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Abstract

In this article we present algorithms to perform Bayesian inversion based on physical mod-
els, in particular based on partial differential equations. We are interested in identifying pa-
rameters of the PDEs that affect functionals of the solutions for which experimental data are
available. Markov-chain Monte-Carlo methods like the Metropolis algorithm provide the al-
gorithmic foundation. We present an adaptation and extension of this procedure to be able to
perform multi-dimensional Bayesian inversion where not all measurements have to be present
prior to the estimation, but become available in batches as time passes. Namely, based on
the Delayed-Rejection Adaptive-Metropolis (DRAM) algorithm, we introduce an iterative ap-
proach, where we use the posterior of the last Metropolis run as the prior for the new run,
where we use new measurements in each iteration. This allows to examine some information
about the parameters already during the estimation process. Therefore a density estimator
needs to be introduced. We make use of the Improved Fast Gauss Transform (IFGT) which
allows us to perform a faster evaulation of the kernel density estimator, reducing the runtime
from quadratic to nearly linear. Applications using a nano-capacitor sensor array are presented
as well, where we estimate the radii of over 4000 nano-electrodes.
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1 Introduction

One of the most important tasks in mathematics is to identify accurate models for processes in
physics, chemistry, economics, finance etc. With the aid of mathematical models we are able to
describe and understand the behaviour of a system and to draw forecasts for our quantities of
interest. Usually, the models contain unknown parameters which have to be identified.

Let us denote such a model by the function

Q : X → Y,

Q(q) = y,
(1)

which takes an element of the parameter space X and maps it to the quantity of interest, which
is an element of the measurement space Y. We call this function Q the observation function.

The forward problem is to calculate the outcome Q(q). Conversely, we can consider the case
that the outcome y is known, e.g. from experiments, and the parameter q needs to be deter-
mined. In this case, we aim to find the inverse

F : Y → X, F := Q−1

of the observation function Q, which maps the observation y to the parameter q such that
Q(q) = y holds. This is also called the inverse problem.

It is typical for inverse problems of models Q(q) = y to be ill-posed, which means that for
a given y there may be no unique solution q or the solution may be very sensitive to small
changes of y. To solve this problem we use the Bayesian approach to examine the parameters
q for a given y. This way we interpret the parameters as random variables whose probability
distributions we will calculate. Knowing the distribution, we can draw conclusions about the
mean value, confidence intervals, and also about the standard deviation, a feature which is
inaccessible using e.g. the maximum likelihood approach.

In Section 2 we present the theoretical background of Bayesian inversion, namely the gen-
eral, infinite-dimensional Bayesian estimation approach, and later on the finite-dimensional
approach. We will introduce the algorithms to perform numerical calculations in Section 3. We
will go into details of the classic Metropolis algorithm in Section 3.1, followed by Section 3.2
introducing the Delayed-Rejection Adaptive-Metropolis procedure (DRAM). In Section 3.3 we
explain the iterative algorithm, whereby a kernel-density estimation is necessary, which we
will discuss in Section 3.4. In the latter subsection we will also describe the implementation of
the Improved Fast Gauss Transform (IFGT) in order to reduce the computation time of evalu-
ating the density. We present an application of the before mentioned algorithms in Section 4
to a biosensor for which we have experimental data. Sensors are a good example, since it is
always useful to extract information about the analyte. Conclusions are drawn in Section 5.
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2 Infinite-dimensional Bayesian Estimation

We will present the theory which enables us to express the inverse problem within the frame-
work of probability theory.

To begin with, we denote the parameter space by X and the measurement space by Y := Rm,
m ∈ N. X can be an infinite-dimensional Hilbert space or a Banach space, often X = Rn,
n ∈N.

Following the setup from [1] we introduce the statistical model

y = Q(q) + η,

which is an adaptation of eq. (1), where η is additive noise, namely a random variable with
zero mean, q ∈ X is the sought parameter, and y ∈ Y is an observation. In our applications η

is a Gaussian random variable with zero mean.

Using Theorem 1 we are able to express probability measures with respect to other probability
measures.

Theorem 1 (Radon-Nikodym derivative). Let µ and ν be two measures on the same measure space
(Ω,F ). If µ� ν and ν is σ-finite, then there exists a ν-measurable function f : Ω→ [0, ∞] such that

µ(A) =
∫

A
f (x)dν(x)

for all ν-measurable sets A ∈ F .

This function f is also known as the Radon-Nikodym derivative of µ with respect to ν. We can
also write this derivative as

dµ

dν
(x) = f (x).

In the finite-dimensional case, if we have a probability measure µ which is absolutely contin-
uous with respect to the Lebesgue measure λ, we can express the classical probability density
function in terms of the Radon-Nikodym derivative dµ/dλ(x) = f (x). In this case, for a
A ∈ F , we can rewrite

µ(A) =
∫

A

dµ

dλ
dx,

where we have just used Theorem 1.

However, in infinite dimensions, the Lebesgue measure does not exist. Therefore, if we want
to express the analogon to the PDF for a probability measure µ living on a Banach space X,
we need a reference measure, e.g. a Gaussian measure µ0, which is defined on a Banach space.
The Radon-Nikodym derivative can be expressed as

ρg(x) :=
dµ

dµ0
(x)
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such that

µ(A) =
∫

A
ρg(x)µ0(dx)

holds for any A ∈ F .

