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Abstract

We present a novel setup for treating sepsis using distributional reinforcement learning

(RL). Sepsis is a life-threatening medical emergency. Its treatment is considered to be a

challenging high-stakes decision-making problem, which has to procedurally account for

risk. Treating sepsis by machine learning algorithms is difficult due to a couple of reasons:

There is limited and error-afflicted initial data in a highly complex biological system com-

bined with the need to make robust, transparent and safe decisions. We demonstrate a suit-

able method that combines data imputation by a kNN model using a custom distance with

state representation by discretization using clustering, and that enables superhuman deci-

sion-making using speedy Q-learning in the framework of distributional RL. Compared to cli-

nicians, the recovery rate is increased by more than 3% on the test data set. Our results

illustrate how risk-aware RL agents can play a decisive role in critical situations such as the

treatment of sepsis patients, a situation acerbated due to the COVID-19 pandemic (Marti-

neau 2020). In addition, we emphasize the tractability of the methodology and the learning

behavior while addressing some criticisms of the previous work (Komorowski et al. 2018) on

this topic.

1 Introduction

The present work addresses the treatment of sepsis using distributional reinforcement-learn-

ing (RL). The treatment of sepsis has enormous medical importance as it is a leading cause of

death worldwide [3] which has also seen an increase in relevance as a complication in

COVID-19 [4]. Sepsis treatment is also a grand challenge at the intersection of medicine and

machine learning, where recent work underlined the importance of the use of data to improve

existing medical knowledge [5, 6]. From a medical standpoint, it is highly safety-critical. From

a machine learning perspective, despite the availability of a significant amount of unstructured

data [7, 8], advanced and novel preprocessing techniques are required to make sense of the

data. Moreover, sepsis treatment consists of modeling irregularly-sampled time series with

long-term dependencies [9] which adds to its complexity.
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Some recent works such as [10–12] focused on representing the policies as deep neural net-

works. However, the convergence properties of such algorithms in deep RL are largely

unknown. Here, we employ algorithms in distributional RL whose convergence properties are

much better understood. It is known that the Q-learning update rule converges to the fixed

point of the composition of the Bellman operator and the categorical projection operator [13,

14], and that policy evaluation using the speedy Q-learning update converges to the return dis-

tribution [15] (see Section 3.1).

The overall quality of our decision-making algorithms is highly related to the quality and to

the characteristics of the data. Biomarkers and physiomarkers suggested by recent works such

as [16–18] can serve as additional sources of data that may enhance the performance of the

algorithms, especially in cases where a more rapid action is required. We believe that combin-

ing the time-delayed data we used here with the data mentioned above collected by online test-

ing can help develop even more performant sepsis diagnostic and treatment algorithms. In

[17], a support-vector-machine (SVM) classifier was trained on data collected from active phy-

siomarker sensor streams and successfully detected sepsis with a high rate. In the present

work, the aim is not to perform sepsis diagnosis, but to learn and to evaluate treatment policies

using distributional RL. Hence the present work is in principle complementary to [17] as the

present algorithms can use the output of the SVM classifier as additional input for our deci-

sion-making agent to find better treatment policies.

[2] suggested a very promising increase of the treatment outcomes for sepsis. In particular,

it was shown that time-critical treatment procedures can be reduced to the administration of

vasopressors and intravenous fluids as acute measures, which proved to strongly correlated

with the patient mortality. The work however, went under some methodological criticisms

[19]: such as long time resolutions, modeling and assumptions of the transition dynamics, and

the approach’s interpretability. The authors have responded to some of the concerns in [20],

however, the aforementioned concerns motivated us to improve over these aspects in the pres-

ent study.

In particular, we decreased the time resolution to 60 minutes (4× faster than the method

proposed in [2]), losslessly. This is a direct result of our improved scheme for the imputation

of missing values described in Section 2.2. Furthermore, we claim that as the transition matrix

intuitively depends on the states’ approximated representation, brute-force search for the one

that yields the best model performance [2] is ill-advised. In Section 2.3, we provide a method

that takes the dynamics of the problem into account to select an effective state representation.

Lastly, to address interpretability, we chose to implement a distributional RL algorithm, which

models the distribution of the reward for each state-action pair instead of only the expected

values. This provides more insights into the dynamics of the model in use, and yields a trust-

worthy decision-making tool compared to methods built on classical RL algorithms [13, 14].

