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Kurzfassung

Die Videogenerierung hat kürzlich bemerkenswerte Fortschritte erzielt und ermöglicht
nun die Erstellung von Videos, die zunehmend qualitativ hochwertiger und realistischer
sind. Moderne Ansätze greifen auf die Erfolge von Transformermodellen aus der Sprach-
verarbeitung zurück und ersetzen traditionelle U-NETs durch Diffusionsmodelle mit einer
Vision-Transformer Architektur. Die Implementierungsdetails führender Modelle wie Sora
sind nicht öffentlich zugänglich, jedoch basieren andere Modelle wie Latte, GenTron
und SnapVideo auf den Konzepten von Sora, zu denen detailliertere Informationen zur
Implementierung verfügbar sind. Diese Modelle basieren ebenfalls auf Diffusionstrans-
formatoren und verwenden unterschiedliche Methoden, um die zeitliche Dimension zu
modellieren, ohne die Präzision der einzelnen Frames zu beeinträchtigen.

In dieser Arbeit werden die architektonischen Ansätze von Latte, GenTron und SnapVideo
untersucht, insbesondere ihre Strategien zur Erfassung räumlicher und zeitlicher Aspekte
sowie zur Integration von Textanweisungen. Ausgangspunkt ist ein Diffusionstransforma-
tor für Bildgenerierung, der auf Videogenerierung erweitert wird. Darüber hinaus werden
die Modelle Latte und SnapVideo so angepasst, dass sie statt kategorischer Eingaben nun
auch Textanweisungen verarbeiten können. Die Bildgenerierungsergebnisse werden mit
Metriken wie FID, CLIPSIM, SSIM, PSNR und LPIPS bewertet, während die Qualität
der Videogenerierung sowohl mit FVD als auch durch die Analyse der einzelnen Frames
mit den Bildmetriken beurteilt wird.

Die Modelle weisen klare Unterschiede bezüglich Qualität der generierten Videos auf.
GenTron bearbeitet die räumliche und zeitliche Dimension separat innerhalb eines einzigen
Transformer-Blocks. Dies führt zu präzisen Einzelbildern, jedoch treten gelegentlich
inkohärente Bewegungen zwischen den Frames auf. Latte erreicht eine bessere zeitliche
Kohärenz, indem es zwei separate Transformer-Blöcke nutzt – einen für die Analyse
der Einzelbilder und einen für die Bewegungen im Video. Dies geht jedoch zulasten der
Bildqualität. SnapVideo hingegen verarbeitet beide Dimensionen gleichzeitig, was häufig
zu statischen und unscharfen Videos führt. Bei der Textintegration erzielt die Einbindung
von Text während der Verarbeitung einzelner Frames die besten Ergebnisse, während die
Integration auf der zeitlichen Ebene die Videoqualität negativ beeinflusst.
Die Ergebnisse verdeutlichen, wie stark die unterschiedlichen Ansätze zur Integration
räumlicher, zeitlicher und textueller Informationen die Videoqualität beeinflussen und
wie wichtig es ist, diesen Aspekten besondere Beachtung zu schenken.
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Abstract

Video generation is a fast-evolving research field, producing increasingly impressive and
lifelike videos. New advances draw inspiration from the success of Transformer models in
Natural language processing, by utilizing Diffusion models with a Vision Transformer
backbone, replacing the traditional U-NET. The architectural details of leading video
generation models like Sora are not publicly disclosed; however, models such as Latte,
GenTron, and SnapVideo are built upon the concepts of Sora, for which more detailed
architectural information is available.

This thesis explores the architectural details of Latte, Gentron, and SnapVideo, examining
how the models operate on both spatial and temporal dimensions while integrating textual
guidance during the generation process. Beginning with a basic implementation of a
Diffusion Transformer for image generation, the code is extended to video generation,
following the implementation details of Latte, GenTron, and SnapVideo from their
respective papers and, when available, their official code. Additionally, the Latte and
SnapVideo models, originally conditioned on class label inputs, are adapted to video-to-
text generation, testing various methods of integrating the textual prompt into the video
generation pipeline. The image generation results are evaluated using the image-based
metrics FID, CLIPSIM, SSIM, PSNR, and LPIPS, while the video generation samples
are assessed using FVD and frame-by-frame comparisons based on the image generation
metrics.

The different approaches to handling spatial and temporal dimensions across the three
examined architectures resulted in significant differences in the quality of the generated
videos. GenTron employs a Transformer block that separates the multi-head attention
into spatial and temporal components, which leads to high spatial accuracy but shows
occasional incoherent movement between frames. Latte utilizes two distinct Transformer
blocks – one for spatial attention and the other for temporal attention, which improves
the temporal coherence but results in lower frame quality. SnapVideo uses joint spa-
tiotemporal attention, producing the least favorable results by generating static videos
with blurry images. Regarding text guidance, the best results were achieved when the
text was integrated during spatial attention. Conversely, adding the text at the temporal
dimension decreased the overall quality of the generated video.
The results highlight the importance of carefully considering how spatial, temporal, and
textual information are integrated to produce high-quality video generation.
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CHAPTER 1
Introduction

Image generation is a research field that is rapidly changing and has demonstrated
continous improvements regarding image quality. Models like Imagen from Google
[SCS+22], DALLE-2 from OpenAI [RDN+22], DiT from Meta [PX23] are based on the
same underlying concept of diffusion models and produce photorealistic images with wide
diversity.
Diffusion models are based on the principle of transforming a complex image distribution
into a simple, well-known distribution like Gaussian. A denoising network is afterward
trained to reverse this transformation; in other words, it learns to reconstruct the complex
image distribution from the simplified one. Given an initial image sample x0 from the
dataset, the diffusion process gradually corrupts the sample, until it eventually resembles
pure noise. The denoising network tries to predict the noise contained in the corrupted
image, learning to reconstruct the initial clear input sample x0. Over time, the model
can generate new images from a given noisy sample.
The diffusion process only defines the mathematical background for noise addition and
removal. The denoising network, on the other hand, is the key element for generating
new images. As a result, a well-designed architecture for the denoising network is crucial
for the model’s performance. Current works primarily use a Transformer or U-Net-based
model for training. Figure 1.1 visualizes the intuition behind the diffusion process.

Figure 1.1: Intuition behind diffusion models

Building on the success of diffusion models in image generation, recent research has
started to explore their potential for generating videos. Under the assumption that a
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1. Introduction

video is a sequence of – mostly independent – images, the pre-trained image generations
were adapted for video predictions by inserting temporal layers. While these video
generation models demonstrate promising results, the movements between frames often
lack coherence. This led to extensive research to improve the denoising network backbone,
with different approaches to model the spatial and temporal dynamics of the video.
Models like Sora [BPH+24] have set new standards and are able to generate high-quality
videos that accurately represent a given text prompt. Drawing on the success of natural
language processing (NLP) models that employ transformer architectures, newly released
video generation models are based on the Vision Transformer. Vision Transformers
are an adaptation of the original transformer model for image and video processing.
These models can capture global dependencies within videos, making them ideal for
video generation where an object’s movement in a frame depends on previous frames.
However, transformer-based models come with significant computational and storage
costs. Processing long videos in a single batch exceeds the capacity of current hardware.
To address this, different architectural modifications have been proposed to minimize
redundant information while keeping important details.
GenTron [CXR+23] and Latte [MWJ+24a] suggest focusing separately on the spatial
and temporal dimensions of a given video by first analyzing each frame individually, then
following specific pixels and how they change over time. SnapVideo [MSS+24], on the
other hand, attempts to simultaneously model both space and time by dividing a video
into groups and processing each group independently. However, information reduction
can be a difficult task, as some information is insignificant and can be ignored, while
other details are necessary for the model to understand the input data. This makes
it even more important to understand the architectural details that contribute to the
success of leading video Diffusion Transformer models.
Yet, most of the prominent video generation models remain closed-source. While projects
like Latte [MWJ+24a] present themselves as an “open-source Sora,” the official code only
includes class-based video generation.

1.1 Aim of this Work

This work aims to bridge the gap between understanding the theory behind the image
and video generation models based on Diffusion Transformers and their implementation.
By implementing three different architectures – GenTron [CXR+23], Latte [MWJ+24a],
and SnapVideo [MSS+24] – this work tries to provide a deeper understanding of video
generation models. Furthermore, different spatial and temporal modeling will be explored,
as well as their effect on the quality of the predicted videos. The code is based on the
official implementation of Denoising Diffusion Probabilistic Models (DDPM) [Nic21], the
official implementation of the Diffusion Transformer (DiT) network [PX22] for class-to-
image generation, as well as the official implementation of the Latte model [MWJ+24b] for
class-conditional video generation. The Diffusion Transformer network implementation
serves as a foundation, learning more about preprocessing techniques and architectural
details required for generating high-quality images. The class-to-image generation model
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1.1. Aim of this Work

will subsequently be adapted for video generation, following the architecture of GenTron,
Latte, and SnapVideo. Additionally, different approaches will be tested to incorporate
text guidance in the Vision Transformer backbone. The implementation of DiT will be
trained on a class-to-image generation model, while the different video generation models
will be trained on a text-to-video dataset. Using standard image and video generation
metrics, the different models will be evaluated, where the evaluation results will be
compared with the actual perceptual sampling quality.
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CHAPTER 2
Background

2.1 Diffusion Models

Diffusion models are based on a field of physics that examines systems that are not in
thermodynamic equilibrium. An illustrative example can be ink spreading in water: In
the beginning, the ink is concentrated in one spot and the rest of the water remains clear.
The system is in an imbalanced state, but eventually, by the laws of physics, the drop
will diffuse into the water until it reaches an equilibrium. Trying to reverse this process,
meaning bringing the ink back to a single drop, is not possible. However, this is the core
challenge that diffusion models try to address: taking corrupted data and reconstructing
its original form.

Diffusion models take a given image sample and systematically corrupt it with Gaussian
noise. Over time, more noise is introduced to the data sample until it resembles random
noise – analogous to the ink completely diffused in water. During this process, the
complex distribution of the input image is converted into a simpler, more manageable
one. A denoising network is now trained to reverse this process, by predicting the noise
contained in the corrupted input image. Starting from the noisy input data, the denoising
network gradually removes the estimated noise until the original data is reconstructed.

The advantage of diffusion models over other generative models, such as GANs (Generative
Adversarial Networks) or VAE (Variational Autoencoders), is that the prediction process
happens step-by-step. Instead of trying to model the entire complex data distribution
instantly, diffusion models break it down into smaller, more manageable steps. During
each step, the diffusion model tries to estimate small perturbations in the given noisy
input data, until it has reconstructed the original image [SDWMG15].
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2. Background

2.1.1 The Generic Pipeline

The diffusion model defines a Markov chain of diffusion steps. The forward process
describes the concept of adding noise to the input data, while the reverse process
defines the procedure of gradually removing noise to bring the data back to its original
distribution. The forward process is applied to the input data during training and
sampling. However, it is important to note that the forward process does not include
any trainable parameters.
A generative model subsequently has to predict the noise added to the data. More
specifically, the model has to estimate the Gaussian mean µ and variance Σ of the noise
added to the data. The reverse process involves removing the predicted noise, as a chain
of reverse transitions [SDWMG15][CKS23].
After training the model, new data can be generated during the sampling procedure.
The diffusion model can be described in two different ways, using the discrete and
continuous formulations. The key difference between these formulations is the way the
diffusion timestep t is defined [Zha23]. The diffusion timestep defines the current stage
of the forward and reverse diffusion. During the forward process, the time step gradually
increases to its final value T . Conversely, the reverse process starts at the final time step
T and decreases back to zero. In the discrete formulation, time steps are restricted to
integer values, ranging from zero to a specified final time step T [HJA20]. Contrarily, the
continuous formulations use continuous time steps within the interval [0, 1], theoretically
allowing an infinite number of time steps [SSDK+21]. Table 2.1 shows an overview of
the notations used in the next chapters with their corresponding description.

2.1.2 The Nature of Noise: Gaussian Distribution

The diffusion process is based on probability distributions, with the Gaussian distribution
playing a central role. The Gaussian distribution is defined by its mean µ and variance
Σ. The mean defines the center of the noise and the variance indicates the dispersion of
the noise. The forward and reverse diffusion processes are defined utilizing a conditional
distribution. Given two variables x and y, the conditional distribution p(x|y) describes
the probability that variable x takes a value if the value of y is known.
During the forward diffusion, the corruption of a given sample xt at diffusion time step t
is dependent on the state of the sample at the previous state denoted as xt−1, starting
with the clear sample x0 at time step t = 0. This process can be described by the
conditional probability

p(xt|xt−1) = N (xt; µt, Σt). (2.1)

The notation in (2.1) describes the Gaussion probability density function N parameterized
by µ and Σ evaluated at point xt.
A common choice for the conditional probability distribution is a Gaussian distribution
with a diagonal covariance structure, i.e.,

p(xt|xt−1) = N (xt; µt, σ2
t I), (2.2)

6



2.1. Diffusion Models

Notation Terminology

N (x; µ, Σ) Variable x follows the Gaussian distribution with mean µ and variance Σ
x0 Initial Training sample
t Time step
T Total number of time steps
xt Noisy sample at time step t
ϵt Noise at time step t
q(x0) Distribution of original training sample at time step 0
p(xt) Distribution of noisy sample at time step t
q(xT ) Distribution of noisy sample at final time step T
q(xt|xt−1) Forward transition
q(xt−1|xt) Reverse transition
I Identity matrix
N (0, I) Gaussian distribution
x ∼ N (µ, Σ) x is sampled from Gaussian distribution with mean µ and variance Σ
θ The parameters of the denoising network

Table 2.1: Overview Notations and Terminologies used to describe the diffusion model

where σt is the standard deviation.
To generate a noisier version x1 from a given clear sample x0, sampling from the
distribution xt ∼ p (xt|xt−1) is required. However, random sampling is not differentiable.
Therefore, a re-parametrization trick is introduced, to express the random variable xt

as a deterministic variable. By sampling an independent random variable ϵt from the
Gaussian distribution ϵt ∼ N (0, I), the sampling can be defined as

xt = µt + σtϵt, (2.3)

given the mean µt and the standard deviation σt of the distribution. This re-parametrization
trick is applied during both the forward and reverse diffusion steps.

