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Kurzfassung

Dank ihrer vielseitigen Fähigkeiten zur Lichtmanipulation sind photonische Strukturen in
einer Vielzahl von Bereichen wie optische Datenverarbeitung, Bildgebung und Tarnung
vielversprechend. Das optische Verhalten dieser Strukturen ist das Ergebnis komplexer
Wechselwirkungen zwischen vielen Variablen, was eine bedeutende Hürde bei der Suche
nach optimalen Designs darstellt. In dieser Arbeit ist es unser Ziel, einen automatisierten
Ansatz für die nominelle und robuste Optimierung einer großen Klasse zusammengesetzter
photonischer Strukturen bereitzustellen. Die Dissertation ist kumulativ und besteht aus
fünf veröffentlichten oder eingereichten Arbeiten.

Die erste Arbeit (Chapter 2) enthält das Rückgrat unseres Ansatzes. Wir beginnen mit
der Spezifizierung des schnellen elektromagnetischen Lösers, der zur Modellierung einer
gegebenen Struktur verwendet wird, welcher die Diskretisierung von Integralgleichungen für
jeden Einschluss, die Mehrfachstreutheorie zur Berechnung von Einschlusswechselwirkungen
und die Fast-Multipole-Method zur Beschleunigung des Lösers kombiniert. Dann werden
die Parameter jedes Einschlusses mit einer gradientenbasierten Methode optimiert, wobei
der Gradient mit der adjungierten Methode berechnet wird. Wir demonstrieren unsere
Methode, indem wir zwei Strukturen entwerfen, die die Feldintensität an gegebenen Punkten
maximieren. Die resultierenden Designs waren auffallend unregelmäßig, was den Einsatz der
Optimierung unterstützt.

Wir veröffentlichten den Julia-Quellcode, der zur Ausführung unserer Simulationen ver-
wendet wurde, als Open-Source-Forschungssoftwarepaket mit einem begleitenden Software-
Journal-Papier (Chapter 3). Dieses Paket bietet den Benutzern die Möglichkeit, die in
Chapter 2 besprochene Klasse von Problemen zu lösen und zu optimieren. Nach der
Veröffentlichung wurde die Software erweitert, um die in späteren Kapiteln behandelten
Probleme zu unterstützen. Das Konferenzpapier in Chapter 4 erweitert die Optimierung
auf Mehrfrequenzprobleme und stellt einen vorläufigen Ansatz für den Entwurf von Demul-
tiplexern auf der Basis photonischer Kristalle vor.

Unser vierter Beitrag (Chapter 5) verallgemeinert die Zielfunktionen in unserem Ansatz,
um den Leistungsfluss einzubeziehen und so die Optimierung von praktischen Strukturen
zu ermöglichen, deren Verhalten nicht allein durch die punktweise Feldstärke spezifiziert
werden kann. Mit dieser Möglichkeit waren wir in der Lage, ein bestehendes Zweifrequenz-
Demultiplexer-Design zu verbessern und eine Struktur zu entwerfen, die eine erhebliche
asymmetrische Lichtdurchlässigkeit aufweist, die auch als optische Diode bekannt ist.

Während unserer Arbeit stellten wir fest, dass viele dieser optimierten Bauelemente
empfindlich auf Änderungen der Parameter reagieren, was sie in der Praxis, wo Herstellungs-
fehler zu erwarten sind, unwirksam machen. Diese Erkenntnis motivierte uns zur Aufnahme
von zwei robusten Optimierungsstrategien in unseren Ansatz (Chapter 6), so dass die resul-
tierenden Designs auch bei Vorhandensein solcher Fehler weiterhin funktionieren würden.
Insbesondere entwarfen wir photonische Strukturen, die, selbst bei unabhängigen zufälligen
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Störungen an jedem Stabradius, eine asymmetrische Lichtdurchlässigkeit aufwiesen.
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Abstract

Thanks to their versatile light-manipulation abilities, photonic structures show considerable
promise in a variety of fields such as optical computing, imaging, and cloaking. The optical
behaviors of these structures are a result of complex interactions between many variables,
which poses a significant hurdle to finding optimal designs. In this work, our goal is to
provide an automated approach for the nominal and robust optimization of a large class of
composite photonic structures. The thesis is cumulative and consists of five published or
submitted papers.

The first paper (Chapter 2) contains the backbone of our approach. We begin by specifying
the fast electromagnetic solver used to model a given structure, which combines integral
equation discretization for each inclusion, multiple scattering theory to compute inclusion
interactions, and the Fast Multipole Method in order to accelerate the solver. Then, the
parameters of each inclusion are optimized with a gradient-based method, where the gradient
is calculated by the adjoint-state method. We demonstrate our method by designing two
structures that maximized the intensity of the electric field at given points. The resulting
designs were noticeably irregular, which supports the use of optimization.

We published the Julia source code used to run our simulations as an open-source research
software package with an accompanying software journal paper (Chapter 3). This package
provides users with the ability to solve and optimize the class of problems discussed in
Chapter 2. After publication, the software was expanded to support problems discussed
in later chapters. The conference paper in Chapter 4 extends the optimization to multi-
frequency problems, and presents a preliminary approach for designing photonic crystal-based
demultiplexers.

Our fourth paper (Chapter 5) generalizes the objective functions in our approach to
include power flow, thus enabling optimization of practical structures whose behavior cannot
be specified solely by pointwise field amplitude. With this capability, we were able to
improve upon an existing two-frequency demultiplexer design as well as design a structure
that exhibits substantial asymmetric light transmission, which is also known as an optical
diode.

During our work, we noticed that many of these optimized devices are sensitive to changes
in the parameters, rendering them ineffective in practice, where fabrication errors are to be
expected. This realization motivated the incorporation of two robust optimization strategies
into our approach (Chapter 6), such that resulting designs would continue to perform in
the presence of such errors. Specifically, we designed photonic structures that exhibited
asymmetric light transmission even with independent random perturbations applied to each
rod radius.
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Pammer, Stefan Rigger, Benjamin Stadlbauer, and Leila Taghizadeh.

I deeply appreciate the support, encouragement, and motivation my parents and siblings –
Leon, Betsy, Yishai, Yoav, and Kayla – have given me over the past few years. I can finally
answer the question “When will you be finished?” with “Now!”

I cannot begin to express my appreciation, love, and respect for my wife, Nadia, who
somehow found the time to listen to me drone on about electromagnetics and optimization
while she was pursuing a PhD of her own. I could not have done it without you!

Finally, I would like to thank my son, Raphael (Rafi) Blankrot, without whom this work
would have been finished sooner – but it would have been a far less enjoyable experience.

This dissertation is dedicated to the memory of my grandfather, Aron Blankrot.

v





Eidesstattliche Erklärung
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1 Introduction

1.1 Background and motivation

Photonic structures are present in a wide variety of areas ranging from the natural world to
the artificial. They provide iridescent color to certain insects [1] and peacock feathers [2], can
be found in ancient colored glass [3], and of course are present in many modern applications.
Opinions differ on the precise delineation between metamaterials, photonic crystals, and
other nanoscale light-manipulating structures. When speaking generally, in this chapter we
will use the umbrella term photonic structure.

The scientific study of photonic structures experienced two breakthroughs towards the
end of the nineteenth century. In 1887, Rayleigh started the study of one-dimensional
photonic crystals by analyzing the reflectivity of periodic dielectric stacks [4], and discovered
the existence of a band gap, that is, waves with frequencies within a certain range do not
propagate into the crystal. In 1898, Bose demonstrated an artificial chiral material in the
microwave regime [5] by twisting sections of jute, thereby rotating the plane of polarization
of an incident electric field. These works set off two lines of research, namely what we now
refer to as photonic crystals and metamaterials.

Notable milestones in the research of photonic crytals include the 1975 paper by Bykov [6].
There he studied theoretical spontaneous emission in one-dimensional photonic crystals
and hypothesized about a possible extension to three dimensions for optical sources.
Yablonovitch [7] and John [8] each theorized in 1987 about the possibility of photonic
band gaps in three dimensional photonic crystals. Following these papers, both theoretical
and experimental research efforts intensified, culminating in the fabrication of the first
three-dimensional photonic crystal with a complete band gap [9]. The existence of a two-
dimensional band gap was demonstrated in [10], both numerically and with microwave
transmission experiments. Several years thereafter, Krauss et al. [11] fabricated a two-
dimensional photonic crystal for infrared light with a standard lithography process, thus
enabling integration with other optical components.

In the metamaterials line of research, during the first decade of the twentieth century,
papers by Garnett [12] and Mie [13] provided models for calculating the electromagnetic
scattering of small metallic spheres, thus giving a mathematical description for the optical
behavior of glass colored by nanoparticles. Similarly to Bose, Lindman researched artificial
chiral media, creating several composite structures with this characteristic [14]. In 1948,
Kock [15] created microwave lenses by setting metallic building blocks of various shapes in a
periodic pattern. Furthermore, he showed that the overall medium behaved as an artificial
dielectric medium with tunable effective permittivity and permeability. The idea of artificial
materials with simultaneously negative permittivity and permeability was suggested in
1967 by Veselago [16], and it was only in 2000 that such a metamaterial was realized for
microwaves [17]. Soon thereafter, Pendry showed that such a metamaterial for optical
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1 Introduction

wavelengths would enable imaging beyond the diffraction limit [18]. These developments
triggered widespread interest in metamaterials and vigorous research efforts.

For our purposes, we consider the following class of photonic structures: a large number of
dielectric subwavelength inclusions with arbitrary smooth cross sections. The inclusions are
suspended in a dielectric medium or vacuum, and can be approximated by their behavior
in two dimensions. We note that if this structure is periodic, it is often referred to as a
photonic crystal, such as the one illustrated in Fig. 1.1. Since our goal will be to optimize
the inclusion parameters, the resulting structures herein may not be strictly considered
photonic crystals, as they may be aperiodic. By appropriately choosing inclusion shape and
material, photonic crystals can be designed to restrict light flow in some or all directions
for a desired wavelength range. For example, the photonic crystal in Fig. 1.1 prevents
transverse magnetic light propagation in any direction for wavelengths in the 2.25a− 3.65a
range highlighted in yellow, where a is the lattice constant (for more details on this diagram,
see Chapter 5).
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Fig. 1.1: Photonic crystal comprised of a triangular array of dielectric rods with radius
r/a = 0.2 in air (left). Photonic band structure for this crystal (right).

We list several applications of photonic structures, many of which belong to our class
of interest. Waveguides may be constructed by introducing defects to photonic crystals,
which can then guide light along a path with very low losses, and these can be combined
with bends, splitters, and filters [19]. Thus, they show great promise for integrated optical
communication [20], and they have also been used to implement modulators for optical
interconnects [21]. Large-scale integration of all-optical RAM has been demonstrated by
combining these waveguides with photonic crystal nanocavities [22]. Optical computing [23],
where light also replaces the electrical signals inside the processing unit, has recently seen
significant progress with the implementation of photonic crystal-based arithmetic units [24]
as well as electronic-photonic arithmetic units [25], and continues to show promise of faster
and power-efficient processors, although it presents its own challenges. Achieving an all-
optical processor requires the reinvention of all classical processor components as optical
devices, and it is therefore highly desirable to develop a versatile design process for such
components.

One example of a dielectric metamaterial is the metalens [26] – a device that matches
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1.1 Background and motivation

or supersedes traditional lenses – which has applications in traditional imaging as well
as chiral imaging [27], nano-optic endoscopes [28], and light-field imaging [29]. These
metalenses, often constructed by a large number of subwavelength building blocks arranged
on a substrate, can be substantially thinner than their traditional glass counterparts. The
size, shape, rotation, and material of each building block collectively dictate the optical
behavior of the metalens. Zero-index metamaterials have been sought after due to their many
prospective applications including cloaking [30] and radiation focusing [31] but these initially
contained metallic inclusions, and thus exhibited large losses [32]. More recently, such
metamaterials have been fabricated using all-dielectric unit cells, such as silicon rods [33],
thus alleviating that problem. Fig. 1.2 presents several examples of fabricated dielectric
photonic structures.

(a) (b) (c)

Fig. 1.2: Examples of fabricated photonic structures. (a) Metalens for chiral imaging,
adapted from [27] with permission from ACS1. (b) Two-dimensional photonic
crystal [11] and (c) all-dielectric zero-index metamaterial [33], both adapted by
permission from Springer Nature.

The design process for photonic structures, such as the ones discussed above, can be fairly
complex as their parameters introduce many interplaying degrees of freedom. Analytical
considerations provide both a good starting point for optimizing a design, and an invaluable
tool for understanding the underlying physics of how a structure responds, but often cannot
lead to optimal designs on their own. Optimal designs can be highly irregular, as we will
see throughout this work, in which case they are even less likely to be found manually.
Therefore, automating parts of the design process can discover better-performing designs
that might have been overlooked otherwise, while often requiring less time.

The need for optimization has been recognized by the photonics community over the
past two decades and addressed with various successful approaches, see [34, 35] and the
discussion in Chapter 2 for a general review of different approaches and results. In par-
ticular, one notable approach to nanophotonic design is that of topology optimization,
which has been utilized to reduce losses in photonic crystal waveguide bends [36], design
demultiplexers [37], and design wideband power splitters [38]. This approach is known for
its flexibility, since arbitrary devices can be constructed by optimizing over a very large
parameter space. Another important field in nanophotonic design is that of photonic crystal

1Source: https://pubs.acs.org/doi/10.1021/acs.nanolett.6b01897. Further permissions related to
the material excerpted should be directed to the ACS.
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1 Introduction

cavity optimization, where a general aim is to increase the quality factor Q while reducing
the cavity volume. One approach pursued in [39] optimized over air hole locations using a
genetic algorithm, and resulted in significantly higher Q-values than contemporary designs.
Recently, a machine learning technique was employed in [40] to optimize air hole locations
for high-Q photonic crystal cavities. By limiting the number of costly field calculations,
this method allowed scaling of the optimization problem to a larger parameter space. The
aforementioned applications, many of which are facilitated by structures within our class of
interest, further motivate the development of an efficient automated procedure that yields
high-performing designs. Specifically, we focus on rotation angle optimization for arbitrarily
shaped inclusions, and radius optimization for circular rods (for a simple example of such
an optimization problem see Fig. 2.1).

Whether designs are achieved via analytical considerations or automated optimization,
it is valid to question how useful they will be in a real world setting. All fabrication
processes, including those used to etch photonic structures, suffer from uncertainties which
can severely impact device performance [41]. These uncertainties can manifest not only in
the shape and location of the structures, but also in the electromagnetic properties of the
material. There is an assortment of measures by which we can quantify the effects of these
uncertainties on device performance, including probabilistic measures such as mean and
variance, and deterministic ones such as worst-case robustness [42], which we focus on in
this work. Specifically, we use worst-case robustness to implementation uncertainty, which
replaces a traditional function f(x) with a robust function fw(x) = max∆x f(x+ ∆x), given
bounds on the uncertainty of every design variable ±∆xi. While running an optimization
process on fw adds significant complexity and run time, particularly for large numbers of
variables, we are guaranteed at least a certain level of performance regardless of the precise
uncertainties present in a specific implementation. Therefore, it seems natural to couple
this approach of robust optimization to the aforementioned class of photonic structures.

Robust optimization has been widely studied over the past two decades, with a variety
of methods proposed to handle different types of functions and constraints [43]. However,
many of these methods restrict the objective and/or constraints to specific classes in order
to reformulate the robust optimization problem as a standard optimization problem. Thus,
they are not applicable to photonic design problems, which are generally nonlinear and
depend on simulation results. Several methods for robust optimization of nonlinear problems
have been introduced over the past few years. One class of such methods uses a nested
approach to solve the resulting minimax problem, where an outer optimizer uses a local
search [44] or simulated annealing [45] to solve the minimization problem, and an inner
maximizer aims to calculate fw with an approximate global optimizer. Another algorithm,
based on cutting-plane methods, alternates between the minimization and maximization
steps and considers sequentially larger uncertainty sets [46]. As opposed to these methods,
which rely on potentially expensive function evaluations in every step, surrogate-based
modeling, used in [47] to perform robust optimization, reduces function evaluations by
replacing them with cheaper meta-model evaluations. Most recently, a robust optimization
algorithm was proposed [48] that also aims to reduce the number of expensive function calls,
but without building an approximate model. This algorithm explores regions of the variable
domain far from any previously visited non-robust points, and has since been extended with
particle swarm optimization [49].
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1.2 Objectives of this work

Despite the stated benefits of robust optimization, relatively few works have focused
on applying it to photonic structures (see Chapter 6 for a survey of this literature). One
previously-studied research avenue was that of robustness to under- and over-etching of
photonic crystals [50]. Applying distinct radius perturbations to different rods had not been
considered in this context, although in our experience it proves more detrimental to desired
behavior.

1.2 Objectives of this work

The main goal of this work was to construct a method for the fast and automated design of
a large class of dielectric structures. The first step towards our goal was to optimize these
structures with respect to a function of the electric field intensity (or squared amplitude) at
an arbitrarily chosen set of points. An essential tool for that was a way to evaluate those
objective functions quickly, and in a manner that takes advantage of the repetitive nature of
our structures; this is crucial for keeping the computational complexity of the optimization
process in check given the high dimensionality of our problems. Therefore, we needed
to implement an integral equation-based approach which would allow changing inclusion
rotation and radius with ease. Next, we aimed to extend our method to also handle power
flow optimization in the presence of multiple incident fields of different frequencies. Finally,
and spurred by our results, we felt it important to address the robustness of the structures
achieved by nominal optimization, or lack thereof. Therefore, we wished to build upon
our approach to enable robust optimization, where the optima would be more resistant to
implementation errors. As much as possible, we maintained the goal of making our code
public with an open source license.

1.3 Outline

This work is presented as a cumulative thesis which is comprised of four peer-reviewed
papers, listed in order of writing (1–4). An additional paper, (5), has been submitted for
publication. We briefly describe the contents and main takeaways from each paper.