Now, we can state Bayes’ Theorem for the infinite-dimensional case, namely on a separable
Banach space (X, ‖·‖). Let q be a random variable distributed according to the measure µ0.
We can observe the outcome using the statistical model

Q(q) + η = y,

where y ∈ Rm is independent of q and has the density ρ with respect to the Lebesgue measure,
and η is a Gaussian random variable N (0, Γ). We define the potential

Φ(q, y) := − log(ρ(y−Q(q))),

such that we can write the density ρ(y−Q(q)) in the form of an exponential as

ρ(y−Q(q)) = exp(−Φ(q, y)).

To ensure that for a given observation function Q and a prior µ0 the posterior µy is well-
defined, we asume that Q satisfies the following assumption of continuity and bounded-
ness [1]. The assumption should be checked for the model equation in each application.

Assumption 1. The function Q : X → Y satisfies these two conditions:

1. For every ε > 0 there is an M = M(ε) ∈ R such that, for all q ∈ X, the inequality∣∣∣Γ−1/2Q(q)
∣∣∣ ≤ exp(ε ‖q‖2

X + M)

holds.

2. For every r > 0 there is a K = K(r) > 0 such that, for all q1, q2 ∈ X with
max

(
‖q1‖x , ‖q2‖X

)
< r, the inequality∣∣∣Γ−1/2(Q(q1)−Q(q2))

∣∣∣ ≤ K ‖q1 − q2‖X

holds.

Theorem 2. Let Q satisfy Assumption 1 and assume µ0 is a Gaussian measure satisfying µ0(X) = 1.
Then µy is a well-defined probability measure and satisfies

dµy

dµ0
(q) =

1
Z(y)

exp(−Φ(q, y)). (2)

In eq. (2) the scalar Z(y) is a normalizing constant.

Next, we state two results for a linear elliptic problem and for a nonlinear elliptic problem,
showing that Assumption 1 is satisfied.
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Theorem 3 ([2]). We consider the elliptic boundary-value problem

−∇ · (A∇u) = f on D,

u = g on ∂DD,
∂u
∂n

= 0 on ∂DN ,

where D is bounded and has a smooth boundary ∂D. Now let Q be the function which maps the
parameter q := log(A) to the unique solution Q(q). Then Q satisfies Assumption 1 and therefore the
according posterior distribution is well-defined.

In [2], where Theorem 3 is cited from, a Bayesian analysis has been performed to investigate a
tomography problem based on the Poisson-Boltzmann equation. The proof can also be found
there.

Theorem 4 ([3]). We consider the nonlinear elliptic boundary-value problem

−∇ · (A∇u) + sinh(u) = f on D,

u = g on ∂D.

Let Q again be the operator which maps the parameter q := log(A) to the solution Q(q). Then Q
fulfills the Assumption 1 and therefore the according posterior is well-defined.

The proof can be found in [3].

From now on we assume that the parameter space X = Rn is finite-dimensional.

For the Bayesian setup we assume the parameter q and the observation y to be jointly dis-
tributed random variables (q, y) ∈ X × Y and that there exists a joint density π(q, y). We call
the marginal density π(q) =: π0(q) the prior density and the conditional density π(y|q) the
likelihood function.

Theorem 5. Let fR,S be the probability density function of a continuous random vector
(R, S) : Ω → Rn+m with R : Ω → Rn and S : Ω → Rm. Let us denote the marginal densities of the
random vectors R and S as fR : Rn → R and fS : Rm → R, respectively. Then for every y ∈ Rm with
fS(y) 6= 0, the equation

fR|S(x|y) =
fS|R(y|x) fR(x)∫

Rn fS|R(y|ξ) fR(ξ) dξ
(3)

holds. Here fR|S and fS|R are the conditional probability density functions.

Using Theorem 5, we can express the posterior density as

π(q|y) = π(y|q)π0(q)∫
Rn π(y|ξ)π0(ξ)dξ

(4)

or

π(q|y) ∝ π(y|q)π0(q). (5)
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In many applications the prior and the likelihood are available. The prior distribution π0(q)
plays the role of the initial believe in our parameter, e.g. if we already have some knowledge
about the approximate value of our parameter. The likelihood function π(q|y) quantifies the
probability of a parameter to yield the outcome y.

3 Algorithms

For numerical applications we assume that the observation function Q, the observational noise
η, the observation y, and the prior distribution π0 are known. Using Theorem 5 we can express
the posterior distribution in terms of the prior and likelihood, see eq. (4).

Now, the biggest numerical challenge would be to calculate the normalizing factor, the integral
in eq. (4). Depending on the dimensionality of the parameter space X, this can be a very
computationally expensive task to perform. In low dimensions one can use quadrature rules
to evaluate the integral. As soon as the dimensionality is moderate, sparse-grid quadrature
techniques can be applied. In high dimensions, Monte-Carlo methods are required [4]. This
approach is still difficult because of the sheer fact that the support of the posterior is one aspect
one does not know beforehand. The Metropolis algorithm remedies this problem.

To simplify the notation we define

‖x‖2
A := x>Ax.

for x ∈ Rn and A ∈ Rn×n.

3.1 Classic Metropolis algorithm

For implementations of Bayesian estimation, the basic algorithm is the Metropolis algorithm
[4, 5]. This algorithm is a Markov-chain Monte-Carlo samling method, which constructs a se-
quence of realizations of random variables (Xi)i∈N, whereby the properties of Xi only depend
on the previous random variable Xi−1, i.e.,

P(Xi = k|Xi−1 = ki−1, Xi−2 = ki−2, . . . , X0 = k0) = P(Xi = k|Xi−1 = ki−1).

Once the Markov-chain has passed the burn-in period, i.e., the distribution of Xi is stationary
and does not depend on i anymore, it should provide us with samples of the posterior dis-
tribution. This method is more suitable, especially in high dimensions, because one does not
have to calculate the integral in eq. (4). For this procedure we start with the prior distribution
π0(q), the likelihood-function π(y|q), and an initial educated guess q0 ∈ Rn for our Markov
chain. This first value could also be the solution of the maximum-likelihood optimization
problem [4]. Then we apply the Metropolis Algorithm 1.

