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Efficient Computational Design and Optimization of
Dielectric Metamaterial Structures

Boaz Blankrot and Clemens Heitzinger

Abstract—Dielectric structures composed of many inclusions
that manipulate light in ways the bulk materials cannot are com-
monly seen in the field of metamaterials. In these structures, each
inclusion depends on a set of parameters such as size and orienta-
tion, which are difficult to ascertain. We propose and implement
an optimization-based approach for designing such metamaterials
in two dimensions by using a fast boundary element method and
a multiple-scattering solver for a given set of parameters. This
approach provides the backbone of an automated process for the
design and analysis of metamaterials that does not rely on analytical
approximations. We demonstrate the validity of our approach with
simulations that converge to optimal parameter values and result
in substantially better performance.

Index Terms—Design optimization, metamaterials, multiple
scattering.

I. INTRODUCTION

IN RECENT years, interest in dielectric metamaterials has
grown considerably, as they have lower power dissipation [1]

than their traditional counterparts and are easily fabricated [2],
[3]. One prominent example of dielectric nanostructures is di-
electric photonic crystals, which have been intensively inves-
tigated over the past 30 years [4], [5]. Photonic crystals are
composed of a one- to three-dimensional (3-D) periodic array of
nanostructures, in which a small number of cells may be altered
or defective. This structure is designed to allow, alter, or prevent
the propagation of light for a selected range of wavelengths.
These nanostructures can be e.g., round holes [6] or contain a
complex network of nanoengineered rods [7], [8]. Thanks to
their ability to control light flow, photonic crystals have promis-
ing applications in the developing field of optical computing.
Replacing electronic components in integrated circuits with their
photonic crystal counterparts will reduce the size and latencies
of computer processors, while substantially increasing power
efficiency [9], [10].

Dielectric metalenses are another class of recently popular
all-dielectric metamaterials [11]. These metalenses allow ma-
nipulation of light for many practical applications, including
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chirality imaging [12], imaging with reduced aberrations [13],
and optical fiber coupling [14]. Metalenses are typically com-
prised of numerous subwavelength building blocks arranged on
a substrate. The properties of these building blocks dictate which
effect the overall metalens has on light passing through it. There
are many degrees of freedom in designing metalenses; the size,
shape, rotation, and material of each individual building block
can be adjusted arbitrarily, yielding a large variety of possible
metalenses to meet different objectives [15]. Nevertheless, this
freedom creates a large search space in choosing these parame-
ters, which may number in the thousands.

Optimization methods have been employed in the past for de-
signing optical structures. For example, dielectric antireflective
layers with piecewise constant permittivity were designed with
a gradient descent algorithm [16]. Optimization has been com-
bined with the finite-difference time-domain (FDTD) method for
optimizing mode confinement in photonic crystal cavities [17],
however from a computational perspective, this approach may
suffer from the need to resolve the entire problem when changes
are made to the parameters. Optimization of photonic crystal
structures with circular inclusions was performed in [18] by
means of transformation optics. Location optimization of circu-
lar dielectric rods in the radio-frequency regime was performed
in [19] and [20] using a finite differences discretization and both
gradient-based and gradient-free algorithms. More recently, lo-
cation optimization based on FDTD was used to design a pho-
tonic crystal exhibiting asymmetric light transmission in [21].
Combinatorial optimization, where scatterers in a photonic crys-
tal structure are either present or absent but their shapes and
locations remain constant, has been explored in [22] where a
multipole expansion was used for round scatterers, and in [23],
where the 3-D scatterers were discretized by surface elements.
While the metaheuristic optimization methods used in those
papers are able to escape local minima, they do so at the expense
of substantially more function evaluations. Shape and topology
optimization for optical structures is fairly established, both in
the periodic [24], [25] and nonperiodic cases [26]. Although
topology optimization usually utilizes finite difference or finite
element discretization, optimization of electromagnetic cloak-
ing has been achieved using boundary elements as well [27].

We propose a specialized optimization-based method for an-
alyzing and designing metamaterials in an automated fashion.
The class of problems we consider consists of metamaterials
with a large number of inclusions, which may be circular, but
the number of noncircular prototype inclusions is small relative
to the number of inclusions. We say that differently oriented
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inclusions of the same shape and material have the same pro-
totype. This approach utilizes a multipole expansion and a fast
multiple-scattering method [28], [29] to solve the underlying
electromagnetic problem, and a gradient-based algorithm for
the optimization. Our approach is most appropriate for opti-
mizing radii in case of circular inclusions, and for optimizing
rotation angles in case of general inclusions, which corresponds
to the design of many photonic crystals and metamaterials. In
the context of large-scale, aperiodic metamaterials in the class
above, this type of efficient automation of the design process for
specified optical properties has not been previously proposed.

The remainder of the article is organized as follows.
Section II gives the problem description and method overview.
The mathematical formulation used for calculating the fields
scattered by a collection of inclusions is presented in detail in
Section III. Section IV presents our optimization framework
for the automated design of metamaterials, which is given as
pseudocode in Algorithm 1. Numerical results of both rotation
angle and radius optimization are shown in Section V, as well as
a time complexity analysis of our approach. The results of this
article are summarized in Section VI.