2.1.3 Two Formulations of Diffusion Models

Discrete Formulation: Denoising Diffusion Probabilistic Models (DDPMs)

The DDPM is a popular discrete formulation of diffusion models due to its straightforward
implementation and high quality in generated samples.

Forward Process During the forward process, DDPMs corrupt the training sample
according to the Markovian process: given the distribution of the training dataset q(x),
calculate q(xt) from known q(xt−1).
The Markov chain is a model, where the current state xt at time step t is only influenced

7



2. Background

by the previous one xt−1. Starting with the original (non-noisy) sample x0 at time step
t = 0, the subsequent data point x1 can be computed by adding a small amount of
Gaussian noise. This process follows the transition kernel which is defined as

q(xt|xt−1) = N (xt;
√︁

1− βtxt−1, βtI), (2.4)

where xt is sampled from the Gaussian distribution of mean
√

1− βtxt−1 and variance
βtI. The variance schedule βt is a hyperparameter and serves as a scaling factor for mean
and variance, defining the rate of noise added at each step in the Markov chain.
The mean of the distribution q(xt|xt−1) is a scaled version of at previous state xt−1,
shifting the sample by the factor

√
1− βt. The variance introduces noise around the

shifted version of xt−1, by adding independent noise to each element – in the context of
image generation, to each pixel. A larger value for βt at time step t results in a greater
amount of noise being added.
Through multiple time steps, a sequence of noise samples x1, x2, . . . , xT are produced,
where the initial data sample x0 gradually loses its distinguishable features over time.
After T steps, the original data x0 converges to pure Gaussian noise. The entire process,
from the initial time step t = 0 to the final time step t = T , can be represented by the
Markov chain

q(x1:T |x0) =
T∏︂

t=1
q(xt|xt−1), (2.5)

where q(x1:T |x0) states that q is repeatably applied from time step 1 to T , given the
initial data point x0.
To obtain xt, one has to sample from the Gaussian distribution described in (2.4), using
the re-parametrization trick in (2.3). Sampling xt from the distribution can be expressed
as

xt =
√︁

1− βtxt−1 +
√︁

βtϵ, (2.6)
with ϵ ∼ N (0, I). (2.6) describes a step-by-step process where the noise is gradually
added to the initial sample x0 over time. However, this approach can be inefficient,
particularly when the final time step T is large. To address this, the noise schedule βt

is reformulated, enabling the process to be expressed in terms of the initial time step
t = 0. This allows for direct sampling of xt at any arbitrary time step t from the original
sample x0 [HJA20], i.e.,

q(xt|x0) = N
(︂
xt;
√

ᾱtx0, (1− ᾱt) I
)︂

, (2.7)

with αt = 1− βt, ᾱt = ∏︁t
i=1 αi and ϵ ∼ N (0, I). Using the re-parametrization trick again

described in (2.3), the noise sample xt can be directly computed from initial sample x0
using

xt =
√

ᾱtx0 +
√

1− ᾱtϵ. (2.8)
Following the (2.8), the noisy sample xt can be derived by adding random noise ϵ sampled
from the Gaussian distribution to the initial sample x0. The amount of noise added is
scaled by

√
1− ᾱt and the extent of the original sample still present is scaled by the

factor
√

ᾱt.
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2.1. Diffusion Models

Reverse Process The reverse process involves denoising a corrupted sample xt, using
the model’s predictions to identify and subtract the noise at each step.
During training, the model has learned to reverse of the forward process q(xt|xt−1), by
estimating q(xt−1|xt), also called posterior distribution. The approximated posterior
distribution is denoted here as pθ(xt−1|xt) with θ being the parameters of the denoising
network.
More specifically, the denoising model learns to predict the mean µθ(xt, t) and variance
Σθ(xt, t) for each reverse diffusion step, i.e.,

pθ(xt−1|xt) = N (xt−1; µθ(xt, t), Σθ(xt, t)). (2.9)

The distribution pθ(xt−1|xt) is modeled as Gaussian for simple optimization, where the
variance Σθ(xt, t) is isotropic and diagonal, i.e.,

Σθ(xt, t) = σ2
t I. (2.10)

Similarly to the forward process, the reverse process can be written as a Markov chain,
i.e.,

pθ(xT :0) = p(xT )
T∏︂

t=1
pθ(xt−1|xt). (2.11)

As shown in (2.11), the reverse diffusion process begins at time step T , which corresponds
to the final step of the forward diffusion, where the original data sample x0 has been
transformed into pure noise, i.e.,

xT ∼ N (0, I), (2.12)

with

p(xT ) = N (xT ; 0, I). (2.13)

Loss Function The marginal likelihood pθ(x0) encapsulates how well the entire gener-
ative process, from forward to reverse diffusion, models the training data. It describes
the probability of observing x0, a sample from the dataset, given the parameters θ. By
considering all possible pathways the model can follow to derive from pure noise xT the
reconstructed data sample x0, the marginal likelihood can be computed as

pθ(x0) =
∫︂

pθ(x0:T )dx1:T . (2.14)

During training, the denoising model attempts to learn the distribution of the training
dataset, optimizing its parameters θ.
A natural choice for the loss function would be minimizing the negative log-likelihood,
which is defined as

− log pθ(x0), (2.15)

9



2. Background

which would allow the model to indirectly learn how to reverse the forward diffusion
process. As stated in (2.14), computing pθ(x0) would involve integrating over all possible
trajectories to receive the reconstructed data sample x0 from a noisy sample xT , which
is intractable [SL23]. Instead, the evidence lower bound (ELBO) is employed, to derive
a computable formula. The idea behind ELBO is to create a lower limit on how well a
model can explain a set of observed data points. This limit helps evaluate the model’s
performance and is given by

log p(x) = log
∫︂

p (x0:T ) dx1:T (2.16)

= log
∫︂

p (x0:T ) q (x1:T | x0)
q (x1:T | x0) dx1:T (2.17)

= logEq(x1:T |x0)

[︃
p (x0:T )

q (x1:T | x0)

]︃
(2.18)

≥ Eq(x1:T |x0)

[︃
log p (x0:T )

q (x1:T | x0)

]︃
(2.19)

where in the last step Jensen’s inequality is applied. After some simplification, the loss
function can be rewritten as

E [− log pθ (x0)] ≤ Eq[DKL (q (xT | x0) ∥ p (xT ))⏞ ⏟⏟ ⏞
LT

(2.20)

+
∑︂
t>1

DKL (q (xt−1 | xt, x0) ∥ pθ (xt−1 | xt))⏞ ⏟⏟ ⏞
Lt−1

− log pθ (x0 | x1)⏞ ⏟⏟ ⏞
L0

].

The loss terms directly compare the outcomes of the forward diffusion steps of q and the
reverse steps predicted by pθ, utilizing the Kullback-Leibler (KL) divergence (except for
L0) [HJA20]. The Kullback-Leibler divergence DKL(q||p) is defined as

DKL(q||p) =
∫︂

log q(x)
p(x)dx (2.21)

and measures how much a probability distribution p differs from the true probability
distribution q. The loss terms of (2.20) represent the following:

• LT : measures KL divergence between q(xT |x0) and p(xT ). It reflects how close
xT is to the Gaussian noise. This component of the loss is removed in the official
paper [HJA20], since LT has no trainable parameters.

• L0: reflects how closely the model can reconstruct the original input data. In the
original paper, this term is learned by a separate decoder [HJA20].
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2.1. Diffusion Models

• Lt−1: measures the accuracy of the estimated denoised sample by calculating the
difference between the desired denoising steps q(xt−1|xt, x0) and the estimated ones
pθ(xt−1|xt). This represents the core objective of the denoising model.

Considering the KL divergence between two distributions p and q, where the variances
are diagonal and equal, i.e., Σp = Σq = λI, the KL divergence simplifies to

DKL(q||p) = 1
2(µp − µq)⊺Σ−1

p

(︂
µp − µq

)︂
. (2.22)

This allows to transform the loss term Lt−1 of (2.20) to

Lt−1 = Ex0,ϵ

[︄
1

2 ∥Σθ (xt, t)∥22
∥µ̃t (xt, x0)− µθ (xt, t)∥2

]︄
, (2.23)

where µ̃t (xt, x0) is the mean of the conditional probability q(xt−1|xt, x0) and µθ (xt, t)
is the predicted mean of reverse diffusion step defined in (2.9).
The conditional probability q(xt−1|xt, x0) can be described as a reverse diffusion step
towards xt−1, if x0 is known as a reference. The reverse conditional probability q(xt−1|xt)
is intractable, however, conditioning the distribution on x0, i.e. q(xt−1|xt, x0), makes it
computable. It is defined by

q (xt−1 | xt, x0) = N (xt−1; µ̃t (xt, x0) , σt̃
2I) (2.24)

with

µ̃t (xt, x0) =
√

αt (1− ᾱt−1)
1− ᾱt

xt +
√

ᾱt−1βt

1− ᾱt
x0 (2.25)

and

σt̃ = 1− ᾱt−1
1− ᾱt

βt. (2.26)

Replacing x0 with x0 = 1√
ᾱt

(xt −
√

1− ᾱtϵt) from (2.8), the mean µ̃t (xt) now only
depends on xt with

µ̃t (xt) = 1
√

αt

(︃
xt −

βt√
1− ᾱt

ϵ

)︃
. (2.27)

If the denoising network ϵθ is now trained to approximate ϵ and consequently the mean
µ̃t, it can be rewritten as

µ̃θ (xt, t) = 1
√

αt

(︃
xt −

βt√
1− ᾱt

ϵθ (xt, t)
)︃

. (2.28)

11



2. Background

Inserting (2.28) and (2.27) to the loss term Lt−1 defined in (2.23) and after further
simplifications, the loss function can be re-parametrized to the estimated noise ϵθ, which
is also the final representation of the loss function, i.e.,

Lt := Ex0,ϵ

[︄
β2

t

2∥Σθ(xt, t)∥22αt (1− ᾱt)
∥ϵ− ϵθ (xt, t)∥2

]︄
, (2.29)

with xt being the corrupted sample at timestep t according to the forward diffusion
process

ϵθ (xt, t) :=
√

ᾱtx0 +
√

1− ᾱtϵ, (2.30)

and ϵ representing the current noise present in sample xt. The actual noise is compared
to the predicted noise of the denoising model, described as ϵθ(xt, t).
In the original paper [HJA20], it was suggested to ignore the weighting term and therefore
fix the variance to a constant Σθ = (1−ᾱt−1

1−ᾱt
βt)I. This simplifies to a mean squared error

between the noise added during the forward process and the predicted noise from the
model, i.e,

L := Ex0,ϵ∥ϵ− ϵθ (xt, t)∥2, (2.31)

with

ϵθ (xt, t) :=
√

ᾱtx0 +
√

1− ᾱtϵ. (2.32)

Subsequent empirical studies revealed that predicting the variance enables sampling with
fewer steps [ND21]. The loss function is updated enabling the model to predict the
variance, defined as

Lvar = L + λ
T∑︂

t=0
Lt, (2.33)

where L is defined in (2.31) and Lt is defined in (2.29) with a regularization hyperparam-
eter λ [DN21]. The variance Σθ is not predicted directly from the model, instead, the
model predicts a vector v that contributes to the calculation of the variance, described as

Σθ(xt, t) = exp
(︃

v log βt + (1− v) log 1− ᾱt−1
1− ᾱt

βt

)︃
, (2.34)

where exp is the exponential operator.

Training The generative model is trained on noisy input samples, predicting the
expected noise ϵθ contained in the corrupted samples, denoted as ϵ. During each training
step, the model takes a clear input sample x0 from the training dataset and introduces
noise to the input according to the forward process

xt =
√

ᾱtx0 +
√

1− ᾱtϵ (2.35)

12



2.1. Diffusion Models

with αt = 1 − βt, ᾱt = ∏︁t
i=1 αi and ϵ ∼ N (0, I). The current time step t defines the

amount of noise returned by the noise scheduler βt, where a larger t indicates more noise
and smaller t represents less noise. During training, the current time step is sampled
randomly from a range of [0, T ] with time step T as the final time step.
If the model predicts only the noise and the variance is fixed to Σθ =

(︂
1−ᾱt−1

1−ᾱt
βt

)︂
I,

the model computes the mean squared error between the actual noise ϵ present in the
corrupted input sample and the predicted noise ϵθ(xt, t) from the model. The training
process is described in Algorithm 2.1. The noise scheduler β is predefined to one of

Algorithm 2.1: DDPM Training
Input: noise scheduler βt with αt = 1− βt, ᾱt = ∏︁t

i=1 αi

1: repeat
2: x0 ∼ q (x0) ▷ Sample x0 from training dataset
3: t ∼ Uniform({1, . . . , T}) ▷ Sample random timestep t
4: ϵ ∼ N (0, I) ▷ Draw new noise vector ϵ
5: xt =

√
ᾱtx0 +

√
1− ᾱtϵ ▷ Corrupt data with Gaussian noise

6: ϵθ = DDPM_model(xt, t) ▷ Predict noise ϵθ

7: Take gradient descent step on ∇θ ∥ϵ− ϵθ(xt, t)∥2
8: until converged

the various options outlined in Section 2.1.4, where the schedule at a given time step
t is defined as βt. The values of the noise scheduler for each possible time step t are
calculated before training.