If a symmetrical proposal function J(q∗|qk−1) = J(qk−1|q∗) is chosen, e.g. a Gaussian distri-
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Algorithm 1: Metropolis
Data: Initial value q0, proposal function J, prior π0(q), likelihood π(y|q), number of samples

N, measurement y
Result: Samples (qi)i=0,...,N

1 for k = 1 to N do
2 r ←Draw [U (0, 1)];
3 q∗ ← Draw J(·|qk−1);
4 α← π0(q∗)π(y|q∗)/π0(qk−1)π(y|qk−1);
5 if α > r then
6 qk := q∗;

7 else
8 qk := qk−1.

bution

J(·|qk−1) ∼ N (qk−1|V),

where V is the positive definite covariance matrix, then the choice

α(q∗|qk−1) :=
π(q∗|y)

π(qk−1|y)
=

π0(q∗)π(y|q∗)
π0(qk−1)π(y|qk−1)

(6)

ensures that the stationary distribution of the constructed Markov chain is the sought posterior
distribution [4].

To fully describe the algorithm, we assume that there are Nobs measurements (yi)i=1,...,Nobs ∈
Rm given. The likelihood function L(q, y) := π(y|q) is a product of Nobs Gaussian densities,
i.e.,

L(q, y) : =
1

(2π)mNobs/2 det(Σ)Nobs/2 e−S,

S :=
1
2

Nobs

∑
i=1
‖yi −Q(q)‖2

Σ−1 ,
(7)

where Σ ∈ Rm×m is the positive definite covariance matrix of the Gaussian density and S is
the sum of squared errors. As described before, the likelihood quantifies the probability of
having a parameter which results in an outcome which is close to the measurements. As we
can see, the L(q, y) gets larger as the sum S of squared errors gets smaller, which happens iff
Q(q) coincides more with the measurements yi.

Inserting eq. (7) into the acceptance ratio eq. (6) gives

α(q∗|qk−1) =
π0(q∗)π(y|q∗)

π0(qk−1)π(y|qk−1)
=

π0(q∗)
π0(qk−1)

e−(S
∗−Sk−1).

To decide if a proposed value q∗ is going to be accepted, we draw a uniformly distributed
random number r ∼ U (0, 1). If α(q∗|qk−1) > r, the parameter q∗ is accepted and qk := q∗, if
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not, the parameter is rejected and the old parameter qk−1 will be the realization of the Markov
chain step, i.e., qk := qk−1.

3.2 DRAM

In the numerical examples, we use Algorithm 2, which contains two major improvements
compared to the basic algorithm. It is called Delayed-Rejection Adaptive-Metropolis algorithm
(DRAM) [4, 6].

Algorithm 2: DRAM
Data: Observation function Q, measurements (yi)i=1,...,Nobs , number of samples N, first value

q0, covariance matrix of proposal V, covariance matrix of likelihood Σ, prior π0, factor
γ2, value s, update matrix every k0 steps

Result: (qi)i=0,...,N
1 sm ← s/m;
2 for k← 1 to N do
3 r ←Draw [U (0, 1)];
4 q∗ ←Draw [N (qk−1, V)];
5 S∗ ← 1/2 ∑Nobs

i=1 ‖yi −Q(q∗)‖2
Σ−1 ;

6 α← min(1, π0(q∗)/π0(qk−1)exp(−(S∗ − S)));
7 if r < α then
8 qk ← q∗;
9 S← S∗;

10 else
11 r ←Draw [U (0, 1)];
12 q∗2 ←Draw

[
N (qk−1, γ2V)

]
;

13 S∗2 ← 1/2 ∑Nobs
i=1

∥∥yi −Q(q∗2)
∥∥2

Σ−1 ;
14 α2 ← Expression eq. (8);
15 if r < α2 then
16 qk ← q∗2;
17 S← S∗2;
18 else
19 qk ← qk−1;

20 q∗ ← q∗ + (k− 1)/k · (q− q∗);

21 Ṽ← (k− 1)/k · Ṽ + sm/k ·
(
(k− 1) ‖q‖2 − k ‖q∗‖2 + ‖q∗‖2

)
;

22 if mod(k, k0) = 0 and k > k0 then
23 V← Ṽ;

24 q← q∗.

In the outer for-loop a new parameter q∗ is proposed in line 4, followed by the calculation of
the acceptance ratio α together with the sum S∗ of squared errors. In the standard Metropolis-
algorithm, if α > r, whereby r is uniformly distributed random number, the new parameter is
accepted and rejected otherwise.

However, this version also allows us to prevent rejections due to the adaptation added in lines
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11–17. Whenever q∗ is rejected, a new value q∗2 is proposed from a normal distribution with
covariance matrix γ2V, where V is the covariance matrix of the proposal distribution and γ2 is
a positive value smaller than one. Here we use γ2 := 0.2 [4]. Then the new acceptance ratio α2

is calculated as

α2 := min
{

1,
π0
(
q∗2
)

π0 (qk−1)
·

· exp
[
−
(
S∗2 − S

)
− 1

2

(∥∥q∗ − q∗2
∥∥2

V−1 − ‖q∗ − qk−1‖2
V−1

)]
·

· 1
1− α

[
1−min

(
1,

π0(q∗)
π0(q∗2)

exp
(
−
(
S∗ − S∗2

)))]}
,

(8)

and q∗2 is accepted with probability α2. So after a first rejection, an alternative parameter q∗2

“closer” to the previous parameter qk−1 is proposed, hence we have a delayed-rejection. Since
the previous parameter was accepted, the alternative one has a higher chance of being accepted
too.