II. PROBLEM AND METHOD DESCRIPTION

The problems solved in this article consist of a layout of
smooth inclusions which may be circular, and an objective
function that models a desired electric field distribution at a set
of points of interest. Our goal is to simultaneously optimize the
radius of each circular inclusion and the rotation angle of each
noncircular one to fit some desired behavior.

In this article, problems are restricted to time-harmonic in-
cident fields scattering off a collection of 2-D inclusions in
free space, where the variation exp(−iωt) is assumed and
suppressed. We restrict our treatment to TM waves with re-
spect to z, but the TE formulation is readily available with
small modifications to the integral formulation and boundary
conditions. We assume M inclusion surfaces Ωm with smooth
boundaries ∂Ωm, in which the wavenumber km = ω

√
μ0εm is

real and constant, and Ω0 denotes the open free-space domain.
Hence, the ẑ component of the electric field is the solution of
the Helmholtz equation

∇2u+ k2m u = 0, u =

{
uinc + us, in Ω0

us, in Ωm �=0

(1)

where uinc is the given incident field, us is the scattered field,
and the jump in both u and the normal derivative ∂u/∂n is
zero across all boundaries, corresponding to continuity of the
tangential electric field and the normal magnetic flux density.
In addition, the scattered field must satisfy the Sommerfeld
radiation condition in Ω0, but this is automatically satisfied
due to the integral equation method used here. We assume an
objective function that depends on the electric field intensity at
multiple points of the form

fobj :=

I∑
i=1

|u(ri)|2 (2)

Fig. 1. Example optimization problem layout, where we wish to focus the
incident plane wave uinc at ri (black stars) by optimizing over the rotation
angles ϕj and radii Rl. Here, two of the inclusions have the same prototype as
they have the same shape and wavenumber k1.

where other functions of the intensity can be optimized via
the chain rule. Fig. 1 contains a representative example of the
optimization problems solved here, where the incident field
intensity is to be maximized at a collection of points ri, by
finding optimal rotation angles ϕj for the noncircular inclusions
and optimal radii Rl for the circular ones.

We give an overview of our method. First, we use a boundary
integral equation [30] to discretize each prototype inclusion
once and transform it to a compressed cylindrical harmonics
representation. It is straightforward to rotate and move this rep-
resentation. We then apply a multiple-scattering approach [28],
[31] on these representations in order to describe the electro-
magnetic interactions between the inclusions. Once we solve
the arising multiple-scattering problem with the fast multipole
method (FMM) [32], we can easily compute the electromag-
netic field at any point. This combination of boundary integral
equation and multiple-scattering methods was applied to thin
strips [33], 3-D scattering [34], [35], and 2-D multilayered
structures [29]. The computational complexity of this step is
sufficiently low for employing optimization methods that require
many solutions, as the ability to quickly compute the field at
any collection of points makes it simple to define and compute
an objective function for minimizing and/or maximizing the
field intensity at multiple points. The integral equation approach
naturally begets gradient-based optimization, which converges
to a locally optimal set of parameters and yields an exact result
in each step. We speed up the gradient-based optimization with
the adjoint-state method [36] (see also [37]), which significantly
decreases the optimization run time.

III. SCATTERING FORMULATION

In this section, we describe the mathematical background used
to calculate the field scattered by a collection of inclusions at
any point. First, we handle the case of a single inclusion, then
we provide the formulation used for multiple scattering, and
finally, we apply the FMM to accelerate the solution process. The
mathematical development of the single inclusion and multiple-
scattering formulations follow that of [29], and is repeated here
for ease of reading.

A. Single Inclusion Formulation

First, we apply Nyström discretization to a single proto-
type inclusion and transform its representation from that of
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boundary potential densities to cylindrical harmonics. There are
three motivations for this transformation. For smooth inclusions,
the number of discretization nodes is dramatically larger than the
number of cylindrical harmonics, which allows us to precompute
the transformation for each inclusion shape once and only deal
with the cylindrical harmonics representation without increasing
the error in the electric field. This reduces the computational
cost of the solution to a multiple-scattering problem by several
orders of magnitude, and is particularly helpful when multiple
iterations of a scattering problem are required for optimization.
The second motivation for this representation is that it enables
the use of the multiple-scattering translation that we will apply
to accelerate the solution process. Third, cylindrical harmonics
are easily rotated and, thus, only one transformation needs to
be calculated for inclusions that are identical up to rotation.
Nonetheless, it is difficult to ascertain a priori what the optimal
number of cylindrical harmonics is for a given inclusion in a
multiple-scattering problem, as this number depends not only
on the type and frequency of the incident wave but also on the
shape of the inclusion and the distance between it and its closest
neighboring inclusion. In the past few years some convergence
bounds have been developed [38], but in our examples these
proved to be highly shape-dependent and not as accurate in the
near field, and therefore we relied on a computational approach
to determine the optimal number.

One drawback of this transformation is its inability to handle
touching or intersecting scattering disks, which are fictitious
circles strictly enclosing the inclusions, even if the inclusions
themselves are adequately separated. The worst manifestation
of this issue would occur with thin and long inclusions whose
scattering disks cover a disproportionately large area. However,
one can partially overcome this restriction by grouping multiple
inclusions in close proximity into one disk and rotating them in
unison.