(1) B. Blankrot and C. Heitzinger, “Efficient Computational Design and Optimization of
Dielectric Metamaterial Structures,” IEEE Journal on Multiscale and Multiphysics
Computational Techniques, vol. 4, pp. 234–244, Oct. 2019.

First we give a precise definition of the class of structures our approach applies to,
where we intend to optimize over the radii of circular inclusions and the rotation
angles of non-circular inclusions. We implement an electromagnetic solver which
is tailored to these structures, provides an analytical gradient for gradient-based
optimization and relies on precomputations as much as possible in order to reduce
time spent in each iteration of the optimization loop. To this end, we transform each
inclusion to a cylindrical harmonics representation which allows simple replication
and movement as well as a gradient computation with respect to rotation angle.
Circular inclusions are trivially differentiable with respect to their radius using this
representation. The cylindrical harmonics representation also allows for a dramatic
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1 Introduction

decrease in the degrees of freedom necessary to compute the scattered field from each
inclusion for a given error. While this representation introduces another error term,
we discuss and demonstrate how it can be computed and reduced for a given inclusion.

As in [51], this representation is combined with multiple scattering theory in order to
calculate the electromagnetic interactions between inclusions. Notably, the resulting
system of equations separates the dependency of these interactions on location from
shape, thus allowing optimization without recalculating the entire system matrix.
Furthermore, we describe the process of speeding up the solution of the system matrix
using the Fast Multipole Method [52].

We then move on to describing how to optimize functions of the electric field intensity
at a desired set of points and use the adjoint-state method [53] to calculate all
derivatives with a single system matrix solution. We apply our approach to two
examples. In the first, we show that the field transmitted by a disordered collection
of inclusions can be substantially increased by optimizing their rotation angles. For
the second example, we discuss the photonic crystal implementation of the Luneberg
lens which focuses a plane wave to a single point. We show that by optimizing the
inclusion radii, we can increase the field amplitude at the focal point by 55%.

Finally, we discuss the irregularity of the optimized structures which conforms to
previous observations about the functionality of aperiodic vs. periodic structures.

(2) B. Blankrot and C. Heitzinger, “ParticleScattering: Solving and optimizing multiple-
scattering problems in Julia,” Journal of Open Source Software, vol. 3, no. 25, p. 691,
May 2018.

We discuss the typical use-case for the ParticleScattering package and give an overview
of the optimization and solution process, as well as the visualization features of the
package. This peer-reviewed Julia package contains documentation including examples
with tutorials as well as tests covering most solver functionality.

(3) B. Blankrot and C. Heitzinger, “Automated Design of Photonic Crystal Demultiplex-
ers,” Proc. of the 2018 12th International Congress on Artificial Materials for Novel
Wave Phenomena (Metamaterials’2018), Espoo, Finland, 27–30 Aug. 2018, pp. 55–57.

We apply the approach from Chapter 2 to the more general setting of optimizing
multi-frequency behavior. We aim to focus two incoming plane waves of different
frequencies to different locations in the structure. As we had not yet applied the
adjoint-state method at this point in our work, the optimization process had a runtime
which is longer by an order of magnitude than we would otherwise expect. Nonetheless,
the process achieved a structure with strong amplification for both wavelengths, as
well as low crosstalk.

(4) B. Blankrot and C. Heitzinger, “Design of aperiodic demultiplexers and optical diodes
by optimizing photonic crystals,” OSA Continuum, vol. 2, no. 7, pp. 2244–2252, Jul.
2019.

Motivated by the many applications of photonic crystals to optical communication and
computing, we shift our focus from functions of the electric field to power flow, which
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1.4 Electromagnetic theory

can better capture optical device specifications. After providing the mathematical
treatment for this setting, we optimize a two-wavelength demultiplexer as well as a
structure which exhibits asymmetric light transmission. For the demultiplexer, we
improve upon the performance of an already-optimized design by optimizing over
all inclusions, whereas the optical diode (or, more precisely, the asymmetric light
transmitter) was obtained by optimizing over the radii of a photonic crystal with
a band gap at the frequency of interest. Choosing a current filament vs. a plane
wave as the incident field resulted in different optimal diode structures. These had
transmission ratios of 46 dB and 58 dB and were very narrow-banded, as opposed to
the demultiplexer, where no obvious narrowing was observed. As with previous results,
the optimized structures were irregular.

(5) B. Blankrot and C. Heitzinger, “On the robust optimization of photonic structures
for asymmetric light transmission,” Submitted for publication, Jul. 2020.

Here we take the step from nominal or traditional optimization of photonic structures
to their robust optimization, which is important for real world applications, with our
focus being on structures that exhibit asymmetric light transmission. We begin by
examining a nominally optimized structure and identify a seemingly harmless and
visually imperceptible perturbation which leads to a complete loss of its functionality.
In fact, the perturbed device allowed more light in the reverse direction than in the
forward direction. Next, we select and implement two strategies for robust optimization
of circular inclusion radii. The first strategy, Robust Simulated Annealing [45], is a
nested approach while the second strategy, Largest Empty Hypercube [48], reduces
the number of function evaluations by moving away from already-explored regions
with high objective function values. For the latter, we utilize k-d trees with a nearest
neighbor search in order to find empty regions more quickly.

We review their observed strengths and drawbacks while discussing scenarios where
each method would shine best. Of special importance is the pitfall of underestimating
the worst case perturbation of a given point, as it can negatively impact convergence.
Both methods yield structures with asymmetric light transmission even in the presence
of worst-case implementation errors. However, the robustness of our structures comes
with a penalty on their nominal behavior, i.e. absent any error. Interestingly, the robust
structures were also more resilient to input wavelength error than the traditionally
optimized structures in our earlier work.

The remainder of this chapter consists of an introduction to the electromagnetic theory
and optimization tools used later in the manuscript. The following chapters each contain
one of the aforementioned papers, with minor changes in formatting and notation. The
thesis also contains a technical appendix with elaborated derivations that were omitted
from the papers.

1.4 Electromagnetic theory

Here we give a brief reminder of electromagnetic theory and state our working assumptions
to lay the foundation for our later mathematical developments. As is well known, classical
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1 Introduction

electromagnetic fields in and around media can be described using Maxwell’s equations,
which in differential form state that

∇× E = − ∂B
∂t

, (1.1a)

∇×H = J +
∂D
∂t

, (1.1b)

∇ · D = ρ, (1.1c)

∇ · B = 0, (1.1d)

where E , H, D, and B are the electric field, the magnetic field, the electric flux density,
and the magnetic flux density. ρ and J denote external volume charge and electric current
densities.

In this work, we assume piecewise homogeneous isotropic linear materials, as well as
exp(−iωt) harmonic time dependence, thereby reducing (1.1) to

∇×E = iωµH, (1.2a)

∇×H = −iωεE, (1.2b)

∇ · εE = 0, (1.2c)

∇ · µH = 0, (1.2d)

in each source-free region, where E, H are the time-harmonic analogues of E , H, and ε, µ
are the permittivity and permeability of the material. By manipulating these equations and
defining the wavenumber k = ω

√
µε, we obtain the vector Helmholtz equation

(∇2 + k2)E = 0. (1.3)

For a general smooth closed boundary ∂Ω, such as the one between an inclusion and its
host medium with differing electromagnetic properties, we denote the unit vector normal
to the boundary pointing from medium 1 to medium 2 by n̂ and have the boundary
conditions [54] given by

n̂× (E(2) −E(1))|∂Ω = 0, (1.4a)

n̂× (H(2) −H(1))|∂Ω = Js, (1.4b)

n̂ · (ε(2)E(2) − ε(1)E(1))|∂Ω = ρs, (1.4c)

n̂ · (µ(2)H(2) − µ(1)H(1))|∂Ω = 0. (1.4d)

In this work, we focus on perfect dielectrics and thus have no surface charges ρs nor surface
currents Js. The time-averaged power flow through a surface S can be calculated with the
Poynting vector, yielding

P =
1

2

∫
S

Re(E ×H∗) · ds. (1.5)

8



1.5 Optimization methods

This equation will be useful in Chapters 5 and 6, where we optimized a function of the
power flow through several surfaces in order to automatically design a diplexer and an
asymmetric light transmitter.

In two dimensions, any electromagnetic field can be decomposed into a linear combination
of transverse magnetic (TM) and transverse electric (TE) fields with respect to the z axis.
This allows us to express the electromagnetic fields in terms of two scalar fields—Ez in
the TM case and Hz for TE—thereby replacing (1.3) with two scalar Helmholtz equations
that can be solved separately and similarly. For this reason, we focus on solutions to the
TM problem in this dissertation, while noting that all of the methods are readily carried
over to the TE case with small modifications. Assuming a TM electric field of the form
E = (0, 0, Ez), the magnetic field is then given by

H =
1

iωµ

( ∂Ez
∂y

,− ∂Ez
∂x

, 0
)
. (1.6)

While Maxwell’s equations may be solved directly for the electromagnetic fields in a domain
using various numerical methods (e.g. the Finite Element Method or Finite-Difference Time
Domain [55]), integral equation techniques solve for the sources that create those fields.
The latter approach has two major advantages: it allows us to handle unbounded domains
with ease, and reduces the dimensionality of the problem as we are discretizing the surfaces
of a given geometry instead of the volumes. Thus the two-dimensional geometries in this
work can be discretized using only line integrals. For example, given a single scatterer with
boundary ∂Ω, we may assume unknown potential densities σ and µ (not to be confused
with the permeability µ above) on ∂Ω such that the electric field anywhere is given by

Ez(r) =

∫
∂Ω
Gk(r, r′)σ(r′) + n̂′ · ∇′Gk(r, r′)µ(r′) dr′, (1.7)

where Gk(r, r′) = i
4H

(1)
0 (k|r− r′|) is the corresponding Green’s function in a domain with

wavenumber k. The densities σ, µ are found by imposing the tangential boundary conditions
of (1.4) on Ez and H while taking the appropriate limit [56].

We refer the reader to [54, 56] for in-depth treatments of electromagnetic theory with an
emphasis on integral equation methods.

1.5 Optimization methods

We assume the reader has some familiarity with optimization and provide a rudimentary
overview of two optimization methods employed in our work. For an overview of optimization
methods for photonic structures, see [34].

1.5.1 BFGS

The Broyden–Fletcher–Goldfarb–Shanno (BFGS [57]) algorithm is a quasi-Newton method
used for solving unconstrained nonlinear optimization problems. Quasi-Newton methods
approximate the inverse Hessian matrix using the gradient, thereby incorporating some
second-order information without explicit Hessian calculations. Since BFGS is a local
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optimization method, it will not necessarily find the global optimum for non-convex problems,
but only the local optimum closest to the initial point. Fig. 1.3(a) shows two BFGS runs
on the McCormick function, which is given by

f(x, y) = sin(x+ y) + (x− y)2 − 1.5x+ 2.5y + 1. (1.8)

While both runs terminate at the nearest local minimum within 6 iterations, only one of
them (shown in red) found the global minimum.

One way of extending this algorithm to constrained optimization problems is by incorpo-
rating interior-point or barrier methods, which add a penalty to the objective function such
that the unconstrained algorithm cannot violate the constraints. Assuming the optimization
problem has the form

min
x

f(x)

subject to c(x) ≤ 0,
(1.9)

we instead minimize the unconstrained objective f(x) +ρb(c(x)), where the barrier function
b is smooth, non-negative, and approaches infinity at the constraint boundary. Our choice
of barrier function is the log barrier

b(c(x)) =

{
−
∑

j log(−cj(x)), for c(x) ≤ 0

∞, else
(1.10)

which is combined with a parameter ρ that shrinks every several iterations to reduce the
impact of the barrier as the algorithm converges. This barrier method is used to impose
bounds on the cylinder radii in Chapters 2 to 5, and is generally dependable. One downside
of this method is that an optimum on or near the boundary can only be found once ρ is at
or near zero.

Another augmentation of BFGS that supports simple bound constraints of the form
xmin ≤ x ≤ xmax is the L-BFGS-B method [58] which utilizes a gradient projection method.
We discovered that this method converged faster than the barrier methods on our examples,
as eliminating the inner loop over ρ reduced the number of function evaluations. For this
reason, L-BFGS-B was adopted for the gradient-based optimization over cylinder radii in
Chapter 6.

1.5.2 Simulated annealing

Simulated annealing [59] is a stochastic global optimization method loosely inspired by the
annealing process in metallurgy. In each iteration of this method, a candidate point x is
randomly selected and the objective is computed at that point. A temperature parameter
governs the probability that the method will accept a point with a worse objective value,
whereas improving points are always accepted. One common choice for the acceptance
probability of a new point is the Metropolis criterion

P (x→ x′) = min

(
1, exp

(
−f(x′)− f(x)

Ti

))
, (1.11)
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1.6 Further research

where Ti is the current temperature. Ti starts with a high value such that vast areas of the
domain can be explored, but as the temperature drops the algorithm becomes increasingly
unlikely to accept a worse value and thus resembles a gradient-free local search. Since
simulated annealing is based on a heuristic instead of a precise formula, it is frequently tuned
and adapted with various temperature cooling schedules, candidate point distributions, and
occasionally separate temperatures for each xi ∈ x. A variant of simulated annealing was
used for the outer loop of a robust optimization approach in Chapter 6.

Two example runs of simulated annealing on the McCormick function (1.8) are depicted
in Fig. 1.3(b), where they take different paths due to the stochastic nature of the algorithm.
While both paths eventually arrive at the neighborhood of the global minimum after 1000
iterations, several hundred more iterations pass before the optimum is consistently achieved
with the precision of the BFGS method.
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Fig. 1.3: The McCormick function optimized using (a) BFGS and (b) simulated annealing.

1.6 Further research

There are several research avenues that would be interesting to explore in continuation
of this work. First and foremost would be an extension to three-dimensional structures.
The main impediment to such an extension would be that the multipole expansion spheres
surrounding the particles cannot intersect, as explained in Section 2.3.1; nonetheless, such
an extension would enable analysis and optimization of real-world metalenses. For the
robust-optimization framework, it would be interesting to support radius uncertainty for
rotation angle optimization, in order to study the effects of over- and under-etching on these
structures. Finally, different robust optimization metrics, such as probabilistic ones, would
be worth exploring instead of the worst case considered in Chapter 6.
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Abstract: Dielectric structures composed of many inclusions that ma-
nipulate light in ways the bulk materials cannot are commonly seen in
the field of metamaterials. In these structures, each inclusion depends
on a set of parameters such as size and orientation, which are difficult to
ascertain. We propose and implement an optimization-based approach for
designing such metamaterials in two dimensions by using a fast bound-
ary element method and a multiple-scattering solver for a given set of
parameters. This approach provides the backbone of an automated pro-
cess for the design and analysis of metamaterials that does not rely on
analytical approximations. We demonstrate the validity of our approach
with simulations that converge to optimal parameter values and result in
substantially better performance.

2.1 Introduction

In recent years, interest in dielectric metamaterials has grown considerably, as they have
lower power dissipation [1] than their traditional counterparts and are easily fabricated [2, 3].
One prominent example of dielectric nanostructures is dielectric photonic crystals, which
have been intensively investigated over the past thirty years [4, 5]. Photonic crystals are
composed of a one- to three-dimensional periodic array of nanostructures, in which a small
number of cells may be altered or defective. This structure is designed to allow, alter, or
prevent the propagation of light for a selected range of wavelengths. These nanostructures
can be e.g. round holes [6] or contain a complex network of nano-engineered rods [7, 8].
Thanks to their ability to control light flow, photonic crystals have promising applications
in the developing field of optical computing. Replacing electronic components in integrated
circuits with their photonic crystal counterparts will reduce the size and latencies of computer
processors, while substantially increasing power efficiency [9, 10].

Dielectric metalenses are another class of recently popular all-dielectric metamaterials [11].
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These metalenses allow manipulation of light for many practical applications, including
chirality imaging [12], imaging with reduced aberrations [13], and optical fiber coupling [14].
Metalenses are typically comprised of numerous sub-wavelength building blocks arranged on
a substrate. The properties of these building blocks dictate which effect the overall metalens
has on light passing through it. There are many degrees of freedom in designing metalenses;
the size, shape, rotation, and material of each individual building block can be adjusted
arbitrarily, yielding a large variety of possible metalenses to meet different objectives [15].
Nevertheless, this freedom creates a large search space in choosing these parameters, which
may number in the thousands.

Optimization methods have been employed in the past for designing optical structures. For
example, dielectric antireflective layers with piecewise constant permittivity were designed
with a gradient descent algorithm [16]. Optimization has been combined with the Finite-
Difference Time-Domain (FDTD) method for optimizing mode confinement in photonic
crystal cavities [17], however from a computational perspective, this approach may suffer
from the need to re-solve the entire problem when changes are made to the parameters.
Optimization of photonic crystal structures with circular inclusions was performed in [18] by
means of transformation optics. Location optimization of circular dielectric rods in the radio-
frequency regime was performed in [19, 20] using a finite differences discretization and both
gradient-based and gradient-free algorithms. More recently, location optimization based
on FDTD was used to design a photonic crystal exhibiting asymmetric light transmission
in [21]. Combinatorial optimization, where scatterers in a photonic crystal structure are
either present or absent but their shapes and locations remain constant, has been explored
in [22] where a multipole expansion was used for round scatterers, and in [23] where the
three-dimensional scatterers were discretized by surface elements. While the metaheuristic
optimization methods used in those papers are able to escape local minima, they do so at
the expense of substantially more function evaluations. Shape and topology optimization
for optical structures is fairly established, both in the periodic [24, 25] and non-periodic
cases [26]. Although topology optimization usually utilizes finite difference or finite element
discretization, optimization of electromagnetic cloaking has been achieved using boundary
elements as well [27].