Sampling (Inference) Once the model has been trained on the parameters θ to
approximate the true reverse process q(xt−1|xt) as closely as possible with the estimate
pθ(xt−1|xt), it can be used to generate new images. The posterior distribution described
by the model, pθ(xt−1|xt) is given by

pθ(xt−1|xt) = N (xt−1; µθ (xt, t) , Σθ (xt, t)). (2.36)

The original paper [HJA20] chose to fix the variance to an untrained time-dependent
constant that is

Σθ = σ2
t I, (2.37)

where

σt =
√︄

1− ᾱt−1
1− ᾱt

βt. (2.38)

Therefore the approximated posterior distribution can be rewritten as

pθ(xt−1|xt) = N
(︂
xt−1; µθ (xt, t) , σ2

t I
)︂
, (2.39)
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2. Background

with

µθ (xt, t) = 1
√

αt

(︃
xt −

1− αt√
1− ᾱt

ϵθ (xt, t)
)︃

. (2.40)

Using the re-parametrization trick in (2.3), it is possible to directly sample from the
posterior distribution estimate pθ(xt−1|xt) with ϵ ∼ N (0, I), i.e.,

xt−1 = µθ(xt, t) + σtϵ, (2.41)

so that

xt−1 = 1
√

αt

(︃
xt −

1− αt√
1− ᾱ

ϵθ(xt, t)
)︃

+ σtϵ. (2.42)

The sampling starts with xT ∼ N (0, I). The generative model iteratively removes the
noise contained in the corrupted sample to retrieve the reconstructed data x0. During
sampling, the model estimates the entire noise present in the sample xt to retrieve x0.
The predicted noise ϵθ(xt, t) is afterward removed from the noisy sample xt. But instead
of removing all the noise at once, the model eliminates only a fraction of the predicted
noise from the noisy sample. As the time step t approaches 0, progressively larger portions
of the predicted noise are eliminated, with the entire predicted noise being removed at
the final time step 0.
The sampling process can be described according to Algorithm 2.2.

Algorithm 2.2: DDPM Sampling

Input: noise scheduler β with αt = 1− βt, ᾱt = ∏︁t
i=1 αi, σt =

√︂
1−ᾱt−1

1−ᾱt
βt

Output: reconstructed sample x0
1: xT ∼ N (0, I)
2: for t = T , . . . , 1 do do
3: if t > 1 then
4: z ∼ N (0, I) ▷ Draw new noise vector z
5: else
6: z = 0 ▷ Don’t add noise at the last step
7: end if
8: ϵθ = DDPM_model(xt, t) ▷ Predict noise ϵθ

9: xt−1 = 1√
αt

(︂
xt − 1−αt√

1−ᾱt
ϵθ

)︂
+ σtz ▷ Remove predicted noiseϵθ

10: end for
11: return x0

Continuous Formulation: Score SDE Formulation

Forward Process To understand the continuous formulation of the forward process,
one has to first consider the sampling from the transition kernel from the DDPM forward

14



2.1. Diffusion Models

diffusion process, which – before using re-parametrization – is described as

xt =
√︁

1− βtxt−1 +
√︁

βtN (0, I). (2.43)

The noise scheduler β can be interpreted using step size ∆t, and therefore the sampling
process is rephrased as

xt =
√︂

1− β(t)∆txt−1 +
√︂

β(t)∆tN (0, I), (2.44)

where βt = β(t)∆t and ∆t is the step size, with β(t) as a function that adjusts the step
size at time t.
If the step size is negligibly small, the first term of the sampling process in (2.44) can be
rewritten using a Taylor expansion, i.e.,

xt ≈ xt−1 −
β(t)∆t

2 xt−1 +
√︂

β(t)∆tN (0, I). (2.45)

The sampling process formulated in (2.45) can be interpreted as an iterative update
that corresponds to a certain discretization of a stochastic differential equation (SDE),
describing diffusion in the infinitesimal limit, i.e.,

dxt = −1
2β(t)xtdt +

√︂
β(t)dwt, (2.46)

which can be more generally described as

dxt = f(x, t)dt + g(t)dw, (2.47)

where dwt is the standard Wiener process based on Brownian motion, f(x, t) is a scalar
function formulating the drift coefficient, determining the rate at which the process dx
evolves on average, and g(x, t) is called the diffusion coefficient, defining how much noise
is added over time.
By setting f(x, t) = −1

2β(t)xt and g(t) =
√︁

β(t), the DDPM framework is described in
continuous time, namely Variation Preserving SDE (VP SDE). As a result, DDPM is
a special case of diffusion model with SDE, where (2.47) describes the general case. A
Variation Explosion (VE) SDE has also been proposed; however, it will not be discussed
in this context.
Considering the additive terms of the update dxt on xt over time individually, it becomes
apparent that the first term describes a negative update direction towards state xt,
pulling its contribution towards zero. At the same time, the second term

√︁
β(t)dwt

gradually adds noise over time. Intuitively, by repeating this update process multiple
times, xt ultimately becomes pure noise, which is the intended outcome of the forward
diffusion process.

Reverse Process Given a forward stochastic differential equation, one can describe
the reverse of that SDE. [And82] The reverse generative diffusion SDE can be described
as

dx =
(︂
f(x, t)− g(t)2∇x log p(x)

)︂
dt + g(t)dw̄. (2.48)
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2. Background

In the context of a Variation Preserving SDE, this is defined as

dxt =

drift term⏟ ⏞⏞ ⏟⎛⎜⎝−1
2β(t)xt − β(t)∇xt log qt(xt)⏞ ⏟⏟ ⏞

“Score Function”

⎞⎟⎠ dt +

diffusion term⏟ ⏞⏞ ⏟√︂
β(t)dw̄t , (2.49)

where dw̄t is a standard Wiener process with time flowing backward from T to 0. The
score function ∇xt log qt(xt) depends on the distribution of the training data x at time
t. But the distribution of the training data q(x) is not known. The idea is now to
approximate the distribution with a denoising model pθ, where θ are the network’s
parameters.

Loss Function The denoising model is trained to fit the score function ∇xt log qt(xt),
which can be described as the minimization problem

min
θ

Et∼U(0,T )⏞ ⏟⏟ ⏞
diffusion

time t

Ext∼qt(xt)⏞ ⏟⏟ ⏞
diffused
data xt

∥ sθ (xt, t)⏞ ⏟⏟ ⏞
denoising
network

− ∇xt log qt (xt)⏞ ⏟⏟ ⏞
score of

diffused data

∥22. (2.50)

The idea is to draw a diffusion time t from the uniform distribution in the range [0, T ],
then sample diffused data at time step t and give this as input to the model sθ with the
time t. The model is trained to predict the gradient of the logarithm of the distribution
qt(xt) of the data point x at time step t. The loss can be calculated utilizing a simple L2

term between predicted score function sθ and the log of the probability density function
∇xt log qt (xt).
The problem of the above (2.50), as stated already, is that it is not tractable because
there is no analytical expression of the distribution q(x) of the dataset. If it were possible,
there would be no need to train a model to approximate it.
Instead, denoising score matching is considered to train the model and describe the loss
function. It utilizes the conditional density qt(xt|x0) given a particular data point x0 from
the dataset instead of the full diffuse density qt(xt). The advantage of the conditional
distribution is that qt(xt|x0) is tractable. The modified loss function can now be written
as

min
θ

Et∼U(0,T )⏞ ⏟⏟ ⏞
diffusion

time t

Ex0∼q0(x0)⏞ ⏟⏟ ⏞
data

sample x0

Ext∼qt(xt)⏞ ⏟⏟ ⏞
diffused data

sample xt

∥ sθ (xt, t)⏞ ⏟⏟ ⏞
denoising
network

− ∇xt log qt (xt|x0)⏞ ⏟⏟ ⏞
score of diffused

data sample

∥22.

(2.51)

Now the network can be trained to approximate the score of a diffused individual data
point x0.
Given a diffusion time t sampled from the uniform distribution of range [0, T ], the model
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2.1. Diffusion Models

draws a particular sample x0 from the dataset and diffuses the data point x0 towards the
corrupted variant xt at time step t. The network takes the noised xt as input, training
the score of this one particular diffused data sample x0.
It turns out that by employing the loss function of (2.51), the model still learns to
approximate the dataset distribution. This is intuitive because the model tries to predict
the reconstructed data x0 from a given noisy sample xt. The noisy data could represent
many possible values of the original data x0. The model essentially averages over the
possible values, learning over time to approximate the score of the full diffused data
distribution.
Using re-parametrization sampling with xt = γtx0 + σtϵ, ϵ ∼ N (0, I), γt = e− 1

2

∫︁ t

0 β(s)ds

and σ2 = 1− e− 1
2

∫︁ t

0 β(s)ds the score function simplifies to

∇xt log qt (xt|x0) = − ϵ

σt
. (2.52)

Here, ϵ represents the noise introduced during re-parametrized sampling and σt is the
standard deviation at time step T . By parametrizing the denoising network with

sθ = −ϵθ(xt, T )
σt

, (2.53)

the loss function can be rewritten as

min
θ

Et∼U(0,T )Ex0∼φ0(x0)Eϵ∼N (0,I)
1
σ2

t

∥ϵ− ϵθ (xt, t)∥22 . (2.54)

If the parametrization of the denoising network is chosen according to (2.53), the model
is trained to predict the noise values ϵ that were used to perturb the input data x0,
equivalent to the training objective of the DDPM.
The advantage of the continuous structure of the Score SDE is that it also allows for
conditional generation, introducing conditional information such as class labels or text
prompts through the diffusion process, which is described in Section 2.1.4.

Sampling (Inference) Due to the decoupling from training, there exist multiple
inference methods. Since the implementation will focus on DDPM models, this section
will not go into detail about the different sampling methods. The following are three
popular sampling methods, which try to numerically solve the reverse-time SDE:

• higher-order adaptive step size SDE solver,

• Euler-Maruyama,

• ancestral sampling.
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2. Background

2.1.4 Noise Schedule

The noise schedule βt defines the amount of noise added to the input during the forward
diffusion process and removed during reverse computation at time step t. It is a critical
component of diffusion models, as too rapid noise addition and removal can result
in premature information loss, preventing the model from ever converging, while an
excessively slow schedule can lead to unnecessarily long computation times. The following
paragraphs describe the linear schedule, cosine schedule, sigmoid schedule, exponential
schedule, and guidance schedule.

Linear Schedule The Linear Schedule adds or removes noise at a constant rate, linearly
increasing during the forward process and linearly decreasing during the reverse process.
It can be described with

βt = βend + (βstart − βend)
(︃

t

T

)︃
, (2.55)

where βstart is the initial noise level, βend is the final noise level, t is the current time
steps, T is the total numbers of time steps.

Cosine Schedule The cosine schedule ensures a smoother transition between noise
levels. During the forward process, it introduces smaller noise at the beginning and
increases the noise more rapidly toward the end. It is defined by

βt = βend + 0.5(βstart − βend)
(︃

1 + cos
(︃

π
t

T

)︃)︃
, (2.56)

where βt βstart is the initial noise level, βend is the final noise level, t is the current time
steps, T is the total numbers of time steps.

Sigmoid Schedule The sigmoid schedule introduces noise more gradually at the
beginning and end of the forward diffusion process while taking larger steps in the middle.
This characteristic follows the idea of preserving important features in the initial and
later stages of diffusion modeling. It is described with

βt = βend + (βstart − βend)
(︂
1 + e−k( t

T
− 1

2 ))︂
, (2.57)

where βt βstart is the initial noise level, βend is the final noise level, t is the current time
steps, T is the total numbers of time steps and k is a parameter.

Exponential Schedule The exponential schedule adds more noise at the beginning and
gradually reduces the noise level in later stages. This facilitates more gradual refinement
during the later stages while enabling faster extraction of fine details early on. It is
defined by

βt = βstart

(︃
βend
βstart

)︃ t
T

, (2.58)

where βstart is the initial noise level, βend is the final noise level, t is the current time
steps, T is the total numbers of time steps.
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2.1. Diffusion Models

Guidance Mechanisms

Guidance mechanisms have been introduced to influence the output of generation models
on conditions like class labels or text prompts.

Classifier Guidance Classifier guidance employs an additional classifier with trainable
weights to control the generation process of a diffusion model. The conditioning input
for this method consists of class labels. This entails that the influence of the classifier on
the diffusion process is restricted to the categories the classifier has been trained on. To
understand how the classifier is integrated into the diffusion model, one has to revisit the
reverse process of the continuous formulation. It is formulated as a stochastic differential
equation, i.e.,

dx =
(︂
f(x, t)− g(t)2∇x log pt(x)

)︂
dt̄ + g(t)dw̄, (2.59)

where the model is trained to estimate ∇x log p(x), more specifically, it approximates
∇x log q(xt|x0) as described in (2.51).
To guide the diffusion model towards a given class label c, the model needs to predict the
conditional score function ∇x log p(xt|c) instead. By applying Bayes’ rule, the conditional
score function can be decomposed into

p(xt|c) = p(c|xt)p(xt)
p(c) , (2.60)

which can be simplified to

log p(xt|c) = log p(c|xt) + log p(xt)− log p(c), (2.61)

∇xt log p(xt|c) = ∇xt log p(c|xt) +∇xt log p(xt), (2.62)

with ∇xt log(c) = 0 due to log(c) = const.

By training a separate classifier to model pϕ(c|xt, t), which takes the corrupted data xt

and time step t as inputs and predicts the class label c, the conditional score function is
described by

∇xt log pθ(xt|c) = w∇xt log pϕ(c|xt) +∇xt log pθ(xt). (2.63)

The primary drawback of this approach is that additional training of a classifier is needed.
Moreover, the categories on which the diffusion model’s generation can be conditioned
are limited by the dataset used to train the classifier.

Classifier-Free Guidance Classifier-free guidance does not need an additional classifier
as the name suggests but is based on the classifier guidance method. This method is
employed in most of the latest generative diffusion models that utilize text as input
because it allows for training without restrictions on the number of categories. Instead of
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training a separate classifier, the model is trained to approximate both p(xt|c) and p(xt).
In other words, the diffusion model is trained to represent both a conditional and an
unconditional model. During training, the conditional input c is randomly removed and
replaced with a special value representing an empty token. To express the conditioning
term as a function of the conditional and unconditional score functions, the Bayes rule
can be applied according to

p(xt|c) = p(xt|c)p(c)
p(xt)

, (2.64)

which simplifies to

log p(c|xt) = log p(xt|c) + log p(c)− log(xt), (2.65)

and

∇x log p(c|xt) = ∇x log p(xt|c)−∇x log p(xt). (2.66)

With that, the conditional score function from the classifier guidance can be adapted
according to

∇x log pθ(xt|c) = ∇x log p(xt) + γ(∇x log p(xt|c)−∇x log p(xt)). (2.67)

Training DDPM with Classifier-Free Guidance To allow classifier-free guidance,
the original training of the DDPM can be rewritten as Algorithm 2.3.