We utilize a layer potentials formulation [39], wherein a
single-layer potential density σ and a double-layer potential
density μ are assumed to exist on ∂Ω. For notational simplicity,
in this section, we assume that the inclusion surfaceΩ is centered
at the origin. Note that although we focus only on smooth shapes,
if ∂Ω is not smooth, the method is still applicable with an
appropriate discretization approach [40]. These densities have
unknown complex amplitudes and give rise to the potential
representation

us =

{
Sk1σ +Dk1μ, in Ω

Sk0σ +Dk0μ, otherwise
(3)

for the ẑ component of the scattered electric field, where the
single- and double-layer potential operators for wavenumber k
are defined by

Skσ(r) :=
∫
∂Ω

Gk(r, r′)σ(r′) d r′

Dkμ(r) :=

∫
∂Ω

∂Gk

∂nr′
(r, r′)μ(r′) d r′ (4)

and Gk(r, r′) = i
4H

(1)
0 (k|r− r′|) is the 2-D Green’s function

for the Helmholtz equation in a homogeneous material. For a
given incident field uinc, the constant-permeability TMz bound-
ary conditions are applied to the potential formulation. After ac-
counting for the potential density jump across the boundary [41],
we have the system

Sk0σ − Sk1σ +Dk0μ−Dk1μ+ μ = − uinc

∂

∂n

[ (Sk0 − Sk1
)
σ +
(Dk0 −Dk1

)
μ
]− σ = − ∂uinc

∂n
(5)

of integral equations which holds for all points r ∈ ∂Ω. This
system cannot be solved by directly evaluating the operators
on the boundary on account of the singularity in Gk and the
hypersingularity in its second-order derivative. Hence, we split
each integrand into two terms, integrating the first term with
the Kussmaul–Martensen quadrature rule and the other with
trapezoidal or Gauss–Legendre quadrature. Many other choices
for the quadrature rule exist and can be used interchangeably,
such as the more sophisticated QBX [42]. Denote the values of
the potential densities σ, μ on 2N discretization nodes by σ, μ,
respectively. We obtain the system of equations

Z

(
σ
μ

)
= −
⎛
⎝ uinc

∂uinc

∂n

⎞
⎠ (6)

in which Z is a 4N × 4N matrix, which includes all potential
operators.

In order to expand the potentials in terms of cylindrical har-
monics, the system in (6) is solved for 2P + 1 incoming waves
sampled on the discretization points of the shape, or uinc =
Jp(k0|r|)eip∠r for p = −P, . . . , P . This yields the single- and
double-layer potential density vectorsσp,μp for the pth incident
wave. For this solution method to maintain reasonable time
complexity, this system should be factorized (e.g., LU) for suc-
cessive direct solutions, thus, requiring O(N3 + (2P + 1)N2)
computations in total.

Let r be a point that lies strictly outside the inclusion such that
|r| > |r′| for any r′ on the boundary. We apply Graf’s addition
theorem for Hankel functions to the integral operator formula
for the scattered field given by (3) and obtain the cylindrical
harmonics expansion

us(r) =

P∑
l=−P

sl,pH
(1)
l (k0|r|)eil∠r

sl,p :=
i

4

∫
∂Ω

Jl(k0|r′|)e−il∠r′σp(r
′)

+ n̂r′ · ∇
[
Jl(k0|r′|)e−il∠r′

]
μp(r

′) d r′ (7)

of the potential operators. Notably, this expansion only holds
strictly outside the inclusion, and, thus, we assume a fictitious
scattering disk D which strictly encloses the inclusion. Inside
this disk, the direct integral equation representation is assumed,
while outside of it the expansion in (7) holds. In this article,
the diameter of the scattering disks is chosen to be 10% larger
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than the inclusion diameter. While the diameter of the scatter-
ing disk can be reduced if necessary, this typically leads to a
dramatic increase in P . Approximating the integral above with
the same boundary discretization yields a formula of the form
sl,p = (Aσp +Bμp)l, which in turn yields the entire scattering
matrixX(m) = AΣ+BM for themth inclusion, where the pth
column of Σ is σp and similarly for M and μp.

As mentioned earlier, the process above only needs to be
carried out once per inclusion, up to rotation. The representation
of an inclusion rotated by an angle ϕm is readily available
by multiplying the (l, p)th element of X(m) by a factor of
e−iϕm(l−p), in other words, by replacing the scattering matrix
with ΦX(m)Φ∗ for the diagonal matrix Φp,p = e−ipϕm .

Now letΩm be centered ato(m) with a local coordinate system
r(m) = r− o(m). In order to use the scattering matrix to solve
scattering of an incident field uinc from the singlemth inclusion,
we first expand uinc as

uinc =

P∑
p=−P

α(m)
p Jp(k0|r(m)|)eip∠r(m)

. (8)

Due to the Jacobi–Anger expansion in the particular case of
plane-wave incidence eik·r for some k = (k cos θi, k sin θi), we
have αp = eip(π/2−θi) in the local coordinates up to multipli-
cation by a phase constant. The electric field scattered by the
inclusion is given by the outgoing expansion

us =

P∑
p=−P

β(m)
p H(1)

p (k0|r(m)|)eip∠r(m)

(9)

that is, a linear combination of the scattering matrix columns,
where in this case β

(m)
p = (X(m)α(m))p. Note that circular

inclusions can be analytically represented using a diagonal
scattering matrix by utilizing orthogonality of the basis functions
on a circle. For such an inclusion with radius R, the scattering
matrix components are readily given by

βp = −αp

Jp(k0R)J ′p(k1R)− J ′p(k0R)Jp(k1R)

H
(1)
p (k0R)J ′p(k1R)−H

(1)′
p (k0R)Jp(k1R)

(10)

where Z ′p(kR) = k(Zp−1(kR)− (p/kR)Zp(kR)) for Zp =

Jp, H
(1)
p .

