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Abstract: A 3d simulator for nanowire field-effect sensors and transistors including fast varying
charge concentrations at an interface is presented. This simulator is based on a system of partial
differential equations calculating the electrostatic potential of the whole device and the charge
concentrations in the semiconducting nanowire. Therefore, three domains need to be modeled.
The nanowire is described by the drift-diffusion-Poisson system, the Poisson-Boltzmann equation
is used for the simulation of an aqueous solution, and the Poisson equation holds in the remaining
oxide. Such devices can be used as gas sensors, and by functionalization of the nanowire surface,
i.e., by attaching probe molecules, they can also be used for the detection of biomolecules
in aqueous solutions. Binding of target molecules to the surface induces a field effect due to
changes of charges in a small layer around the surface. This effect is responsible for the sensor
response and hence is of paramount importance. A homogenization method resulting in two
jump conditions is implemented which splits the computation into the charge of the boundary
layer and into the remaining device. In order to take into account the geometry of the devices,
3d simulations are necessary and hence a parallelization technique has been developed. To
include the jump conditions of the homogenization method, a novel finite-element tearing and
interconnecting (feti) method has been developed. With this simulator it is possible to solve the
three dimensional and heterogeneous system of partial differential equations with discontinuities
in feasible time using realizable computer power. As a result, sensitivity in terms of geometrical
and physical properties can be predicted and sensors can be improved.

Keywords: nwfet, feti, parallelization, pde, drift-diffusion-Poisson system,
Poisson-Boltzmann equation, homogenization, self-consistent, 3d simulations, nanowire sensor.

1. INTRODUCTION

Nanowire field-effect transistors (nwfets) are attractive
sensing devices with a wide range of applications; see
Schöning and Poghossian (2006); Köck et al. (2009); Tian
et al. (2010); Stern et al. (2010). For the detection of
biomolecules, a nanowire of semiconducting material is
covered with a dielectric layer functionalized with immobi-
lized probe molecules (see Figure 1). In an electrolyte with
target molecules, e.g., blood, the targets bind to the probes
and in turn change the charge in a boundary layer, which
induces a field effect. The same is valid for nwfet used
for gas detection. Here the gas reacts with the nanowire
surface and in turn changes the conductivity.

The advantage of nanowires for the purpose of detection
is the small surface-to-volume ratio which gives high sen-
sitivity and selectivity. Despite the experimental progress,
many processes are not fully understood and hence mod-
eling and simulation are crucial on the path to optimal
sensing devices as described in Baumgartner et al. (2011).

The model and the techniques presented in this work can
be used for both, for nanowire gas sensors and for nanowire
biosensors; the techniques can also be used for field-effect
transistors in general.

To characterize such devices, two important issues need
to be solved, which result in high computational cost: the
charges of the molecules are in Ångström range and the
nanowire is of micrometer length, leading to a multiscale
problem. Furthermore, a simplification to smaller dimen-
sions than 3d is not possible due to the real-world bound-
ary conditions breaking symmetry. Fortunately, we can
reduce the computational cost without neglecting one of
the two main parts, i.e., the transport in the nanowire and
the reactions near the surface, by using a homogenization
method, see Heitzinger et al. (2010). Then the charges at
the different length scales can be computed separately in a
self-consistent loop which allows to use the most suitable
methods for the computation of both, the charges in the



boundary layer and the electrostatic potential of the whole
device.

Models for charges of molecules in boundary layers in
aqueous solutions can be of microscopic, macroscopic, or
empirical character. Recently we have also used Metropolis
Monte-Carlo simulations for the boundary layer charge of a
dna sensor, see Baumgartner et al. (2011). The remaining
aqueous solution is modeled by the Poisson-Boltzmann
equation and the transport in the nanowire is described by
the drift-diffusion-Poisson system. Finally we get a system
of pdes for which we proved existence and local uniqueness
around thermal equilibrium and which can be solved self-
consistently with an enhanced Scharfetter-Gummel itera-
tion scheme, for details see Baumgartner and Heitzinger
(2012). Nonetheless, the charge-transport problem is still a
large linear system. Thus a parallelization technique is in-
evitable. In the following we describe the model equations
and the parallelization technique in detail.