We propose a specialized optimization-based method for analyzing and designing metama-
terials in an automated fashion. The class of problems we consider consists of metamaterials
with a large number of inclusions, which may be circular, but the number of non-circular
prototype inclusions is small relative to the number of inclusions. We say that differently
oriented inclusions of the same shape and material have the same prototype. This approach
utilizes a multipole expansion and a fast multiple-scattering method [28, 29] to solve the
underlying electromagnetic problem, and a gradient-based algorithm for the optimization.
Our approach is most appropriate for optimizing radii in case of circular inclusions, and for
optimizing rotation angles in case of general inclusions, which corresponds to the design
of many photonic crystals and metamaterials. In the context of large-scale, aperiodic
metamaterials in the class above, this type of efficient automation of the design process for
specified optical properties has not been previously proposed.

The remainder of the paper is organized as follows. Section 2.2 gives the problem
description and method overview. The mathematical formulation used for calculating the
fields scattered by a collection of inclusions is presented in detail in Section 2.3. Section 2.4
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presents our optimization framework for the automated design of metamaterials, which is
given as pseudocode in Algorithm 2.1. Numerical results of both rotation angle and radius
optimization are shown in Section 2.5, as well as a time complexity analysis of our approach.
The results of this work are summarized in Section 2.6.

2.2 Problem and method description

The problems solved in this work consist of a layout of smooth inclusions which may be
circular, and an objective function that models a desired electric field distribution at a set
of points of interest. Our goal is to simultaneously optimize the radius of each circular
inclusion and the rotation angle of each non-circular one to fit some desired behavior.

In this work, problems are restricted to time-harmonic incident fields scattering off a
collection of two-dimensional inclusions in free space, where the variation exp(−iωt) is
assumed and suppressed. We restrict our treatment to TM waves with respect to z, but
the TE formulation is readily available with small modifications to the integral formulation
and boundary conditions. We assume M inclusion surfaces Ωm with smooth boundaries
∂Ωm, in which the wavenumber km = ω

√
µ0εm is real and constant, and Ω0 denotes the

open free-space domain. Hence the ẑ component of the electric field is the solution of the
Helmholtz equation

∇2u+ k2
mu = 0, u =

{
uinc + us in Ω0,

us in Ωm6=0,
(2.1)

where uinc is the given incident field, us is the scattered field, and the jump in both u and
the normal derivative ∂u/∂n is zero across all boundaries, corresponding to continuity of the
tangential electric field and the normal magnetic flux density. In addition, the scattered field
must satisfy the Sommerfeld radiation condition in Ω0, but this is automatically satisfied
due to the integral equation method used here. We assume an objective function that
depends on the electric field intensity at multiple points, of the form

fobj :=

I∑
i=1

|u(ri)|2, (2.2)

where other functions of the intensity can be optimized via the chain rule. Fig. 2.1 contains
a representative example of the optimization problems solved here, where the incident field
intensity is to be maximized at a collection of points ri, by finding optimal rotation angles
ϕj for the non-circular inclusions and optimal radii Rl for the circular ones.

We give an overview of our method. First, we use a boundary integral equation [30]
to discretize each prototype inclusion once and transform it to a compressed cylindrical
harmonics representation. It is straightforward to rotate and move this representation.
We then apply a multiple-scattering approach [28, 31] on these representations in order to
describe the electromagnetic interactions between the inclusions. Once we solve the arising
multiple-scattering problem with the Fast Multipole Method (FMM) [32], we can easily
compute the electromagnetic field at any point. This combination of boundary integral
equation and multiple-scattering methods was applied to thin strips [33], three-dimensional
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Fig. 2.1: Example optimization problem layout, where we wish to focus the incident plane
wave uinc at ri (black stars) by optimizing over the rotation angles ϕj and radii
Rl. Here, two of the inclusions have the same prototype as they have the same
shape and wavenumber k1.

scattering [34, 35], and two-dimensional multi-layered structures [29]. The computational
complexity of this step is sufficiently low for employing optimization methods that require
many solutions, as the ability to quickly compute the field at any collection of points makes
it simple to define and compute an objective function for minimizing and/or maximizing
the field intensity at multiple points. The integral equation approach naturally begets
gradient-based optimization, which converges to a locally optimal set of parameters and
yields an exact result in each step. We speed up the gradient-based optimization with the
adjoint-state method [36] (see also [37]) which significantly decreases the optimization run
time.

2.3 Scattering formulation

In this section, we describe the mathematical background used to calculate the field scattered
by a collection of inclusions at any point. First, we handle the case of a single inclusion,
then we provide the formulation used for multiple scattering, and lastly we apply FMM to
accelerate the solution process. The mathematical development of the single inclusion and
multiple-scattering formulations follow that of [29], and is repeated here for ease of reading.

2.3.1 Single inclusion formulation

First we apply Nyström discretization to a single prototype inclusion and transform its
representation from that of boundary potential densities to cylindrical harmonics. There are
three motivations for this transformation. For smooth inclusions, the number of discretization
nodes is dramatically larger than the number of cylindrical harmonics, which allows us
to precompute the transformation for each inclusion shape once and only deal with the
cylindrical harmonics representation without increasing the error in the electric field. This
reduces the computational cost of the solution to a multiple-scattering problem by several
orders of magnitude, and is particularly helpful when multiple iterations of a scattering
problem are required for optimization. The second motivation for this representation is that
it enables the use of the multiple-scattering translation that we will apply to accelerate
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2.3 Scattering formulation

the solution process. Thirdly, cylindrical harmonics are easily rotated and thus only one
transformation needs to be calculated for inclusions that are identical up to rotation.
Nonetheless, it is difficult to ascertain a priori what the optimal number of cylindrical
harmonics is for a given inclusion in a multiple-scattering problem, as this number depends
not only on the type and frequency of the incident wave but also on the shape of the
inclusion and the distance between it and its closest neighboring inclusion. In the past few
years some convergence bounds have been developed [38], but in our examples these proved
to be highly shape-dependent and not as accurate in the near field, and therefore we relied
on a computational approach to determine the optimal number.

One drawback of this transformation is its inability to handle touching or intersecting
scattering disks, which are fictitious circles strictly enclosing the inclusions, even if the
inclusions themselves are adequately separated. The worst manifestation of this issue would
occur with thin and long inclusions whose scattering disks cover a disproportionately large
area. However, one can partially overcome this restriction by grouping multiple inclusions
in close proximity into one disk and rotating them in unison.

We utilize a layer potentials formulation [39], wherein a single-layer potential density σ
and a double-layer potential density µ are assumed to exist on ∂Ω. For notational simplicity,
in this section we assume that the inclusion surface Ω is centered at the origin. Note that
although we focus only on smooth shapes, if ∂Ω is not smooth, the method is still applicable
with an appropriate discretization approach [40]. These densities have unknown complex
amplitudes and give rise to the potential representation

us =

{
Sk1σ +Dk1µ in Ω,

Sk0σ +Dk0µ otherwise
(2.3)

for the ẑ component of the scattered electric field, where the single- and double-layer
potential operators for wavenumber k are defined by

Skσ(r) :=

∫
∂Ω
Gk(r, r′)σ(r′) dr′,

Dkµ(r) :=

∫
∂Ω

∂Gk

∂nr′
(r, r′)µ(r′) dr′

(2.4)

and Gk(r, r′) = i
4H

(1)
0 (k|r− r′|) is the two-dimensional Green’s function for the Helmholtz

equation in a homogeneous material. For a given incident field uinc, the constant-permeability
TMz boundary conditions are applied to the potential formulation. After accounting for
the potential density jump across the boundary [41] we have the system

Sk0σ − Sk1σ +Dk0µ−Dk1µ+ µ = −uinc,
∂

∂n

[ (
Sk0 − Sk1

)
σ +

(
Dk0 −Dk1

)
µ
]
− σ = − ∂u

inc

∂n

(2.5)

of integral equations which holds for all points r ∈ ∂Ω. This system cannot be solved
by directly evaluating the operators on the boundary on account of the singularity in Gk

and the hypersingularity in its second-order derivative. Hence we split each integrand
into two terms, integrating the first term with the Kussmaul-Martensen quadrature rule
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and the other with trapezoidal or Gauss-Legendre quadrature. Many other choices for
the quadrature rule exist and can be used interchangeably, such as the more sophisticated
QBX [42]. Denote the values of the potential densities σ, µ on 2N discretization nodes by
σ, µ respectively. We obtain the system of equations

Z

(
σ
µ

)
= −

(
uinc

∂uinc

∂n

)
, (2.6)

in which Z is a 4N × 4N matrix which includes all potential operators1.
In order to expand the potentials in terms of cylindrical harmonics, the system in (2.6)

is solved for 2P + 1 incoming waves sampled on the discretization points of the shape, or
uinc = Jp(k0|r|)eip∠r for p = −P, . . . , P . This yields the single- and double-layer potential
density vectors σp, µp for the p-th incident wave. For this solution method to maintain
reasonable time complexity, this system should be factorized (e.g. LU) for successive direct
solutions, thus requiring O(N3 + (2P + 1)N2) computations in total.

Let r be a point that lies strictly outside the inclusion such that |r| > |r′| for any r′ on the
boundary. We apply Graf’s addition theorem for Hankel functions to the integral operator
formula for the scattered field given by (2.3) and obtain the cylindrical harmonics expansion

us(r) =

P∑
l=−P

sl,pH
(1)
l (k0|r|)eil∠r,

sl,p :=
i

4

∫
∂Ω
Jl(k0|r′|)e−il∠r

′
σp(r

′) + n̂r′ · ∇
[
Jl(k0|r′|)e−il∠r

′
]
µp(r

′) dr′ (2.7)

of the potential operators. Notably, this expansion only holds strictly outside the inclusion,
and thus we assume a fictitious scattering disk D which strictly encloses the inclusion.
Inside this disk, the direct integral equation representation is assumed, while outside of it
the expansion in (2.7) holds. In this work the diameter of the scattering disks is chosen to
be 10% larger than the inclusion diameter. While the diameter of the scattering disk can
be reduced if necessary, this typically leads to a dramatic increase in P . Approximating
the integral above with the same boundary discretization yields a formula of the form
sl,p = (Aσp + Bµp)l, which in turn yields the entire scattering matrix X(m) = AΣ + BM
for the m-th inclusion, where the p-th column of Σ is σp and similarly for M and µp.

As mentioned earlier, the process above only needs to be carried out once per inclusion,
up to rotation. The representation of an inclusion rotated by an angle ϕm is readily available
by multiplying the (l, p)-th element of X(m) by a factor of e−iϕm(l−p), in other words, by
replacing the scattering matrix with ΦX(m)Φ∗ for the diagonal matrix Φp,p = e−ipϕm .

Now let Ωm be centered at o(m) with a local coordinate system r(m) = r− o(m). In order
to use the scattering matrix to solve scattering of an incident field uinc from the single m-th
inclusion, we first expand uinc as

uinc =

P∑
p=−P

α(m)
p Jp(k0|r(m)|)eip∠r(m)

. (2.8)

1We refer to Appendix A.1 for a detailed derivation of Z (not part of the original publication).
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Due to the Jacobi-Anger expansion in the particular case of plane-wave incidence eik·r

for some k = (k cos θi, k sin θi), we have αp = eip(π/2−θi) in the local coordinates up to
multiplication by a phase constant. The electric field scattered by the inclusion is given by
the outgoing expansion

us =
P∑

p=−P
β(m)
p H(1)

p (k0|r(m)|)eip∠r(m)
, (2.9)

that is, a linear combination of the scattering matrix columns, where in this case β
(m)
p =

(X(m)α(m))p. Note that circular inclusions can be analytically represented using a diagonal
scattering matrix by utilizing orthogonality of the basis functions on a circle. For such an
inclusion with radius R, the scattering matrix components are readily given by

βp = −αp
Jp(k0R)J ′p(k1R)− J ′p(k0R)Jp(k1R)

H
(1)
p (k0R)J ′p(k1R)−H(1)′

p (k0R)Jp(k1R)
, (2.10)

where Z ′p(kR) = k
(
Zp−1(kR)− (p/kR)Zp(kR)

)
for Zp = Jp, H

(1)
p .

Two error mechanisms affect the accuracy of the solution beyond the adjustable FMM
truncation and quadrature error discussed later in Section 2.3.3. First we have the dis-
cretization error due to the finite number of nodes 2N on the inclusion boundary, and
the second stemming from the transformation to a cylindrical harmonics formulation. We
denote by ∆u the normalized RMS errors for these error mechanisms. The discretization
error is computed as follows: a fictitious line source is assumed at some point inside the
inclusion along with an incident plane wave outside of it. The potential densities σ, µ on
the boundaries ∂Ω attained from solving the potential density system of (2.6) induce fields
outside the inclusion that are equivalent to those of the line source, up to the error that
is measured on the scattering disk D. The cylindrical harmonics transformation error is
measured by comparing the field induced by the potential densities to that of the cylindrical
harmonics on points distanced 2D from the inclusion center. Fig. 2.2 shows an example
of the relation between N and P and their respective errors for two inclusion shapes, a
squircle with R = 0.35λ0 and a rounded star with the parametrization

r(θ) =
[
R+ a cos(5θ)

]
(cos θ, sin θ) , (2.11)

with R = 0.3λ0, a = 0.1λ0. For both inclusions the inner wavenumber is k1 = 1.5k0. Note
that not only is N substantially larger than P for all values of ∆u, but the ratio between
them continues to grow as the desired errors diminish.

2.3.2 Multiple-scattering formulation

Here we apply the principles used in the preceding section to a multiple-scattering setting.
Previously, the relation between incoming and outgoing coefficients was given by the
scattering matrix, however, the incident field of a single inclusion in a multiple-scattering
scenario is a combination of the incident field and the fields reflected off all other inclusions.
A translation matrix is used to transform the reflected field from the local coordinates of
one inclusion to the local coordinates of another [28].

23



2 Efficient Computational Design and Optimization

D

k0

k1

(a)
D

k0

k1

(b)

10 8 10 6 10 4 10 2

u

101

102

103

(c)
Nmin (star)
Nmin (squircle)
Pmin (star)
Pmin (squircle)

Fig. 2.2: Minimum number of discretization nodes and cylindrical harmonics for two in-
clusion shapes. (a) Rounded star and its scattering disk D. (b) Squircle and its
scattering disk D. (c) Minimum discretization node parameter N and cylindrical
harmonics parameter P for given discretization and cylindrical transformation
error, respectively, for these two inclusions.

Let r(m) and r(m′) denote a point in the local coordinates of the m-th and m′-th inclusions,
respectively, and let r(m′,m) be the coordinates of the m′-th inclusion with respect to the
center of the m-th inclusion. Using Graf’s addition formula and truncating the higher-order
elements, we obtain the relation between the two local expansions

P∑
p=−P

β(m)
p H(1)

p (k0|r(m)|)eip∠r(m)
=

P∑
µ=−P

Jµ(k0|r(m′)|)eiµ∠r(m
′)

P∑
p=−P

β(m)
p T (m′,m)

µ,p , (2.12)

where T(m′,m) with the elements

T (m′,m)
µ,p = ei(p−µ)∠r(m

′,m)
H

(1)
p−µ(k0|r(m′,m)|) (2.13)

is the translation matrix which translates the outgoing coefficients of one inclusion to the
incoming coefficients of another. Summing over the contributions of all the inclusions, we
obtain the complete incoming coefficients of the m′-th particle

α̃(m′) = α(m′) +
∑
m6=m′

T(m′,m)β(m). (2.14)
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Finally, we note that β(m′) = X(m′)α̃(m′) holds for the complete incoming coefficients, and
substitute this relation into (2.14) to obtain(

X(m′)
)−1

β(m′) −
∑
m 6=m′

T(m′,m)β(m) = α(m′), (2.15)

thus yielding a system of (2P + 1)M equations, where M is the number of inclusions. A
preconditioned scattering system is obtained when multiplying both sides by the block
scattering matrix, which we denote in concatenated form by

(I−XT)β = Xα. (2.16)

Once the multiple-scattering system in (2.16) is solved, the scattered field at any point
outside the scattering disks is readily calculated by summing (2.9) over all inclusions. Strictly
inside the inclusions, the field is given by the discretized integral (2.3), where the densities
are

σ(m) = Σ
(
X(m)

)−1
β(m) (2.17a)

µ(m) = M
(
X(m)

)−1
β(m). (2.17b)

These are weighted sums of those σp, µp obtained from solving (2.6) for the different
incoming waves, as the expansion in (2.9) of the inclusion is not valid inside the scattering
disk. Between the m-th inclusion and its disk, the scattered field us is given by summing
(2.9) over all m′ 6= m and then adding the direct integral operator for m.