Two error mechanisms affect the accuracy of the solution
beyond the adjustable FMM truncation and quadrature error
discussed later in Section III-C. First, we have the discretization
error due to the finite number of nodes 2N on the inclusion
boundary, and the second stemming from the transformation
to a cylindrical harmonics formulation. We denote by Δu the
normalized RMS errors for these error mechanisms. The dis-
cretization error is computed as follows: a fictitious line source
is assumed at some point inside the inclusion along with an
incident plane wave outside of it. The potential densities σ,
μ on the boundaries ∂Ω attained from solving the potential
density system of (6) induce fields outside the inclusion that
are equivalent to those of the line source, up to the error that is
measured on the scattering disk D. The cylindrical harmonics
transformation error is measured by comparing the field induced
by the potential densities to that of the cylindrical harmonics on
points distanced 2D from the inclusion center. Fig. 2 shows an

Fig. 2. Minimum number of discretization nodes and cylindrical harmonics
for two inclusion shapes. (a) Rounded star and its scattering disk D. (b) Squircle
and its scattering disk D. (c) Minimum discretization node parameter N and
cylindrical harmonics parameter P for given discretization and cylindrical
transformation error, respectively, for these two inclusions.

example of the relation between N and P and their respective
errors for two inclusion shapes, a squircle withR = 0.35λ0, and
a rounded star with the parametrization

r(θ) = [R+ a cos(5θ)] (cos θ, sin θ) (11)

with R = 0.3λ0, a = 0.1λ0. For both inclusions, the inner
wavenumber is k1 = 1.5k0. Note that not only isN substantially
larger than P for all values of Δu, but the ratio between them
continues to grow as the desired errors diminish.

B. Multiple-Scattering Formulation

Here, we apply the principles used in the preceding section
to a multiple-scattering setting. Previously, the relation between
incoming and outgoing coefficients was given by the scattering
matrix; however, the incident field of a single inclusion in a
multiple-scattering scenario is a combination of the incident
field and the fields reflected off all other inclusions. A trans-
lation matrix is used to transform the reflected field from the
local coordinates of one inclusion to the local coordinates of
another [28].

Let r(m) and r(m
′) denote a point in the local coordinates of

the mth and m′th inclusions, respectively, and let r(m,′m) be the
coordinates of the m′th inclusion with respect to the center of
the mth inclusion. Using Graf’s addition formula and truncating
the higher order elements, we obtain the relation between the two
local expansions

P∑
p=−P

β(m)
p H(1)

p (k0|r(m)|)eip∠r(m)

=
P∑

μ=−P
Jμ(k0|r(m′)|)eiμ∠r(m

′)
P∑

p=−P
β(m)
p T (m,′m)

μ,p (12)
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where T(m,′m) with the elements

T (m,′m)
μ,p = ei(p−μ)∠r(m,′m)

H
(1)
p−μ(k0r

(m,′m)) (13)

is the translation matrix, which translates the outgoing coeffi-
cients of one inclusion to the incoming coefficients of another.
Summing over the contributions of all the inclusions, we obtain
the complete incoming coefficients of the m′th particle

α̃(m′) = α(m′) +
∑

m �=m′
T(m,′m)β(m). (14)

Finally, we note thatβ(m′) = X(m′)α̃(m′) holds for the complete
incoming coefficients, and substitute this relation into (14) to
obtain(

X(m′)
)−1

β(m′) −
∑

m �=m′
T(m,′m)β(m) = α(m′) (15)

thus yielding a system of (2P + 1)M equations, where M is
the number of inclusions. A preconditioned scattering system
is obtained when multiplying both sides by the block scattering
matrix, which we denote in concatenated form by

(I−XT)β = Xα. (16)

Once the multiple-scattering system in (16) is solved, the
scattered field at any point outside the scattering disks is readily
calculated by summing (9) over all inclusions. Strictly inside
the inclusions, the field is given by the discretized integral (3),
where the densities are

σ(m) = Σ
(
X(m)

)−1
β(m) (17a)

μ(m) = M
(
X(m)

)−1
β(m). (17b)

These are weighted sums of those σp, μp obtained from solving
(6) for the different incoming waves, as the expansion in (9)
of the inclusion is not valid inside the scattering disk. Between
the mth inclusion and its disk, the scattered field us is given by
summing (9) over allm′ �= m and then adding the direct integral
operator for m.