Actions are represented by the volume of intravenous fluids and dose of vasopressors. The

vasopressors consist of vasopressin, dopamine, epinephrine, norepinephrine and phenyleph-

rine, while intravenous fluids consist of infusions of blood products, crystalloids, colloids and

boluses. The state space is defined by using k-means clustering on time series of patient data

represented with 53 features. (See supporting information for details.)

We emphasize that our approach is not aimed to modeling sepsis, but to provide a model

for the clinicians’ policies and calculate an optimal treatment strategy based on the successes

and errors revealed in the clinical data. Besides data preparation, our algorithm does not

require any prior knowledge about the biological processes involved, since it is (implicitly)

taken into account through the statistical sampling of patient data. In addition to finding opti-

mal policies for treatments, we design a novel sepsis simulator (see Section 2.4) that approxi-

mates the sepsis process while the patient is under treatment in the ICU.
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Our primary contributions can be summarized as: ensuring the traceability and quality of

the data preparation process, developing an effective approach for the essential state-space

approximation, and using distributional RL as the learning framework. This framework allows

us to account for risk elements in a high-stakes medical decision-support system. Our sepsis

treatment algorithm circumvents the concerns over the applicability of the previous methods

and achieves super-human performance. To show the complexity of the method, we have illus-

trated our approach in Fig 1.

2 Historic data, methods, and algorithms

2.1 Dataset and data preparation

We based the data preparation process (taken from the MIMIC-III dataset, see [7]) on that

described in [2], to ensure a fair comparison. This process consists of combining the features

of interest followed by a matrix completion step to fill in missing values, verify the Sepsis-3 cri-

teria [21] and run other algorithms. Access to the database was gained through PhysioNet, and

emphasis was given to the responsible handling of patient data [22]. The dataset contains

around 60 000 intensive-care unit (ICU) admissions and represents both demographic and

clinical information on the patients in continuous or binary form. An approach mixing SQL

queries and Julia programming [23] was chosen to properly organize data. To mitigate the

long time horizon concerning other methods [19], we modified the time discretization from

four-hour steps to one-hour steps to better model the biological processes under test. This,

however, makes the missing-value imputation step more challenging. We address this by a

novel method for matrix completion detailed in the following subsection.

2.2 Missing-value imputation

The dataset contains substantial amount of missing values which has to be taken care of. In the

particular case of sepsis, we require some variables to be known to be able to apply the Sepsis-3

criteria [21] to decide whether a patient suffers from sepsis or not.

Fig 1. Overall data flow. The data flow including the three main challenges: preprocessing, state-action space representation, and reinforcement learning.

https://doi.org/10.1371/journal.pone.0275358.g001
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In the imputation step of our data processing pipeline, we start with 957 563 observations

each with 82 features. Among these features, 20 are not taken into account for this imputation

step for they are either demographic features or binary. Among the remaining 62 features, we

drop features that individually present more than 90% missing values and finally obtain 53 fea-

tures subject to imputation, which present overall 39% of missing values (see Fig 2a).

All features contain missing-values. Because of this, a classical k-nearest-neighbors (kNN)

model for imputation is not directly applicable since it requires a common ground between

observations to compute pairwise distances (and gather nearest neighbors). [2] proposed

to perform a linear interpolation step on features with a low percentage (� 5%) of missing val-

ues—so that values are available for all observations—prior to the kNN algorithm that com-

putes distances on the now common ground of complete features. However, this reveals to be

sub-optimal, because there are only few features—3 in our implementation—that match the

Fig 2. Overview of the data. (a) Histogram for the percentage of missing values before matrix completion. Features with more than 90% missing values

were not kept. It appears that missingness does not depend on sepsis diagnosis. (b) Histogram for the length (i.e. number of timesteps) of the episodes. (c)

3D representation of cluster centers, using a linear projection along the first three principal components of the data. The size of the points is affine in the

population of the clusters. The color scale corresponds to the survival rate in each cluster. (d) A representation of some episodes using the linear projection

along principal components. We represent in green two episodes where the patient survived and in red three episodes where the patient died within 90

days.

https://doi.org/10.1371/journal.pone.0275358.g002
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low-percentage threshold criterion. Moreover, since values are sometimes missing because cli-

nicians did not require them, all observations concerning one patient and their linear interpo-

lation are ill-advised.