Algorithm 2.3: DDPM Training – Classifier-Free Guidance
Input: noise scheduler βt with αt = 1− βt, ᾱt = ∏︁t

i=1 αi, probability of
unconditional training puncond

1: repeat
2: x0, c ∼ q (x0, c) ▷ Sample x0 and condition c from training dataset
3: c← ∅ with probability puncond ▷ Randomly discard conditioning
4: t ∼ Uniform({1, . . . , T})
5: ϵ ∼ N (0, I)
6: xt =

√
ᾱtx0 +

√
1− ᾱtϵ ▷ Corrupt data with Gaussian noise

7: ϵθ = DDPM_model(xt, t, c)
8: Take gradient descent step on ∇θ ∥ϵ− ϵθ∥2
9: until converged

DDPM Sampling – Classifier-Free Guidance During Classifier-Free Guidance
sampling, the predicted noise ϵθ(z, t, ccond) based on conditional information ccond and
the noise predicted without additional guidance information ϵθ(z, t, cuncond) are combined
according to Algorithm 2.4.
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Algorithm 2.4: Sampling – Classifier-Free Guidance

Input: noise scheduler βt with αt = 1− βt, ᾱt = ∏︁t
i=1 αi, σt =

√︂
1−ᾱt−1

1−ᾱt
βt,

guidance strength w
Output: reconstructed sample x0

1: ccond ∼ q (x0, c)
2: cuncond ← ∅
3: xT ∼ N (0, I)
4: for t = T , . . . , 1 do do
5: if t > 1 then
6: z ∼ N (0, I) ▷ Draw new noise vector z
7: else
8: z = 0 ▷ Don’t add noise at the last step
9: end if

10: ϵθcond = DDPM_model(xt, t, ccond) ▷ Sample with condtion
11: ϵθuncond = DDPM_model(xt, t, cuncond) ▷ Sample without condtion
12: ϵt = (1 + w)ϵθcond − wϵθuncond

13: xt−1 = 1√
αt

(︂
xt − 1−αt√

1−ᾱt
ϵt

)︂
+ σtz

14: end for
15: return x0

2.2 Architecture

2.2.1 U-Net

The U-Net [RFB15] is a convolutional neural network and was proposed by the paper
Denoising Diffusion Probabilistic Models (DDPM) [HJA20] as the backbone architecture
for diffusion models. Originally designed for image data, it still is a common network
used for computer vision tasks because of its ability to extract local context and texture
details.
The architecture is divided into an encoder and a decoder. The encoder’s task is to
compress the input image while the decoder reconstructs the image from the compressed
information. Along the contracting path, each layer of the U-Net shrinks the input
image by removing raw information. The decoder now faces the challenge of expanding
the compressed data back to the same size as the original input image. By using skip
connections between the contracting and expanding path, the decoder receives additional
context from the encoder that should help during the decoding process.
Four attention blocks are used to incorporate conditional data like text information
into the generation process. The architecture is adapted from the standard Transformer
decoder architecture. Figure 2.1 visualizes the architectural details of the U-Net model.
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Figure 2.1: U-Net architecture

2.2.2 Vision Transformer

Revisiting the Transformer Network

The Transformer model [VSP+23] is a deep learning architecture originally designed for
natural language processing (NLP) tasks. It is known for its ability to capture long-range
dependencies, it has since been adapted for vision tasks as the Vision Transformer
(ViT) [DBK+20]. To understand the principles underlying the Vision Transformer, the
components of the original transformer are discussed in the following paragraphs. Figure
2.2 visualizes the architecture of the Transformer model. The architecture is built on an
encoder-decoder structure, where each part includes multi-head attention mechanisms,
feed-forward neural networks, and layer normalization.

Self-Attention Mechanism The attention operation is a method to analyze the
relationship of tokens in a given input sequence and helps the transformer to focus on
the relevant information. Given an input of shape

X ∈ Rbatch×tokens×dmodel , (2.68)

with trainable weight matrices

WQ, WK , WV ∈ Rdmodel×dk , (2.69)

where

• dmodel refers to the dimensionality of the embedding vector for each element in the
input sequence,

• dk represents the inner dimension specific to each self-attention layer,

• batch is the batch size,
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Figure 2.2: Transformer model

• tokens represents the number of elements in the sequence,

the self-attention mechanism is implemented utilizing the “scaled dot product attention”
which is defined as

Attention(Q, K, V) = softmax
(︃QK⊺
√

dk

)︃
V. (2.70)

The attention calculation is based on the matrix representation of queries Q, keys K,
and value V. These matrices are derived from the input X, i.e.,

Q = XWQ, (2.71)
K = XWK , (2.72)
V = XWV , (2.73)

where

Q, K, V ∈ Rbatch×tokens×dk . (2.74)

The weight matrices WK , WV , WQ are learned during training of the neural network.
To understand the attention calculation in detail, the following explains the method
step-by-step:

23



2. Background

1 Calculation of the attention score, i.e., QK⊺: The dot product calculation between
queries and keys is a crucial step in the attention calculation, as it represents how
much attention each token should place on another token of the corresponding
input sequence. A high value of the dot product signifies greater focus. The weight
matrices WK and WQ learn this relationship during training.

2 Scaled attention scores, i.e., QK⊺
√

dk
: To ensure more stable gradients, the magnitude

of the attention score is reduced by the factor 1√
dk

, where dk is the dimension of
the key matrix K.

3 Applying softmax, i.e., softmax
(︂

QK⊺
√

dk

)︂
: After applying the softmax function to

the scaled attention scores, the values range from 0 to 1. The probability values
emphasize the tokens that should receive more attention in comparison to others.

4 Computing the context vector, i.e., softmax
(︂

QK⊺
√

dk

)︂
V: The softmax calculation in

step three returns probabilities for each token in the corresponding input sequence.
Those probabilities are combined with the input X scaled by the weight matrix
WV , where only those tokens are kept that received a high attention score.

Figure 2.3 visualizes the process of self-attention, given input X.

Figure 2.3: Self-attention mechanism

Cross Attention Mechanism The cross-attention computation is similar to the
self-attention method. However, instead of learning the relationship between tokens
within the same input sequence, cross-attention captures the relationship between two
different inputs X ∈ Rbatch×tokens×dmodel and Y ∈ Rbatch×tokens×dmodel . This can be simply
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achieved by a key K and value V matrix representing the second input Y, i.e.,
K = YWK , (2.75)
V = YWV , (2.76)

with matrix shapes according to 2.69. In the Transformer model, a cross-attention layer
is used in the decoder block. The decoder block takes the output of the encoder block
as input for the query matrix to be able to consider the output of the encoder when
generating new sequences.

Multi-Head Attention The attention mechanism explained in Section 2.2.2 is com-
puted multiple times during multi-head-attention. Each computation is called the
attention head. By splitting the query matrix Q, the key matrix K, and the value matrix
V, each partition can afterward be independently passed through a separated head. After
the attention calculation, the results of the heads are combined to produce the final
attention score. Utilizing multiple heads allows the model to grasp multiple aspects of the
input data, each head focusing on a different one. The multi-head attention calculation
is visualized in Figure 2.4.

Figure 2.4: Multi-head attention

Feed-Forward network The feed-forward network is a sub-unit within the encoder
and decoder of the Transformer model. It is placed after the self-attention calculation
in the encoder block, as well as after the cross-attention layer of the decoder block. It
introduces non-linearity to the model and can be interpreted as a refinement of the
features extracted through attention calculation. During the forward pass of the input x
through the feed-forward network, it undergoes the following steps:

1 Linear transformation: The input X is first passed through a linear module with
learnable weight.
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2 Activation function: The activation function introduces non-linearity, allowing the
model to learn more complex and detailed patterns within the data.

3 Dropout: The dropout module prevents the model from over-fitting, by randomly
ignoring some layer outputs during training.

4 Layer normalization: LayerNorm is applied at the final layer of the feedforward
network to stabilize it by unifying the non-standard data into a specified format.

Residual Connection Between each multi-head attention and feedforward network
layer a residual connection is added. Utilizing residual connections helps to combat
the vanishing gradient problem, by connecting the input of each layer to its output as
visualized in Figure 2.5.

Figure 2.5: Residual connection concept

Layer Normalization Normalization is a preprocessing technique applied to the input
data, transforming the features to a common scale. The original transformer architecture
uses layer normalization [BKH16], which ensures that the intermediate layers have a
consistent distribution. Each layer is handled independently, in other words, the mean
and variance of the activations in each layer are computed separately. Given the input X
according to 2.68, the layer normalization can be mathematically described as

LN(X) = γx̂i + β, (2.77)

where xi represent the elements in the last dimension of X and

µ = 1
dmodel

dmodel∑︂
i=1

xi, (2.78)

σ2 = 1
dmodel

dmodel∑︂
i=1

(xi − µ)2, (2.79)

x̂i = xi − µ√
σ2 + ϵ

, (2.80)

where
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• γ, β are the learnable parameters,

• ϵ is a small value for numerical stability.

During layer normalization, the activations of the previous layer of each example in a
batch are normalized independently.

Positional Encoding Positional encoding gives the Transformer an understanding of
each token’s relative placement within the input sequence. The position of each word
within a sentence defines the meaning of a statement. Rearranging the words can lead
to a different interpretation of the message behind the sentence. Positional encoding
incorporates the order of words, consequently allowing the Transformer to understand
their context within the sentence.
Instead of integer positional encoding, the Transformer model employs sinusoidal posi-
tional encoding. The advantage of sinusoidal positional encoding is that the output of a
sine and cosine function lies in [−1, 1]. When processing longer sequences, basic integer
encoding would lead to too large values.

Algorithm 2.5: Positional Encoding
Procedure Positional Encoding(x, L, dtext)
for k=0 to L-1: do

for i=0 to dmodel
2 do

PE(k,2i) = sin
(︂

k

n(2i/dmodel)

)︂
PE(k,2i+1) = cos

(︂
k

n(2i/dmodel)

)︂
end for

end for
End Procedure

With Algorithm 2.5, the positional encoding of a token in a sequence x of length L can
be computed. The input sequence has the dimensionality dmodel. For each position k in
the sequence x, the positional vector is calculated, where i marks the current index in
the positional vector. Essentially, for every two elements, set the even equal to PE(k, 2i)
and the odd to PE(k, 2i + 1), until the encoding vector has the length of dmodel.

Text Tokenizer In natural language processing, tokenization refers to the process of
splitting the input text into smaller units, called tokens. These tokens can be individual
characters or segments of words.

Text embedding Text embeddings transform text into numerical representations,
enabling machine learning models to interpret and process the information effectively.
The embedder takes the segmented text from the tokenizer as input and returns a dense
vector of real numbers. By placing words with a similar meaning close in the embedding
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space, the machine learning model is able to understand the context between words. The
numerical representation reduces the dimensionality of long sequences of text data and,
therefore, achieves higher efficiency when processing large volumes of data.

CLIP embedding The CLIP embedding is used in many Computer vision tasks, as
it effectively learns visual representations of natural language. The technique used in
CLIP is called contrastive learning to calculate similarities between text and image. The
idea behind contrastive learning is to train the model in such a way that the distance
of two embeddings of the same class gets minimized while maximizing the distance
between embeddings belonging to different classes. In CLIP, the two embeddings that are
compared, are image embedding and text embedding. The idea is to find an optimal text
description of a given image by increasing the similarity between a matching image and
text embedding. The text encoder architecture employed in CLIP is a Transformer model,
while the image encoder is a Vision Transformer (ViT). The advantage of using the CLIP
text embedded in Vision Tasks, like text-to-video generation is that the embedded text
lies in a similar embedding space as the corresponding image.

Vision Transformer for Image Data

The Vision Transformer is an adaptation of the Transformer for natural language pro-
cessing. It has received significant recognition since its release. Most of the current
models for image and video processing implement a refined version of the original Vision
Transformer model. Studies have demonstrated that applying a Vision Transformer to
tasks such as image segmentation produces promising results, where even U-Net-based
architectures were outperformed [HXZ+24].
The Vision Transformer takes an image as input and divides it into square-shaped patches,
which are later compressed into a lower-dimensional space. After arranging the patches
next to each other, positional encoding is added. The sequence is afterward fed into the
Vision Transformer. The architecture is analogous to the standard Transformer Encoder
architecture, as can be seen in Figure 2.6.

Patch embedding An important component of the Vision Transformer is the patch
embedding. It is used as a preprocessing step and divides the input image into patches.
Usually, it is implemented using a convolution layer, which encodes each patch into
vector space. The image patches are the equivalent of the word tokens consumed by
the Transformer architecture in natural language processing. Figure 2.7 visualizes the
concept. Given an input image of shape (h, w) and a patch embedding size of p as well
as embedding dimension d, the image is encoded into a sequence of patches with the
shape (s, d) where s = hw

p2 .

Adaptive Layer Normalization (adaLN) The adaptive layer normalization (adaLN)
[GWY+22] can be described as

adaLN(x, c) = γc · LayerNorm(x) + βc. (2.81)
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Figure 2.6: Vision Transformer architecture

Figure 2.7: Patch embedding

It was designed to enable a Vision Transformer to learn across multiple domains. It
involves adjusting the input x to align with a target task c during the LayerNorm
calculation. The learnable parameters γc and βc are derived through linear regression
based on the condition c. By introducing γc and βc, the conditioning embedding c is
integrated into the feature channel. In text-to-video generation models, the input x
represents the embedded video frames, while c corresponds to the embedded prompt
combined with the diffusion time step embedding. Many recently released models use an
adapted version of adaLN, known as scalable adaptive layer normalization (S-adaLN).
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This is directly applied in the residual connection (RC) calculation, resulting in

RC(x, c) = αc · x + adaLN(x, c). (2.82)

Modeling of Space and Time Compared to image generation, video generation
introduces additional complexity. It entails the challenge of modeling temporal consistency
while handling additional computational overhead. To achieve temporal coherence, video
generation models need to cover information across video frames. Three different attention
methods will be examined in detail in this work. These include either separating the
spatial and temporal attention into two distinct blocks or employing group-wise attention
that allows spatial and temporal attention at the same time. The different methods can
be described as:

• Spatial Attention: Each patch attends to patches within the same frame during
spatial attention.

• Temporal Attention: During temporal attention, patches attend to patches from
all frames within the video, but only patches in the same position are considered.