C. FMM Acceleration of the Translation

As the computational cost of directly solving (16) becomes
prohibitively high for a large number of inclusions, this system
should be solved iteratively. While applying the block-diagonal
scattering matrix X in each iteration requires only O(M) oper-
ations, the translation matrix is almost fully populated and, thus,
requires O(M2) operations. Therefore, we choose to apply the
block translation matrix T using FMM [32], yielding a lower
complexity that will be analyzed in the following section. In
this section, we shall succinctly describe the FMM process for
this problem. Assume a collection of many inclusions, divided
into G nonempty a× a boxes. The FMM process converts the
translation matrix to a sequence of operators. These operators
aggregate the translation matrices of multiple inclusions in one
box, translate them to a different box and disaggregate them
to the inclusions in said box. Note that this process assumes
the boxes have some minimal distance between them. For boxes

which are closer than this minimal distance, or are the same box,
the appropriate blocks of the translation matrix T are directly
applied via a sparse near-interaction matrix. We note that for
accurate handling of arbitrarily sized boxes, this approach can
be modified to follow the wideband FMM [43]. While the FMM
solution of the preconditioned system (16) typically converges
in reasonable time, this can be accelerated further by using
an FMM-based preconditioner [44]. It is also worth remark-
ing that the FMM-accelerated multiple-scattering formulation
converges even in the presence of resonant modes [45].

Let the m-, m′th inclusions which are centered at o(m), o(m′)

be placed in boxes centered at c, c′, respectively. Provided c,
c′ are distanced by at least

√
2a, Graf’s addition and Bessel’s

integral theorems are applied to the translation matrix in (13),
which results in

T (m,′m)
μ,p =

1

2π

∫ 2π

0

eik·(o
(m′)−c′)F∞(θ, c′ − c)

e−ik·(o
(m)−c)ei(μ−p)(π/2−θ) d θ (18)

wherek = (k cos θ, k sin θ), and the truncated FMM translation
function, which transmits plane waves from c to c′ is defined as

FP̃ (θ,x) :=

P̃∑
ξ=−P̃

H
(1)
ξ (k|x|)eiξ(∠x+π/2−θ). (19)

Although this translation function must be truncated for prac-
tical computations, the series does not converge for small values
of P̃ and oscillates for large values, making the optimal choice
an extensively studied, nontrivial problem. Several analytical
and empirical formulas have been proposed for this truncation,
of which the excess bandwidth formula [46] is used here.
Assuming this series truncation, the integral expansion of the
Bessel function has finite bandwidth such that a Q ∝ P̃ -point
quadrature of [0, 2π] is sufficient. Hence, if we define kq :=
(k cos θq, k sin θq), the translation matrix is approximated as

T (m,′m)
μ,n ≈ 1

Q

Q∑
q=1

eikq ·(o(m′)−c′)eiμ(π/2−θq)︸ ︷︷ ︸
disaggregation

FP̃ (θq, c
′ − c) e−ikq ·(o(m)−c)e−in(π/2−θq)︸ ︷︷ ︸

aggregation

. (20)

We now construct the FMM matrices used for matrix-vector
product acceleration. Denote by Mg the number of inclusions
in the gth box, centered at cg . We construct a 1×Mg block
aggregation matrix, containing a block for every inclusion, with
the mth block A(m) given by

A(m)
q,n := e−ikq ·(o(m)−cg)−in(π/2−θq)

q = 1, . . . , Q, n = −P, . . . , P. (21)

Since FMM is applied to every box with respect to every other
box, we construct the disaggregation matrix by applying the
conjugate transpose to the aggregation matrix.
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Finally, for each pair (g,′ g) of sufficiently distant boxes, a
diagonal FMM translation matrix F(g,′g) is constructed by

F (g,′g)
q,q :=

1

Q
FP̃ (θq, cg′ − cg), q = 1, . . . , Q. (22)

D. FMM Complexity

Complexity analyses for the application of the FMM to
various problems are well established, generally leading to
a single-level result of O(N1.5

dof) and multilevel complexity
O(Ndof logNdof) for Ndof degrees of freedom. However, the
relationship between the optimal number of boxes and the
wavenumber is different in the multiple-scattering approach,
and, therefore, we find it instructive to briefly analyze the
complexity of our FMM application.

Since each aggregation matrix is of dimensionQ×Mg(2P +
1), performing the aggregation of allG boxes has time complex-
ityO(MQ(2P + 1)), and, thus, so does the total disaggregation.
The time complexity of performing all box-to-box FMM trans-
lations is O(QG2), while the number of nonzero elements in the
near-interaction matrix is

(2P + 1)2

⎡
⎣∑

g

Mg(Mg − 1) +
∑
g

Mg

∑
(g,′g) near

Mg′

⎤
⎦ .

(23)

Therefore, applying the near-interaction matrix is expected
to require (2P + 1)2

∑
g[M

2
g +Mg] operations. Including the

computational cost of applying the scattering and identity ma-
trices, applying the operator (I−XT) using FMM has time
complexity

O

(
MQ(2P + 1) +QG2 +M(2P + 1)2

+ (2P + 1)2
∑
g

[M2
g +Mg]

)
. (24)

Since the quadrature Q is proportional to the diameter of each
box, and in two dimensions the area of a box is inversely
proportional to the number of boxes, we have Q ∝ G−0.5. If
we assume an approximately constant distribution of inclusions
in boxes such that Mg ≈M/G, the FMM time complexity
expression is simplified to

O
(
G1.5 + (2P + 1)2 M2 G−1

)
. (25)

We note that while the usual FMM choice G ∝ √M yields
a complexity of O(M1.5), selecting G = bM0.8 for a constant
b reduces the complexity to O(M1.2) per FMM solution with
regard to the number of inclusions. In practice, even a choice
of G ∝M may be optimal due to the quadratic dependence of
the second complexity term on the wavelength. An analogous
analysis of a multilevel fast multipole Algorithm approach will
lead to asymptotic complexity of O(M) [29], although this is
only beneficial in practice for very large values of M .