To overcome this problem, we introduce the following distance metric that is able to handle

missing values and will replace the euclidean distance in the kNN computations. The distance

is defined as:

D : Rn � Rn ! ½0; nÞ; ðx; yÞ 7!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

f ðxi; yiÞ

s

;

where

f ðxi; yiÞ≔

ðxi � yiÞ
2

pi þ ðxi � yiÞ
2

if xi; yi 2 R;

a 2
1

4
; 1

� �

if xi or yi is missing;

8
>>>><

>>>>:

where {pi}1�i�n are positive scaling parameters and a is a parameter that penalizes missing val-

ues: a = 1 corresponds to a “maximal” distance (in the sense of the function f) between known

values and missing ones, whereas a ¼ 1

4
means that we prefer missing values to known far-

away ones. The lower-bound 1

4
is a necessary (and sufficient) condition for D to satisfy the tri-

angle inequality. This is an important feature, since this allows the use of efficient tree struc-

tures such as KD-trees and ball-trees to be used to be able to handle large amounts of data. We

elaborate further on the performance of this method in a test-case of matrix completion, in the

supplements. In this test-case, a Swiss-roll dataset (S1 Fig) is orthonormally mapped into a

higher dimension such that resulting features depend on one another. We see in S4 Fig that

our kNN method is effective, independent of the higher dimension in the sense that it outper-

forms the mean-imputation method that we use as a baseline in the matrix completion prob-

lem. Although singular-value thresholding (SVT) [24] outperforms kNN for the highest

dimensions, it is very inefficient for lower dimensions. In that sense, the kNN method is more

reliable. This motivates our choice of matrix completion method.

Moreover, we chose a = 1 and the pi to be twice the variance of the corresponding features.

(This choice is motivated by the classical result E½ðX � YÞ2� ¼ 2V where X and Y are i.i.d. ran-

dom variables and V is their common variance.) Other advantages of this method are the low

amount of parameters that are required and the available heuristics that allow straightforward

choices. Other methods that require fine-tuning of sensitive parameters are not applicable in

the present setting, because we do not have access to a complete, comparable dataset to train

models on.

2.3 State representation

It is hard to find an approximation of the formations contained in the continuous raw data

into a tabular form, specially due to high dimensionality. In this regard, the following problems

arises:

• The amount of data is limited. Therefore, the train-test split of data faces a trade off, for

avoiding overfitting. Hence, careful considerations has to be taken into account for efficient

sampling.

• Edge cases and outliers in the data should not be ignored as they are special disease patterns.
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• The K-Means clustering method does not provide a unique solution. Therefore, different

cluster solutions emerge, which in our present work also show different performances in

terms of learning behavior and representation of the state. The choice of state representation

is critical for further procedure and the interpretation of the results. A substantial amount of

useful information can be provided to the learning algorithm by an appropriate choice of

cluster centers; it is of utmost importance.

Given these challenges, we aim to comply with the following additional conditions: first, we

tend to avoid using importance sampling (which can be implemented in off-policy evaluation

in general), as its deployment for patients records is not recommended: Since there is limited

empirical data, one has to rely on off-policy methods, which can be learned by importance

sampling and quantified by using off-policy evaluation. Unfortunately, this approach assumes

that one knows the behavior policy well enough and that sufficient data is available. In the case

of the present patient records, this is problematic, since importance sampling introduces a fun-

damentally higher variance and there is often too little data to reflect exact sequences in treat-

ment [25]. As an alternative, approaches based on the generated model can be used, but their

evaluation methods sometimes do not converge even with arbitrary amounts of data. [26].

Therefore we must choose a method that minimizes the biases that enter the procedure as

much as possible. Second, the state representation should not anticipate learning performance,

i.e., the state representation should preserve observed and possible behavior without perform-

ing any additional tasks. In other words, the representation should be independent of the

learning algorithm used.

How can a suitable clustering be found? Our objective is to identify a clustering method

that effectively approximates the continuous raw data, which have already been subdivided

into one-hour windows. As a starting point, we have the 53 dimensional vectors that form our

episode. We now want to make the best possible tabular case of this mass of data, and reduce

each of these vectors to a number without destroying too much medical information. One

method we use for this is KMeans similar to [2]: through this algorithm, clusters are searched

in such a way that the value of features that are statistically correlated in the overall data end

up in the same cluster.

