-gate voltage varies in the lines on the right side from top to bottom from
Vb = −2V to Vb = 3V in 1 V steps.

Figure 7.64: Current from Vs = −2.5V to Vs = 1V for varying back-gate voltage
from Vb = −2V to Vb = 3V in 1 V steps.

Figure 7.63 and Figure 7.64 are in a qualitative agreement with the measurements
in Figure 2a and Figure 2b of [4], one of the most important experiments in this
field to date.
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7.6 Conclusion

The agreement of Figure 7.63 and 7.64 with measured values shows that the
essential physics of field-effect biosensors are included in our PDE-based model.
We point out that it is a full 3D model that includes the back-gate contact.
This work is therefore an important building block of the self-consistent three-
dimensional modeling and simulation of nanowire field-effect biosensors.

The multi-scale problem inherent in these biosensors was solved by implement-
ing interface conditions derived from the homogenization of the biofunctional-
ized boundary layer. The interface conditions were implemented efficiently by
a special numbering scheme of the equations of the discretization. An efficient
implementations is especially important for 3D simulations.

We also investigated how different parameter values for the boundary, the in-
terface, and the Na+Cl− concentration influence the source-drain current ISD.
The ISD current was calculated because this value is usually measured.

The computation of the macroscopic surface charge density Cs and the macro-
scopic dipole moment density D is not discussed in this work. These values have
been calculated from Poisson-Boltzmann and Monte-Carlo simulations.

In future work we will identify certain physical parameters of BioFETs to ar-
rive at a calibrated model and to make predictive simulations of 3D structures
possible.
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