IV. OPTIMIZATION FOR MULTIPLE-SCATTERING FEATURES

We give a description of a general optimization problem
that is applicable to various metamaterials, where our aim is
to provide a template for applying our framework to different
structures. Given an objective function as in (2), we develop
its gradient, and show how it can be computed in order to find
optimal parameters for the overall structure. Our I points of
interest ri are assumed to lie outside all scattering disks, as
points inside them complicate and slow down the optimization
procedure. Note that whether we are minimizing or maximizing
the objective function is immaterial, as maximization problems
can be solved by minimizing the negated objective function and
again negating the achieved minimum value. Simultaneously
minimizing intensity at several points while maximizing it at
others is achieved by appropriately weighting the objective
function. For convenience, we rewrite the field values in the
objective function in terms of β and obtain the column vector
u = H�β + uinc and the simplified form fobj = ‖u‖2, where
H relates the coefficient solution to the objective function.

Let w denote a vector of J inclusion parameters, where we
assume each parameter affects the shape of an inclusion, but
not the location of its center, and therefore H remains constant.
In order to calculate the gradient ∇fobj with respect to w, we
shall use the adjoint-state method [36], [37], as its complexity is
less dependent on the number of design variables than a direct
approach. Our optimization problem is given by

min
w

fobj(β) = ‖H�β + uinc‖2

s.t. c(β,w) = [I−X(w)T]β −X(w)α = 0 (26)

where the constraint ensures that β is a solution to the multiple-
scattering problem. To apply the adjoint-state method, we utilize
a complex vector λ to define the Lagrangian

Λ = fobj + λ�c+ λ�c (27)

equate the complete derivatives of fobj and Λ with respect to
w ∈ w, and have after some algebraic manipulation that

dfobj
dw

= 2
([

∂fobj
∂β

+ λ� (I−XT)

]
∂β

∂w

)

− 2
(

λ�
∂X

∂w
X−1β

)
. (28)

The crux of the adjoint-state method resides in setting the first
summand to zero by properly solving for λ. This will allow us to
calculate the derivative without explicitly computing ∂β/∂w,
which would add significant complexity. Substituting fobj yields
the adjoint system (

I−T�X�
)
λ = −Hu (29)

which we solve using a modified FMM procedure with the
same complexity, as detailed in the Appendix. Once the sys-
tem is solved, each element of the gradient can be calculated
in O((2P + 1)2) time, yielding O(M(2P + 1)2) +O(FMM)
complexity in total if each inclusion is affected by a single
parameter. A description of the complete process of automat-
ically designing a structure via our approach is summarized in
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Algorithm 1: Automated Design of Dielectric
Metamaterials.

1: w← (w1, . . . , wJ ) // optimization starting
point
// Precomputation phase

2: for all distinct non-circular inclusions do
3: Construct and solve potential density equation (6)

for −P, . . . , P
4: end for
5: Prepare FMM matrices // using the

development in Section III-C
6: repeat
7: Calculate X(w)
8: β ← solution of multiple-scattering equation (16)

with FMM
9: Calculate fobj(β)

// Construct gradient:
10: Solve adjoint system of (29) for λ using transposed

FMM
11: for wj ∈ w do
12: Compute j-th component of ∇fobj using (28)
13: end for
14: w← next optimization point
15: until optimization has converged

Algorithm 1. The specifics depend on the optimization method
used, where additional evaluations of fobj might be necessary
for the optimization line search. We note thatX−1 was computed
in a previous step and its use here is not problematic, and in any
event X−1β can be replaced with Tβ +α.

In this article, we optimize inclusion parameters for which
∇wX is analytic, such as the rotation angle of an arbitrary
inclusion and the radius of a circular inclusion, which signif-
icantly simplifies the computation of the gradient. Attempting
to optimize parameters that do change the structure of X is more
involved, and may require numerical differentiation.

V. NUMERICAL RESULTS

In this section, we demonstrate our approach using three
examples. First, we study the run time of the multiple-scattering
approach for increasingly numerous inclusions. Additionally,
we apply the optimization process in its entirety to two practical
examples, resulting in improved designs. In what follows, all
values of 2N , the number of discretization nodes, and P , the
cylindrical harmonics parameter, are chosen to be the minimal
values for which an electric field error of 10−6 holds, as ex-
plained in Section III. All linear systems solved via FMM use
GMRES [47] with tolerance 10−6 as the underlying iterative
method. All simulations were written in the Julia programming
language [48], and run on a 3.4 GHz Intel Core i7-6700 CPU
with 32 GB of memory.