However, there are at least two problems with this approach: First, it is not clear how many

clusters should be determined (the algorithm requires this number as a parameter) in order to

preserve the medical facts sufficiently well, but also to remain general enough to make mean-

ingful statements. The second problem is that the algorithm is not deterministic and there is

no unique solution, i.e., if the clustering is executed several times, one obtains a slightly differ-

ent result each time. In the data preparation, we have run the algorithm 50 times each for 19

different numbers of clusters and obtain a total of 950 different ways of discretizing the raw

data.

At this point, it is necessary to develop a meaningful decision criterion to select a viable

solution. We refer to one method of implementation that we developed in this work as the

“coverage heuristic”, which can be described by the following considerations. A clustering

solution is good if it preserves specific forms of actions and the resulting consequences well.

Specifically, the actions of physicians are a good candidate here. In the reinforcement learning

framework, numerical values are assigned to the respective states. In general, this is the

expected value for the return. So we divide the available data into two halves and try to deter-

mine these values for the states under the clinician policy. For this we use a method from

dynamic programming and obtain for 600 states, for example, 600 values of how good the

respective states perform under this policy.
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In the next step, we take the second half of the data and determine the values there as well,

but now not with the “own” policy, but with the clinician behavior from the first half. This is

the crucial step, because if it now turns out that bad states in the first half of the data are also

bad states in the second half (or the same with good states), then this indicates that this cluster-

ing is obviously able to distinguish good and bad states.

We now use this idea to compare the quality of our 950 different solutions. To do this, we

look at the respective halves of the data in pairs, determine their value under the clinican policy

of the first half, and define the “coverage” as the relative frequency of numerical deviations

smaller than 15. The value 15 is determined empirically and plausible, since the values range

from −100 to 100.

We can summarize the procedure in the following steps:

1. We split the dataset into two halves and extract the physicians’ policy from the first dataset.

2. We determine each state’s value under the extracted policy using the classical approach via

dynamic programming and policy evaluation.

3. We determine the values of the states of the second dataset under the above policy (calculat-

ing using the first dataset).

4. We determine the relative frequency of deviations in the state values from the first dataset

smaller than 15 from the values from the second dataset and use the numeric value as a

ranking for the quality of the approximation.

Using this quantitative approach, we can ensure that the discretization or clustering can

represent a treatment policy sufficiently well. We thus obtain a tool to compare the quality of

clustering for medical treatment among the variety of alternatives that can be calculated. It is

important to note that we do not anticipate the policy that will be calculated later. This proce-

dure depends exclusively on the unstructured data and the treatment histories of the patients.

As a result, this decision heuristic could be called “end-to-end”. It represents our selection cri-

terion for processing the continuous data for use by the RL algorithm in the final step.

Any policy can be used to implement this procedure. The most promising option is to con-

sider the existing clinicians’ policies due to the limited amount of data. Initially, we used value

iteration to compute each state’s optimal values and chose these as the basis for comparison

between any two halves of the dataset. This approach did not work well because of the limited

amount of data available. Our comparison heuristic did not work because patient records in

the two halves of the dataset were too different, and the supposedly optimal option in one data-

set did not occur at all in the other. This motivated us to to choose the medics’ policy as a

reference.

2.4 The sepsis simulator

There are several possibilities for the interface between the state representation and the learn-

ing algorithm. Due to the characteristics of the environment off-policy methods are the most

reasonable choice. For the evaluation of a learned policy, off-policy evaluation methods based

on Importance Sampling, can be used [27]. Still, in the present application, it is hard to deter-

mine the value of deterministic strategies, and an analysis of the results is mainly limited to

qualitative statements. As an alternative, one can use actor-critic methods [28] or extend off-

policy evaluation methods [29].

We take a novel approach and develop a simulator that generates new trajectories from the

existing transition probabilities for the interface between the preprocessed trajectories and the
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learning algorithm. This platform ensures a clean separation between the environment and

agent, while evaluates the generated data more comprehensively.

However, there were two challenges with the implementation. Since not all 25 actions (two

drugs and five doses) are available in every state, we had to reduce the action selection to valid

actions. This adds complexity, but does not contradict the framework of Markov decision pro-

cesses (MDPs). The second problem was loops, where the agent would be caught, and the epi-

sodes did not terminate. The cause leads to a strong correlation with the quality of the state

representation, and the experience gained from preventing loops also served as a refinement of

our methodology. The number of clusters also played a crucial role, illustrating the impact of

overfitting.