2. MODEL

The main goal of the simulations is to investigate the
sensitivity of the functionalized nwfet device. Therefore
we study the conductivity or current change due to the
field effect. Hence we have to calculate the electrostatic
potential in the whole device and the charge carriers,
i.e., the electrons and the holes, in the nanowire. The
simulation domain Ω consists of three material dependent
parts: the nanowire ΩSi, the dielectric layer Ωox, and the
aqueous solution Ωliq as depicted in Figure 1. The interface
Γ is situated at the surface of the sensor and is defined as
Γ := Ωox ∩ Ωliq.

The basic equation for the electrostatic potential is the
Poisson equation

−∇ · (ε(x)∇V (x)) = ρ(x) in Ω, (1a)

V (0+, x2, x3) = V (0−, x2, x3) on Γ, (1b)

εliq∂x1
V (0+, x2, x3) = εox∂x1

V (0−, x2, x3) on Γ, (1c)

where V is the electrostatic potential, ρ is the charge
concentration, and ε is the permittivity. The continuity
conditions (1b) and (1c) are due to the different values
of the permittivity ε between two materials. Here, for
the sake of simplicity, the coordinate axes are chosen
so that the interface is located at x1 = 0. The same
continuity equations hold at the interface between the
silicon nanowire and the surrounding oxide due to the
jump in the permittivity and will not be modified by the
homogenization method since there is boundary layer to
be homogenized.

Before we model the charge concentration in the bound-
ary layer, we describe the charge concentration ρ in the
remaining materials. In the semiconductor ΩSi the Poisson
equation is

−∇ · (εSi∇V ) = q(p− n + Cdop) (2)

and charge transport is described by the drift-diffusion
equations

∇ · Jn = R, (3a)

∇ · Jp = −R, (3b)

Jn = Dn∇n− µnn∇V, (3c)

Jp = −Dp∇p− µpp∇V, (3d)
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Fig. 1. Schematic cross section of the nanowire sensor; the
different equations used in the simulation are indi-
cated. The boundary layer includes probe molecules
as well as target molecules bound to the probes.

where q is the elementary charge, Cdop is the doping
concentration, n is the electron concentration, p is the
hole concentration, Dn and Dp are the electron and hole
diffusion coefficients, µn and µp are the corresponding
mobilities, Jn and Jp are their current densities, and R de-
notes the recombination rate, see Markowich et al. (1990).
In this work we use the Shockley-Read-Hall recombination
rate

R :=
np− n2

i

τp(n + ni) + τn(p + ni)
, (4)

where ni denotes the intrinsic charge density and τn and
τp are the relaxation times of the electrons and holes,
respectively. Furthermore, we assume that the Einstein
relations Dn = UT µn and Dp = UT µp hold, where UT

is the thermal voltage.

The screening of charges in the aqueous solution Ωliq

outside the boundary layer is described by the Poisson-
Boltzmann equation

−∇ · (εliq∇V ) =
∑

σ∈{−1,1}

ησ e−σκV , (5)

where η is the ionic bulk concentration and the constant
κ is defined as κ := q/(kT ), where k is the Boltzmann
constant and T is the temperature. The right-hand side of
equation (5) is the sum over all valences σ of ion species; for
example, the set {−1, 1} corresponds to a 1:1 electrolyte
such as Na+Cl−.

At the source, drain, and back-gate contacts, Dirichlet
boundary conditions

V |∂ΩS
= VS , n|∂ΩS

= nS , p|∂ΩS
= pS , (6a)

V |∂ΩD
= VD, n|∂ΩD

= nD, p|∂ΩD
= pD, (6b)

V |∂ΩG
= VG (6c)

hold. Sometimes an additional electrode is placed in the
aqueous solution. This can also be modeled by a Dirichlet
condition. Zero Neumann boundary conditions are used
everywhere else.