A. Complexity of Multiple-Scattering Approach

We examine the run time of the multiple-scattering algorithm
for a square grid of inclusions, and compare it to the theoret-
ical complexity analysis in Section III-D. Fig. 3 depicts the

Fig. 3. Run time of the multiple-scattering system solution, as well as of a
single matrix-vector product, for different numbers of rounded-star inclusions.

run time of solving the multiple-scattering equation (16) using
FMM for several values of M . Here, an incident plane wave
is scattered by a

√
M ×√M grid of identical rounded stars

with the parametrization previously seen in (11), each randomly
rotated. The inclusion parameters are R = 0.3λ0, a = 0.1λ0,
and k1 = 1.5k0, and are distanced 0.9λ0. The minimal values
of N and P for Δu = 10−6 and this inclusion are N = 342
and P = 10. The precomputation of the prototype inclusion for
these values was performed once for all simulations and required
0.9 s that were not included in the plot. A single matrix-vector
product scales almost linearly with the number of inclusions,
in accordance with the complexity analysis. The total solution
convergence time has complexity O(M2.3), i.e., the number
of iterations depend on the number of inclusions, which is not
uncommon when solving electromagnetic systems of equations
with Krylov subspace methods. Nonetheless, the total solution
time is several orders of magnitude below that achievable by a
naive method.

B. Rotation-Angle Optimization for Arbitrary Inclusions

For our first optimization example, we apply our framework
to the optimization of inclusion rotation. That is, given an
incident wave with wavelength λ0 scattered by a collection of
M inclusions, we wish to find the optimal rotation angles ϕ of
the inclusions such that the field propagation in some desired
direction is maximized.

The derivatives of the scattering matrices with respect to the
rotation angles are given by(

∂X(m)

∂ϕj

)
u,v

= −iδm,j(u− v)
(
X(m)

)
u,v

= δm,j

(
DX(m) −X(m)D

)
u,v

(30)

where (D)u,v = −δu,viu. Since the rotation angles are uncon-
strained, our choice of optimization method is the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) [49] algorithm, which is a
quasi-Newton method that locally approximates the objective
function as a quadratic. In each iteration, once the descent
direction is decided via the gradient, a line search is necessary
to determine the step size to the minimum in that direction.
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Fig. 4. Optimization of rotation angles. (a) Initial electric field amplitude after scattering by M = 100 randomly positioned identical rounded stars with zero
rotation, which prevent the ŷ-traveling plane wave from propagating in its original direction. (b) Electric field amplitude for the same inclusions, with rotation
angles optimized to maximize field at 20 points along the top boundary. Markers indicate points where the field is maximized.

Fig. 5. Convergence behavior of the objective function fobj and its gradient
∇fobj for Fig. 4.

The backtracking line search based on the Armijo–Goldstein
condition [50], which minimizes gradient evaluations, is used
here. In Fig. 4, we simulate the case of a ŷ-traveling plane wave
incident upon a collection of M = 100 inclusions, randomly
positioned in a 21λ0 × 7λ0 rectangle such that the scattering
disks do not intersect. Inclusions are rounded stars with the same
size as in Fig. 2, have wavenumberk1 = 3k0 and use the minimal
parameters N = 934, P = 12. The objective function is set
as in (2) for I = 20 points of interest ri located equidistantly
along the top boundary of the rectangle, which are indicated
with white dots. The field amplitude at the points of interest
ri is substantially larger after the optimization process, whose
convergence is shown in detail in Fig. 5. Specifically, the BFGS
method converges to an average field magnitude of 1.43 at

ri (in the RMS sense), up from the initial value of 0.48 for
ϕ = 0, a 200% increase. The process required 127 iterations
and 664 s for the convergence criterion Δfobj < 10−6. We
note that setting the starting point to ϕi = π for each inclu-
sion causes the optimization process to converge to a slightly
worse result, with an average field magnitude of 1.41, and
dramatically different rotation angles at convergence. Complex
optimization problems such as those described here may have
several local extrema, leading to a dependence on the starting
point for gradient-based methods. This can be overcome by
utilizing hybrid methods, which combine a global search with
gradient-based local searches [51].

C. Radius Optimization for Circular Inclusions

We now consider optimization of the radii of circular in-
clusions, where in contrast to the previous example, both the
scattering matrices and their derivatives with respect to the
inclusion radius are diagonal and have analytical form. This
example is motivated by the photonic crystal implementation of
the Luneburg lens. The 2-D Luneburg lens [52] is a symmetric
circular lens designed such that incoming plane waves are fo-
cused to a single point on its rim, and no waves are reflected. This
property is achieved by a continuously varying refractive index
given by the analytic solutionn(r) =

√
2− (r/Rlens)2, where r

is the distance from the center of the lens, which has radiusRlens.
One way of fabricating a Luneburg lens is via long dielectric
rods on a glass substrate, which, if long enough, can be assumed
to be infinite. Thus, the electromagnetic propagation through
the device can be treated as a 2-D problem. In this setting, the
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Fig. 6. Radius optimization of 316 circular inclusions with εr = 4.5 for focusing an x̂-traveling plane wave to a single focal point on the lens rim. Electric field
amplitude for (a) starting point, (b) optimized device, and (c) Luneburg lens approximation.

lens is divided into unit cells on a square grid, each with side
length a. Each unit cell m contains a circular inclusion with the
same relative permittivity εr but differing radius Rm, such that
the effective refractive index in the cell can be approximated
analytically if a/λ0 is sufficiently small [53], and, thus, the
radii are set such that the average permittivity approximates the
Luneburg solution.