2.3.3 FMM acceleration of the translation

As the computational cost of directly solving (2.16) becomes prohibitively high for a large
number of inclusions, this system should be solved iteratively. While applying the block-
diagonal scattering matrix X in each iteration requires only O(M) operations, the translation
matrix is almost fully populated and thus requires O(M2) operations. Therefore, we choose
to apply the block translation matrix T using FMM [32], yielding a lower complexity
that will be analyzed in the next section. In this section, we shall succinctly describe the
FMM process for this problem. Assume a collection of many inclusions, divided into G
non-empty a× a boxes. The FMM process converts the translation matrix to a sequence of
operators. These operators aggregate the translation matrices of multiple inclusions in one
box, translate them to a different box and disaggregate them to the inclusions in said box.
Note that this process assumes the boxes have some minimal distance between them. For
boxes which are closer than this minimal distance, or are the same box, the appropriate
blocks of the translation matrix T are directly applied via a sparse near-interaction matrix.
We note that for accurate handling of arbitrarily sized boxes, this approach can be modified
to follow the wideband FMM [43]. While the FMM solution of the preconditioned system
(2.16) typically converges in reasonable time, this can be accelerated further by using an
FMM-based preconditioner [44]. It is also worth remarking that the FMM-accelerated
multiple-scattering formulation converges even in the presence of resonant modes [45].
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Let the m-, m′-th inclusions which are centered at o(m), o(m′) be placed in boxes centered
at c, c′ respectively. Provided c, c′ are distanced by at least

√
2a, Graf’s addition and

Bessel’s integral theorems are applied to the translation matrix in (2.13), which results in

T (m′,m)
µ,p =

1

2π

∫ 2π

0
eik·(o

(m′)−c′)F∞(θ, c′ − c)e−ik·(o
(m)−c)ei(µ−p)(π/2−θ) dθ, (2.18)

where k = (k cos θ, k sin θ), and the truncated FMM translation function which transmits
plane waves from c to c′ is defined as

FP̃ (θ,x) :=

P̃∑
ξ=−P̃

H
(1)
ξ (k|x|)eiξ(∠x+π/2−θ). (2.19)

Although this translation function must be truncated for practical computations, the
series does not converge for small values of P̃ and oscillates for large values, making the
optimal choice an extensively-studied, non-trivial problem. Several analytical and empirical
formulas have been proposed for this truncation, of which the excess bandwidth formula [46]
is used here. Assuming this series truncation, the integral expansion of the Bessel function
has finite bandwidth such that a Q ∝ P̃ -point quadrature of [0, 2π] is sufficient. Hence if
we define kq := (k cos θq, k sin θq), the translation matrix is approximated as

T (m′,m)
µ,n ≈ 1

Q

Q∑
q=1

eikq ·(o(m′)−c′)eiµ(π/2−θq)︸ ︷︷ ︸
disaggregation

FP̃ (θq, c
′ − c) e−ikq ·(o(m)−c)e−in(π/2−θq)︸ ︷︷ ︸

aggregation

. (2.20)

We now construct the FMM matrices used for matrix-vector product acceleration. Denote
by Mg the number of inclusions in the g-th box, centered at cg. We construct a 1 ×Mg

block aggregation matrix, containing a block for every inclusion, with the m-th block A(m)

given by

A(m)
q,n := e−ikq ·(o(m)−cg)−in(π/2−θq), q = 1, . . . , Q, n = −P, . . . , P. (2.21)

Since FMM is applied to every box with respect to every other box, we construct the
disaggregation matrix by applying the conjugate transpose to the aggregation matrix.

Finally, for each pair (g′, g) of sufficiently distant boxes, a diagonal FMM translation
matrix F(g′,g) is constructed by

F (g′,g)
q,q :=

1

Q
FP̃ (θq, cg′ − cg), q = 1, . . . , Q. (2.22)

2.3.4 FMM complexity

Complexity analyses for the application of the FMM to various problems are well es-
tablished, generally leading to a single-level result of O(N1.5

dof) and multi-level complexity
O(Ndof logNdof) for Ndof degrees of freedom. However, the relationship between the optimal
number of boxes and the wavenumber is different in the multiple-scattering approach, and
therefore we find it instructive to briefly analyze the complexity of our FMM application.
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Since each aggregation matrix is of dimension Q ×Mg(2P + 1), performing the aggre-
gation of all G boxes has time complexity O

(
MQ (2P + 1)

)
, and thus so does the total

disaggregation. The time complexity of performing all box-to-box FMM translations is
O(QG2), while the number of nonzero elements in the near-interaction matrix is

(2P + 1)2
[∑

g

Mg(Mg − 1) +
∑
g

Mg

∑
(g′,g) near

Mg′
]
. (2.23)

Therefore, applying the near-interaction matrix is expected to require (2P + 1)2
∑

g[M
2
g +

Mg] operations. Including the computational cost of applying the scattering and identity
matrices, applying the operator (I−XT) using FMM has time complexity

O
(
MQ(2P + 1) +QG2 +M(2P + 1)2 + (2P + 1)2

∑
g

[M2
g +Mg]

)
. (2.24)

Since the quadrature Q is proportional to the diameter of each box, and in two dimensions
the area of a box is inversely proportional to the number of boxes, we have Q ∝ G−0.5. If we
assume an approximately constant distribution of inclusions in boxes such that Mg ≈M/G,
the FMM time complexity expression is simplified to

O
(
G1.5 + (2P + 1)2M2G−1

)
. (2.25)

We note that while the usual FMM choice G ∝
√
M yields a complexity of O(M1.5),

selecting G = bM0.8 for a constant b reduces the complexity to O(M1.2) per FMM solution
with regard to the number of inclusions. In practice, even a choice of G ∝ M may be
optimal due to the quadratic dependence of the second complexity term on the wavelength.
An analogous analysis of a Multi-Level Fast Multipole Algorithm approach will lead to
asymptotic complexity of O(M) [29], although this is only beneficial in practice for very
large values of M .

2.4 Optimization for multiple-scattering features

We give a description of a general optimization problem that is applicable to various
metamaterials, where our aim is to provide a template for applying our framework to
different structures. Given an objective function as in (2.2), we develop its gradient, and
show how it can be computed in order to find optimal parameters for the overall structure.
Our I points of interest ri are assumed to lie outside all scattering disks, as points inside
them complicate and slow down the optimization procedure. Note that whether we are
minimizing or maximizing the objective function is immaterial, as maximization problems
can be solved by minimizing the negated objective function and again negating the achieved
minimum value. Simultaneously minimizing intensity at several points while maximizing it
at others is achieved by appropriately weighting the objective function. For convenience,
we rewrite the field values in the objective function in terms of β and obtain the column
vector u = H>β + uinc and the simplified form fobj = ‖u‖2, where H relates the coefficient
solution to the objective function.
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Let w denote a vector of J inclusion parameters, where we assume each parameter affects
the shape of an inclusion, but not the location of its center, and therefore H remains
constant. In order to calculate the gradient ∇fobj with respect to w, we shall use the
adjoint-state method [36, 37], as its complexity is less dependent on the number of design
variables than a direct approach. Our optimization problem is given by

min
w

fobj(β) = ‖H>β + uinc‖2

s.t. c(β,w) =
[
I−X(w)T

]
β −X(w)α = 0,

(2.26)

where the constraint ensures that β is a solution to the multiple-scattering problem. To
apply the adjoint-state method, we utilize a complex vector λ to define the Lagrangian

Λ = fobj + λ>c + λ>c, (2.27)

equate the complete derivatives of fobj and Λ with respect to w ∈ w, and have after some
algebraic manipulation that

dfobj

dw
= 2<

([ ∂fobj

∂β
+ λ> (I−XT)

] ∂β
∂w

)
− 2<

(
λ>

∂X

∂w
X−1β

)
. (2.28)

The crux of the adjoint-state method resides in setting the first summand to zero by properly
solving for λ. This will allow us to calculate the derivative without explicitly computing
∂β/∂w which would add significant complexity. Substituting fobj yields the adjoint system(

I−T>X>
)
λ = −Hu, (2.29)

which we solve using a modified FMM procedure with the same complexity, as detailed in
the Appendix. Once the system is solved, each element of the gradient can be calculated in
O((2P + 1)2) time, yielding O(M(2P + 1)2) +O(FMM) complexity in total if each inclusion
is affected by a single parameter. A description of the complete process of automatically
designing a structure via our approach is summarized in Algorithm 2.1. The specifics depend
on the optimization method used, where additional evaluations of fobj might be necessary
for the optimization line search. We note that X−1 was computed in a previous step and
its use here is not problematic, and in any event X−1β can be replaced with Tβ +α.

In this work, we optimize inclusion parameters for which ∇wX is analytic, such as
the rotation angle of an arbitrary inclusion and the radius of a circular inclusion, which
significantly simplifies the computation of the gradient. Attempting to optimize parameters
that do change the structure of X is more involved, and may require numerical differentiation.

2.5 Numerical results

In this section, we demonstrate our approach using three examples. First, we study the run
time of the multiple-scattering approach for increasingly numerous inclusions. Additionally,
we apply the optimization process in its entirety to two practical examples, resulting in
improved designs. In what follows, all values of 2N , the number of discretization nodes,
and P , the cylindrical harmonics parameter, are chosen to be the minimal values for which
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Algorithm 2.1 Automated design of dielectric metamaterials

1: w← (w1, . . . , wJ) // optimization starting point

// Precomputation phase

2: for all distinct non-circular inclusions do
3: Construct and solve potential density equation (2.6) for −P, . . . , P
4: end for
5: Prepare FMM matrices // using the development in Section 2.3.3

6: repeat
7: Calculate X(w)
8: β ← solution of multiple-scattering equation (2.16) with FMM
9: Calculate fobj(β)

// Construct gradient:

10: Solve adjoint system of (2.29) for λ using transposed FMM
11: for wj ∈ w do
12: Compute j-th component of ∇fobj using (2.28)
13: end for
14: w← next optimization point
15: until optimization has converged

an electric field error of 10−6 holds, as explained in Section 2.3. All linear systems solved
via FMM use GMRES [47] with tolerance 10−6 as the underlying iterative method. All
simulations were written in the Julia programming language [48], and run on a 3.4GHz
Intel Core i7-6700 CPU with 32GB of memory.

2.5.1 Complexity of multiple-scattering approach

We examine the run time of the multiple-scattering algorithm for a square grid of inclusions,
and compare it to the theoretical complexity analysis in Section 2.3.4. Fig. 2.3 depicts
the run time of solving the multiple-scattering equation (2.16) using FMM for several
values of M . Here an incident plane wave is scattered by a

√
M ×

√
M grid of identical

rounded stars with the parametrization previously seen in (2.11), each randomly rotated.
The inclusion parameters are R = 0.3λ0, a = 0.1λ0 and k1 = 1.5k0, and are distanced
0.9λ0. The minimal values of N and P for ∆u = 10−6 and this inclusion are N = 342 and
P = 10. The precomputation of the prototype inclusion for these values was performed once
for all simulations and required 0.9 s that were not included in the plot. A single matrix-
vector product scales almost linearly with the number of inclusions, in accordance with the
complexity analysis. The total solution convergence time has complexity O(M2.3), i.e., the
number of iterations depends on the number of inclusions, which is not uncommon when
solving electromagnetic systems of equations with Krylov subspace methods. Nonetheless,
the total solution time is several orders of magnitude below that achievable by a naive
method.
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Fig. 2.3: Run time of the multiple-scattering system solution, as well as of a single matrix-
vector product, for different numbers of rounded-star inclusions.

2.5.2 Rotation-angle optimization for arbitrary inclusions

For our first optimization example, we apply our framework to the optimization of inclusion
rotation. That is, given an incident wave with wavelength λ0 scattered by a collection of M
inclusions, we wish to find the optimal rotation angles ϕ of the inclusions such that the
field propagation in some desired direction is maximized.

The derivatives of the scattering matrices with respect to the rotation angles are given by(
∂X(m)

∂ϕj

)
u,v

= −iδm,j(u− v)
(
X(m)

)
u,v

= δm,j

(
DX(m) −X(m)D

)
u,v
, (2.30)

where (D)u,v = −δu,viu. Since the rotation angles are unconstrained, our choice of opti-
mization method is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) [49] algorithm, which is
a quasi-Newton method that locally approximates the objective function as a quadratic.
In each iteration, once the descent direction is decided via the gradient, a line search is
necessary to determine the step size to the minimum in that direction. The backtracking line
search based on the Armijo-Goldstein condition [50], which minimizes gradient evaluations,
is used here. In Fig. 2.4, we simulate the case of a ŷ-traveling plane wave incident upon a
collection of M = 100 inclusions, randomly positioned in a 21λ0 × 7λ0 rectangle such that
the scattering disks do not intersect. Inclusions are rounded stars with the same size as in
Fig. 2.2, have wavenumber k1 = 3k0 (i.e. the refractive index is n = 3), and use the minimal
parameters N = 934, P = 12. The objective function is set as in (2.2) for I = 20 points of
interest ri located equidistantly along the top boundary of the rectangle, which are indicated
with white dots. The field amplitude at the points of interest ri is substantially larger after
the optimization process, whose convergence is shown in detail in Fig. 2.5. Specifically, the
BFGS method converges to an average field magnitude of 1.43 at ri (in the RMS sense),
up from the initial value of 0.48 for ϕ = 0, a 200% increase. The process required 127
iterations and 664 seconds for the convergence criterion ∆fobj < 10−6. We note that setting
the starting point to ϕi = π for each inclusion causes the optimization process to converge
to a slightly worse result, with an average field magnitude of 1.41, and dramatically different
rotation angles at convergence. Complex optimization problems such as those described
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here may have several local extrema, leading to a dependence on the starting point for
gradient-based methods. This can be overcome by utilizing hybrid methods, which combine
a global search with gradient-based local searches [51].
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Fig. 2.4: Optimization of rotation angles. (a) Initial electric field amplitude after scattering
by M = 100 randomly positioned identical rounded stars with zero rotation, which
prevent the ŷ-traveling plane wave from propagating in its original direction. (b)
Electric field amplitude for the same inclusions, with rotation angles optimized
to maximize field at 20 points along the top boundary. Markers indicate points
where the field is maximized.

2.5.3 Radius optimization for circular inclusions

We now consider optimization of the radii of circular inclusions, where in contrast to the
previous example, both the scattering matrices and their derivatives with respect to the
inclusion radius are diagonal and have analytical form. This example is motivated by the
photonic crystal implementation of the Luneburg lens. The two-dimensional Luneburg
lens [52] is a symmetric circular lens designed such that incoming plane waves are focused
to a single point on its rim, and no waves are reflected. This property is achieved by a
continuously varying refractive index given by the analytic solution n(r) =

√
2− (r/Rlens)2,

where r is the distance from the center of the lens, which has radius Rlens. One way of
fabricating a Luneburg lens is via long dielectric rods on a glass substrate, which, if long
enough, can be assumed to be infinite. Thus the electromagnetic propagation through the
device can be treated as a two-dimensional problem. In this setting, the lens is divided into
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Fig. 2.5: Convergence behavior of the objective function fobj and its gradient ∇fobj for
Fig. 2.4.

unit cells on a square grid, each with side length a. Each unit cell m contains a circular
inclusion with the same relative permittivity εr but differing radius Rm, such that the
effective refractive index in the cell can be approximated analytically if a/λ0 is sufficiently
small [53], and thus the radii are set such that the average permittivity approximates the
Luneburg solution.

This implementation of the Luneburg lens begs the question whether the electromagnetic
focusing could be improved by sacrificing the rotational symmetry of the device, however,
note that the restriction to a square grid has already limited this symmetry. To answer
this question, we propose optimizing over the radii of the inclusions to maximize the field
amplitude at the focal point. Note that since the inclusions are circular, the computation of
the gradient is cheaper than in the previous example, as is applying the diagonal scattering
matrix in each FMM iteration. Care must be taken to assure that the computed radii
are neither below some non-negative lower practical limit Rmin nor above the limit Rmax

at which they are too close for the multiple-scattering approximation in this work, i.e.
0.45a. Thus unconstrained optimization methods such as BFGS are no longer an option.
Fortunately, these so-called box constraints are simple enough to be tackled by the addition
of a penalty term which sharpens the constraint from one BFGS run to the next.

In Fig. 2.6, we consider focusing of an x̂-traveling plane wave to the focal point (Rlens, 0)
on the lens rim. In this example, there are 316 circular inclusions with relative permittivity
εr = 4.5, placed on a square grid with lattice constant a = 0.2λ0. The total lens radius is
Rlens = 10a, while the cylindrical harmonics parameter is P = 5, and the initial guess is
Rm = a/4 for all inclusions. The penalized BFGS algorithm converged to a local maximum
of fobj = 26.36 after 113 total iterations and 173 seconds, with the convergence criterion
∆R < 10−6, as shown in Fig. 2.7. As this optimization problem is bounds-constrained,
convergence of the gradient is not a necessary condition, motivating the use of a step-size
convergence criterion instead. Visualization 1 shows the electric field amplitude throughout
the optimization process in video form, where the gradual evolution of the optimized device
is clearly visible.

The optimization process yields a device that focuses the incoming electric field sub-
stantially better than the Luneburg lens, improving upon the Luneburg design by an
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Fig. 2.6: Radius optimization of 316 circular inclusions with εr = 4.5 for focusing an x̂-
traveling plane wave to a single focal point on the lens rim. Electric field amplitude
for (a) starting point, (b) optimized device, and (c) Luneburg lens approximation.
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Fig. 2.7: Convergence progress of fobj and its gradient norm for Fig. 2.6 as a function of the
penalized BFGS iteration. Markers indicate the beginning of an outer iteration.

amplitude factor of 1.55. Additionally, the optimized design is more intricate than typical
intuitive approximations, thus corroborating our promotion of an automated approach.
Interestingly, the algorithm produced symmetric radii with respect to the x axis, although
this was not an optimization constraint. Applying this constraint, thereby halving the
optimization variables, yields a similar result in only 81 seconds, less than half of the time
required originally. The optimized device is more susceptible than the Luneburg device to
manufacturing variations, with a gradient norm of 78.3, vs. 68.4 for the Luneburg device.
However, due to the significant improvement in performance we posit that the optimized
device will outperform even with small radius perturbations.
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2.6 Conclusion

We proposed and implemented an automated approach for designing dielectric metamaterials
with desired electromagnetic properties. Our approach uses gradient-based optimization
that provides quick and reliable convergence as well as a fast boundary integral equation
solver for precisely computing the field at any point. This method reduces the need for
manual trial and error in the design of certain metamaterials by replacing it with rigorous
optimization. Our approach should be especially attractive in designing photonic crystals,
metalenses, and other devices composed of many substructures whose large number of design
parameters would typically render optimal manual design impossible. Although optimization
may superficially seem prohibitively expensive for these high-dimensional design problems,
our fast solution method makes it practical. The examples in this paper resulted in highly
irregular structures, which conforms to observations previously made in [19], where the
authors note that aperiodic structures are capable of providing more functionality than their
periodic counterparts. In the future, we will extend this approach to objectives containing
other functions of the electric field, such as the magnetic field and power flow. Additionally,
this approach should be extendable to multi-frequency objectives, such as those necessary
for broadband or filtering operations. We implemented the methods described in this paper
for the publicly available open-source software package ParticleScattering.jl [54] in the Julia
programming language [48], which also includes the examples presented here.