The simulator is initialized with 20% of the dataset prepared in the form of trajectories for

training. It can interact with the agent via an OpenAI gym [30] compatible interface. The indi-

vidual patient records represent the episodes; a reward of + 100 (survival) or −100 (death) is

only given at the ends of the episodes. In each step, the agent is informed about the possible

actions and decides according to the learned policy (see Section 3.1).

3 Distributional reinforcement learning

The typical approach to reinforcement learning is to model the expected return by either a

state value function v or a state-action value function q. As the name suggests, the core of

distributional reinforcement learning is to model the entire distribution of the return instead

of only its expected value.

For ðx; aÞ 2 X �A the return Zπ(x, a) is the sum of the discounted rewards along a trajec-

tory following a policy π starting in state x and taking action a, i.e.,

Zpðx; aÞ≔
X1

t¼0

gtRðXt;AtÞ;

X0 ≔ x; A0 ≔ a; Xtþ1 � pð�jXt;AtÞ; Atþ1 � pð�jXtþ1Þ:

The function Zπ mapping state-action pairs to random variables is called the return distribu-
tion function.

We can relate the state-action value function to the return distribution function by observ-

ing that qðx; aÞ ¼ E½Zpðx; aÞ�. Furthermore, the Bellman equation can be extended to the

distributional case as

Zpðx; aÞ¼D Rðx; aÞ þ gZpðX0;A0Þ;

where X0* p(�|x, a), A0* π(�|X0). Here the equal sign indicates that the random variable on

the left-hand side and the one on the right-hand side are identically distributed.

Lastly, Zðx;aÞ
p

denotes the underlying probability distribution of the random variable Zπ(x, a),

giving us a second representation

Zpðx; aÞ � Zðx;aÞ
p

of return distribution functions.

3.1 Categorical distributional reinforcement learning

The task of policy control is to find the return distributions η� which are optimal with respect

to the expected value qðx; aÞ ¼ EZ�Zðx;aÞ�
½Z�. As we are interested in the entire return
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distribution, the problem of finding an approximation method might arise. We decided to

consider distributions over fixed finite support z1, . . ., zN. This method is well-known and has

the advantage of being highly expressive and computationally tractable [13].

The set of categorical distributions is defined as

Pz ≔
XN

i¼1

pidzi

�
�
�
� pi � 0;

XN

i¼1

pi ¼ 1

( )

:

With this notation the return distribution of any policy π can be modeled as Zðx;aÞ 2 Pz � Z
ðx;aÞ
p

for all state-action pairs ðx; aÞ 2 X �A.

Under the Bellman operator T p
, the support of a distribution n 2 Pz changes and in general

T p
Zðx;aÞ =2Pz. Therefore, one has to perform a projection back onto the support z1, . . ., zN. This

can be done using the categorical projection operatorPC such thatPCT
p
Zðx;aÞ 2 Pz. For more

details of this method, see [13, 14].

Instead of the Q-learning [31] update rule

Z
ðx;aÞ
kþ1 ¼ ð1 � akÞZ

ðx;aÞ
k þ akPCT

pkZ
ðx;aÞ
k ;

we opted for the SQL update rule [32]

Z
x;að Þ

kþ1 ¼ Z
x;að Þ

k þ ak PCT
pkZ

x;að Þ

k� 1 � Z
x;að Þ

k

� �
þ 1 � akð ÞðPCT

pkZ
x;að Þ

k � PCT
pkZ

x;að Þ

k� 1 Þ; ð1Þ

where πk is the policy which is greedy with respect of the expected values of ηk.

Reference [14] proved convergence of the Q-learning update rule to the fixed point of

PCT
p� : PX�A

z ! PX�A
z for an optimal policy π� (w.r.t. the expected value) denoted by η� in

the maximum Cramér distance

�‘2ðZ; xÞ ≔ sup
ðx;aÞ2X�A

Z

R
jFZðx;aÞ ðzÞ � Fxðx;aÞ ðzÞj

2dz
� �1=2

¼ sup
ðx;aÞ2X�A

XN� 1

i¼1

ðziþ1 � ziÞðFZðx;aÞ ðziÞ � Fxðx;aÞ ðziÞÞ
2

 !1=2

:

It can be shown that using the SQL update rule, the accelerated convergence is proven in the

expected-value case also holds in the distributional case when policy evaluation is used to find

the return distribution of a given policy π by keeping πk = π fixed [15]. Empirical results show

that the same accelerated performance is also achieved for the SQL update rule (1) when used

for policy control.