This implementation of the Luneburg lens begs the question
whether the electromagnetic focusing could be improved by
sacrificing the rotational symmetry of the device, however, note
that the restriction to a square grid has already limited this
symmetry. To answer this question, we propose optimizing over
the radii of the inclusions to maximize the field amplitude at
the focal point. Note that since the inclusions are circular, the
computation of the gradient is cheaper than in the previous
example, as is applying the diagonal scattering matrix in each
FMM iteration. Care must be taken to assure that the computed
radii are neither below some nonnegative lower practical limit
Rmin nor above the limit Rmax at which they are too close for
the multiple-scattering approximation in this article, i.e., 0.45a.
Thus, unconstrained optimization methods such as BFGS are no
longer an option. Fortunately, these so-called box constraints are
simple enough to be tackled by the addition of a penalty term,
which sharpens the constraint from one BFGS run to the next.

In Fig. 6, we consider focusing of an x̂-traveling plane wave to
the focal point (Rlens, 0) on the lens rim. In this example, there
are 316 circular inclusions with relative permittivity εr = 4.5,
placed on a square grid with lattice constant a = 0.2λ0. The
total lens radius is Rlens = 10a, while the cylindrical harmonics
parameter is P = 5, and the initial guess is Rm = a/4 for all
inclusions. The penalized BFGS algorithm converged to a local
maximum of fobj = 26.36 after 113 total iterations and 173 s,
with the convergence criterion ΔR < 10−6, as shown in Fig. 7.
As this optimization problem is bound-constrained, convergence
of the gradient is not a necessary condition, motivating the use of
a step-size convergence criterion instead. Visualization 1 shows
the electric field amplitude throughout the optimization process
in video form, where the gradual evolution of the optimized
device is clearly visible.

Fig. 7. Convergence progress of fobj and its gradient norm for Fig. 6 as a
function of the penalized BFGS iteration. Markers indicate the beginning of an
outer iteration.

The optimization process yields a device that focuses the
incoming electric field substantially better than the Luneburg
lens, improving upon the Luneburg design by an amplitude
factor of 1.55. Additionally, the optimized design is more in-
tricate than typical intuitive approximations, thus corroborating
our promotion of an automated approach. Interestingly, the
algorithm produced symmetric radii with respect to the x-axis,
although this was not an optimization constraint. Applying this
constraint, thereby halving the optimization variables, yields a
similar result in only 81 s, less than half of the time required
originally. The optimized device is more susceptible than the
Luneburg device to manufacturing variations, with a gradient
norm of 78.3, versus 68.4 for the Luneburg device. However,
due to the significant improvement in performance, we posit
that the optimized device will outperform even with small radius
perturbations.

VI. CONCLUSION

We proposed and implemented an automated approach for
designing dielectric metamaterials with desired electromag-
netic properties. Our approach uses gradient-based optimization
that provides quick and reliable convergence as well as a fast
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boundary integral equation solver for precisely computing the
field at any point. This method reduces the need for manual trial
and error in the design of certain metamaterials by replacing it
with rigorous optimization. Our approach should be especially
attractive in designing photonic crystals, metalenses, and other
devices composed of many substructures whose large number
of design parameters would typically render optimal manual
design impossible. Although optimization may superficially
seem prohibitively expensive for these high-dimensional design
problems, our fast solution method makes it practical. The
examples in this article resulted in highly irregular structures,
which conforms to observations previously made in [19], where
the authors note that aperiodic structures are capable of provid-
ing more functionality than their periodic counterparts. In the
future, we will extend this approach to objectives containing
other functions of the electric field, such as the magnetic field
and power flow. Additionally, this approach should be extend-
able to multifrequency objectives, such as those necessary for
broadband or filtering operations. We implemented the methods
described in this article for the publicly available open-source
software package ParticleScattering.jl [54] in the Julia program-
ming language [48], which also includes the examples presented
here.

APPENDIX

TRANSPOSED SINGLE-LEVEL FMM FOR ADJOINT METHOD

Let T ∈ CN×N be the matrix we wish to apply with FMM,
divided into G groups or boxes, and let the subscript g denote
the section of a vector or matrix pertaining to the gth group. The
double subscript g, g′ denotes a matrix operating from the g′th
group to g. Then, we can ordinarily write with single-level FMM

(Tx)g =
∑

g′=1,...,G

Tg,g′xg′

= (Zx)g +Dg

∑
g′:g,g′ far

Fg,g′Ag′xg′ (31)

where Z,D,F,A are the near-field, disaggregation, diagonal
translation, and aggregation matrices. For the transposed FMM,
we can similarly derive

(T�x)g =
∑

g′=1...G

(T�)g,g′xg′ =
∑

g′=1...G

T�g,′gxg′

=
∑

g′:g,g′ near

Z�g,′gxg′ +
∑

g′:g,g′ far

(
Dg′Fg,′gAg

)�
xg′

= (Z�x)g +
∑

g′:g,g′ far

A�gFg,′gD
�
g′xg′

= (Z�x)g +A�g
∑

g′:g,g′ far

Fg,′gD
�
g′xg′ . (32)

Since in our case Dg = AH
g , applying the transposed FMM is

similar to the standard FMM with identical complexity.
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