If the components of the posterior are strongly correlated in an anisotropic way, it is not ideal
to use a fixed covariance matrix for the proposal distribution. The adaptive contribution of
the algorithm can change the covariance matrix during the random walk. This way more pro-
posed points are accepted [6]. Another advantage of the adaptive covariance matrix procedure
is that the sampling algorithm is more robust than a fixed covariance matrix for the proposal
distribution in terms of the amount of rejected parameters. In lines 20–24 the procedure tracks
the distribution of the qk and updates the covariance matrix Ṽ recursively to prevent calculat-
ing the whole covariance matrix in every step. Then every k0 steps the matrix V is updated in
line 23 and the proposal function changes its distribution accordingly in line 4. The parameter
sp is based on the dimension of the observation space Rm, see line 1.

In Figure 1 the advantages of these improvements to the classic Metropolis algorithm are il-
lustrated. Four different algorithms have been used to determine two parameters in an ideal
setup. The one-dimensional, transient heat equation with a delta distribution δy as initial data
and a constant thermal diffusivity constant A forms the setup. The task is to estimate the two
parameters A and y. To emphasize the advantages of the DRAM algorithm, we performed (a)
the classic Metropolis algorithm, (b) an adaptation where we implemented the adaptiveness of
the proposal function, (c) a further adaption where we implemented the delayed-rejection pro-
cedure, and (d) the DRAM algorithm, which combines the two latter ones. We plot the error in
dependence of the required number of samples in Figure 1. One can see that the adaptive im-
plementation results in a significant speed up in convergence. However, the delayed-rejection
implementation does not necessarily help in this regard. But it smoothes the density estimate,
since long stagnations in the paths are prevented, see Figure 2.

3.3 The Iterative Metropolis Algorithm

It may be the case that not all of the Nobs measurements (yi)i=1,...,Nobs =: M are available
from the very beginning. Maybe only a sublist M1 ⊂ M with |M1| = N1

obs < Nobs = |M|
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Figure 1: The error is the distance of the true value from the mean value, based on the first n samples.
Left: Here we choose a proposal distribution, where the two-dimensional covariance matrix was rotated
by 90◦ of the estimated variance matrix of the posterior and the starting value was far from the true
value. One can see that the adaptive algorithm, as well as the DRAM, updated this matrix during the
random walk to eventually lead to faster convergence. Right: Here the covariance matrix of the proposal
distribution has been scaled by a factor of 10, which leads to a faster convergence of the delayed-rejection
algorithm as well as for the DRAM compared to the classic MCMC.
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Figure 2: Two-dimensional histograms of samples, calculated using either the classic MCMC algorithm
(left) or with the Metropolis algorithm which has the delayed-rejection procedure included (right). The
setup is exactly the same, including the starting point, the proposal distribution and the number of
samples. However, the delayed-rejection results in a much smoother posterior density estimation, which
here is the advantage of this adaptation. Since this result is based on visualization we should note that
for both of these color plots the histograms were normalized and the same color map was used.
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can be used at the beginning, while a new list M2 of measurements becomes available during
the estimation process. Since the first N1

obs observations are taken into account in form of a
likelihood function L1(q, y), we obtain the posterior distribution

π1(q|y) ∝ L1(q, y)π0(q),

see eq. (5). Whenever the new list M2 of observations is available, we can introduce the corre-
sponding likelihood L2(q, y). Since we already have some information about the parameter q
in form of the first posterior π1 we take this density into account as our prior density, perform
a Bayesian estimation step, and find the second posterior

π2(q|y) ∝ L2(q, y)π1(q|y)
∝ L1(q, y)L2(q, y)︸ ︷︷ ︸

contains M1 and M2

π0(q),

which includes already the first two lists of measurements.

One can iterate over the lists of measurements Mi until all observations
⋃K

i=1 Mi = M have
been taken into account. The corresponding posterior density then looks like

πK(q|y) ∝
K

∏
i

Li(q, y)π0(q),

where the product of the likelihoods contains all measurements M. One should keep in mind
that the very same posterior density results if we consider just one likelihood which contains
all observations

L(q|y) =
K

∏
i=1

Li(q|y),

since the likelihood function is simply a product of Gaussians for every observation.

One important example for the application of this iterative procedure are sensors in general.
Here we consider the timely application of nanoelectrode sensors in detail [7]. During data
acquisition measurements are performed at several frequencies. The multiple lists of measure-
ments correspond to the different frequencies. So with the iterative Metropolis algorithm we
can determine the parameters, even though we do not have to consider all frequencies at once.
We will use one after another, until we have included all frequencies to eventually get to the
multi-frequency case.

In order to implement this procedure using the DRAM algorithm, the program needs to eval-
uate the density of the prior distribution, see line 6 in Algorithm 2. The very first prior distri-
bution π0 is given in closed form, but the latter densities π1, π2, . . . , which then play the role
of the prior, are only given in the form of finite amounts of samples. So we need a way to
evaluate posterior densities – a density estimator.

11



3.4 Kernel Density Estimator

There exist different methods, e.g. histograms or kernel density estimators, to obtain a density
estimator.

Histograms are easy to handle and well understood in low dimensions. However, many rea-
sons speak against the use of histograms in our applications, since we also want to do Bayesian
estimation in higher dimensions [8]. One of them is the difficulty to partition samples into reg-
ular bins [9].