As aforementioned, the charge concentration ρ is fast
varying in the boundary layer and hence a homogenization
method is suitable. After homogenization as in Heitzinger
et al. (2010), the Poisson equation becomes



−∇ · (ε(x)∇V (x)) =

{

ρ(x) in ΩSi ∪ Ωox,

0 in Ωliq,
(7a)

V (0+,y)−V (0−,y) = α(y) on Γ, (7b)

εliq∂x1
V (0+,y)− εox∂x1

V (0−,y) = β(y) on Γ, (7c)

where 0+ denotes the limit at the interface on the side
of the liquid, while 0− is the limit on the side of the
oxide layer. The fast varying charge concentration in the
surface layer is now subsumed in the macroscopic dipole-
moment density α and the macroscopic surface-charge
density β. Now we have to incorporate these conditions
in the Scharfetter-Gummel iteration scheme, which is the
standard method for the drift-diffusion-Poisson system.

3. SELF-CONSISTENT LOOP

The Scharfetter-Gummel iteration scheme consists of three
steps: the calculation of the electrostatic potential V , of
the electron density n, and of the hole density p. Our
algorithm enhances this scheme by adding the calculation
of the boundary layer charge which is dependent on the
surface potential.

The first iteration with initial values n0, p0, α0, and β0

works as follows:

(1) Solve the boundary-value problem with interface con-
ditions

−∇ · (ε∇V1) =







q(p0 − n0 + Cdop) in ΩSi,

0 in Ωox,

−2η sinh(κV1) in Ωliq,

V1(0+,y)− V1(0−,y) = α0(y) on Γ,

ε(0+)∂x1
V1(0+,y)

−ε(0−)∂x1
V1(0−,y) = β0(y) on Γ,

V1 = VD on ∂ΩD,

∇νV1 = 0 on ∂ΩN

for V1.
(2) Solve the elliptic boundary-value problem

∇ · (Dn∇n1 − µnn1∇V )

=
n1p0 − n2

i

τp(n1 + ni) + τn(p0 + ni)
in ΩSi,

n1 = nD on ∂ΩD,

∇νn1 = 0 on ∂ΩN

for n1. Here the n1 in the denominator can be
replaced by n0 which makes the discretized system
linear.

(3) Solve the elliptic boundary-value problem

∇ · (Dp∇p1 + µpp1∇V )

=
n1p1 − n2

i

τp(n1 + ni) + τn(p1 + ni)
in ΩSi,

p1 = pD on ∂ΩD,

∇νp1 = 0 on ∂ΩN

for p1.
(4) Update the surface-charge density and dipole-moment

density according to a boundary model

α1(y) := Mα(V1),

β1(y) := Mβ(V1),

where Mα and Mβ are the functions giving the
densities according to the surface potentials. In the

case of Monte-Carlo simulations, this can be done
by generating a look-up table with density values for
different surface voltages.

4. FETI METHOD

The 3d charge transport problem is still large and conse-
quently we derived a novel finite element tearing and inter-
connecting (feti) method based on the work of Farhat and
Roux (1991) including the coupled system of the Poisson
drift-diffusion system, the linearized Poisson-Boltzmann
equation, and jump conditions arising from the homog-
enization method.

Therefore we discretize the boundary-value problems in
the self-consistent loop by a finite-volume method. Instead
of solving the whole domain Ω, we split the domain in N
boxes as depicted for a simple example of 9 boxes in a cross
section in Figure 2. The domain can be further divided in
the remaining coordinate direction.

Ω1 Ω2 Ω3

Ω4 Ω5 Ω6

Ω7 Ω8 Ω9

Aqueous Solution

Nanowire+Dielectric

Dielectric Layer

←−Surface

Fig. 2. Splitting of the domain in the x-y cross section.
In order to implement the jumps at the surface, the
border of the boxes coincide with the surface. Only
in the nanowire box two different materials arise.
Everywhere else only one material is present and
hence the computation can be improved.

The discretized linear systems on each of the N boxes can
be written as Aiui = fi, i ∈ (1, . . . , N) with

Ai =

(

Ai
II Ai

IΓ

Ai
ΓI Ai

ΓΓ

)

. (12)

It is convenient to transform this system into the Schur
complement which reduces the whole problem to a problem
on the boundary, i.e.,

Si := Ai
ΓΓ −Ai

ΓI

(

Ai
II

)−1
Ai

IΓ. (13)

In the following we write instead of ui
Γ from ui = (ui

I , u
i
Γ)

again ui. A solution of the Schur complement system and
hence also on the whole domain can be obtained by solving
the minimization problem

J(u) :=
1

2
〈Su, u〉 − 〈g, u〉 = min!, (14a)

Bu = α, (14b)

where



u =









u1

u2

...
uN









, g =









g1

g2

...
gN









, S =











S1 0 · · · 0

0 S2

. . .
...