Further, suppose we decrease the maximum distance of fixed atoms (i.e., by increasing the

number of equally spaced atoms). In that case, the categorical approximation η� is closer to the

true return distribution Zp� in terms of the Cramér distance.

Finally, the simulator allows us to perform updates in a synchronous fashion. That is, in

each iteration, ηk is updated at every state-action pair. Thereby the problem of exploring the

state space, which we would have if the agent is trained in an online fashion, is avoided, and

convergence to the approximated return distribution function ηπ is faster.

The described method is summarized in Algorithm 1. As already mentioned, the algo-

rithm can be easily converted to policy evaluation by keeping the policy fixed πk = π and

sampling a0k � pð�jx
0
kÞ in line 8 instead of using the greedy action with respect to the

expectation.
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Algorithm 1 Synchronous Speedy Categorical Policy Control

1: Require: Z
ðx;aÞ
k ¼

PN
i¼1

pðx;aÞk;i dzi
for fixed atoms z1, . . .zN

2: Input: discount factor γ, max. number of iterations T, initial
guess η0, threshold Δ
3: η−1  η0
4: for k 2 0, . . ., T − 1 do
5: ak  

1

kþ1

6: pkðxÞ  arg maxa2A EZ�Zðx;aÞk
½Z� 8x 2 X

7: for ðx; aÞ 2 X �A do
8: Sample x0k � pð�jx; aÞ, a0k ¼ pkðx0kÞ, rk * R(x, a)

9: Tpk
k Z

ðx;aÞ
k  

PN
i¼1

p
ðx0k ;a

0
kÞ

k;i drkþgzi
# Bellman update

10: Tpk
k Z

ðx;aÞ
k� 1  

PN
i¼1

p
ðx0k ;a

0
kÞ

k� 1;i drkþgzi
# Bellman update

11: # Project onto support z1, . . ., zN and calculate difference
12: Dðx;aÞk  kPCT

pk
k Z

ðx;aÞ
k � ðk � 1ÞPCT

pk
k Z

ðx;aÞ
k� 1

13: # Update η
14: Z

ðx;aÞ
kþ1  ð1 � akÞZ

ðx;aÞ
k þ akD

ðx;aÞ
k

15: end for
16: if �‘2ðZkþ1; ZkÞ � D then
17: break
18: end if
19: end for

4 Results

For all applications of the speedy categorical algorithm, 51 equally spaced atoms on the interval

[−100, 100] were used. As the overall outcome is more desirable than the immediate rewards,

the discount factor was set to γ = 0.99. We allowed a maximum number of thousand iterations,

i.e., T≔ 1000. For policy control, the threshold was set to Δ≔ 0.05, whereas, for policy evalua-

tion, we did not break the loop early.

4.1 Generalization problems

In order to assess the performance of the resulting policies, we split the dataset into training

(80%) and test (20%) sets and built simulators for both sets separately. We observed that the

state transition probabilities of both simulators could be quite different. As a result, an action

that is good in one simulator can be bad in the other one. It is expected that if more data is

available, the transition probabilities will be more similar.

In our experiments, the differences in transition probabilities resulted in a deterministic

policy that performs (near) optimal in the training simulator to generate trajectories that loop

back to already visited states. Using a stochastic policy that chooses the best action with proba-

bility 0.5, the second-best with probability 0.25, and so on avoids the generation of non-termi-

nating trajectories and is therefore used for performance assessment of the agents.

For several states, we repeated policy control 10 times for random train-test splits. The

results are shown in Fig 3. The recovery rate was estimated by simulating 10 000 patient trajec-

tories starting from randomly selected initial states. Even using these stochastic policies, the

gap between the performance using the training and the test simulator is substantial across dif-

ferent number of states.

On the training set, the computed policy outperforms the clinicians’ policy with recovery

rates near one for numbers of states greater than 600. In contrast, on the test dataset, the recov-

ery rates drop to the clinicians’ level of about 90%. It can also be seen that for numbers of states

below 600, the state space becomes too coarse to find a policy with (near) perfect performance.
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Again, we emphasize that we expect the gap to shrink if more data become available. Another

way to overcome this generalization problem would be to include the learning of the state

approximation or representation into the learning algorithms, which could be the subject of

future research.