In contrast, the kernel density estimator is quite robust in high dimensions, since one does not
need to assign the source points to bins in advance and the evaluation of the kernel functions
are not very expensive. Furthermore, the density estimations are very smooth, if we choose a
smooth kernel. However, a bandwidth matrix has to be introduced, which is a crucial part [10].

Over the iterations of the various lists of measurements M1, M2, . . . there is no reason to pick
different numbers of samples for the posteriors, i.e., we can evaluate the kernel density esti-
mator at N target points (pj)j=1,...,N based on N sample or source points (xi)i=1,...,N for every
Metropolis iteration, whereby the xi ∈ Rn and pj ∈ Rm. Let I := {1, . . . , N} be the index set of
target points and source points, respectively. The density estimator based on the source points
(xi)i∈I and the bandwidth matrix H evaluated at the target point pj is

KDE(xi)i∈I
H (pj) :=

1
N ∑

i∈I
KH(pj − xi), (9)

where

KH(x) :=
1√

det(2πH)
exp

(
−1

2
‖x‖2

H−1

)
(10)

is the Gaussian kernel function with the positive definite bandwidth matrix H.

The computational runtime for one Metropolis iteration behaves like O(N2), since for every
target point pj we have to calculate N evaluations KH (pj − xi), i = 1, . . . , N, and there are
N target points. Because we want to work with sample sizes of at least 104 to 106 we want to
reduce the asymptotic runtime. Using the Improved Fast Gauss Transform [9] together with
a greedy clustering algorithm we can achieve a computational runtime which behaves like
O(N). We will introduce this procedure in detail.

Improved Fast Gauss Transform

The following algorithm is based on the Fast Gauss Transform. We will follow the procedure
already established in [9].

The basic idea is to do something similar as the Fast Multipole Method. We want to partition
our source points xi into K clusters with cluster centers ck such that for an evaluation of the
density estimator fH at a target point pj it is only necessary to calculate the distances to these
cluster centers rather than to all N source points. We also use a polynomial approximation of
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our density estimation. All the information of the influence of the source points to the cluster
centers will be stored in these coefficients.

For the evaluation of the kernel density estimator we will only use the Gaussian kernel func-
tion eq. (10). We assume our bandwidth matrix to be a positive multiple of the identity matrix
H = (h2/2)I ∈ Rn×n. We can thus rewrite eq. (9) as

KDE(xi)i∈I
H (pj) = A(h) ∑

i∈I
e−‖pj−xi‖2

/h2
, (11)

where

A(h) := N−1(h2π)−n/2. (12)

The key is to partition all the source points xi into K clusters with centers ck. Let us focus on
one cluster only with its cluster center c and all the xi are assigned to this one cluster. We can
expand the term −

∥∥pj − xi
∥∥2 /h2 such that

e−‖pj−xi‖2
/h2

= e−‖∆pj‖2

e−‖∆xi‖2
e2∆pj·∆xi/h2

,

where ∆pj = pj − c and ∆xi = xi − c. Now, the term e−‖∆pj‖2
/h2

has to be calculated for
every target point pj. Since the target points are not known until the very application of the
algorithm there is no room for improvements or shortcuts for these computations. Similar for
the second one, since e−‖∆xi‖2/h2

only concerns the source points and this can be calculated
prior of doing any calculations with the target points. In the third term, however, e−2∆pj∆xi/h2

the source points and the target points are still entangled. So here we have some potential of
reducing the necessary steps. To break this entanglement, we introduce the series expansion

e2∆pi∆xi/h2
=

∞

∑
α≥0

Φα(∆pj)Ψα(∆xi) (13)

of this term, where the Φα and Ψα are the expansion functions

Φα(∆pj) =

(
∆pj

h

)α

, Ψα(∆xi) =

(
∆xi

h

)α 2|α|

α!

with the usual operations

|α| =
n

∑
`=1

α`, α! =
n

∏
`=1

α`!, xα =
n

∏
`=1

xα`
`

for multiindices α = (α1, . . . , αn), where α` ∈ N, ` = 1, . . . , n and x ∈ Rn. If we truncate the
series expansion in eq. (13) after multiindices with order greater than p + 1 we can rewrite our
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density estimator as

G(pj) := e−‖pj−c‖2
/h2

∑
|α|≤p

Cα

(
pj − c

h

)α

,

Cα =
2|α|

α!
A(h)

N

∑
i=1

e−‖xi−c‖2/h2
(

xi − c
h

)α

,

(14)

where the coefficients Cα can be calculated prior to evaluating at target points pj. Now, our
spatial data can be devided into several clusters. This can be accomplished using the farthest-
point clustering algorithm [11]. This is a greedy algorithm subdividing the source points xi into
K clusters (Sk)k=1,...,K such that the maximum radius to the cluster center does not exceed a
given threshold rx, i.e.,

max
k=1,...,K

max
xi∈Sk
‖xi − ck‖ ≤ rx.

In Algorithm 3 at lines 2–4 the first cluster consists of all source points with the center c1 = x1.

Algorithm 3: Clustering
Data: Source points (xi)i∈I , maximum cluster radius rx
Result: (Sk, ck)k=1,...,K

1 K ← 1;
2 c1 ← x1;
3 S1 ← {x1, . . . , xN};
4 `i ← 1, i ∈ I ;
5 while maxi∈I

∥∥xi − c`i

∥∥ > rx do
6 cK+1 ← source point with largest distance to its current cluster center;
7 K ← K + 1;
8 SK ← {cK};
9 for i ∈ I do

10 `i ← arg mink=1,...,K ‖xi − ck‖;
11 assign xi to cluster S`i .