...
. . .

. . . 0
0 · · · 0 SN











and B is the connectivity matrix containing only elements
of {−1, 0, 1}. The right-hand sides fi are modified by the
transformation to the Schur complement and by adding of
β. The jump condition β arises in the discretized right-
hand side due to the weak formulation of the boundary
value problem. Hence in the following we need only to
know where we have to implement α in our procedure.

But first we have to think about our Schur complements
which could be singular for some reasons, e.g., when the
boundary conditions are ill posed. Therefore we introduce
the matrix R of null-space elements of S as

R :=











R1 0 · · · 0

0 R2

. . .
...

...
. . .

. . . 0
0 · · · 0 RN











. (15)

Now we do two steps: we implement the matrix R and
include the constraint Bu = α of our minimization prob-
lem by introducing Lagrange multipliers λ. By introducing
some variables, the solution of the minimization prob-
lem (14) can be obtained by solving

Fλ + Gγ = d, (16a)

GT λ = e, (16b)

where F := BS†BT , G := BR, d := BS†g − α, and
e := RT g. This system is now in the same form as the
original feti method. The aim is to solve this system with
a preconditioned conjugate gradient method. Therefore we
use the projection

PT := I −G(GT QG)−1GT Q (17)

with a scaling matrix Q which reduces the system (16) to

PT Fλ = PT d, (18a)

GT λ = e. (18b)

In every step of (1)-(3) in the self-consistent loop we have
to use the cg method. Hence it is of interest to keep the
number of iterations in every cg computation small, which
can be improved by using a preconditioner M , i.e., we have
to solve the equations

PM−1PT Fλ = PM−1PT d, (19a)

GT λ = e. (19b)

For heterogeneous systems it is recommended to use the
Dirichlet preconditioner

M−1 = BDSBT
D (20)

or the lumped preconditioner

M−1 = BDAΓΓBT
D (21)

as defined in Klawonn and Rheinbach (2010) where BD is
the connectivity matrix B multiplied with scaling matrices
including the permittivity ε or the multiplicity of the boxes
involved in the degrees of freedom at the interface. A
comparison of these preconditioners can be found in Rixen
and Farhat (1999). The cg method looks as follows, see also
Toselli and Widlund (2005), p. 149.

Initialize the first Lagrange multiplier and the first
residuum

λ0 = QG(GT QG)−1e + µ, µ ∈ range(P )
r0 = d− Fλ0

For k = 1, 2, . . . until convergence

Project : qk−1 = PT rk−1

Precondition : zk−1 = M−1qk−1

Project : yk−1 = Pzk−1

β1 = 0 and βk = 〈yk−1, qk−1〉/〈yk−2, qk−2〉
p1 = y0 and pk = yk−1 + βkpk−1

αk = 〈yk−1, qk−1〉/〈pk, Fpk〉
λk = λk−1 + αkpk

rk = rk−1 − αkFpk

5. RESULTS

To show the correct implementation of the jump conditions
we simulate a device with a cross section as shown in Fig-
ure 2. For the following example we keep the dimensions
small and take boxes with the size 10×10×10 and a total
length, in z-direction, of 20. Hence the whole simulation
domain consists of 18 blocks. Furthermore we apply 0.01V
backgate voltage, i.e., at y = 0, and 0.05V at the source,
i.e., in ΩSi at z = 0. All other constants in the drift-
diffusion-Poisson system are chosen as in Markowich et al.
(1990), where room temperature is assumed.

As aforementioned, the jump conditions are given by the
boundary-layer model. For the sake of simplicity, this
part of the model is not discussed and we use the jump
conditions

V (0+,y)−V (0−,y) = −0.003, (22a)

εliq∂x1
V (0+,y)− εox∂x1

V (0−,y) = 0.00001. (22b)

At the cross section z = 10 in Figure 3 we can see the
backgate condition on the left, the electrostatic potential
of the drift-diffusion-Poisson system in the middle and
the aqueous solution (dark green). The jump conditions
are clearly depicted between the oxide and the aqueous
solution.

y

x

Potential
[V]

Fig. 3. Cross section of the electrostatic potential at
z = 10.