• Group-wise Spatio-Temporal Attention: In this approach, each patch attends only
to a subset of patches within the same frame as well as to patches from preceding
and subsequent frames within the same group.

Figure 2.8 visualizes the different space and time dimension handling of these methods:

(a) Spatial (b) Temporal (c) Spatio-Temporal

Figure 2.8: Spatial and temporal attention methods

In theory, it is also possible to implement Full Spatial-Temporal attention, where each
patch attends to every other patch across all frames. While this approach ensures high
spatial and temporal consistency, it is computationally expensive and cannot be used to
generate long videos.
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2.2.3 Latent Diffusion Models

Latent Diffusion Models have set new benchmarks in image and video generation by
working in a lower spatial resolution rather than pixel space. Before feeding the input to
the denoising model, the images are first encoded into latent space with the help of a
Variational Autoencoder (VAE). As a result, the entire diffusion process is carried out
in the latent space. Afterward, the predicted image is decoded into RGB. By operating
in low dimensions, the computational costs are significantly smaller, which allows the
generation of high-resolution images.

Variational Autoencoder

The Variational Autoencoder is based on the traditional autoencoder, where the input is
passed through an encoder and decoder block. The encoder’s role is to compress a large,
complex dataset into the latent space. The decoder, on the other hand, is responsible
for mapping the latent space back to the input space. In comparison to the traditional
autoencoder, the Variational Autoencoder introduces regularization into latent space.
By adding an extra loss term, the VAE ensures that the latent space follows a standard
multivariate Gaussian distribution.
The loss function of an autoencoder is given by

L(x, x′) = ∥x− x′∥2. (2.83)

Whereas the loss function of a VAE can be mathematically described as

L(x, x′, z) = ∥x− x′∥2 + DKL(q(z|x)∥p(z)). (2.84)

Here, x is the input data and x′ is the reconstructed input and z is the latent variable.
The conditional likelihood distribution q(z|x) is computed by the encoder, and p(z) is the
prior on the latent space – which is typically assumed to follow a Gaussian distribution.
DKL is the Kullback-Leibler divergence.
The input is translated into a latent distribution instead of a fixed tensor. This enables the
Variational Autoencoder to generate new data that resembles the input data distribution.

2.3 Evaluation Metrics
The current evaluation metrics used for video quality testing can be categorized into
image-level and video-level. The image-level metrics focus on the quality within each
frame and the video-level try to evaluate both spatial and temporal aspects. The metrics
SSIM and PSNR are content variant metrics and are employed to evaluate the quality of
reconstructed video frames. Content variant metrics are applied when only one specific
prediction for the images or video frames is accurate. For image and video generation,
mostly content invariant metrics, like FID, LPIPS, and FVD, are out of interest. They
measure consistency and overall similarity between generated videos and the ground
truth instead of comparing the exact details.
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2.3.1 Fréchet Video Distance (FVD)

Fréchet Video Distance is a video-level evaluation metric. The evaluation metric is
based on the Fréchet Distance, also called 2-Wasserstein measuring how similar two
distributions are. Given PG as the distribution defined by the generative model and the
corresponding mean µG and ΣG, as well as the real-world distribution (in this case the
dataset the generative model was trained on) PR with µR and ΣR, the Fréchet Distance
is defined as

D2
Fréchet = |µR − µG|2 + Tr

(︂
ΣR + ΣG − 2 (ΣRΣG)

1
2
)︂

. (2.85)

The evaluation is based on the extracted features from pre-trained Inflated-3D Convnets
(I3D) [CZ17].

Instead of directly comparing the distributions of the generative model and the dataset in
raw image space, the FVD uses learned feature embeddings to calculate the distance. The
feature embeddings are extracted from pre-trained Inflated-3D Convnets (I3D) [CZ17].
By feeding samples from the generative model and the dataset to the I3D model, their
feature representations are recorded. The I3D model is trained on a video dataset for
classification and considers temporal coherence, as well as the visual quality within frames.
With the use of the I3D model, semantic information relevant to human perception can be
better captured. For the calculation of the FVD, the activations of the last pooling layer
– before the output classification of the videos – are summarized as multivariate Gaussian
by calculating the mean and covariance. The similarities between the distribution of the
generated videos and the actual videos represented in the dataset are computed using
the extracted mean and covariance from the last pooling layer of the I3D model and
calculating the distance according to Equation (2.85).
In summary, the FVD (Fréchet Video Distance) compares the activation distributions of
the final deep layer of the I3D network. If these distributions are similar, it indicates
that the underlying image distributions of the generated videos and the video dataset
are alike. A low FVD value signifies a higher degree of similarity between the generated
image and its corresponding image in the dataset.

2.3.2 Fréchet Inception Distance (FID)

Fréchet Video Distance (FVD) is based on the Fréchet inception distance (FID), which is
an image generation metric. The main difference between the FVD and FID scores is the
underlying model. FID uses the activation from the Inception V3 model pre-trained on
an image classification dataset, to calculate the Fréchet Distance, described in Equation
(2.85). A small FID value represents a high similarity between the generated image and
the corresponding image from the dataset.

2.3.3 Structural Similarity Index (SSIM)

The structural Similarity Index is utilized to measure the similarity between frames. The
SSIM index measure between a frame Y ∈ Rheight×width×channels from a generated video

32



2.3. Evaluation Metrics

and a frame X ∈ Rheight×width×channels from the dataset can be calculated as

SSIM(X, Y) = l(X, Y)c(X, Y)s(X, Y), (2.86)

where the luminance l, the contrast c and the structures s are compared utilizing the
mean µX , µY and variance σX , σY as well as covariance σXY of generated video frame
and dataset video frame, i.e.,

l(X, Y) = 2µXµY + c1
µ2

X + µ2
Y + c1

, (2.87)

c(X, Y) = 2σXσY + c2
σ2

X + σ2
Y + c2

, (2.88)

s(X, Y) = σXY + c3
σXσY + c3

, (2.89)

with

• µX the mean over the pixel values in X,

• µY the mean over the pixel values in Y,

• σ2
X the variance of X,

• σ2
Y the variance of Y,

• σXY the covariance of X and Y,

• c1 = (k1L)2 , c2 = (k2L)2, two variables to stabilize the division,

• L the range of the pixel-values,

• k1 = 0.01 and k2 = 0.03 by default.

To conclude, SSIM assesses pixel intensities by comparing brightness, dynamic range,
and spatial distribution. A higher SSIM value indicates greater similarity between the
generated and original images.

2.3.4 Peak Signal-To-Noise (PSNR)

The peak signal-to-noise metric is an image-level metric and is based on the mean
squared error between the original X ∈ Rheight×width×channels and generated video frame
Y ∈ Rheight×width×channels. It measures the absolute difference between the original and
generated video, expressed in terms of a logarithmic decibel scale. The PSNR metric is
defined as

PSNR = 20log10

(︃ MAXf√
MSE

)︃
, (2.90)
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with

MSE = 1
N

N∑︂
i=1
∥Xi −Yi∥2 , (2.91)

where

• Xi and Yi represent the pixel value of image X and image Y at position i,

• N is the total number of pixels where N = hwc with h being the height, w the
width and c the number of channels of the images X and Y,

• MAXf is the maximum signal value of the original image X.

The higher the PSNR, the better the predicted image Y resembles the original image X.

2.3.5 LPIPS

LPIPS tries to simulate humans’ ability to assess perceptual similarity by utilizing a
model that is trained on a labeled dataset containing images judged on their similarity
by human labeling. Akin to the FID and the FVD metric, the model compares the
activations on the actual and predicted images. A low LPIPS value describes the high
similarity between the generated image and the original image from the dataset.

2.3.6 CLIPSIM

CLIPSIM is a metric mostly used to evaluate the models’ ability to generate images
coherent to a given text prompt. It utilizes the CLIP model. CLIP is trained on image
data with associated text descriptions, mapping them into the same embedding space.
By encoding the given text prompt and the generated image with the CLIP model to
embedding space, the cosine similarity can give an intuition of how well the generated
image represents the text prompt.

To evaluate the results of image and video generation models, a common approach is to
additionally average over the CLIPSIM results of the textual description and the actual
visual representation from the dataset. Given a text description and the corresponding
generated image, a high CLIPSIM value stands for an accurate visual representation of
the given text prompt.
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CHAPTER 3
Methodology

3.1 Image Generation

3.1.1 Class Label to Image Generation

The Diffusion Transformer (DiT) model [PX23] builds on the core principles of Denoising
Diffusion Probabilistic Models (DDPMs) and employs a backbone architecture solely
based on Transformers. The DiT model is trained on class-image pairs and integrates
class information into the transformer backbone using adaLN.

Input Preprocessing

Image Preprocessing The input image of shape (batch size, channels, height, width)
undergoes the following preprocessing steps.

• Patch embedding: First, the image is divided into smaller patches and projected
linearly into an embedding space.

• Positional encoding: Sinusoidal position encoding is added to the flattened patches
to provide spatial context for the model.

This results in an output with the shape (batch size, sequence length, embed dim). The
process is visualized in Figure 3.1.

Class Preprocessing Since the input classes are simple values ranging from 0 to 9,
the class labels were mapped to the embedding space using a straightforward lookup
table.
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Figure 3.1: DiT preprocessing

Timestep Preprocessing The current time step in the diffusion process is introduced
to the model using a time step embedding. It follows the same architectural design as
the positional encoding.

DiT Block Design

The DiT block takes the image patches, the class label, and the time step t as input. The
time step t helps the model to be aware of the noise level that has been added to the input
image. The architecture of the DiT block follows the ideas of the Transformer encoder
from the ViT Transformer but adapts it accordingly to process conditional information
such as the time step t and class labels c. To be able to generate images that correspond
to the conditional input, the standard layer norm layers of the ViT Transformer are
replaced with adaptive layer norm (adaLN). Instead of treating the weight and bias
of the layer normalization as parameters, adaLN incorporates the concatenated input
conditions c and t as normalization parameters for the image patches. Apart from this
modification, the model follows the standard architecture of a Vision Transformer (ViT).
The architectonic details of the Diffusion Transformer (DiT) are visualized in Figure 3.2.

3.1.2 Dataset

The Diffusion Transformer (DiT) was trained on the MNIST dataset. The MNIST dataset
contains images of handwritten digits from zero to nine. Every image is labeled with its
corresponding class. Some samples of the dataset are shown in Figure 3.3.

3.1.3 Training

The diffusion process was implemented from scratch using PyTorch, based on the official
code of a Denoising Diffusion Probabilistic Model. The code for the architecture of the
backbone model follows the architectural details outlined in the Diffusion Transformer
paper [PX23].
For the image generation model, neither classifier-free guidance nor variance prediction
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(a) DiT (b) DiT Block

Figure 3.2: DiT architectonic details

was used, following the basic implementation of DDPM models. The training is described
in Algorithm 2.1.

3.1.4 Sampling

During sampling, an implementation detail known as thresholding was applied. In this
process, the predicted sample x0 is clamped to a valid range, ensuring it falls within the
fixed pixel range of [0, 255]. The predicted sample can be computed given the current
sample xt and the predicted noise ϵt, i.e.

x0 = xt −
√

1− ᾱtϵθ√
αt̄

. (3.1)

Once the computed sample x0 is obtained, its value range is clamped to [0, 255]. In the
original DDPM sampling process, xt−1 is directly computed from the predicted noise ϵθ.
However, with thresholding, xt−1 is derived from the initial sample x0, i.e.

xt−1 =
√

αt (1− ᾱt−1) xt +√ᾱt−1 (1− αt) x0
1− ᾱt

+ σtϵt, (3.2)
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Figure 3.3: MNIST dataset

where ϵt ∼ N (0, I).
To integrate thresholding, the sampling procedure can be rewritten as described in
Algorithm 3.1.

Algorithm 3.1: Sampling DDMP – Clamp x0

Input: noise scheduler βt with αt = 1− βt, ᾱt = ∏︁t
i=1 αi, σt =

√︂
1−ᾱt−1

1−ᾱt
βt

Output: reconstructed sample x0
1: xT ∼ N (0, I)
2: for t = T , . . . , 1 do do
3: if t > 1 then
4: z ∼ N (0, I) ▷ Draw new noise vector z
5: else
6: z = 0 ▷ Don’t add noise at the last step
7: end if
8: ϵθ(xt, t) = DDPM_model(xt, t) ▷ Predict noise ϵθ

9: x0 = xt−
√

1−ᾱtϵθ√
αt̄

▷ Reconstruct x0 from noise ϵθ

10: Clamp x0 to range [0, 255]
11: xt−1 =

√
αt(1−ᾱt−1)xt+

√
ᾱt−1(1−αt)x0

1−ᾱt
+ σt · z ▷ Remove noise using clamped x0

12: end for
13: return x0

38



3.2. Video Generation

3.2 Video Generation

The three studied models GenTron [CXR+23], Latte [MWJ+24a] and SnapVideo [MSS+24]
are based on the Diffusion Transformer architecture.
GenTron can be seen as an extension of DiT, which incorporates additional temporal
attention into the Vision Transformer to enable video processing. Furthermore, GenTron
adapts the DiT model from class to text conditioning.
Latte takes this a step further by using two separate Vision Transformer blocks – one
for spatial attention and another for temporal attention. SnapVideo follows a different
approach, using a FIT transformer [CL23] architecture as a backbone, allowing it to
process temporal and spatial attention at the same time by dividing the input videos
into groups.
The general concept behind the architectures of SnapVideo, GenTron, and Latte are
shown in Figure 3.4.

(a) GenTron (b) Latte (c) SnapVideo

Figure 3.4: Spatial and temporal dimension modeling

Due to the high dimensionality of videos, various methods have been proposed to decom-
pose the input and reduce the number of tokens processed in a single attention operation
in video generation models. A survey on video transformers [SJE+23] provides an in-
depth analysis of current video generation architectures. It highlights the importance of
minimizing unimportant spatial information while ensuring that crucial motion features
are not removed too early.
The three examined architectures, GenTron, Latte, and SnapVideo, address spatial and
frame-level temporal information aggregation differently.
Latte implements two distinct types of Transformer blocks, one operating on the spatial
dimension, and the other focusing on the temporal dimension. GenTron, on the other
hand, captures both spatial and temporal information in one Transformer block. The
Transformer block of GenTron’s architecture computes self-attention on the spatial dimen-
sion, followed by temporal attention before aggregating the information in a feed-forward
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network.
SnapVideo has a different approach. Unlike GenTron and Latte, where each attention
layer of the Transformer only sees either spatial dimension or temporal dimension in-
dependently, SnapVideo’s Transformer block operates on a 3D input capturing height,
width, and time of the video input. To capture the spatiotemporal dimensions of the
video input without risking information loss, SnapVideo divides the input video into
groups along the spatial dimension, still covering the whole temporal dimension.
GenTron conditions the video generation on an input text prompt, while Latte and
SnapVideo are designed for generating videos based on class labels. In the following
sections, the original architecture of each model will be explained in more detail, while
the next chapter focuses on different ways of adapting the Latte and SnapVideo models
for text-to-video generation.