Appendix: Transposed single-level FMM for adjoint method

Let T ∈ CN×N be the matrix we wish to apply with FMM, divided into G groups or boxes,
and let the subscript g denote the section of a vector or matrix pertaining to the g-th group.
The double subscript g, g′ denotes a matrix operating from the g′-th group to g. Then we
can ordinarily write with single-level FMM

(Tx)g =
∑

g′=1...G

Tg,g′xg′ = (Zx)g + Dg

∑
g′:g,g′ far

Fg,g′Ag′xg′ , (2.31)

where Z,D,F,A are the near-field, disaggregation, diagonal translation, and aggregation
matrices. For the transposed FMM, we can similarly derive

(T>x)g =
∑

g′=1...G

(T>)g,g′xg′ =
∑

g′=1...G

T>g′,gxg′

=
∑

g′:g,g′ near

Z>g′,gxg′ +
∑

g′:g,g′ far

(
Dg′Fg′,gAg

)>
xg′

= (Z>x)g +
∑

g′:g,g′ far

A>g Fg′,gD
>
g′xg′

= (Z>x)g + A>g
∑

g′:g,g′ far

Fg′,gD
>
g′xg′ . (2.32)

Since in our case Dg = AH
g , applying the transposed FMM is similar to the standard FMM

with identical complexity.
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Summary

ParticleScattering (https://github.com/bblankrot/ParticleScattering.jl) is a Ju-
lia [1] package for computing the electromagnetic fields scattered by a large number of
two-dimensional particles, as well as optimizing particle parameters for various applications.
Such problems naturally arise in the design and analysis of metamaterials, including pho-
tonic crystals [2]. Unlike most solvers for these problems, ours does not require a periodic
structure and is scalable to a large number of particles. In particular, this software is
designed for scattering problems involving TM plane waves impinging on a collection of
homogeneous dielectric particles with arbitrary smooth shapes. Our code performs especially
well when the number of particles is substantially larger than the number of distinct shapes,
where particles are considered indistinct if they are identical up to rotation.

Solver overview

Given a scattering problem consisting of a collection of penetrable particles in a homogeneous
medium, the software performs the following steps to calculate the total electric field:

• For each distinct non-circular shape, a single- and double-layer potential formulation
is constructed.

• The potential formulations are transformed to a multipole basis of Hankel functions,
reducing the degrees of freedom by at least an order of magnitude.

• Analytical multipole basis is computed for circular particles.

• A multiple-scattering system of equations is constructed, and then solved with the
Fast Multipole Method.

• Electric field is computed at any point of interest.
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3 ParticleScattering

Fig. 3.1: Scattering problem before optimization, after minimization, and after maximiza-
tion.

In addition, ParticleScattering can plot near- and far-field results using the popular
framework PyPlot, create publication-level plots with PGFPlots integration, and compute
minimum parameters for a desired error level.

Optimization

ParticleScattering is especially targeted at users who wish to design metamaterials belonging
to the class described above. While the large number of variables such metamaterials contain
allows for a variety of devices that meet different objectives, it also creates a large search
space for choosing them. Therefore, a fast and automated approach can be beneficial for both
inventing new designs and improving existing ones. As the results of many ParticleScattering
computations can be recycled between optimization iterations, a large number of parameters
can be optimized simultaneously in reasonable time. ParticleScattering performs gradient-
based optimization of rotation angle for arbitrarily-shaped particles, and radius of circular
particles, in conjunction with the Optim optimization package [3], where the objective
is to minimize or maximize the electric field intensity at chosen points. Fig. 3.1 shows
an example of angle optimization of 20 particles, where the objective is the electric field
intensity at the origin. From left to right, we see the electric field before optimization,
after minimization, and after maximization. The field intensity at the origin is clearly
different in both optimization results, with minimization decreasing the intensity by 95%,
and maximization increasing it by over 700%. The total run time for both optimizations
and all necessary precomputations was 35 seconds.

For a detailed description of our approach, including several numerical examples generated
by ParticleScattering, see our recent publication [4].
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Abstract: We describe an approach for the automated design of photonic
crystals for various applications. Our approach includes gradient-based
optimization for arbitrary objective functions, with the electromagnetic
fields calculated by an accurate multiple-scattering approach. An example
of a two-color silicon photonic crystal demultiplexer designed by our
method is presented, with dozens of parameters chosen automatically in
reasonable time. The optimized device exhibits strong focusing with low
crosstalk for both frequencies.

4.1 Introduction

Photonic crystals and other metamaterials are integral to recent optical computing efforts,
where they may be used to multiplex several signals [1] and replace electronic circuit
components [2]. Silicon-based metamaterials are particularly interesting as they exhibit low
loss, have a high refractive index, and are compatible with standard fabrication processes [3].
Essentially, the periodic structure of photonic crystals introduces photonic bandgaps that
dictate which frequencies can propagate through it in each direction. Therefore, designing
photonic crystals for specific applications depends on introducing defects to the structure,
such as missing or altered unit cells. The large number of adjustable parameters in practical
photonic crystal devices and their multi-scale nature prohibit an exhaustive search of the
possible defects. Thus, defects are typically chosen based on a combination of experience,
intuition, and simulations.

We designed an optimization-centric approach for modeling these devices [4] based on
a multiple-scattering field computation method. In this work we apply this approach to
circular rods, and optimize their radii to fit desired device specifications, such as field
intensity. Each rod is represented by cylindrical harmonics with incoming and outgoing
coefficients describing the incident and scattered fields of that rod, respectively. Next, the
electromagnetic interactions between the rods give rise to a multiple-scattering system of
equations. Once the system is solved, the fields are given in analytic form which is easily
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4 Automated Design of Photonic Crystal Demultiplexers

and accurately computable at any point. Furthermore, the field expression is differentiable
which, together with the low computational complexity of our method, allows us to employ
gradient-based optimization methods and optimize the radii of some or all of the rods.
Notably, our method does not require the rods to be placed in a periodic pattern, such as a
grid, in contrast to most large-scale photonic crystal simulators.

4.2 Design Approach

Let us consider a photonic crystal consisting of M circular rods with relative permittivity
εr in free space, and a TM incident field with respect to the z-axis. Variations involving
air holes, dielectric background medium, and/or a TE wave can be handled analogously.
Outside the rods, we use a cylindrical harmonics representation of the scattered electric
field, and the total field is given by

Ez = Einc
z (r) +

∑
m

P∑
p=−P

β(m)
p H(1)

p

(
2π

λ
|r− o(m)|

)
eip∠(r−o(m)), (4.1)

where for the m-th rod, o(m) denotes the center coordinates and β
(m)
p is the (unknown)

p-th outgoing coefficient. λ is the free space wavelength, and H
(1)
p is the outgoing Hankel

function of order p. The relation between incoming and outgoing coefficients for the m-th
rod is given analytically as a function of its radius by a diagonal scattering matrix X(m). If
the incident field is also converted to a cylindrical basis with coefficients α(m), we obtain
the multiple-scattering equation

β(m) −X(m)
∑
m′ 6=m

T(m,m′)β(m′) = X(m)α(m), m = 1, . . . ,M, (4.2)

where T is a dense matrix that translates cylindrical waves from each rod to every other,
and depends only on o(m) but not their radii or material parameters. As the system matrix
changes with the radii, it is inefficient to solve this problem directly, and therefore an
iterative method is utilized with FMM acceleration. For a detailed description of our
approach, see [4].

For our example, we design a device that focuses fields with different wavelengths at
different points. Thus we express an optimization objective function capturing this property.
Let λ1, λ2 be two free-space wavelengths of interest, such that we wish to maximize the
intensity of λ1 and minimize that of λ2 at a set of points I1, and vice versa for the points in
I2. A possible objective function for this case is

fobj :=
∑
r∈I1

|Ez(λ2, r)|2 + 1

|Ez(λ1, r)|2
+
∑
r∈I2

|Ez(λ1, r)|2 + 1

|Ez(λ2, r)|2
, (4.3)

where minimization of fobj requires both focusing of the desired field as well as low crosstalk.
To compute the j-th component of its gradient gobj := ∇fobj, we first find the partial
derivatives of the outgoing coefficients, which in turn requires solving a similar equation
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to (4.2) written in concatenated form as

(I−XT)
∂β

∂Rj
=

∂X

∂Rj
X−1β, j = 1, . . . ,M. (4.4)

Now, the derivative of the electric field (4.1) readily follows and can be plugged in to the
derivative of fobj.

4.3 Results

We used the method in Section II to design a two-color demultiplexer, with input free-space
wavelengths λ1 = 560 nm and λ2 = 670 nm. Silicon rods were placed on a 7× 10 grid with
lattice constant a = 150 nm, where the rods have refractive indices n = 3.963 at λ1 and
n = 3.813 at λ2. We assumed the incident field is an x̂-traveling, ẑ-polarized plane wave
with unit amplitude. The objective was to focus λ1 at the bottom right corner of the device,
specifically I1 = {(1.5a,−2.9a), (1.5a,−3.1a)}, as well as focus the longer wavelength λ2

at the upper-right corner with I2 = {(1.5a, 2.9a), (1.5a, 3.1a)}. The optimization method
used to minimize fobj is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [5] with
the addition of a log-barrier term to prevent rod intersection. The initial radii values for
the optimization process are Rm = a/4 for all m. Figs. 4.1a and 4.1b depict |Ez| for both
wavelengths, where a photonic bandgap prevents the first incident field from penetrating
the device, and the second only propagates weakly.

The results of the optimization process are plotted in Figs. 4.1c and 4.1d. For λ1 we
see a region of strong amplification surrounding I1. Specifically, the field amplitude at I1

averages at 51.9, while the average amplitude at I2 is 0.17. We see complementing behavior
for λ2, which was steered towards I2. There we have average amplitude 39.7, while in I1

the average field amplitude is only 0.22. In other words, the device amplifies each frequency
by a factor of ≈40 relative to the incident field amplitude, while maintaining low crosstalk
(−40 dB). As expected, the field intensity is highest inside the high-permittivity rods, but
this does not detract from the strong amplification at the chosen points in the air. As
shown in Fig. 4.1e, the BFGS algorithm converged within 293 iterations (7.8 hours) under
the criterion ∆fobj < 10−5, where the gradient norm remained large partially due to the
log barrier.

4.4 Conclusion

We described our method for automating photonic crystal design to fit given field intensity
specifications, particularly by optimizing rod radii. The validity of our approach was
demonstrated through a silicon demultiplexer that focuses fields of two frequencies at chosen
points. Not only were the fields amplified at the desired locations, but very low crosstalk
was observed as well. The irregularity of the resulting structure suggests that this optimal
design would not be reached by a non-automatic process. We expect our method to be
employable for the automated design of new photonic crystal devices, and for improving
existing ones.
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Fig. 4.1: Optimization of photonic crystal device for focusing two wavelengths. |Ez| prior
to optimization for (a) λ1 = 560 nm, and (b) λ2 = 670 nm. Post-optimization |Ez|
for (c) λ1, and (d) λ2. (e) Convergence of the objective function fobj and gradient
norm ‖gobj‖∞. Starting points of outer BFGS iterations are denoted by markers.
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Abstract: We apply a previously developed approach for the automated
design of optical structures to two cases. This approach reduces the basis
of the electromagnetic system to obtain fast gradient-based optimization.
In the first case, an existing photonic crystal demultiplexer is optimized
for higher power transmission and lower crosstalk. In the second, new
optical diodes for plane- and cylindrical-wave incidence are designed using
a photonic crystal as a starting point. Highly efficient and aperiodic
devices are obtained in all cases. These results indicate that aperiodic
devices produced by this automated design method can outperform their
analytically-obtained counterparts, and encourage its application to other
photonic crystal-based devices.

5.1 Introduction

Photonic crystals, metamaterials, and other optical nanostructures have been attracting
interest due to their unique and effective light-manipulation abilities. The advent of optical
computing has brought the promise of higher bandwidth and lower energy dissipation [1],
at the cost of reinventing traditional electrical structures for photonics, such as diodes,
logical gates [2, 3], and demultiplexers. Demultiplexers are crucial for splitting optical
signals in photonic circuits in general, but particularly for the goal of all-optical computing,
and have been designed via e.g. arrayed-waveguide gratings [4], microring resonators [5],
shape optimization [6], and photonic crystals [7, 8, 9]. Passive optical diodes, or devices
that allow asymmetrical optical transmission, have been of great interest due to their
potential as building blocks in optical computing and communication. As such, they
have been developed using a variety of methods, including nonlinearity [10], magneto-
optical effects [11], metamaterials [12, 13], gratings [14, 15], and photonic crystal-based
structures [16, 17, 18]. Photonic crystals for these applications are typically periodic with
the exception of defects introduced to the design for specific light localization properties.
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5 Design of aperiodic demultiplexers and optical diodes

However, in [19], the advantage of exploring aperiodic layouts was demonstrated by showing
via statistical analysis that their additional degrees of freedom allow better control of the
electromagnetic fields. As expected, this phenomenon was more pronounced in the near
field, which is the region of interest in photonic crystal design. Previous results in [20]
suggest that better focusing of light can be achieved via optimization which yields irregular
layouts. The restrictive nature of periodic structures is also apparent when designing
multi-frequency photonic crystal devices using bandgap information; often, the range of
compatible frequencies is somewhat restricted by the geometry.

In this work, we present aperiodic two-dimensional nanostructures consisting of circular
silicon rods in air which were automatically designed for two applications: multiplexing and
one-way transmission of transverse magnetic (TM) waves. The work herein builds upon an
optimization approach for the design of photonic structures introduced in [20] and later
extended to multiple-frequency devices such as demultiplexers in [21]. In this approach, rods
are replaced with multipole expansions and the interactions between them are described as
a compressed multiple-scattering system [22, 23]. This system is analytically differentiable
as a function of the rod radii, facilitating fast gradient-based optimization. We believe these
devices are not only useful for the applications outlaid above, but also that the methodology
used to design them may be applied to better many other photonic structures.

Prior work on optimizing photonic structures has used e.g. topology optimization [24],
with finite differences or finite elements as the underlying electromagnetic solver, which
requires computationally expensive and repetitive solutions with many degrees of freedom.
Conversely, our method represents each rod with a small multipole expansion, substantially
compressing the electromagnetic system of equations. In [25], genetic optimization of a
small number of parameters in photonic crystal slab cavities obtained optimal quality
factors, though the wave expansion required a large basis which inevitably led to long
run times. Recently, a periodic photonic-crystal-based LED structure was optimized for
color conversion in [26] where a homogenization technique was applied to the unit cell. In
contrast, our approach allows for aperiodic solutions, whether in radii or in location.

5.2 Formulation of our approach

We assume an arbitrary layout of M dielectric circular rods with radii Rm in two-dimensional
space. Our goal is to optimize a function f(Pi(`j)) where i denotes a specific combination
of wavelength, refractive index, and incident field, and `j is a curve through which power
flow is calculated, such that

Pi(`j) =
1

2
<
∫
`j

(Ei ×H∗i ) · n̂ dl. (5.1)

For each setting i = 1, . . . , I, we use the multiple-scattering formulation to arrive at our
system of equations

(I−XiTi)βi = Xiαi, (5.2)

where Xi is a diagonal scattering matrix that additionally depends on the radius of the
rods, and Ti is a translation matrix that depends on the distances between the rods. αi
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are the resulting coefficients of expanding the incident field with Bessel functions, βi are
the outgoing multipole coefficients, and the residuals of these systems are denoted by
ci. As the multipole expansion yields the representation Ei,z(r) = ei,z(r) · β, and similar
representations for Hi,x, Hi,y, we can find the derivatives of the power with respect to these
coefficients, ∂Pi/∂βi. We can now construct the gradient of f with respect to the radii for
our optimization problem using the adjoint method [27]. For complex vectors ζi, we define
the Lagrangian

Λ = f + 2<
∑
i

ζ>i ci, (5.3)

whose total derivative with respect to one of the radii Rm can be written as follows using
the chain rule,

dΛ

dRm
= 2<

∑
i

(
ζ>i (I−XiTi) +

∂f

∂βi

)
∂βi
∂Rm

− ζ>i
∂Xi

∂Rm
X−1
i βi. (5.4)

Equating the expression in the parentheses with zero and solving the resulting adjoint
systems of equations for ζi, which does not depend on m, means that the right-hand side of
(5.4) can be computed for all values of m with I system solutions. On the other hand, since
we are solving for ci = 0, we know that the total derivatives of Λ and f are equal. Finally,
the derivatives of the scattering matrices are computed analytically as a combination of
Bessel and Hankel functions. Thus both f and its gradient can be computed with the
runtime complexity of 2I system solutions, which in our case are accelerated with the Fast
Multipole Method [28].

5.3 Results and discussion

We first consider a two-input demultiplexer, or diplexer, where we take as a reference design
the device conceived in [29]. The device consists of a T-junction with a line defect input
waveguide where the bulk photonic crystal has rod radius r/a = 0.18 and a bandgap for
ωa/2πc = 0.303− 0.444, for unit cell size a. In that work, both the selection of operating
frequencies and the design of the output waveguides were tuned manually such that the
two dispersion curves exhibited specific characteristics. This reference design was chosen
since it was highly efficient to begin with, and therefore any improvements achieved using
optimization would lend support to our method. This reference design is depicted in Fig. 5.1,
where the unit cell size is a = 1 µm, the refractive index of the rods is n = 3.4, and the
two normalized input frequencies are a/λ1 = 0.387, a/λ2 = 0.336. The diplexer is excited
by a current filament, and the desired outputs for λ1, λ2 are on the left and right sides,
respectively.