4.2 Clinicians’ policy using 600 states

The clinicians’ policy is the stochastic policy that takes actions with probabilities proportional

to the number of times clinicians took action for any given state in the data.

When evaluating all available patient trajectories, results show that less than 0.05% of the

clinicians’ actions predominantly lead to a negative outcome (defined as a probability larger

than 50% of the patient dying). About 0.3% of the actions had a highly bimodal return distri-

bution. These are actions where a positive outcome is almost as likely as a negative outcome.

The majority of actions (� 96%) predominantly led to recovery and had a non-negligible

probability (5% to 20%) of a negative outcome. With a recovery probability over 95%, around

0.2% of all actions could be considered completely safe. In Fig 4, examples of the various return

distributions discussed here can be seen.

4.3 Optimal agent using 600 states

Here, we investigate the optimal agent, which was obtained based on 600 states by performing

Algorithm 1 on a randomly chosen train-test split with the parameters setup discussed above.

Fig 3. Comparison of the performance of stochastic policies on the training and test simulators for different numbers of states.

https://doi.org/10.1371/journal.pone.0275358.g003
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As shown in Fig 3, 600 is the minimum number of states for which a recovery rate of approxi-

mately one was achieved on the training set on average.

In Fig 5, we observe the approximated return distributions for each initial state choosing

actions according to the stochastic policy discussed previously. Surprisingly, it is possible to

select actions such that from every initial state, the recovery of the patient is guaranteed with

very little variance in treatment length. For almost every initial state, the return distribution is

left-skewed, corresponding to fast patient recovery. However, this perfect performance was

only achieved on the data the agent was trained on.

In order to test the performance of the calculated policy, 10 000 episodes were simulated in

the test simulator. The results are shown in Tables 1 and 2. Using the test simulator, the opti-

mal agent still outperformed the clinicians’ policy comparing the 90-day mortality.

5 Discussion, scope and conclusions

The results advocate for the effectiveness of our distributional RL methods for finding good

policies. Since we used the expected return as the maximization objective, the approach is

quite similar to optimizing the expected return directly like in standard RL methods. It is how-

ever hypothesized in [13] that using distributional RL allows for a better representation in the

context of function approximation (present here through the states’ discretization). Having

the return distribution at hand also allows for many different maximization objectives (for

example, penalizing variance or penalizing risk), but they were not studied in the present

work.

An important assumption of our method is that the process at stake can be modeled by a

piece-wise constant function (see Section 2.3). Mathematically, this relates to the function to

be approximated being absolutely continuous. In practice, this implies that the clustering needs

a finer resolution where the function to approximate has an important gradient to produce a

more accurate model. However, this modeling restriction has great benefits in regards to

interpretability since any dependency on the features is immediate and explicit in our state

representation.

Additionally, the spatial coherence induced by the chosen method for clustering allows for

a neat representation of the high-dimensional data. We show some examples in Fig 6. Using

PCA, the continuous features are linearly projected onto a two-dimensional plane in Fig 6a.

We then used stereographic projection in Fig 6b through Fig 6d to produce a bounded repre-

sentation of the projected state space.

In these figures, a certain state, parameterized by the center of the sphere, is mapped to the

south pole of the sphere. The bottom half of the sphere then represents a neighborhood of this

Fig 4. Examples of return distributions when following the clinicians’ policy. From left to right: negative outcome, bimodal distribution, slightly

bimodal distribution, positive outcome.

https://doi.org/10.1371/journal.pone.0275358.g004
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state parameterized by the specified radius. States outside of this neighborhood are mapped to

the upper half of the sphere, with states infinitely far away from the center being mapped to its

north pole. This new state representation can then be colored following results from the algo-

rithm. We represent state-values (i.e. maximal expected q-values across actions) in Fig 6b and

Fig 5. Return distributions of the resulting stochastic policy for all initial states in gray and average return

distribution (weighted by the numbers of occurrences as initial states) in blue. The average return distribution of

the clinicians’ policy is shown in red for comparison. Left: training simulator; right: test simulator.

https://doi.org/10.1371/journal.pone.0275358.g005

Table 1. Performance comparison of the agent and the clinicians after 10 000 simulated patient trajectories in the

evaluation environment (n = 10000, 90-day mortality).

ENV Mean reward Recovery rate

Clinician test 47.47 85.41

train 51.77 88.47

Agent (stochastic policy) test 50.83 88.76

train 86.84 99.80

https://doi.org/10.1371/journal.pone.0275358.t001
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Table 2. Performance comparison of the agent and the clinicians after 10 000 simulated patient trajectories in the

evaluation environment (n = 10000, 28-day mortality).