3.2.1 GenTron

Input Preprocessing

Video Preprocessing The input videos of shape (batch size, number of frames,
channels, height, width) undergo several preprocessing steps.

• Autoencoder: The videos are initially encoded into a compressed latent represen-
tation using a pretrained autoencoder. This results in an output shape of (batch
size, number of frames, channels encoded, height encoded, width encoded). The
autoencoder is trained independently on the MovingMNIST dataset.

• Patch embedding: Subsequently, each frame within a video is individually divided
into patches resulting in a sequence of patches per frame, with an output shape of
(batch size, number of frames, sequence length, embedding dimension).

• Positional encoding: During the last preprocessing step, positional embedding is
added – equivalent to the implementation of the image generation model.

Figure 3.5 visualizes the preprocessing process.

Text Preprocessing The lookup table used for label encoding in the image generation
model was replaced with a CLIP text embedder. The preprocessing steps in GenTron
entail processing the input text with the CLIP tokenizer and afterward mapping the token
to embedding space using the CLIP text model. Additionally, classifier-free guidance
was introduced, using conditioning dropout. This was achieved by randomly removing
the conditional input and replacing it with an empty token. This is implemented before
translating the input text to embedding space.

Timestep Preprocessing To introduce the current timestep t of the diffusion process
to the model, the same timestep embedder employed for DiT was used.
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Figure 3.5: GenTron preprocessing

Architectonic Details

GenTron modifies the Transformer block for spatial-temporal modeling by splitting the
multi-head attention into two halves – one for spatial modeling and the other for temporal
modeling. While spatial and temporal attention are computed separately, both operations
occur within the same Transformer.

Spatial Attention Similar to the Diffusion Transformer, the GenTron block first
operates on the spatial dimension of the video. To be more precise, it aggregates spatially
related information frame by frame using the spatial attention block. In the spatial
attention block, the layer-normalization parameters are adjusted by the combination of
timestep embedding and the aggregated text embedding, according to the approach of
adaptive layer normalization (adaLN) [GWY+22]. The parameters γc and βc for the
adaLN are retrieved from a linear regression computed on the condition input c = t+ypool,
where t represents the timestep embedding and ypool the pooled CLIP text embedding,
resulting in the equation adaLN(d, c) = γcLayerNorm(d) + βc, where d expresses the
hidden embedding dimension within the Transformer. The timestep embedding lets the
model be aware of the noise level that has been added during the forward step of the
Denoising Diffusion Probabilistic Model [HJA20]. Moreover, the pooled text embeddings
condition the feature channel on the input text prompt.
Given the video patches of shape (batch size, number of frames, number of patches
per frame, embedding dimension), spatial attention can be achieved by stacking batch
dimension and frame count dimension together, so each frame is handled separately
during the attention computing. The reshaping method to implement spatial attention
can be described by

x = rearrange(x, btnd→ (bt)nd), (3.3)
x = x + SpatialSelfAttention(LayerNorm(x)). (3.4)

where b, t, n, d represent the batch size, number of frames, number of patches per frame,
and embedding dimension, and where rearrage is a notation from [Rog22].
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Text Attention Along with text conditioning through adaLN, the GenTron incorpo-
rates an additional cross-attention layer to integrate the text embedding into the model.
After the spatial attention block, the image features and textual embeddings interact
directly through the attention mechanism.

Temporal Attention The text-cross-attention block is followed by a temporal self-
attention block. To implement temporal attention on the given video patches of size
(batch size, number of frames, number of patches per frame, embedding dimension), the
input dimension needs to be reshaped. By stacking the batch dimension and the patch
per frame count together, the focus is shifted from spatial to temporal attention. As a
result, each attention calculation concentrates exclusively on patches that have the same
position across all video frames, enabling it to capture how the image features change
over time within the input video. The reshaping mechanism can be described with

x = rearrange(x, btnd→ (bn)td), (3.5)
x = x + TemporalSelfAttention(LayerNorm(x)). (3.6)

where b, t, n, d represent the embedding dimension batch size, number of frames, number
of patches per frame, and embedding dimension, and where rearrange is a notation from
[Rog22].

Aggregation Congruent with the ViT architecture [DBK+20], the last layer encloses
a feed-forward network that allows the model to learn complex relationships between
patches. To guide the final aggregation step with the conditional information of timestep
and text information, the standard norm layers are again replaced with adaptive layer
norm.
The Gentron block, entailing spatial, text, and temporal attention with a final feed-
forward layer, is applied multiple times to the input video patch tokens, before predicting
noise and variance. The architectural details are shown in Figure 3.6.

Training

During training, classifier-free guidance is used to condition the diffusion process on a
given text prompt. Furthermore, following the original implementation of the GenTron
model, the variance is learned during training. The model not only predicts the noise
present in the corrupted data sample but also outputs a vector v of the same shape as
the data sample, which is used to compute the variance. This process is summarized in
Algorithm 3.2.

Sampling

The sampling process of the GenTron model, integrating the predicted variance, is
summarized in Algorithm 3.3.
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3.2. Video Generation

(a) GenTron (b) GenTron Block

Figure 3.6: GenTron architectonic details

3.2.2 Latte

Input Preprocessing

Video Preprocessing The preprocessing steps are the same as the ones implemented
for GenTron, where the noisy input frames are first represented in latent space and
afterward transformed into patch tokens with positional encoding.

Before the input videos of shape (batch size, number of frames, channels, height, width)
are fed into the Latte model, the following preprocessing steps are applied:
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Algorithm 3.2: DDPM Training – Classifier-Free Guidance, Variance learning
Input: noise scheduler βt with αt = 1− βt, αt = ∏︁t

i=1 αi probability of
unconditional training puncond

1: repeat
2: x0 ∼ q (x0, c) ▷ Sample x0 and condition c from training dataset
3: c← ∅ with probability puncond ▷ Randomly discard c to train unconditionally
4: t ∼ Uniform({1, . . . , T})
5: ϵ ∼ N (0, I)
6: xt =

√
ᾱtx0 +

√
1− ᾱtϵ ▷ Corrupt data with Gaussian noise

7: ϵθ(xt, t), v = DDPM_model(xt, t, c)
8: Σθ = exp

(︂
v log βt + (1− v) log 1−ᾱt−1

1−ᾱt
βt

)︂
▷ Predict variance

9: Take gradient descent step on ∇θ

[︂
β2

t

2∥Σθ∥2
2αt(1−ᾱt)

]︂
∥ϵ− ϵθ∥2

10: until converged

• Autoencoder: The videos are initially mapped to latent space, using the same
pre-trained autoencoder implemented for GenTron.

• Patch embedding: Each frame is individually divided into patches, following
the patch embedding architecture of GenTron. The output size after the patch
embedding is (batch size, number of frames, sequence length, embedding dimension).

• Positional encoding (spatial): Positional embedding is added to each token, again
equivalent to the GenTron model.

• Positional encoding (temporal): Latte also incorporates temporal encoding to help
the model identify the frame to which each video patch belongs.

The preprocessing steps are shown in Figure 3.7.

Figure 3.7: Latte preprocessing
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Algorithm 3.3: DDPM Sampling – Classifier-Free Guidance, Variance learning
Input: noise scheduler βt with αt = 1− βt, αt = ∏︁t

i=1 αi, guidance strength w
Output: reconstructed sample x0

1: ccond ∼ q (x0, c)
2: cuncond ← ∅
3: xT ∼ N (0, I)
4: for t = T , . . . , 1 do do
5: if t > 1 then
6: z ∼ N (0, I)
7: else
8: z = 0
9: end if

10: ϵθcond , v = DDPM_model(xt, t, ccond) ▷ Conditional sampling
11: ϵθuncond , _ = DDPM_model(xt, t, cuncond) ▷ Unconditional sampling
12: ϵt = (1 + w)ϵθcond − wϵθuncond

13: σt =
√︃

exp
(︂
v log βt + (1− v) log 1−ᾱt−1

1−ᾱt
βt

)︂
▷ Remove predicted noiseϵθ

14: xt−1 = 1√
αt

(︂
xt − 1−αt√

1−ᾱt
ϵt

)︂
+ σtz

15: end for
16: return x0

Text Preprocessing Similar to GenTron, Latte uses the CLIP tokenizer and CLIP
text model to map the input text to embedding space. By employing the same dropout
architecture as GenTron, as described in Section 3.2.1, classifier-free guidance can be
introduced during training.

Timestep Preprocessing The diffusion time step is preprocessed using the same
timestep embedder implemented in DiT.

Architectonic details

In contrast to GenTron, where spatial and temporal attention is performed within the
same block, Latte uses separate Transformer blocks—one for spatial attention and another
for temporal attention. Each Transformer block consists of multi-head attention, layer
normalization, and a linear projection for handling spatial attention, similar to the Vision
Transformer.

Spatial Attention The spatial attention Transformer captures information exclusively
among patches within the same video frame. This is implemented using the same reshap-
ing technique as in the GenTron block, which is described in Equation (3.4). The time
embedding and class information are both injected in the adaptive layer normalization,
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akin to GenTron’s conditioning procedure.

Temporal Attention The temporal Attention block implements the same architecture
as the spatial attention block described in Section 3.2.2. The difference lies in the shape
of the input data. While the spatial attention layer operates on video frame patch tokens
of shape ((b t) n d), the temporal attention layer operates on input data of shape ((b
n) t d). In this context, b represents the batch size, t number of frames in the video, n
the sequence length of the patch tokens, and d the hidden embedding dimension of the
Transformer model. The reshaping mechanism is shown in Equation (3.6).

The Latte Block composes multiple spatial attention and temporal attention blocks,
alternating between spatial and temporal attention computation. The exact details of
the architecture are visualized in Figure 3.8.

(a) Latte (b) Latte Block (c) Spatial and temporal block

Figure 3.8: Latte architectonic details

Training

The training follows the implementation of GenTron, described in Section 3.2.1.
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Sampling

The sampling process follows the implementation of GenTron, described in Section 3.2.1.

3.2.3 SnapVideo

SnapVideo employs a different approach compared to the GenTron and Latte architectures.
It builds on the concept of FiT transformers [CL23] and extends it to the domain of video
generation. The core idea of the FiT transformer is to work with latent tokens, which
are designed to capture and represent the essential information from noisy input video
frames in a compressed form. During training, these latent tokens become associated with
specific regions of the input data, allowing them to learn which features to emphasize
and which to ignore.

Video Preprocessing

Before the input videos of shape (batch size, number of frames, channels, height, width)
are fed to the SnapVideo model, the following preprocessing steps are applied.

• Autoencoder: By mapping the videos into latent space, SnapVideo receives a
compressed representation of the videos, making it easier to model the complex
data. This step is implemented by using the same pre-trained autoencoder employed
for GenTron.

• Patch embedding: Video frames are divided into patches using the same patch
embedding method as in GenTron, with one key difference: After dividing the input
into patches, the output is not flattened into a single sequence. Instead, the output
retains the shape (batch size, number of frames, sequence length height, sequence
length width, embedding dimension).

• Positional encoding: Positional embedding is added to each token after patch
embedding, following the implementation of GenTron

• Grouping: The video patches are grouped such that each group corresponds to a
distinct region of the video’s height and width while spanning the entire temporal
dimension. This process results in an output with the shape (batch size, number of
groups, patches per group, embedding dimension).

The preprocessing steps are shown in Figure 3.9.

Text Preprocessing The text prompts are initially preprocessed using the CLIP
tokenizer and CLIP model, following the text preprocessing steps outlined in GenTron
and Latte. Additional learnable parameters are then appended to the text embeddings,
inspired by the approach in [DOMB24], and subsequently processed through two self-
attention layers.
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Figure 3.9: SnapVideo preprocessing

Timestep Preprocessing Using the same timestep embedder implemented in DiT,
the current diffusion timestep t can be introduced to the model.

Architectonic Details

To manage the complexity of spatial and temporal information in video data, the model
operates exclusively on learned latent tokens. These tokens aggregate information
from the input video patch tokens, class labels, and timestep embeddings. During a
cross-attention operation between the latent tokens and the combined class labels and
timestep embeddings, the latent tokens extract conditional information. Next, the latent
tokens gather information from each group of video patches through a “read” operation,
implemented via cross-attention. The tokens then refine this aggregated information
through a self-attention layer, allowing them to integrate intricate details from the input.
Finally, the latent tokens “write” their updated insights back to the patch tokens, achieved
through another cross-attention operation. The model outputs the predicted noise, the
reverse process variance, and the latent tokens. These latent tokens are reused in the
next iteration for self-conditioning, where the previous latent tokens directly influence
the new latent states. Prior research has shown that this technique can significantly
enhance sampling quality [CZH23].

The architecture of the SnapVideo model is illustrated in Figure 3.10.

Training

The training of the SnapVideo model with latent self-conditioning is described in Algo-
rithm 3.4.

Sampling

The model returns the predicted noise as well as the current latent tokens. The latent
tokens from the previous iteration are used to condition the latent token of the current
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3.3. Text-to-Video Generation

(a) SnapVideo (b) SnapVideo Block

Figure 3.10: SnapVideo architectonic details

iteration, to maintain the compressed video representation learned in previous sampling
steps, described in Algorithm 3.5.