We simultaneously optimized the radii of the 172 rods in this design to maximize desired
power flow while minimizing crosstalk and leakage by minimizing the objective function

f =
∑
i=1,2

P3−i(`i)

Pi(`i)
+
Pi(`3)

Pi(`i)
+
Pi(`2i+2)

Pi(`i)
+
Pi(`2i+3)

Pi(`i)
+ C max

(
0, 1− Pi(`i)

P ∗i

)2
, (5.5)
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Fig. 5.1: Diplexer before optimization. Unit cell size is a = 1 µm, lines indicate arcs through
which the propagated power was calculated for optimization. Black star denotes
the input current filament location.

where Pi(`j) is the power flow of the i-th wavelength propagating through the arc `j ; the
arcs are shown in Fig. 5.1. For each value of i, the first summand minimizes crosstalk, the
last summand penalizes solutions where the output power is smaller than a predetermined
quantity, and the other summands represent power leakage through the bottom and sides of
the bulk photonic crystal. P ∗1 , P ∗2 were chosen to be 1.1 times their respective output powers
in the reference design, and C = 1000 is the penalty factor. Note that in the reference
design, some of the rods in the fourth and sixth rows are off the square grid. However,
the starting point of our optimization process has these rods on the grid to allow greater
flexibility in choice of radii. The entire optimization process took 1.5 hours on a 3.4GHz
Intel Core i7-6700 CPU, where each rod was expanded into 21 cylindrical waves and the
solver tolerance was 10−6.
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Fig. 5.2: Amplitude of the electric field Ez in the diplexer when excited by a current filament.
(a) Reference design with λ1, (b) reference design with λ2, (c) optimized design
with λ1, (d) optimized design with λ2.
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Figs. 5.2(a) and 5.2(b) show the electric field amplitude in the reference design when
excited by a 1 µA current filament1 with wavelengths λ1 and λ2, while Figs. 5.2(c) and 5.2(d)
show the optimized device. The left waveguide in the optimized design exhibits stronger
localization for λ1 and less crosstalk from λ2. The radii in the optimized device are
less regular, with both symmetric and asymmetric deformations surrounding both exit
waveguides, for example, on the second column from the left. We also see a gradual tapering
of the radii around the input.

In Fig. 5.3 we depict in detail the power density entering through the top of the device
and exiting the desired side for each frequency. Visibly more power is launched through
the centers of the desired outputs (Figs. 5.3(b,d)), at the expense of slightly larger side
lobes. The power entering and exiting the devices is computed as follows: the power
density is integrated along the entire top border as well as along each side border. The
calculation was performed in this manner to account for all of the power flowing through
the device, including through the bulk photonic crystal. For presentation purposes we
omitted those parts of Figs. 5.3(a,c) where the power density is essentially zero despite being
integrated over. The optimized device has better matching to the source, with total power
flow through the top border of 55.48 µW m−1 vs. 54.39 µW m−1 in the reference design for
λ1, and 102.07 µW m−1 vs. 68.55 µW m−1 for λ2. This is unsurprising since the reference
design was originally simulated with a different source type; however, based on these results
we expect the optimization to also match well to other source types.

The ratios between the power exiting the sides and bottom, to the power entering the top
of the devices are summarized in Table 5.1, where the power is calculated according to (5.1)
using the complete side length. Here we see that for the optimized device, the percentage of
the power exiting the desired side is increased for λ2 and unchanged for λ1, and that the
power at the undesired side is reduced for both frequencies. Accordingly, the crosstalk for
λ1 is −24.5 dB before optimization and −27.4 dB after, while for λ2 optimization reduced
the crosstalk from −19.3 dB to −44.0 dB. The crosstalk was calculated by dividing the
unwanted power transmission ratio by that of the desired wavelength, in order to account for
the different total power entering each device for each frequency, as exemplified in Fig. 5.3.
We observe that due to our optimization of several objectives simultaneously, power loss
through the bottom of the optimized device slightly increased for λ1.

Table 5.1: Power Transmission for Diplexer

λ1, left λ1, right λ1, bottom λ2, left λ2, right λ2, bottom

Reference 99.5% 0.35% 0.12% 1.17% 98.6% 0.24%

Optimized 99.5% 0.18% 0.33% 0.004% 99.8% 0.19%

In Fig. 5.4, we present the power transmission of both reference and optimized designs
for a range of different wavelengths. The total power flow in the left and right directions is
shown in Fig. 5.4(a), where we observe once again that the power transmitted for λ2 (left
vertical line) is much higher in the optimized design. For a/λ = 0.35 − 0.38, power flow
to both sides drops precipitously in the optimized device, but only on the right-hand side

1We refer to Appendix A.2 for a detailed treatment of this electromagnetic source (not part of the original
publication).
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Fig. 5.3: Power density entering the top and exiting the desired sides of the reference and
optimized diplexers. (a) λ1 power entering the top, (b) λ1 exiting the left, (c) λ2

entering the top, (d) λ2 exiting the right.

for the reference. Fig. 5.4(b) shows the same power normalized by the power entering the
device for each wavelength. Interestingly, there is a wider range of frequencies surrounding
λ2 where both the power and the normalized transmission to the left are large for the
optimized device than for the reference design, despite the optimization being performed at
only two wavelengths.

Fig. 5.5 shows the second device we designed, an optical diode structure that permits
light propagation in one direction while restricting it in the opposite direction. This device
was achieved by optimizing the radii of 67 dielectric rods ordered in a triangular lattice for
maximizing left-to-right power propagation from a plane wave while minimizing right-to-
left propagation. In this case, the optimization required 20 minutes before convergence.
Each rod was expanded into 21 cylindrical waves and a relative tolerance of 10−6 for the
electromagnetic solver.

The optimization starting point had r/a = 0.2 for all rods, where the cell size is a = 600 nm
and the desired operating wavelength is λ = 1500 nm, both of which correspond to a
normalized frequency of ωa/2πc = 0.4, and we used a wavelength-dependent refractive
index for the silicon (n = 3.48 at λ = 1500 nm) [30].

The objective in this case was maximizing the power Pr propagating through the right side
for plane waves originating from the left, while minimizing the power Pl on the left side from
plane waves propagating in the x = −∞ direction. Pr, Pl were computed by integrating the
x̂-directed power flow density along the dotted lines in Fig. 5.5. This objective is expressed
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Fig. 5.4: Power flow to the left and right sides of the reference and optimized diplexers. (a)
Absolute. (b) Normalized by power entering the device. Vertical lines indicate the
frequencies of interest λ1, λ2.

by minimizing the function

f =
1

Pr

(
1 + C

|Pl|
Pr

)
, (5.6)

where C = 1000 was chosen as the transmission ratio penalty factor.
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Fig. 5.5: Amplitude of Ez for the designed optical diode in response to a unit plane wave.
(a) Left-to-right propagation. (b) Right-to-left propagation. Dotted line indicates
where power flow was optimized and calculated.

Setting the optimization starting point of r/a = 0.2 for all rods places λ in a complete
photonic bandgap, as depicted in Fig. 5.6, which shows the band structure for the infinitely
periodic version of the device. This initial structure does not allow propagation of ±x̂-
directed plane waves, despite having only 7 cells in the x direction. The choice of the initial
device was such that the bandgap would prevent propagation in both directions, and the
optimization process would tweak the device to permit one-directional propagation. Indeed,
we can see in Fig. 5.5(a) that the electric field originating from the left propagates through
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5 Design of aperiodic demultiplexers and optical diodes

the device, and is magnified in certain regions on the right. On the other hand, when the
field originates from the right as in Fig. 5.5(b), the device creates a shaded area on the left
with near-zero electric field amplitude. Due to the optimization, all of the radii changed by
at least 2.5%, with the most radical changes at the corners of the structure, where a few
rods have been nearly eliminated from the structure and others have doubled in size.

We also investigated the performance of this device for a range of wavelengths surrounding
λ, namely 1400 to 1600 nm. In Fig. 5.7(a), we have the power flow measured in both
directions, normalized by the power flow in the absence of the device, P0. At 1500 nm, we
have Pr = 1.37P0 and Pl = 2.06× 10−6P0, as well as a FWHM of 9.65 nm for Pr. We may
have Pr/P0 greater than unity, partially because the height of the device exceeds the length
of the line on which the power is measured. The ratio between right- and left-propagating
power is depicted with a solid line in Fig. 5.7(b), where a transmission ratio of 58.2 dB
is achieved. The stark narrowbandedness exhibited in both plots is expected since the
optimization was performed for a single frequency.
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Fig. 5.6: Photonic band structure for a triangular array of dielectric (n = 3.48) rods of
radius r/a = 0.2 in air, for TM polarization. The insets depict the irreducible
Brillouin zone in light blue as well as the unit cell.

Lastly, we optimized the same initial triangular lattice for one-way transmission in the
presence of current filament excitation, placed at (±5a, 0). The minimization process in this
case required 19 minutes. This device had a transmission ratio of 46 dB at λ = 1500 nm,
as plotted with a dashed line in Fig. 5.7(b). The resulting structure, shown in Fig. 5.8, is
irregular as well, with a large variance of the radii present in the structure. In this case, the
power density distribution after optimization is concentrated in two lobes, as opposed to
the strong central lobe in the plane-wave case. Similarly to the optimized diplexer, there is
tapering of the radii in the vicinity of the source on the left. The high transmission ratios
for both types of excitation suggest that our method may find optimal devices for different
incident fields.
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Fig. 5.7: (a) Power transmission spectrum in both directions, normalized by the power flow
without the device. (b) Transmission ratio between right- and left-propagating
light for the device that was optimized for excitation by plane wave (solid line)
and current filament (dashed).
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Fig. 5.8: Amplitude of Ez for the designed optical diode in response to a 1 nA current
filament. (a) Left-to-right propagation. (b) Right-to-left propagation. Dotted line
indicates where power flow was optimized and calculated.

5.4 Conclusion

In summary, we designed two aperiodic devices, each consisting of a collection of dielectric
rods, using optimization. The first device, a diplexer, was the result of optimizing an existing
design and yielded better performance in our simulations. Next, we designed an optical
diode to realize passive one-way transmission. Here we began with a uniform structure
based on the photonic bandgap and obtained a device with a high transmission ratio. In
both cases, the resulting optimized devices had rather irregular and unintuitive radius
distributions, which agrees with the suggestion that irregular structures introduce additional
degrees of freedom which may be exploited for precise electromagnetic field control. These
devices can find potential use in optical computing, and the method we employed in this
work shows promise for designing other dielectric photonic devices.
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Abstract: Optimization of nanophotonic structures has become increas-
ingly common in recent years, yet these optimized devices can be very
sensitive to manufacturing variations, to the point where small perturba-
tions render them ineffective. Robust optimization aims to solve this issue
by taking the worst-case perturbation of a design into account. We imple-
ment and utilize two methods for robust optimization of two-dimensional
photonic crystals to achieve asymmetric light transmission. By optimizing
the radii in a photonic crystal consisting of 53 dielectric rods, we achieve
a structure with this effect, with a transmission ratio of 14.6 dB in the
worst case. Nevertheless, the price of robustness is that this structure
can achieve a transmission ratio of 55 dB and higher transmission in
the forward direction with traditional optimization. This work can be
generalized to other photonic crystal-based structures as well as other
error sources such as frequency or refractive index variations.

6.1 Introduction

Optical devices that exhibit asymmetric light transmission (ALT) are attracting considerable
interest due to their potential role in future optical computing and communication systems [1].
These devices feature large transmission ratios between forward- and backward-propagating
light, not unlike electrical diodes. In the past, asymmetric light transmitters were developed
using nonlinearity [2], magneto-optical effects [3], gratings [4, 5], metamaterials [6, 7], and
photonic crystal structures [8, 9]. These photonic crystal-based structures with an ALT
effect are typically periodic, with the exception of defects that are manually introduced
to the structure in order to effect specific light manipulation properties. Recently, the
use of optimization for designing these devices has been explored [10, 11], yielding devices
with large transmission ratios. One of the reasons why optimization and inverse design
are attractive is that they allow aperiodic layouts with many degrees of freedom, thus
allowing better control of the electromagnetic fields [12]. However, a major downside is that
devices optimized by these procedures are often highly sensitive to the underlying geometric
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6 Robust optimization of photonic structures for asymmetric light transmission

parameters. Concurrently, due to inevitable manufacturing variations these devices cannot
be implemented precisely, but only with random perturbations which can cancel out the
optimized performance [13]. The focus thus shifts from nominal optimization to robust
optimization, which takes this uncertainty into account and finds a design with a minimal
worst-case perturbation.

Despite the large body of work on robust optimization [14], its application to photonics
has been far more limited, perhaps due to the scale and nonconvexity of the problems
common in the field. In [15], five geometrical parameters of plasmonic waveguides were
optimized where robustness was measured by the gradient index. A Kriging-based method
for robust optimization was proposed in [16] and applied to the width, lengths, and gaps of
ring resonator-based optical filters. Robust topology optimization was applied to various
photonic structures in [17, 18], where robustness was formulated in response to under-
and over-etching, and in [19] this was extended to random edge perturbations. Robust
topology optimization was also applied in [20, 21] to photonic bandgap maximization.
In [13], adiabatic tapers were robustly optimized where the worst case was approximated
by a step in the direction of the gradient. Bertsimas et. al introduced methods for robust
optimization of dielectric rod locations involving many parameters using a nested approach,
where an inner loop was a gradient-based search for the local worst case and the outer loop
was either based on Simulated Annealing (Robust Simulated Annealing [22]) or another
local search [23].

In this paper, we investigate two methods for robust optimization of the radii in photonic
crystals to achieve ALT that is resistant to implementation error. We motivate this with an
example showing that even a minute implementation error in a structure can cause a total
loss of desired behavior. The first method we explore is based on the aforementioned Robust
Simulated Annealing (RSA), where we utilize the Generalized Simulated Annealing [24]
algorithm for the outer loop. For the second method, we employ a recent approach based
on a metaheuristic for avoiding non-robust areas, Largest Empty Hypersphere (LEH [25]),
which also utilizes a local search in the inner loop, but reduces the number of function
evaluations. With both methods, we achieve asymmetric light transmitters that maintain
performance in the worst case. To our knowledge, robust optimization of radii in photonic
structures has not been previously performed, and a secondary goal of this paper is to
demonstrate the issues one will experience when applying robust optimization to similar
structures, and possible resolutions. Despite the necessarily large number of function
evaluations, our approach is feasible due to the fast underlying electromagnetic solver [26]
based on multiple scattering [27].

The remainder of the paper is organized as follows. Section 6.2 gives the mathematical
formulation used for calculating the fields scattered by a collection of inclusions, as well
as further background on asymmetric light transmission. In Section 6.3, we discuss robust
optimization in general and as it pertains to our ALT problem, and describe the two robust
optimization strategies utilized in this paper. Section 6.4 presents our numerical results, for
both a simple two-dimensional problem and the ALT problem, and a discussion in which we
compare and contrast the two strategies. Finally, the results of this work are summarized
in Section 6.5.
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6.2 Electromagnetic preliminaries

6.2.1 Formulation and electromagnetic field solver

The structures considered herein consist of M homogeneous dielectric circular inclusions
embedded in air. This is in order to continue the line of work in [11], however, we note that
one could apply the following treatment to the opposite case of air holes in a dielectric slab.
When this structure is periodic, it is typically referred to as a two-dimensional photonic
crystal. However, the radii of our inclusions are not periodic and although the inclusion
locations are periodic in our examples, this is merely for simplicity and will not constrain
the formulation below.

In two dimensions, the electromagnetic fields can be decoupled into two field patterns,
transverse electric (TE) and transverse magnetic (TM) modes, with respect to the z axis.
For TE modes, the electric field does not have a z component and the magnetic field can
be written as H = Hz ẑ; conversely, for TM modes the magnetic field does not have a z
component and the electric field is given by E = Ez ẑ. Thus, while assuming time-harmonic
electromagnetic fields, Maxwell’s equations in each medium can be reduced to the two scalar
Helmholtz equations (

∇2 + k(r)2
)
Hz(r) = 0 for TE modes, (6.1a)(

∇2 + k(r)2
)
Ez(r) = 0 for TM modes, (6.1b)

where k := ω
√
µε is the wavenumber for angular frequency ω and medium permittivity and

permeability ε, µ. Specifically, we denote the wavenumber outside and inside the inclusions
by k0 and k1, respectively. In the sequel we consider only TM modes, but this work can be
readily extended to TE fields with small modifications.

To solve for the electromagnetic fields, we utilize a multiple-scattering technique [28] and
describe the electric field incident to each inclusion with Bessel functions, and similarly
with its scattered field using Hankel functions. Given a single inclusion with radius Rm
centered at o(m), we first expand the incident and scattered electric fields Einc

z , Es
z as

Einc
z =

P∑
p=−P

α(m)
p Jp(k0|r− o(m)|) exp(ip∠(r− o(m))), (6.2a)

Es
z =

P∑
p=−P

β(m)
p H(1)

p (k0|r− o(m)|) exp(ip∠(r− o(m))), (6.2b)

where P is a truncation parameter for which some desired error tolerance is achieved. Ap-
plying tangential boundary conditions to the inclusion surface yields a diagonal relationship
between these expansions, expressed as β(m) = X(m)α(m), where the scattering matrix is
given by

X
(m)
p,p′ = −δp,p′

Jp(k0Rm)J ′p(k1Rm)− J ′p(k0Rm)Jp(k1Rm)

H
(1)
p (k0Rm)J ′p(k1Rm)−H(1)′

p (k0Rm)Jp(k1Rm)
. (6.3)
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We now consider M inclusions, and utilize Graf’s addition theorem outside the inclusions to
translate the outgoing Hankel expansion of one inclusion to the incoming Bessel expansion
of another. This gives the total incoming coefficients of the m′-th inclusion

α̃(m′) = α(m′) +
∑
m6=m′

T(m′,m)β(m), (6.4)

with the translation matrix from m to m′ defined by

T (m′,m)
µ,p = exp

(
i(p− µ)∠(o(m′) − o(m))

)
H

(1)
p−µ(k0|o(m′) − o(m)|). (6.5)

Substituting the scattering matrix and concatenating over all inclusions finally yields our
multiple-scattering system of equations

[I−X(R)T]β = X(R)α, (6.6)

where we emphasize that only the diagonal scattering matrix depends on R, whereas T
is solely location-dependent. Once this system is solved, the scattered electric field at any
point outside the inclusions can be computed by summing (6.2b) over all inclusions. Many
design problems, such as the ones considered here, contain more than one electromagnetic
setting – i.e., a combination of incident field frequency, and permittivity – so we will use the
subscript i to denote the components of (6.6) that depend on the setting. Additionally, we
will denote the residuals of those systems by ci. In our case, we have forward and backward
incident fields with the same wavelength and thus only the expansion coefficients will change
between settings.