As long as some of the radii of the clusters are exceeding the threshold rx a new cluster is go-
ing to be created as follows: The center of the new cluster is the source point with the largest
distance to its current cluster center, line 6. Afterwards in lines 10–11, all source points are
assigned to the cluster such that the distance to its center is minimized. This algorithm ter-
minates because with an increasing number of clusters, the maximum distances to the cluster
centers is decreasing.

We can now summarize the algorithm to evaluate the approximation of the density estimate
KDE(xi)i∈I

H . In Algorithm 4 the clusters are calculated with the source points at line 1. After-
wards the coefficients are calculated in line 5. Finally, for every new target point pi the density
results in a sum over all the clusters which centers are within the cut-off radius ry, line 7. Since
we are using an approximation of our kernel density estimator we have to ensure that the
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Algorithm 4: Improved Fast Gauss Transform
Data: Source points (xi)i∈I , maximum cluster radius rx, cut-off radius ry

Result: an approximate of the density KDE(xi)i∈I
H for given target points pi

1 Subdivide source points (xi)i∈I into clusters (Sk, ck)k=1,...,K using Algorithm 3;
2 choose p sufficiently large, see error estimate eq. (15);
3 for k = 1, . . . , K do
4 for |α| ≤ p do
5 Ck

α = 2|α|
α! A(h)∑xi∈Sk

e−‖xi−ck‖2/h2 ( xi−ck
h

)α
;

6 for target points pi do

7 KDE(xi)i∈I
H (pj) ≈ ∑‖pj−ck‖≤ry

e−‖pj−ck‖2
/h2

∑|α|≤p Cα

(
pj−ck

h

)α
.

bound in the error estimate∣∣∣KDE(xi)i∈I
H (p)− G(p)

∣∣∣ ≤ A(h)
(

2p

p!
ρ2

xρ2
y + e−ρ2

y

)
(15)

remains small, where we denote the ratios by ρx = rx/h, ρy = ry/h and p is the degree of the
polynomial approximation of eq. (13). It is not hard to see that if we keep the ratios ρx and ρy

small and the degree p high, we can make the error arbitrary small.

The farthest-point clustering algorithm has a complexity ofO(NK) [11] and the Improved Fast
Gauss Transform also achieves a linear runtime for the number of samples N, see [9]. So in the
end we are able to evaluate our density estimator based on N source points at N different
target points with a linear runtime O(N).

Bandwidth Matrix

The crucial part of using a kernel density estimator is to calculate a suitable bandwidth matrix
H ∈ Rn×n. The finite amount of sample points are realizations of a random variable with
values in Rn where we assume this random variable has an underlying continuous density
function f : Rn 7→ R. We want to approximate this density function with a kernel density
estimate fH such that the mean integrated squared error

MISE(H) := E

∫
Rn

(
KDE(xi)i∈I

H (ξ)− f (ξ)
)2

dξ

is minimized. Following the approach in [12] we introduce the leave-one-out estimator

KDE(xi)i∈I
H,i (p) :=

1
N − 1

N

∑
i=1,i 6=j

KH(p− xi),

where 1 ≤ i ≤ N. We introduce a method how to estimate a good diagonal bandwidth matrix
H = diag(h), where h = (h1, . . . , hN) and KDE(xi)i∈I

H = KDE(xi)i∈I
h . Our goal is it to maximize
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the likelihood function

L(h|x1, x2, . . . , xN) =
N

∏
i=1

KDE(xi)i∈I
h,i (xi), (16)

where we assume a prior for every hk

π0(hk|λ) ∝
1

1 + λh2
k

, (17)

where λ is a hyperparameter controlling the shape of the prior density. So in the end we obtain
the posterior density

π(h|x1, . . . , xN) ∝
n

∏
k=1

1
1 + λh2

k
·

N

∏
i=1

KDE(xi)i∈I
h,i (xi),

from which we can generate samples with the Metropolis algorithm.

Preparation of Data

First, we will calculate a bandwidth matrix H. Let (xi)i∈I be our source points. We calculate
the empiric mean vector

m =
1
N ∑

i∈I
xi

and the empiric covariance matrix

Σ =
1

N − 1 ∑
i∈I

(xi −m)(xi −m)>.

Let Σ1/2 denote the principal square root and let Σ−1/2 denote the inverse of the principal
square root of the symmetric and positive definite matrix Σ. Then the data

zi := Σ−1/2(xi −m), i ∈ I , (18)

are the shifted, rotated and scaled (a.k.a. sphered) points of the xi such that they have an esti-
mated mean value of zero and a unit estimated covariance matrix

1
N ∑

i∈I
zi = 0,

1
N − 1 ∑

i∈I
zz> = I.

Then, based on these manipulated data zi we will use a Metropolis approach, described above,
to estimate a diagonal bandwidth matrix H = diag(h). Since the samples zi are uncorrelated
it is sufficient to introduce a diagonal bandwidth matrix instead of a full matrix. Furthermore,
we get rid of differences in the magnitudes of different dimensions of the source points xi,
which yields better performance of the evaluation of the kernel density estimator later on. The
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corresponding bandwidth matrix for the original source points xi results in

Σ1/2H(Σ1/2)>

because the calculation of H is based on the source points zi calculated with eq. (18). This
matrix is then a full matrix due to the transformation.

Overall Procedure for Evaluation

For the overall procedure let pj be a target point at which we want to evaluate the kernel
density destimator. First, we transform the target point and the source points accordingly by

vj :=H−1/2Σ−1/2(pj −m),

wi := H−1/2zi =H−1/2Σ−1/2(xi −m), i ∈ I ,

such that

KDE(xi)i∈I
Σ1/2H(Σ1/2)>

(pj) =det H−1/2 det Σ−1/2KDE(wi)i∈I
I (vj)

=det H−1/2 det Σ−1/2 1
N ∑

i∈I
KI(vj −wi).