3.3 Text-to-Video Generation

This chapter examines different ways of integrating text understanding during the video
generation process. Both Latte and SnapVideo are designed for class-label conditioning.
A text prompt corresponds to a textual description of the kind of video the model should
generate, while class labels describe different categories in which the video data can be
classified. The key difference between text prompts and class labels is their length, as
text prompts can grow indefinitely and class labels have a fixed size.
GenTron focuses on two different approaches to embedding integration. Either using the
adaptive layer norm to align the mean and variance of the video features with those of
the text condition or employing cross-attention, where the model learns to combine the
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Algorithm 3.4: DDPM Training – Classifier-Free Guidance, Variance learning,
Latent Self-Conditioning

Input: noise scheduler βt with αt = 1− βt, αt = ∏︁t
i=1 αi, probability of

unconditional training puncond
1: latents = 0 ▷ Initialize latents
2: repeat
3: x0 ∼ q (x0, c) ▷ Sample x0 and condition c from training dataset
4: c← ∅ with probability puncond ▷ Randomly discard c to train unconditionally
5: t ∼ Uniform({1, . . . , T})
6: ϵ ∼ N (0, I)
7: xt =

√
ᾱtx0 +

√
1− ᾱtϵ ▷ Corrupt data with Gaussian noise

8: ϵθ, v, latents = DDPM_model(xt, t, c, latents)
9: Σθ = exp

(︂
v log βt + (1− v) log 1−ᾱt−1

1−ᾱt
βt

)︂
▷ Predict variance

10: Take gradient descent step on ∇θ

[︂
β2

t

2∥Σθ∥2
2αt(1−ᾱt)

]︂
∥ϵ− ϵθ∥2

11: until converged

textual information and embeds it into the feature space.

3.3.1 Latte Text Integration

The spatial and temporal transformers of the original Latte model remain unchanged. In
the Latte model, adaLN is used to incorporate class information into the architecture.
While the structure of adaLN is kept the same, the class input is replaced with the
pooled text embedding, following a similar approach to GenTron. Additionally, a text
attention block, identical to the one used in GenTron for text integration, is introduced.
However, the placement of the text attention block within the architecture becomes a
critical question. The first logical choice is to position the text attention block between
the spatial transformer and the temporal transformer block. This concept is implemented
in Model 1, illustrated in Figure 3.11. The algorithm behind this implementation is
detailed in Appendix 7.2.

Model 2 utilizes the same text block as model 1, but this time the text block is integrated
into the spatial attention block before the aggregation layer. Figure 3.12 visualizes the
spatial transformer with text attention and the temporal transformer. The temporal
transformer remains unchanged from the temporal transformer used in Model 1. The
algorithm of Model 2 can be found in Appendix 7.3.

Model 3 integrates the text block in both spatial and temporal attention blocks, as shown
in Figure 3.13. The algorithm can be found in Appendix 7.4.
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Algorithm 3.5: DDPM Sampling – Classifier-Free Guidance, Variance learning,
Latent Self-Conditioning

Input: noise scheduler βt with αt = 1− βt, αt = ∏︁t
i=1 αi, guidance strength w

Output: reconstructed sample x0
1: ccond ∼ q (x0, c)
2: cuncond ← ∅
3: xT ∼ N (0, I)
4: latentscond = 0
5: latentsuncond = 0
6: for t = T , . . . , 1 do do
7: if t > 1 then
8: z ∼ N (0, I)
9: else

10: z = 0
11: end if
12: ϵθcond , v, latentscond = DDPM_model(xt, t, ccond, latentscond)
13: ϵθuncond , _, latentsuncond = DDPM_model(xt, t, cuncond, latentsuncond)
14: ϵt = (1 + w)ϵθcond − wϵθuncond▷ Classifier free guidance sampling

15: σt =
√︃

exp
(︂
v log βt + (1− v) log 1−ᾱt−1

1−ᾱt
βt

)︂
16: xt−1 = 1√

αt

(︂
xt − 1−αt√

1−ᾱt
ϵt

)︂
+ σtz

17: end for
18: return x0

3.3.2 SnapVideo Text Integration

For the SnapVideo text integration, Model 1 is designed by following the text guidance
of a text-to-video generation model, which uses a similar transformer architecture as
SnapVideo. It is described in the paper “Don’t Drop Your Samples! Coherence-aware
Training Benefits Conditional Diffusion” [DBKP24]. This paper introduces a text-to-
video transformer based on the RIN transformer architecture [JFC22], which implements
the same fundamental idea as the FiT transformer [CL23] used in SnapVideo.

A key difference between the RIN transformer and the FiT transformer can be seen in
the preprocessing step: the FiT transformer divides the input videos into groups, while
the RIN transformer omits this step. Instead, the RIN transformer compresses the video
dimension by applying a 3D patch embedding that spans height, width, and the number
of frames. SnapVideo, on the other hand, uses a 2D patch embedding, which only covers
the spatial dimensions.

Apart from preprocessing differences, the architectures of SnapVideo and the RIN text-
to-video model are nearly identical. Therefore, a similar text conditioning method to
that used in the RIN text-to-video model was implemented.
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(a) Latte Block (b) Text Block
(c) Spatial and temporal
block

Figure 3.11: Latte Text integration model 1

In the RIN model, the text is concatenated with 16 learnable parameters and passed
through two self-attention layers. Adding learnable parameters to the text is a method
described in the paper “Vision Transformers Need Registers” [DOMB24], which highlights
the tendency of models to use local tokens for storing and processing global information.
This can potentially lead to the loss of local patch information. The additional learnable
tokens are used to counteract this effect by explicitly reserving space for storing additional
information.

Figure 3.14 illustrates the implementation of text conditioning based on the RIN text-to-
video model. The algorithm for this implementation is detailed in Appendix 7.5.

In Model 2, adaLN text conditioning, similar to the approach of the GenTron architecture,
was introduced. The layer normalization of the cross-attention between the latent token
and text projection, as well as the layer normalization of the self-attention, were replaced
with adaLN. The architecture is illustrated in Figure 3.15, and the algorithm is provided
in Appendix 7.6.

3.3.3 Dataset

This work prioritized selecting a dataset that was simple enough to allow training
within a reasonable time frame and with limited resources while still being capable of
demonstrating differences in spatial and temporal efficiency between models. The dataset
selected for training the different Diffusion Transformer models is MovingMNIST. It is
a simple dataset containing text video pairs, illustrating the movement of handwritten
letters. In this work, the dataset is further reduced from the original dataset by only
incorporating videos with the following characteristics.
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(a) Latte Block
(b) Spatial Block with text
integration

(c) Temporal block with-
out text integration

Figure 3.12: Latte text integration model 2

• Each video shows only the movement of one digit. The digits used are 1, 2, 3, 4, 5,
6, 7, 8, 9.

• Each video shows one of the three movements:

– up and down,
– left and right,
– to and fro – standing for a constant movement backwards and forwards.

• Each video has a length of 10 frames.

• Each video is described with a corresponding text prompt stating the number
contained in the video and the movement.

Figure 3.16 showcases three examples of the dataset, illustrating video frames (not all 10
video frames are shown in the image) with their corresponding text description.
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(a) Latte Block
(b) Spatial Block with text
integration

(c) Temporal block with text
integration

Figure 3.13: Latte text integration model 2
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(a) SnapVideo (b) Text Block (c) SnapVideo Block

Figure 3.14: SnapVideo text integration model 1
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(a) SnapVideo (b) Text Block (c) SnapVideo Block

Figure 3.15: SnapVideo text integration model 2
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Figure 3.16: MovingMNIST dataset
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CHAPTER 4
Results

4.1 Image Generation (DiT)

4.1.1 Inference Details

The final sampling step T was set to T = 1000.

4.1.2 Implementation Details

The training process was implemented from scratch following the implementation details
of [Nic21]. The first version of the implementation followed the sampling process according
to Algorithm 2.2. After 500 epochs, while the loss continued to decrease, the sampling
results did not show any indication that the model was effectively learning to represent
the training dataset. A detailed examination of the output revealed that the reverse
process failed to generate samples within a valid pixel range. Specifically, the mean and
variance did not converge toward the distribution of the training data, leading to an
unstable output that significantly differed from the expected values.
Upon comparing my implementation with various diffusion model implementations, I
discovered that many of them employ a technique called thresholding to counteract this
effect. Although not mentioned in the original DDPM paper, this approach has been
utilized in several subsequent works, such as IMAGEN [SCS+22]. During thresholding,
the reverse process is redefined, retrieving the predicted sample x0 first before computing
the reverse step towards xt−1. Afterward, the predicted sample x0 is clamped to a valid
pixel range of [0,255] and used to compute xt−1.
In other words, instead of retrieving xt−1 directly from the predicted noise ϵθ(xt, t), the
reverse process is reformulated to compute xt−1 from x0. The sample x0 is obtained by
subtracting the entire predicted noise ϵθ from the current corrupted sample xt, which is
described in Algorithm 3.1.
After incorporating thresholding into the sampling process, the desired effect was achieved,
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and the model began generating images that increasingly aligned with the training dataset.
The training details of the DiT model are described in Table 4.2.

Training details

Hardware GPU NVIDIA GeForce GTX 1050
GPU memory 2GB

Diffusion Train dataset size 60.000
Image Size (height× width× channels) 28× 28× 1
Batch Size 128
Epochs 100
Learning Rate 0,001
Noise Scheduler cosine noise schedule

DiT Patch Size 2
Embedding dimension 64

Table 4.1: Training details of the DiT model

4.1.3 Inference Results DiT

Figure 4.1 shows the sampling results of the DiT model in a collage view, where the images
are generated from the given class labels sequence [2, 3, 1, 8, 2, 1, 5, 5, 8, 0, 1, 2, 5, 8, 2, 1].

Figure 4.1: DiT generated images

4.1.4 Evaluation Results

The evaluation metrics were calculated over a dataset containing 1000 predicted images
and 1000 images from the training dataset. The dataset for metric calculation consists
of 100 images for each possible digit from zero to nine, sampled from the model. To
compare the quality of the sampled images, 100 images for each digit were randomly
chosen from the training dataset and added to the metric dataset. The evaluation results
after training the model for 100 epochs are shown in Table 4.2.
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FID ↓ CLIPSIM ↑ SSIM ↑ PSNR ↑ LPIPS ↓

12.790 0.9978 0.2304 10.046 0.1581

Table 4.2: Evaluation results of the DiT model trained on the MNIST dataset (100
epochs)

4.2 Video Generation

4.2.1 Implementation Details

The diffusion code was not implemented from scratch but was instead adapted from the
code provided by [SCS+22]. It is a widely used implementation adopted by many of the
current Diffusion Transformer variants. The diffusion code provides the possibility to
integrate variance prediction into the diffusion process. The training details of the video
generation models are described in Table 4.3.

4.2.2 Inference Details

The final sampling step T was set to T = 250.

4.2.3 Inference Results GenTron

Figure 4.2 shows the frames of three sampled videos from GenTron after training it for
100 epochs on the MovingMNIST dataset. The images display video frames in a collage
view, generated by the model in response to the text prompt provided in each caption.

(a) The digit 2 is moving up
and down

(b) The digit 0 is moving left
and right

(c) The digit 7 is moving to
and fro

Figure 4.2: Sampling results of GenTron
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Training details

Hardware GPU NVIDIA A40
GPU memory 48GB

Diffusion Train dataset size 20.000
Frame Size (height× width× channels) 28× 28× 4
Batch Size 4
Epochs 100
Learning Rate 0,0001
Noise Scheduler cosine noise schedule

GenTron Patch Size 2
Dropout Probability 0.1
CFG-Scale 7.5
Embedding dimension 1152
Number Transformer Blocks 5

Latte Patch Size 2
Dropout Probability 0.1
CFG-Scale 7.5
Embedding dimension 1152
Number Transformer Blocks 5

SnapVideo Patch Size 2
Dropout Probability 0.1
CFG-Scale 7.5
Number Transformer Blocks 5
Patch embedding dimension 768
Latent embedding token 1024
Number of Self-Attention Layers 4

Table 4.3: Training details of video generation models

4.2.4 Inference Results Latte v1

The sampling results of the first Latte model variant are shown in Figure 4.3, with the
generated video frames according to the text prompts described in the captions.

4.2.5 Inference Results Latte v2

The sampling results of the second Latte model variant are shown in Figure 4.4, with the
generated video frames and the corresponding text prompts.

4.2.6 Inference Results Latte v3

The generated video of the third Latte model are shown in Figure 4.5, where each
image represents a video frame generated from the corresponding text description in the
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(a) The digit 0 is moving up
and down

(b) The digit 5 is moving left
and right

(c) The digit 8 is moving to
and fro

Figure 4.3: Sampling results of Latte v1

(a) The digit 0 is moving up
and down

(b) The digit 3 is moving left
and right

(c) The digit 8 is moving to
and fro

Figure 4.4: Sampling results of Latte v2

captions.

4.2.7 Inference Results SnapVideo v1

Figure 4.6 shows the inference results of the first SnapVideo variant, visualizing the video
frames of the corresponding text captions.
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(a) The digit 8 is moving up
and down

(b) The digit 7 is moving left
and right

(c) The digit 9 is moving to
and fro

Figure 4.5: Sampling results of Latte v3

(a) The digit 8 is moving up
and down

(b) The digit 5 is moving left
and right

(c) The digit 2 is moving to
and fro

Figure 4.6: Sampling results of SnapVideo v1

4.2.8 Inference Results SnapVideo v2

Figure 4.7 shows the generated videos from the second SnapVideo model, with the
sampled video frames given the corresponding text captions.

4.2.9 Evaluation Results

For the evaluation, a metric dataset was created, similar to the approach used for the
Image generation model in Section 4.1.4. The metric dataset contains 40 videos for each
possible digit (0–9) and movement (up and down, left and right, to and fro) combination,
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(a) The digit 0 is moving up
and down

(b) The digit 5 is moving left
and right

(c) The digit 6 is moving to
and fro

Figure 4.7: Sampling results of SnapVideo v2

sampled from the model (1200 videos) and additionally from the training dataset (1200
videos). The videos were sampled after training each of the models for 100 epochs. The
evaluation results of the video generation models are shown in Table 4.4.