Our objective is a function of electromagnetic power flow through curves `, which we
calculate by quadrature over the Poynting vector

Pi(`) =
1

2
Re

∫
`
(E(βi)×H(βi)) · n̂ dl, (6.7)

where E, H can be calculated by matrix-vector products with pre-computed matrices in
O(M) time.

6.2.2 Asymmetric light transmission

Asymmetric light transmission has been a heavily researched topic in the photonics com-
munity, partially due to its applications in optical communication and optical computing.
This effect has been achieved in many differing ways that can be broadly classified into two
classes, non-reciprocal and reciprocal devices. A special case of ALT which strictly blocks all
light in one direction while allowing propagation in the other requires one to break Lorentz
reciprocity [29]. Such non-reciprocal devices, also named optical isolators, are enabled by
materials that break reciprocity such as nonlinear media [2] where the permittivity is a
function of the electric field. Magneto-optical materials [3], where the permittivity is an
asymmetric tensor, and those with time-dependent ε and µ, are other examples of media
that could allow optical isolators. However, such devices can be impractical, due to both
fabrication and operation concerns [10].
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These shortcomings generated interest in passive and reciprocal devices with an ALT
effect that do not break Lorentz reciprocity. For example, in [10], the authors achieved ALT
by setting a photonic crystal with a semi-Dirac cone at the operating frequency adjacent
to an optimized photonic structure. For the most part, the photonic crystal with the
semi-Dirac cone only allows light propagation in the ±x directions, such that light passing
through it first is unaffected and then somewhat disturbed by the optimized section. In the
other direction, light passes through the optimized section first then enters the semi-Dirac
cone section at oblique angles and is thus reflected. A similar idea was demonstrated
in [8], where a photonic crystal with a partial gap – i.e., one that allowed only oblique
incident waves through for a range of frequencies – was combined with a silicon grating
for the forward-traveling light that changed its direction. In recent work [11], the authors
of this paper utilized radius optimization on a photonic crystal to achieve significant ALT
in a structure less than 2.5λ wide, and showed that the optimal ALT structure depended
heavily on the incident field type. Indeed, the behaviors of these reciprocal structures share
a dependence on the spatial properties of the incoming field, and one could in principle
construct a field with high backwards propagation. The ALT effect is thus given by a mode
conversion – into those that can and cannot propagate deeper in the structure, for the
forward and backward directions, respectively.

6.3 Robust optimization

Robust optimization differs from nominal (or traditional) optimization in that it assumes
that the objective is impacted by uncertainties or errors in the decision variables, problem
parameters, or both. A relevant example of the former could be the inclusion radii, while
the latter class includes the incident field frequency, angle, and material parameters. These
uncertainties may not only dramatically affect the value of the objective function, but may
also make a certain optimum unfeasible. Thus robust optimization is of utmost significance
to any real-world application where precision cannot be guaranteed, and especially to those
devices whose behavior is sensitive to small changes in their variables and environmental
parameters. However, robust optimization carries with it two notable penalties: first,
the optimization problem is more complex and must be solved by specialized methods;
second, by definition, the robust optimum cannot exceed the nominal one, and often has
worse nominal performance, i.e. absent any error. While certain combinations of objectives
and uncertainty sets allow the reformulation of robust optimization problems as tractable
problems [30], this is not possible for most robust optimization problems. Specifically,
nonlinear robust optimization problems such as those arising in computational physics are
far less studied than their linear counterparts. See the review [14] for a survey of robust
optimization and [31] for a discussion on nonlinear robust optimization.

There are different robustness metrics, some deterministic and some stochastic, that
aim to capture the sensitivity of the objective function to these uncertainties. In this
work, we consider worst-case implementation uncertainty, i.e. uncertainty in the design
variables where the robust objective at a point is the highest value attained by the function
in the neighborhood of that point. For a given function f , we define a robust function
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fw(R) = max∆R f(R + ∆R) and aim to solve a robust optimization problem of the form

min
R

fw(R) subject to

{
Rmin ≤ R + ∆R ≤ Rmax,

‖∆R‖∞ ≤ ∆max,
(6.8)

where the inner maximization over ∆R is essentially the aforementioned worst-case analysis
of the ∆max-neighborhood of a given set of radii R. We emphasize that the bound constraints
on R+ ∆R guarantee the feasibility of any perturbed structure. Since the perturbation ∆R
is a vector, we can account not only for the systematic dilation or erosion of all inclusions
by a given scalar amount, but also for random independent perturbations in each radius up
to a prescribed limit ∆max.

Both methods used here share a common step, namely, an inner maximizer that strives
to find these worst-case perturbations for a given R in each outer iteration. Since inner
maximization is a global optimization problem, and thus would present significant compu-
tational difficulties, these inner global optimizations are replaced by a sequence of local
gradient-based searches. The lengths of these sequences vary by method, but in any case
the number of local searches necessary to find the global optima with high probability
undoubtedly depends on the local complexity of the function relative to ∆max.

In order to perform this neighborhood exploration efficiently, we calculate the gradient of
f using an adjoint approach [32]. This allows us to reduce the asymptotic complexity of
the gradient calculation to that of computing f . For each setting i of scattering problems
in f , we utilize an arbitrary complex vector ζi and define the Lagrangian

Λ = f + 2 Re
∑
i

ζ>i ci, (6.9)

whose total derivative with respect to one of the radii Rm is obtained by using the chain
rule,

dΛ

dRm
= 2 Re

∑
i

(
ζ>i (I−XT) +

∂f

∂βi

) ∂βi
∂Rm

− ζ>i
∂X

∂Rm
X−1βi. (6.10)

By solving the system of equations in the parenthesis for ζi, we eliminate the costly and
m-dependent calculation of ∂βi/∂Rm. Since we are already solving (6.6) for ci = 0, we
know that the total derivatives of Λ and f are equal. Therefore, we have both f and its
gradient with respect to R with the time complexity of 4 system solutions.

6.3.1 Robust Simulated Annealing

The first robust optimization approach we investigate is the RSA approach [22], modified
to use a Generalized Simulated Annealing [24] outer loop. Recall that with Simulated
Annealing, we randomly select a point from a given distribution, and probabilistically
decide whether to move to it. While this initially allows the acceptance of points with
higher objective values in order to avoid local minima, as the algorithm progresses and
the artificial temperature is reduced, this becomes increasingly less likely. In the RSA
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approach, instead of minimizing fw, we minimize a function gw of the high cost points in
the ∆max-neighborhood, given by

gw(R, T ) = T log
∑

R̂∈M(R)

ef(R̂/T ), (6.11)

where T is the current temperature of the annealing process and M(R) is the set of high
cost points in the neighborhood of R. Notably, gw approaches fw as T diminishes. The
cooling schedule of T is expressed as

T (t) = T (0)
2qv−1 − 1

(2 + t)qv−1 − 1
, (6.12)

where the visiting parameter qv is a tunable parameter that also governs the trial point
distribution. At point R, the probability of accepting a candidate point R′ is calculated
using

P (R→ R′) =

{
0, P̃ ≤ 0,

P̃ 1/(1−qa), else,
(6.13)

where qa is the tunable acceptance parameter and P̃ is shorthand for

P̃ = 1 +
1 + t

T (t)
(qa − 1)[gw(R′, T (t))− gw(R, T (t))]. (6.14)

Therefore, each iteration contains two main steps: generating a random trial point and an
inner maximizer for estimating the high-cost points in its neighborhood via a set of M + 1
gradient ascents, which are started at predetermined points. One gradient ascent begins
at R, while the others begin at R ± em∆max/3, depending on the sign of the derivative
∂f/∂Rm. Notably, the number of function evaluations in each iteration scales quadratically
with M , severely limiting the number of possible iterations for computationally expensive
objective functions. As with other Simulated Annealing algorithms, this approach has
the benefit of high tunability: annealing, re-annealing, and reheating schedules can all be
tweaked, as can the trial point distributions. However, tuned parameters do not always
transfer from one optimization problem to another, requiring costly re-tuning. The RSA
approach using Generalized Simulated Annealing for the annealing process is summarized
in Algorithm 6.2.

6.3.2 Largest Empty Hypercube

The second robust optimization approach we utilize is LEH [25], which operates as follows:
it keeps track of the minimal value of fw encountered thus far, denoted τ , and a set of
high-cost points Hτ . Here, high-cost points are defined as those points encountered so
far where f ≥ τ . In each iteration, we look for the largest hypercube in the problem
domain that does not contain points from Hτ . Once a hypercube is found, we explore the
∆max-neighborhood surrounding its center Rc in order to ascertain if fw(Rc) is less than
τ . This local worst-case search is performed using multiple L-BFGS-B [33] searches from
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6 Robust optimization of photonic structures for asymmetric light transmission

Algorithm 6.2 Robust Simulated Annealing with Generalized Simulated Annealing

1: function RSA(R0)
2: T (0)← initial temperature, t← 0, R← R0

3: Construct worst-case set M(R) using M + 1 local searches
4: Calculate gw(R, T (0)) using (6.11)
5: g∗w ← gw(R, T (0)), R∗ ← R
6: repeat
7: Calculate temperature T (t) according to (6.12)
8: if T (t) < Tmin then
9: Re-anneal, t← 0

10: continue
11: end if
12: for j ∈ 1, . . . , 2M do
13: Generate trial point R′ from distorted Cauchy-Lorentz distribution
14: Construct worst-case set M(R′) using M + 1 local searches
15: Calculate gw(R′, T (t)) using (6.11)
16: Acceptance probability P (R→ R′) is calculated with (6.13)
17: p← random number in [0, 1]
18: if p ≤ P (R→ R′) then
19: R′ is accepted, R← R′

20: if gw(R, T (t)) < g∗w then
21: g∗w ← gw(R, T (t)), R∗ ← R
22: end if
23: end if
24: end for
25: t← t+ 1
26: until maximum iterations or f evaluations are exceeded
27: return R∗, g∗w
28: end function

random points where the number of searches is a tunable parameter which depends on
the properties of f . If at any point during this local search we encounter a point where
f > τ , we abandon the local search as fw(Rc) is surely greater than τ . Otherwise, we
have fw(Rc) < τ , and a new robust minimum is found. Note that the search for the next
hypercube will be stricter as τ has decreased and Hτ now contains more points, both ones
from the current iteration as well as from previous iterations. The optimization process
continues until either the side length of the maximal hypercube is less than 2∆max or the
prescribed maximum number of function evaluations is exceeded. At this point, we return
the robust minimum value τ and the point R∗ at which it was achieved.

In our implementation, the search for the largest hypercube begins by constructing a k-d
tree [34] Tτ which contains all of the points in Hτ . Then, we can frame this search as the
maximization of the hypercube radius objective

rLEH(R, Tτ ) = min
(

min
i

(Rmax −Ri),min
i

(Ri −Rmin), ‖R−NN(R, Tτ )‖∞
)
, (6.15)

68



6.4 Numerical results and discussion

where NN(R, Tτ ) is the nearest neighbor of R in Tτ in the maximum metric sense. The use of
radius, i.e. half of the side length, is for notational consistency with the original hypersphere
approach. Thanks to the k-d tree representation of Hτ , which allows a fast nearest neighbor
search, rLEH can be computed efficiently. An evolutionary algorithm (DXNES [35]) with a
population of 100 first finds the point Rc which maximizes the radius r∗ = rLEH(Rc, Tτ )
within a predetermined amount of time tLEH. Then, the same search is run over in the
reduced domain [Rmin + r∗, Rmax − r∗]M as a refining step for tLEH/2. In our simulations,
the search with refinement was far more capable on average than a single optimization
with a time budget of 1.5tLEH. Thus the nominal M -dimensional optimization problem is
transformed into a two-step process: searching for an area without any known high cost
points and an inner maximizer. Pseudocode for the LEH approach can be found in [25],
and a description of our largest empty hypercube search is presented in Algorithm 6.3.

Algorithm 6.3 Finding largest empty hypercube

1: function find LEH(Hτ ,∆max, Rmin, Rmax, tLEH)
2: Tτ ← KDTree(Hτ )
3: Rc ← arg maxR rLEH(R, Tτ )

s.t. Rmin + ∆max ≤ R ≤ Rmax −∆max . In tLEH

4: Rc ← arg maxR rLEH(R, Tτ )
s.t. Rmin + rLEH(Rc, Tτ ) ≤ R ≤ Rmax − rLEH(Rc, Tτ ) . In tLEH/2

5: return Rc

6: end function

This approach has two obvious run-time advantages over nested robust optimization
approaches. First, we avoid a problem common to nested min-max approaches where
overlapping ∆max-neighborhoods lead to unnecessary and expensive computations. Second,
we abandon computation of fw at Rc when we know it is not the robust minimum. In
fact, in our simulations, most iterations involve only a small number of function evaluations
before a candidate point is abandoned. However, the majority of the run time is spent
finding the largest hypercube, which is long enough to limit the number of iterations we
can reasonably perform. This would not be the limiting factor with objective functions
more expensive than the ones considered here. Our implementation diverges from the one
in [25] in that we consider hypercubes rather than hyperspheres, as they allow independent
perturbations and are thus more relevant to our problem, and we employ the k-d tree
approach to accelerate the largest hypercube calculation.

6.4 Numerical results and discussion

In this section, we apply the RSA and LEH algorithms to a photonic crystal structure,
in order to achieve robustly optimized structures with ALT. We begin by analyzing these
algorithms with the two-dimensional problem presented in Fig. 6.1(a) in order to provide
some intuition on robust optimization of inclusion radii. This problem consists of two
dielectric rods with radii R1 and R2 that are distanced λ with refractive index n = 2.25.
The incident field is an x-traveling transverse magnetic plane wave, and we wish to maximize
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6 Robust optimization of photonic structures for asymmetric light transmission

the x-directed power flow P through the dotted line stretching from (2λ,−0.5λ) to (2λ, 0.5λ),
considering each rod may have a radius error of up to ±0.02λ. For this problem, we define the
nominal objective f1 = 1.25−P/P0, whose contours are depicted in Fig. 6.1(c). In Fig. 6.1(d–
e), we see the contours of the robust objective f1,w, which are generated by calculating
the worst-case objective around every point on a fine grid. The contours of the robust
plot are noticeably deformed, with local minima contracting or disappearing altogether.
In particular, the global minimum for the nominal objective, located at (0.21, 0.21), is not
the global minimum of the robust problem as it is closely surrounded by points with worse
performance, but it remains a local minimum of f1,w. The global minimum of the robust
objective is located at (0.229, 0.091) with a value of 0.0709.

Fig. 6.1(b) illustrates the nominal function for this problem around (0.348, 0.216), as well
as the ∆max-neighborhood surrounding that point. This point is given as an example where
the worst-case search of the RSA method will fail, as its predetermined searches cannot
reach the upper-right corner of the neighborhood where f1 is maximal. To be precise, this
issue can arise when a local minimum of some objective f lies between the sampled point
R and the worst case perturbation around it, causing an underestimation of fw. We will
revisit this issue and its consequences in further detail in Section 6.4.4.

We ran the RSA algorithm 50 times on this two-dimensional problem, with 100 iterations
in each run. The mean robust minimum f1,w attained by this algorithm was 0.0832, with
runs split into those where the algorithm reached the neighborhood of the correct robust
minimum, and those where it settled on a minimum of the nominal objective. Two sample
runs of the RSA method are shown in Fig. 6.1(d), where only points accepted by the
algorithm are shown. One of the runs, plotted in blue, passes in close proximity to the
robust minimum before converging to an inferior point. Since many of the failed runs are
at least partially due to the underestimation problem, with 13 runs underestimating the
attained robust minimum by 5 % or more, we ran the LEH algorithm on the same problem
with an increased maximum number of 9 local searches in each iteration, while restricting
the run time to that of RSA. Here, the mean objective was 0.077 and the mean value of
rLEH in the final iteration of each run was 1.3∆max, indicating the algorithm was usually
close to convergence. The accepted points of two LEH runs are presented in Fig. 6.1(e),
where one of the runs (in blue) is less successful as it stays away from its last accepted
point, which is near the robust minimum.

Now that we have established some familiarity with RSA and LEH, we move on to setting
up the main problem solved in this paper. The proposed geometry of our initial ALT
structure consists of M = 53 round silicon rods with refractive index n = 3.48, placed on
a triangular lattice with lattice constant a = 600 nm. The perturbation limit ∆max is set
to 3 nm, or approximately 1.1 % of Rmax. The operating wavelength is λ = 1.5 µm, which
was chosen in conjunction with a in order to allow for a wide bandgap. Previous results
already confirmed this layout is capable of producing significant ALT [11]. We imposed
horizontal symmetry on the inclusion radii and their perturbations in order to allow for
timely calculations, which yields an effective M = 28. On the one hand, this means that
we do not cover the whole space of detrimental perturbations; on the other hand, the
asymmetric design space potentially contains better-performing devices. Thus we believe
that the trade-off between coverage and run time is reasonable.