(19)

The last expression uses the Gaussian kernel with a unit covariance. This way we can rewrite
eq. (19) as

KDE(xi)i∈I
Σ1/2H(Σ1/2)>

(pj) = D · A(1) ∑
i∈I

e−‖vj−wi‖2

,

D := det H−1/2 det Σ−1/2,
(20)

and A from eq. (12). Then with the farthest-points Algorithm 3 we use the Improved Fast
Gauss Transform Algorithm 4 with h = 1 to evaluate the transformed density at the target
point vj. As mentioned before we are able to do this with a computational runtime O(N).

Iterative Metropolis

We summarise this section with the iterative Metropolis Algorithm 5. This procedure can be
applied whenever we have K lists of measurements (yk

i )i=1,...,Nk
obs

, k = 1, . . . , K.

In Algorithm 5 in lines 5–6 a bandwidth matrix is calculated using the classic Metropolis algo-
rithm [4], whereby the prior distribution is defined in eq. (17) and we take the likelihood from
eq. (16). For every iteration we transform the data as stated in lines 8–9, which we described in
detail previously. For the application of the DRAM algorithm in line 11 we then use a compo-
sition of the kernel density estimator eq. (20), see line 10, and this transformation for the prior
π0. For the next iteration we treat the just received points (xi) as the source points, therefore
we calculate the estimated mean m and the estimated covariance matrix Σ at lines 12–13.
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Algorithm 5: Iterative Metropolis

Data: Observation function Q, K lists of measurements ((yk
i )i=1,...,Nobs)k=1,...,K, number of

samples N, first value q0, covariance matrix of proposal V, covariance matrix of
likelihood ΣL, prior π0, factor γ2, value s, update matrix every k0 steps

Result: (qi)i=0,...,N

1 (xi)i=0,...,N ←DRAM
(

Q, (y1
i )i=1,...,N1

obs
, N, q0, V, ΣL, π0, γ2, s, k0

)
;

2 m← 1
N ∑N

i=0 xi;
3 Σ← 1

N ∑N
i=0 ‖xi −m‖2;

4 zi ← Σ−1/2(xi −m);
5 h← Sample Metropolis with prior from eq. (17), likelihood L(h|z0, . . . , zN) from eq. (16);
6 H← diag(h);
7 for k = 2 to K do
8 wi ← H−1/2Σ−1/2(xi −m), i = 0, . . . , N;
9 T ←

[
p 7→ H−1/2Σ−1/2(p−m) =: v

]
;

10 π ← see eq. (20);

11 (xi)i=0,...,N ←DRAM
(

Q, (yk
i )i=1,...,Nk

obs
, xN , V, ΣL, π0 = π ◦ T, . . .

)
;

12 m← 1
N ∑N

i=0 xi;
13 Σ← 1

N ∑N
i=0 ‖xi −m‖2;

14 qi ← xi, i = 0, . . . , N.

103 104 105 106

# of samples

100

102

104

Ru
nt

im
e 

[s
]

One-dimensional case

KDE, (N2)
IFGT, (N1.1)

103 104 105 106

# of samples

100

102

104

Ru
nt

im
e 

[s
]

Four-dimensional case

KDE, (N2)
IFGT, (N1.2)

Figure 3: Runtime comparisons between naive kernel density estimation and evaluating the approxi-
mated function using the Improved Fast Gauss Transform.
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4 Numerical Examples

We will now introduce examples for parameter estimation in high dimensions using the itera-
tive algorithm. All numerical calculations were performed using Julia [13].

4.1 Introduction

Bayesian parameter estimation for this particular application was presented in [14, 15].

We consider a sensor consisting of nanoelectrodes, built for sensing particles in an electrolyte
[16–18]. The main part consists of a 256× 256 array of nano-electrodes which are excited with
a high-frequency AC signal. These electrodes behave like capacitors. A chip with this array
of capacitors placed in an electrolyte with no particles in it forms the initial state. Whenever
a particle comes close to the chip it perturbes the field and changes the capacitances of the
electrodes. This change can be measured and one can conclude the presence of a target object.
This sensor is used to detect various particles such as biomolecules, viruses, and bacteria.

4.2 Model

The model is based on the Poisson-Boltzmann equation. We will focus on the AC small-signal
regime formulation, since we consider the sensor in a high-frequency AC regime only. Then
the Poisson equation is

∇ ·
(
εṼ
)
+

Nions

∑
m=1

q2Z2
m

kBT
n0m

(
φ̃m − Ṽ

)
= 0,

where Ṽ is the electrostatic potential phasor, φ̃m and Zm are the pseudo-potential and the
signed valence of the m-th ionic species, respectively. The DC ion concentration of the m-th
ionic species is described by

n0m = n∞
m exp

(
Zmq
kBT

(φ0m −V0)

)
.

The other part is the linearized drift-diffusion equation

qZmµm∇ · (n0m∇φ̃m)− jωn0m

qZm

kBT
(
φ̃m − Ṽ

)
= 0,

which describes the current, where µm is the mobility of the m-th ionic species, j is the imag-
inary unit, and ω is the angular frequency. Together they form the model for the nano-
electrodes. The model has been extensively validated in [19]. The simulations are done with
the ENBIOS code [20–23].

To be able to perform the Metropolis algorithm we introduce our observation space to be the
capacitances of the individual nano-electrodes, measured in aF.

Using Theorem 4 we see that this models yields a well-defined posterior, if we are only using
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positively and negatively charged ion species and if the prior is a Gaussian.