ENV Mean reward Recovery rate

Clinician test 54.13 89.57

train 53.98 89.63

Agent (stochastic policy) test 53.94 87.08

train 91.29 99.95

https://doi.org/10.1371/journal.pone.0275358.t002

Fig 6. Stereographic representation of the data produced by the model. (a) Two-dimensional representation of the computed state values for the

clinicians’ policy using PCA. Each dot is a state obtained through the method described in Section 2.3 with the size matching the number of corresponding

observations in the dataset. The coloring corresponds to the computed state value. S1 and S2 are specific states from which stereographic representation is

produced. (b) (Inverse) stereographic projection from the PCA plane to a sphere with center S1 and radius 1. The coloring corresponds to the state values.

(c) The coloring is changed to fit the computed state-action values for some specified action. (d) The sphere is now centered at S2 and the coloring

corresponds to a different action. The state-action values were smoothed using inverse distance weighing [33] instead using of piece-wise constant

approximation.

https://doi.org/10.1371/journal.pone.0275358.g006
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state-action values in Fig 6c and 6d for different configurations. Note the red spot near the

south pole of the sphere in Fig 6d which indicates that taking the considered action resulted in

a poorer outcome in a neighboring state than the state at the south pole.

This representation allows for a complete overview of the state space and can help over-

come the limitation of the tabular approximation. Finally, we underline that such a representa-

tion which give rise to better interpretability would not be feasible for deep RL methods

[10–12].

In Fig 6d, we also smoothed the state-action values using fuzzy membership functions

instead of clusters. This stems from the idea that the K-Means algorithm used for clustering

and state representation can be generalized using the fuzzy C-Means algorithm [34].

We also note that, although the biological understanding of sepsis mechanisms has not

been the goal of this modeling approach, the data-driven tools (see Fig 2c and 2d) and models

of treatment strategies can be exploited in future work to better understand sepsis and test its

mathematical modeling.

We would like to add a few remarks about the limitations of our method. Of course, the

performance of the learning method depends on the quality of the underlying data. We would

also like to mention that our approach is not intended to diagnose sepsis, but to treat it. It

turns out that reinforcement learning is an excellent choice in this context, because conclu-

sions can be drawn for prior actions even from much delayed reactions of the environment.

From our point of view, it is also very promising from a methodological point of view, since

this approach is more holistic than the pure classification and application of predefined strate-

gies. In essence, our approach allows also a more fine-grained sequence of actions that can be

extracted from existing patient records and treatment histories. The use of distributive RL

makes sense from our point of view, since in further research steps one should of course also

be able to quantify the risk of actions.

Regarding a further limitation, as with all machine learning problems, there remains of

course the question of how much domain knowledge one may and should put into it. One

point where care is needed here is clearly the reward function. In order to make the maximum

possible valid statement for this problem, we intentionally decided against assigning interme-

diate rewards, i.e., whether patients survived or not is the only criterion. Regarding the issue

how long the time interval of survival after ICU treatment should be to decide that question,

we found different information in the literature. Due to the availability of raw data, we used

the survival status after 90 days, which should be viable for the purposes of treating sepsis.

Supporting information

S1 Fig. The original 3D Swiss-roll dataset. It is mapped into a 100-dimensional space using a

random orthonormal mapping. (We applied the Gram-Schmidt process on a uniformly ran-

dom matrix.) We then uniformly removed 70% of the observations and performed matrix

completion using imputation by the mean observed value of features, kNN, and SVT [24].

(TIF)

S2 Fig. Data recovered when imputing missing values using the mean value of the corre-

sponding feature. This method serves as a baseline for other completion methods.

(TIF)

S3 Fig. Data recovered when imputing missing values using a kNN algorithm based on our

custom metric. The general structure of the original data is well recovered.

(TIF)
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S4 Fig. Comparison between mean imputation, kNN, and SVT for multiple dimensions of

the orthonormally mapped data. Although SVT gives an almost perfect recovery for very

high dimensions, it performs very poorly (worse than mean imputation!) in low dimensions.

On the other hand, the kNN recovery is always better (in terms of RSSE) than the mean impu-

tation.

(TIF)

S1 Table. Medical features extracted from raw data.
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