The symmetric structure of the device can be seen at
the cross section y = 15 in Figure 4. Here we have the
solution of the Poisson drift-diffusion system and the
Poisson equation with vanishing right-hand side in the



middle, and the aqueous solution on the left and right of
it. Between 12 ≤ x ≤ 18 at z = 0 the Dirichlet conditions
for the source contact hold. Again the jump conditions can
be clearly seen.

x

z

Potential

[V]

Fig. 4. Cross section of the electrostatic potential at
y = 15.

The same Dirichlet conditions for the source contact are
visible at the cross section x = 15 in Figure 5. Here we
have at the left the oxide, in the middle the silicon covered
by an oxide layer, and at the right the aqueous solution
separated from the oxide by the jump conditions.

y

z

Potential
[V]

Fig. 5. Cross section of the electrostatic potential at
x = 15.

As aforementioned the choice of the preconditioner is im-
portant for the reduction of computation time. Please note
that in our simulations no projections are needed due to
non-singular Schur complements on the subdomains. We
tested the Dirichlet preconditioner (20) and the lumped
preconditioner (21) without scaling, i.e., BD = B, with
multiplicity scaling, and with ε-scaling (see Table 1).

Therefore we simulate the same device as in Figure 3 with
half dimensions in every coordinate direction. Hence we
have 15 × 15 × 10 = 2250 degrees of freedom and blocks
with dimensions 5× 5× 5.

Preconditioner Scaling Iterations

Dirichlet
without

207

Lumped 204

Dirichlet
multiplicity

389

Lumped 445

Dirichlet
ε

339

Lumped 463

Table 1. Iteration number for Dirichlet and
lumped preconditioners without scaling, with

multiplicity scaling and ε scaling.

In our simulations the preconditioners without scalings
perform best. No significant difference between the non-

scaled Dirichlet and the non-scaled lumped preconditioner
can be found. As in Rixen and Farhat (1999), the ε-
scaled Dirichlet preconditioner perform better than the
multiplicity scaled Dirichlet preconditioner and the simu-
lations with scaled and lumped preconditioners need more
iterations.

After a boundary-layer model is chosen, the different
physical and geometrical properties of nwfet devices
can be tested for their influence on the sensitivity of the
sensor, see Baumgartner et al. (2011). The sensitivity can
be expressed as the change of current or as change of
conductivity. We modeled a dna sensor with different
nanowire thicknesses as an example, see Figure 6. Here
the field effect results from the binding of ssdna strands
to corresponding strands functionalized at the surface.
Hence we have to compute the current of the dna sensor
without functionalization, i.e., no molecules are present in
the boundary layer, with ssdna attached at the surface,
and with dsdna bound to the surface. The difference of
the resulting currents, i.e., the sensitivity, is depicted in
Figure 6.

30 35 40 45 50 55
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ssDNA-dsDNA
non-ssDNA
non-dsDNA

Fig. 6. Simulations of sensitivity as current change in
terms of nanowire thickness due to different charges
at the surface of a dna sensor. The molecules in the
boundary layer are dsdna or ssdna strands.

The resulting sensitivity in Figure 6 shows an optimal
point for a nwfet device with a 40 nm thick nanowire.
Hence an improvement of this sensor can be obtained by
changing the nanowire thickness. For other improvements
see Baumgartner et al. (2011)

6. CONCLUSION

The simulation of nwfet devices is difficult due to the
inherent multiscale problem and the high computational
cost of 3d simulations. In this work the multiscale problem
is solved by a homogenization method resulting in jump
conditions and the computation time can be reduced by
a novel feti algorithm. This method includes the drift-
diffusion-Poisson system, a Poisson-Boltzmann model, and
jump conditions.

It is now possible to study such nanowire bio- and gas
sensors from a physical and geometrical point of view.
Our investigations help to understand devices based on
nwfets quantitatively and give guidelines how to reach
optimal sensitivity, see Baumgartner et al. (2011).
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