4.3 Estimating the Radii of Electrodes

It is claimed [16–18, 24] that the nominal radius of one cylindrical shaped electrode is 90nm.
However, to give an better estimation of this parameter we will perform a series of approaches
to estimate the radii of individual electrodes. For all the following Bayesian estimation pro-
cesses, we used the ENBIOS program to perform simulations. In addition, experimental data
are available.

Global Radius

Our first approach is the following. We assume that all nano-electrodes have the same ra-
dius which we are going to estimate. This one-dimensional inference task was achieved with
the Algorithm 2. We have chosen a uniformly distributed prior distribution on the interval
[70nm, 110nm] for the radius. For the observations, an array of 7× 7 electrodes was simulated.
One measurement for the capacitance is provided, 54.61aF with an uncertainty of 1aF (stan-
dard deviation), taken at one fixed frequency for the AC signal. With all this information we
are able to examine the posterior distribution, which density is approximated with a histogram
based on 105 samples, see Figure 4, and we take the mean value of 85.9nm to be our estimate
of the global radius.

Local Radius

For the rest of paper we focus on a certain fixed 71× 59 sub-array of nano-electrodes of the
full 256× 256 array. Previously we managed to estimate the radius to be 85.9nm. Now, we
estimate the size of every individual electrode and consider the dimension of one electrode
to be the random variable. We fix the remaining radii at 85.9nm, see Figure 5. We perform
this one-dimensional estimation apprach for every electrode on the 71× 59 array. This way we
eventually get a full array of the estimated radii. For this task we also have more measurements
we can take into account. Namely, for every frequency of a total of 8 different frequencies, we
are provided with the capacitances of all 71 · 59 = 4189 electrodes. We perform our iterative
Metropolis scheme for all 4189 electrodes, whereby we iterate over the 8 different frequencies.
For one specific electrode we show the iteration over the posterior densities in Figure 6.

For an estimation of the radius we take the mean value of the last posterior (since this one
consideres all the measurements from all frequencies). In Figure 7 on the left one can also
examine a plot of the estimated radii for the whole array, and on the right is the distribution of
the different estimated radii is shown as a histogram.
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Figure 4: The prior densities and histograms of the posterior densities are shown. On the top, the support
of the prior density seems to cover a sufficiently large domain in order that our MCMC algorithm can
explore the whole domain of the posterior. The mean value of the global radius is estimated to be 85.9nm.
In contrast: On the bottom apparently the prior density does not cover the whole domain of the posterior
which results in a non-symmetrical histogram whereby the mean value is at the very edge.

r
r₁

r₂ r₄

r₃

Figure 5: Left: Arrangement of the simulated nano-electrodes. The radius r of the center electrodes will
be estimated, while the other electrodes (blue) are fixed in their size. Right: Analogue, but four radii are
estimated simultaneously, whereby the surrounding electrodes are again fixed in their size.
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Figure 6: From left to right one can examine the posterior histograms for the radius of one electrode
from the 71× 59 array. With every iteration (noted above), a different frequency is considered. Every
posterior distribution plays the role of the prior for the following iteration.
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Figure 7: Left: Color map of the estimated radii (mean value of posterior) of the whole 71× 59 array.
Right: Distribution of the different mean values from the color map to the left.
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Four Local Radii

Finally, we perform the same kind of estimation we did before, investigating the radius of the
electrodes whereby we again consider the measurements taken at the 8 different frequencies.
The only difference now is that we consider four neighbouring electrodes at the same time,
whereby we again fix all the other electrode radii at 85.9nm. The arrangement for this case is
also shown in Figure 5.

Performing this four-dimensional Bayesian estimation task with our iterative method results in
a sequence of sets of four-dimensional samples, whose one-dimensional marginal histograms
are shown in Figure 8. This four-dimensional approach was performed on the whole 71× 59
array to get estimations for all electrodes.

To sum this section up, we are presenting the difference between the estimations of the radii,
using the four-dimensional and the one-dimensional approaches. These results are presented
in Figure 9.

Computation Time

Since we use the method of the Improved Fast Gauss Transform to evaluate an approximation
of a density estimation, which we need for our iterative Metropolis algorithm, perfomed both
for the one-dimensional case and the four-dimensional case, we present the actual runtimes
depending on the number of samples see in Figure 3.

The runtimes for the clustering algorithm and for the calculations of the coefficients in eq. (14)
are not considered.

5 Conclusions

We have presented an approach to perform Bayesian estimation with the Delayed-Rejection
Adaptive-Metropolis algorithm, whereby we used the obtained posterior distribution as a
prior distribution for an iteration of multi-dimensional Markov-chain Monte Carlo simulations.
Hereby, a density estimation using a finite amount of random samples was necessary. There-
fore we introduced a kernel density estimator, where we used the principle of the improved
fast Gauss transform to receive a runtime of O(N) in dependence of the number of samples,
compared to the naive implementation which would result in a worse performace of O(N2).
When a kernel density-estimator is used, the bandwidth matrix is essential. To calculate this
matrix we used another Bayesian estimation approach, which minimizes the error due to using
an approximation of the densities. With the use of the DRAM algorithm we achive an algo-
rithm which is more robust against weak initial proposal distributions. It also prevents stag-
nations in the paths of the Markov chains which results in a smoother and better estimation
of the underlying distribution. The algorithms were applied to the model of a nano-capacitor
array where we estimated the radii of multiple nano-electrodes using multi-frequency mea-
surements.
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Figure 8: Marginal histograms of the sequence of four-dimensional posterior densities. For each itera-
tion, the histogram is stacked on top of the previous one. Again, for the estimation, the mean value is
taken from the last posterior density.
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