The structure which serves as a starting point along with the lines through which we
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Fig. 6.1: Two-dimensional robust optimization problem, where power from a plane wave
propagating through a line is maximized by optimizing the radii of two rods. (a)
Geometry of the problem. (b) Contour plot of f1 around R = (0.348, 0.216),
where the box encloses the area searched for the worst-case perturbation, f1,w(R).
Red cross denotes local minimum. (c) Contour plot of f1. (d-e) Contours of
corresponding robust function f1,w, with paths taken by RSA and LEH, respectively.
Black crosses denote global minima.

calculate the power flow P→ and P← are depicted in Fig. 6.2(e). P→ measures the power
in the forward direction (i.e. the power through the right curve `→ from an incident plane
wave propagating left-to-right), and P← is the power propagating in the backward direction
through `←. The objective we wish to robustly optimize to obtain ALT is given by

f = −cP→
P0

+ (1− c)P←
P→

, (6.16)

which is a weighted sum of our two objectives – minimizing the ratio between P← and P→
while also maximizing P→ outright. P0 denotes the power flowing through the same curve in
the absence of the structure, and the weighting factor is c = 0.01. Another possible choice
for the objective function would be P← − P→ as in [10], but this produced worse results in
our simulations. In what follows, the number of wave expansions 2P + 1, as well as the
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tolerance of the solver, were chosen for an error tolerance of 10−6. All simulations were run
on an Intel Xeon E7-8867 CPU with a nominal frequency of 2.5 GHz. Some portions of the
optimization algorithms were computed in parallel – the neighborhood exploration of the
RSA method was run on 28 cores such that each core computed a single gradient ascent in
each iteration. Since the LEH neighborhood search is sequential, it was run on a single core,
but the evolutionary algorithm search for the largest hypercube ran on 28 cores as well.

6.4.1 Sensitivity of non-robust structures

Before we apply RSA and LEH to the ALT structure, we show how striking the degradation
in device behavior can be in the presence of small implementation errors. We first nominally
minimize f in order to achieve a nominal optimum for the aforementioned geometry.
Fig. 6.2(a–b) show the norm of the electric field in response to right- and left-propagating
plane waves incident upon this optimal structure. Particularly, the structure has normalized
transmission efficiencies T→ = 1.86 and T← = 6× 10−6, where we normalize Ti as Pi/P0.
We stress that the extent of the curve ` is smaller than the height of the structure in order
to avoid edge effects from the infinite plane wave. Thus, the structure can focus incoming
power, creating normalized efficiencies greater than unity. This issue can be circumvented by
utilizing a spatially-limited source, such as Gaussian beams, or through mode matching [36],
but these were not considered here for the sake of simplicity. In contrast, Fig. 6.2(c–d)
show the electric field norm when the same plane waves are incident upon the worst-case
perturbation of the nominally optimal structure. Although the radius differences between
these two structures are too small to be perceptible in the figures, the desired ALT properties
have completely disappeared. In fact, the perturbed structure exhibits weak ALT in the
opposite direction, with T→ = 6.5× 10−3 and T← = 8.1× 10−2.

Further insight into the ALT effect created by this structure under nominal conditions
can be gleaned from Fig. 6.3, which shows the real part of the electric field for forward and
backward illumination. This snapshot shows that the forward-propagating plane wave is
converted to a higher mode roughly consisting of two diagonal waves at the output, while
the backward wave does not propagate beyond the leftmost column due to a sequence of
complex interactions with the rods.

6.4.2 Robust Simulated Annealing

Applying the RSA method to our structure results in one that is substantially more resistant
to perturbations than the nominally optimized version. The optimization process consisted
of 60 outer iterations (3360 total iterations) with a run time of 58 hours, 3361 computations
of gw, and approximately 7× 106 computations of f and ∇f . Fig. 6.4 shows the electric
field norm after plane-wave incidence to both the robust structure and its worst-case
perturbation, similarly to Fig. 6.2. This robust structure has normalized transmission
efficiencies T→ = 0.112 and T← = 1.5 × 10−3 (i.e. a transmission ratio of 18.7 dB). In
contrast to the nominally optimized structure, here the worst-case perturbation continues
to show ALT with normalized transmissions T→ = 7.91× 10−2 and T← = 2.77× 10−3 (i.e.
a ratio of 14.6 dB). The so-called price of robustness is noticeable here, as this structure
underperforms the nominally-optimized one absent any perturbations, particularly with
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Fig. 6.2: ALT structure under consideration after optimizing radii for nominal performance
with electric field norm after plane-wave incidence from both directions. (a)
Forward propagation (→), (b) backward propagation (←), (c) → with worst-case
perturbation of optimal structure, (d) ← with worst-case perturbation of optimal
structure. (e) Structure before optimization process. Dotted lines indicate arcs
through which the transmitted power was calculated.

respect to forward transmission, but far outperforms it in their presence. A detailed look
at the convergence process is shown in Fig. 6.5, where we plot the value of gw estimated
by the algorithm in each accepted iteration. As the algorithm converges, it is less likely to
accept points with significantly higher values of fw. We also computed the actual value of
fw for each accepted point using 300 L-BFGS-B searches in the ∆max-neighborhood, and
found many accepted points where RSA substantially underestimated it. Since fw is a lower
bound on gw, there are iterations where fw is smaller as well.

6.4.3 Largest Empty Hypercube

We applied the LEH method to the same structure, while limiting the run time to 58 hours
for a proper comparison to RSA, which resulted in approximately 37 500 iterations. This
robust optimization procedure obtained the structure in Fig. 6.6, shown along with the
electric field norm for both the robust structure and its worst-case perturbation. As with the
RSA result, the optimized structure is robust to errors in the radii. This robust structure
has normalized transmission efficiencies T→ = 8.67 × 10−2 and T← = 1.35 × 10−3 (i.e. a
transmission ratio of 18.1 dB). Also here, the worst-case perturbation continues to show
ALT with normalized transmissions T→ = 7.39× 10−2 and T← = 3.36× 10−3 (i.e. a ratio
of 13.4 dB). We show the first 25 000 iterations of the LEH approach in Fig. 6.7, with the
estimated value of fw in each iteration as well as that verified with 300 L-BFGS-B searches
in the ∆max-neighborhood. The remaining iterations are omitted from the figure since LEH
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Fig. 6.3: Re(Ez) for the nominally-optimized structure under nominal conditions. (a)
Forward illumination, (b) backward illumination.

failed to improve in them. Although the estimation process only utilized a maximum of
15 local searches, the neighborhood global maximum was found in all but one iteration,
where it was inaccurate by 4.7 %. In addition, we show the side length of the largest empty
hypercube found in each iteration. Since we limited the run time of each hypercube search
to 1.5tLEH = 5 s, it often failed to return the largest one, even though approximately 90 %
of the total algorithm run time was spent on these searches. Extending this time further
allowed the procedure to find the largest hypercube more often, but this did not appreciably
improve fw. However, reducing this time to the point where the largest hypercube was no
longer found in most iterations did harm the optimization process.

6.4.4 Discussion

We now compare some of the results of the two robust optimization strategies. First, Fig. 6.8
illustrates the dependence of the normalized transmission efficiencies on the wavelength
for both optimized structures, where frequency-dependent refractive index of the rods is
that of silicon [37]. For RSA, surrounding our frequency of interest 1.5 µm, the worst-case
perturbation shifts both transmission spectra backward by 25 nm while for LEH, they
are shifted forward by 23 nm. Absent any perturbations, T→ is fairly wideband for both
robustly optimized structures – with FWHM of 105 nm and 75 nm – in comparison to the
8 nm FWHM for the nominally-optimized structure in Fig. 6.2 (not depicted in Fig. 6.8).
Therefore, it seems that the robustly-optimized structures also exhibit higher resilience to
input wavelength error. We summarize the nominal and worst-case normalized transmission
efficiencies calculated for each structure at λ = 1.5 µm in Table 6.1.

Table 6.1: Normalized transmission efficiencies for each optimized structure

Nominal optimization RSA LEH

Nominal, → 1.86 1.12× 10−1 8.67× 10−2

Nominal, ← 6.04× 10−6 1.50× 10−3 1.35× 10−3

Worst case, → 6.47× 10−3 7.91× 10−2 7.39× 10−2

Worst case, ← 8.14× 10−2 2.77× 10−3 3.36× 10−3

74



6.4 Numerical results and discussion

5

0

5

y
/a

(a) (b)

5 0 5
x / a

5

0

5

y
/a

(c)

5 0 5
x / a

(d)

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

|E
z|

[V
/m

]

Fig. 6.4: ALT structure after robust optimization with the RSA approach, where the panels
follow the template of Fig. 6.2(a–d).

We now revisit the underestimation issue alluded to in Section 6.3. Any robust optimiza-
tion method that contains an inner loop that searches for the local worst case, such as the
two considered here, can suffer from underestimating fw (or gw) in any given iteration. This
issue is substantially more important than not finding the global optimum in a traditional
optimization problem – once the worst-case perturbation is underestimated, the outer
method may not only avoid robust minima but also “converge” to points that are not
minima at all. We found the effect of this issue to be more pronounced on RSA, especially
once the annealing temperature is low enough. The method may become trapped at a
point where gw is higher than estimated, since surrounding candidate points (when correctly
estimated) are then perceived to have higher cost and thus avoided. On the other hand,
once LEH calculates τ = fw at some point, it avoids all points with f ≥ τ . Thus even if fw

is underestimated, the algorithm will continue searching for an optimum in other regions of
the domain. Of course, LEH might continue searching long after landing close to the robust
optimum, instead of converging with successively smaller steps, as is common with global
optimization methods. Therefore, the choice of method also depends how accurately fw can
be computed in reasonable time, which in turn depends on the number of maxima in any
given ∆max-neighborhood. It is worth noting that these local searches can fail even for very
simple functions.

Nonetheless, it is clear from Figs. 6.5 and 6.7 that LEH was more accurate than RSA
in finding the worst-case perturbation, even though it utilized fewer local searches, which
merits a closer look. As mentioned earlier, one reason for this phenomenon is the starting
point selection for the local searches in RSA. As an example, looking at iteration 155
(marked in Fig. 6.5 with a cross), none of the RSA local searches found a value of f over
13.2. Conversely, when we conducted 100 local searches from random starting points in
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Fig. 6.5: Convergence process of RSA, showing the robust objective gw and the actual worst
case fw surrounding each accepted point.

the ∆max-neighborhood, in over half of them we found points whose values are an order of
magnitude larger than 13.2. Another aspect of LEH which impacts this issue is the early
abandonment of non-robust points. In a way, LEH has fewer opportunities to adversely
underestimate fw. As long as LEH does not underestimate the best point found so far
(which is then assigned to τ), it is immaterial whether or how much other points are
underestimated, so long as the local searches find any point in the neighborhood where
f > τ .

6.5 Conclusion

This work demonstrated the importance of robustness to implementation errors for photonic
structures via a motivating example of asymmetric light transmission. We presented the
robust optimization of this device using two conceptually different methods, obtaining
structures which continued to exhibit asymmetric light transmission with worst-case er-
rors. This work provided an overview of the benefits of each method, and discussed the
circumstances in which they each shine. Namely, RSA was more susceptible to errors in
the robust function, but was faster overall as long as f and gw could be computed quickly
and accurately; LEH is simpler to use as it does not require tuning beyond the number of
local searches, and significantly reduces expensive f evaluations. Robust optimization is a
powerful tool for preserving performance in the presence of fabrication variations, and can
be applied to other devices based on aperiodic photonic crystals.
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Appendix

A.1 Discretization of the integral equations

Here we provide a detailed construction of the system matrix Z in (2.6), for which we
must discretize the operators S, D, as well as their normal derivatives N , T . We note
that S has a logarithmic singularity, D, N are defined in the principal value sense, and T
is hypersingular. We split each operator, using Kussmaul-Martensen quadrature for the
singular portion and trapezoidal quadrature for the remainder, as prescribed in [1]. Let
x(t) = (x1(t), x2(t)), t ∈ [0, 2π] denote the parametrization of the curve ∂Ω and n̂(t) be the
outward-pointing normal at x(t). We lightly abuse prior notation and use x′ to denote the
derivative of x, and r(t, τ) = x(t)− x(τ). We can write all four operators as

(S(k)σ)(x(t)) =

∫ 2π

0

i

4
H

(1)
0 (k|r(t, τ)|)|x′(τ)|σ(τ) dτ, (A.1a)

(D(k)µ)(x(t)) =

∫ 2π

0

ik

4
H

(1)
1 (k|r(t, τ)|) n̂(τ) · r(t, τ)

|r(t, τ)|
µ(τ) dτ, (A.1b)

(N (k)σ)(x(t)) =

∫ 2π

0

−ik
4
H

(1)
1 (k|r(t, τ)|) n̂(t) · r(t, τ)

|x′(t)||r(t, τ)|
|x′(τ)|σ(τ) dτ, (A.1c)

(T (k)µ)(x(t)) =
1

|x′(t)|

∫ 2π

0

[
1

4π
cot
( t− τ

2

)
µ′(τ)

+ (P (k, t, τ)−Q(k, t, τ))µ(τ)

]
dτ. (A.1d)

(A.1a) to (A.1c) are easily derived, while the derivation of (A.1d) is more involved, but can
be found in [1]. We postpone the definitions of P and Q, and first split the kernel of the
single-layer potential operator S as

i

4
H

(1)
0 (k|r(t, τ)|)|x′(τ)| = M1(k, t, τ) log

[
4 sin2

( t− τ
2

)]
+M2(k, t, τ), (A.2)

where M1(k, t, τ) = − 1
4πJ0(k|r(t, τ)|)|x′(τ)|. The functions M1, M2 are analytic with the

diagonal terms

M1(k, t, t) = −|x
′(t)|
4π

, M2(k, t, t) =
[ i

4
− γ

2π
− 1

2π
log
(k

2
|x′(t)|

)]
|x′(t)|. (A.3)

Likewise, the kernel of D is split into two terms with analytic functions L1, L2, giving

L1(k, t, τ) =
k

4π
J1(k|r(t, τ)|) n̂(τ) · r(t, τ)

|r(t, τ)|
, (A.4a)

L2(k, t, τ) =
ik

4
H

(1)
1 (k|r(t, τ)|) n̂(τ) · r(t, τ)

|r(t, τ)|
− L1(k, t, τ) log

[
4 sin2

( t− τ
2

)]
(A.4b)
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with the diagonal terms

L1(k, t, t) = 0, L2(k, t, t) =
1

4π

x′1(t)x′′2(t)− x′′1(t)x′2(t)

|x′(t)|2
. (A.5)

Clearly, N can be split and computed similarly to D with small adjustments. Recall from
(2.5) that we are interested in computing the operator differences. Ergo, any term that is
independent from k vanishes and in particular, the cotangent term in T as well as some of
the diagonal terms above.

It still remain to split P and Q from (A.1d), which are given by

P (k, t, τ) =
ik2

4
(x′(t) · x′(τ))H

(1)
0 (k|r(t, τ)|), (A.6a)

Q(k, t, τ) =
i

4
Q̃
[
k2H

(1)
0 (k|r(t, τ)|)− 2kH

(1)
1 (k|r(t, τ)|)
|r(t, τ)|

]
+ (x′(t) · x′(τ))

ikH
(1)
1 (k|r(t, τ)|)
4|r(t, τ)|

+
1

8π sin2( t−τ2 )
, (A.6b)

where P is split in the same fashion as the kernel of S, up to a multiplicative term, and Q̃
is set as

Q̃ =
(x′(t) · r(t, τ))(x′(t) · r(t, τ))

|r(t, τ)|2
. (A.7)

We can now split Q analogously to the previous functions,

Q1(k, t, τ) =− 1

4π
Q̃

[
k2J0(k|r(t, τ)|)− 2kJ1(k|r(t, τ)|)

|r(t, τ)|

]
− (x′(t) · x′(τ))

kJ1(k|r(t, τ)|)
4π|r(t, τ)|

, (A.8a)

Q2(k, t, τ) =Q(k, t, τ)−Q1(k, t, τ) log[4 sin2(
t− τ

2
)], (A.8b)

thereby giving us the means to calculate the rest of the diagonal values. After dropping the
terms which do not depend on k, we have

P1(k, t, t)−Q1(k, t, t) = −k
2|x′(t)|2

8π
, (A.9a)

P2(k, t, t)−Q2(k, t, t) =
k2|x′(t)|2

8π

[
πi+ 1− 2γ − 2 log(

k

2
|x′(t)|)

]
. (A.9b)

Finally, we discuss the quadrature of these operators using equidistant points tn = nπ/N .
For the smooth operators M2, L2, P2, Q2, we use simple trapezoidal quadrature, i.e.,∫ 2π

0
M2(k, t, τ)σ(τ) dτ ≈ π

N

2N−1∑
n=0

M2(k, t, tn)σn, (A.10)
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while the logarithmic terms use the same points but with weights

Rn(t) = −2π

N

N−1∑
m=1

cos[m(t− tn)]

m
− π cos[N(t− tn)]

N2
. (A.11)

Now that we can calculate approximations of all operators at any point on the curve,
all entries of the system matrix Z are readily available. For example, using the relation
R|j−n|(0) = Rn(tj), the upper left block is computed with

S
(k0)
j,n − S

(k1)
j,n =R|j−n|(0)[M1(k0, tj , tn)−M1(k1, tj , tn)]

+
π

N
[M2(k0, tj , tn)−M2(k1, tj , tn)]. (A.12)

A.2 Current filament excitation

Here we explain how the scattering theory presented in Section 2.3.1 allows the expansion
of incident fields created by current filaments of infinite length. Without loss of generality,
assume a single inclusion centered at o and a current filament at r′ with current I. The
incident electric field [2] is thus given by

uinc(r) = −kIη
4
H

(1)
0 (k|r− r′|), (A.13)

where η is the wave impedance, and we can expand the Hankel function with Graf’s addition
theorem, yielding

H
(1)
0 (k|r− r′|) =

∞∑
p=−∞

H(1)
p (k|o− r′|)Jp(k|r− o|)eip[∠(r−o)−∠(o−r′)−π]. (A.14)

By equating this series with the incident field expansion in (2.8), we have an expression for
the incoming coefficients of the inclusion,

αp = −k
2Iη

4
H(1)
p (k|o− r′|)e−ip[∠(o−r′)+π]. (A.15)
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