Method FVD ↓ CLIPSIM ↑ SSIM ↑ PSNR ↑ LPIPS ↓

GenTron 111.0617 0.7808 0.6520 10.786 0.3045
Latte v1 61.659 0.7244 0.6865 11.302 0.2871
Latte v2 75.019 0.7040 0.6633 11.517 0.3376
Latte v3 11009.236 0.0611 0.0010 1.197 0.9542
SnapVideo v1, 4 Groups 302.663 0.7027 0.6033 10.1904 0.3629
SnapVideo v1, 49 Groups 540.2325 0.5240 0.5955 11.208 0.4104
SnapVideo v2, 4 Groups 401.691 0.6852 0.5452 9.610 0.4126

Table 4.4: Evaluation results of the video generation models trained on the Moving
MNIST dataset (100 epochs)
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CHAPTER 5
Discussion

5.1 From Image to Video Generation

The DiT class-to-image generation model was trained on a simple laptop GPU but still
showed promising results after 170 hours of training with a batch size of 128 images. After
adapting the class-to-image generation model according to the text-to-video generation
model architecture of GenTron, training locally was cut short as even a batch size of 1
resulted in an out-of-memory error.
After gaining access to an external server, training on a higher-performance GPU was
possible. However, the number of videos per batch was still limited due to memory
constraints. It was remarkable to see the difference between image and video generation
models in terms of memory usage. Due to the additional temporal dimension, in this
case, ten frames per video, as well as the model complexity, successfully training a video
generation model is only feasible on hardware with sufficient computational capacity,
such as high-performance GPUs optimized for parallel processing and large-scale data
throughput.
In the beginning, the preprocessing steps as well as the training and sampling algorithm
were kept consistent with the implementation of the class-to-image model. However, after
testing different learning rates, batch sizes, and patch sizes, the video generation model
did not demonstrate any progress in learning. The first significant adaptation made was
to encode the input videos into latent space utilizing a pretrained Autoencoder. This
preprocessing step was crucial, marking the first time the training and evaluation loss
decreased. Still, the sampled video frames showed blurry, indistinct shapes with scattered
white pixels throughout the frames.
Further research showed that the implementation of current generative diffusion models
is mostly based on the improved DDPM code from OpenAI [Nic21]. The key difference
to the custom implementation used for the DiT model is the additional variance learning
of the reverse diffusion process. Connecting the GenTron architecture with the improved
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DDPM implementation resulted in higher sampling quality. The sampled videos displayed
shapes concentrated in a single area, gradually beginning to resemble numbers. Further
refinement was achieved by employing Classifier-Free Guidance, integrating the textual
information not only into the architectural backbone but also throughout the diffusion
process. Further training along with batch size and learning rate optimization, ultimately
led to a prediction quality that matched the visual representation of the input text,
resembling the training dataset samples. Nonetheless, the most significant step, with
the greatest impact, was using an autoencoder to map the input video to a compressed
representation. This demonstrates the importance of reducing information during pre-
processing. Still, it is a delicate balancing act, as premature information loss can lead
to poor sampling quality. On the other hand, insufficient information compression not
only demands more memory but also hinders the models from finding patterns within
the data. For example, using a larger patch size during preprocessing resulted in poorer
outcomes, which is why a patch size of 2 was consistently maintained throughout the
different implementations.
One challenge I frequently faced during implementation was selecting the correct shape
at each step through the different layers of the architecture. Since videos, especially long
ones, cannot be processed as a whole, they must be handled step by step. This requires
different reshaping mechanisms to focus either on the temporal or spatial dimension of
the video. The same applies to the textual input, which has to align with the shape
of the video data to accurately integrate textual information with the corresponding
video. The initial implementation of SnapVideo, for instance, failed to demonstrate any
learning, producing random noise. After multiple code reviews, I identified the error in
the the attention mechanism between input video and text, causing one video to receive
information from all possible text prompts in the batch, rather than just the relevant
one. As a result, the model could not understand the specific video it needed to generate.
The need to manage various shapes throughout the process made implementing the video
generation models more complicated than the implementation of the image generation
model DiT, which can process image patches directly without reshaping.

5.2 Video Generation – Spatial and Temporal Attention
The key difference between GenTron, Latte, and SnapVideo is the spatial and temporal
dimension handling of the input videos. GenTron employs one Transformer block
for isolated spatial and temporal dimension processing. Latte, on the other hand,
utilizes two distinct Transformer blocks, one focusing on spatial, the other focusing
on temporal dimension. SnapVideo tries to process spatial and temporal dimensions
concurrently. Interestingly enough, the different approaches are reflected in the sampling
quality. GenTron shows the best results regarding frame-level image quality. The
visualized numbers within frames demonstrate high precision and match the textual
description. However, even though the movements between frames resemble the input
prompt, sometimes the movement is discontinuous, which is especially visible when the
digit is moving from the left to the right. The Transformer block of GenTron can be
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5.2. Video Generation – Spatial and Temporal Attention

split into two distinct focus areas, where the first part is responsible for learning the
intricate details within each frame, while the second part learns how the frames change
over time, aggregating the learned information in the end. However, as the Transformer
block employs spatial attention immediately after the temporal attention, it might be
the cause of losing important information during subsequent temporal modeling, leading
to incoherent movement. Latte, on the other hand, dedicates two separate Transformer
blocks for the temporal and spatial dimension handling – including multi-head attention,
layer norm, and linear projection – instead of only employing multi-head attention
during temporal modeling like GenTron. Latte’s results demonstrate enhanced temporal
coherence in the sampled videos compared to GenTron but fall short of accurately
visualizing the numbers within the frames, which are often distorted and sometimes
unrecognizable as actual numbers. Using a separate Transformer model has its trade-
offs: while it can produce smoother videos over time compared to a single Transformer
handling separate spatial and temporal attention, it also appears to require longer training
durations.
SnapVideo adopts a significantly different approach in comparison to Latte and GenTron
Rather than treating the spatial and temporal dimensions separately, it processes them
concurrently by dividing the input video into groups along the spatial dimension. This
allows the attention mechanisms to learn both frame-specific and movement-related
information from different parts of the videos simultaneously. Moreover, GenTron and
Latte perform information aggregation directly on the input video, meaning the newly
learned information is integrated into the video as it passes through the model. SnapVideo,
however, operates on a separate branch of learnable tokens, called latents. These latent
tokens first extract key information from the input, refine it by removing irrelevant
details and afterwards integrate the learned information into the input. By shifting the
computation from the input to a more compact latent representation and dividing the
input videos into groups, joint spatiotemporal attention is possible.

Prior research suggests that concurrent modeling of space and time can enhance temporal
consistency [SJE+23]. However, the results did not demonstrate any improvements; on
the contrary, the generated videos were static containing blurry figures, mostly failing to
resemble recognizable numbers. The initial configuration split the input video into four
spatial groups, leading to the assumption that the groups might be too large to capture
the necessary spatial and temporal details. However, increasing the number of groups
to 49 only worsened the outcome, producing random blotches across frames, and failing
to learn the distribution of the input data. Since the original implementation does not
mention any latent space mapping during the preprocessing stage, the model was also
tested directly on pixel space, which resulted in black video frames. Further adjustments
to hyperparameters failed to improve the results.

While increasing the training duration and further experiments regarding hyperparameter
tuning may improve performance, the findings suggest that separate spatial and temporal
modeling is more effective, particularly when working with simple datasets.
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5.3 From Class to Text Guidance
The adaptation of Latte for text-to-video generation in this work was inspired by GenTron,
while SnapVideo’s adaptation was based on a similar model, CAD-RIN [DBKP24].
Adapting the model for text integration instead of class-based generation involves changes
in both the architectural design and the preprocessing steps. To prepare the text for the
denoising network, it was mapped to embedding space. Following GenTron’s approach,
this study uses the CLIP model to generate text embeddings.
SnapVideo also adds learnable tokens to its text embeddings, allowing the model to better
store and process global text information. This technique was applied in the SnapVideo
implementation after generating the text embeddings.
Once the preprocessing of the text is complete, the challenge is integrating text into the
model. GenTron and CAD-RIN incorporate additional attention mechanisms for text
integration. In comparison, class-based models like Latte do not integrate the condi-
tional class label using additional attention mechanisms but instead modify the Vision
Transformer backbone with adaptive layer norm layers (adaLN). GenTron’s findings
however show that only relying on adaLN layers for injecting class-based information is
insufficient.
GenTron introduces text only in the spatial dimension, raising the question of whether
alternative integration placements could improve results. This idea was examined in
the Latte model by inserting the text at three separate points within the architectural
framework. The evaluation revealed that embedding text in the spatial attention block
before aggregation delivered the best results, accurately visualizing both the numbers
and their described movements. Integrating text between spatial and temporal blocks
produced videos that captured movements but failed to visualize the correct numbers
according to the input text. Incorporating text into both spatial attention and temporal
attention blocks caused the model to generate black video frames.

The initial SnapVideo model uses CAD-RIN-inspired text integration, while a second
model extended this approach by adding adaLN to the Vision Transformer architecture
based on GenTron’s method of text integration. CAD-RIN-style method demonstrated
basic textual understanding, producing blurry but identifiable numbers. Furthermore,
the model seems to be able to distinguish between different types of movements described
in the text. While the predicted videos were static, the placement of the figures shown in
the videos as well as their shapes changed according to the movement described in the
text. For instance, videos based on “left and right” displayed wide rectangular figures at
the top of the frames, whereas those describing “up and down” showed narrow rectangular
shapes lower-left corner. The “to and fro” movement caused the figures of the generated
videos to appear more zoomed in. However, additional adaLN integration provided no
notable improvements.

Overall, attention mechanisms play a critical role in successful text integration. When
text is integrated during spatial attention, it provides a solid starting point for the model,
helping it understand the context for generating new frames. In contrast, adding text at
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later stages tends to worsen the outcomes.

5.4 Evaluation Metrics

Common metrics for image generation evaluation include FID, CLIPSIM, SSIM, PSNR,
and LPIPS. Video generation, on the other hand, offers fewer established metrics, with
FVD being the most commonly used. Moreover, there are no established metrics for video
generation that evaluate whether the generated video aligns with a given text prompt.
As a result, image-based metrics are often applied to video generation using frame-wise
comparison. CLIPSIM can for example be extended as a video generation metric, by
comparing the similarity of a given text with each frame individually and averaging the
result over the CLIPSIM value of a corresponding video from the dataset. However,
this method does not assess how well the motion described in the text is represented
in the generated video, as it only considers each frame individually. Still, CLIPSIM
provided the most accurate reflection of the perceived quality across the different models.
FVD does not incorporate the input text to evaluate the models’ sampling quality.
The metric only compares how well the distribution of the generated videos matches
the distribution of the training dataset. The FVD metric rated GenTron’s generated
video lower than Latte v1 and Latte v2, even though GenTron demonstrated better
text alignment and more accurate visualization of the numbers in each frame. However,
Latte v1 and Latte v2 generated videos with more coherent movement in comparison to
GenTron. This suggests that FVD may be a better indicator of the movement quality
within the frames, possibly prioritizing motion over the visual quality of individual frames.

The image generation metrics provided valuable insights into the performance of the
image generation model DiT. However, regarding image generation, LPIPS and FID
provide a more accurate evaluation metric, as they measure how well the generated videos
represent the distribution of the training dataset. In contrast, SSIM and PSNR focus on
pixel-by-pixel similarity between generated videos and the videos from the dataset. The
results reveal that PSNR and SSIM values for the video generation models are typically
higher than those of the image generation model DiT, despite DiT’s ability to generate
numbers with better visual quality and less disruption. Nevertheless, these image metrics
can still be useful for detecting progress in model learning, as demonstrated by Latte v3,
which produced mostly black video frames and received the lowest values, even when
considering the image metrics SSIM and PSNR.

5.5 Limitations

Due to memory constraints, it was not possible to train the video generation models
with larger batch sizes. The various implementations were trained with a batch size of 4,
whereas GenTron managed to process 128 videos and SnapVideo processed 2048 videos
in a single training step. A larger batch size allows the model to see more video samples
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from the dataset before it takes a gradient step. This can have a big impact on the
training results. Additionally, because of time constraints, only 100 epochs of training
were possible. Further training might improve the current results.

For the diffusion process the cosine noise scheduler was consistently used, as it is a
standard choice. Alternative noise schedulers were not tested. However, using sigmoid
and exponential schedules could add more noise control and efficiency.

The dataset used in this work was a simple text-to-video dataset, containing black-and-
white videos. Each video shows one of the 27 variations of numbers and movements. A
more complex dataset might produce different results. Furthermore, the dataset contains
text prompts which always follow the same pattern. Reordering the phrases did not have
any impact on the results, however, completely rephrasing sentences often resulted in
black or blurred images. This is probably because the video generation models had not
been trained on such rephrased inputs and were unable to understand the unfamiliar
text structures.
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CHAPTER 6
Conclusion

Although implementing an image generation model is a difficult task, adapting the model
for video generation introduces even more complexity. Even small adjustments, whether
in the diffusion process or the selection of architectural components, can significantly
impact the quality of the generated video. Effective preprocessing plays a key role in
video generation. Extracting relevant information from the input video in the early
stages makes it easier for the model to understand and process the content. Using a pre-
trained autoencoder to compress the input video into a latent representation significantly
improved the performance in video generation. The choice of architecture for video
processing in Latte, SnapVideo, and GenTron also had a considerable effect on the results.
Handling the temporal and spatial dimensions of the input video separately produced
the best outcomes.
The evaluation metrics for image and video generation provided useful insights into
the quality of the generated outputs. However, metrics like FID and LPIPS for image
generation and FVD for video generation provide a more meaningful evaluation in
comparison to SSIM and PSNR, as they measure how well the generated videos align
with the training dataset rather than computing pixel-by-pixel similarity.

In conclusion, this work demonstrates that Diffusion Transformer models have the capacity
to effectively comprehend and further produce complex visual data, including images
and videos. It also shows that, even with limited hardware resources, training a video
generation model with a Diffusion Transformer backbone on a simple dataset for just a
few epochs can produce promising results.
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CHAPTER 7
Appendix

7.1 GenTron Pseudocode
def spatialAttention_Block(x, scale_gamma, shift_beta, scale_alpha):

# reshape for spatial attention
x = rearrange(x, ’b t s e -> (b t) s e’)
# AdaLN text integration

x_adaLN = x * (1+scale_gamma) + shift_beta
x_attn = self_attn(x)
x = x + scale_alpha * x_attn

return x

def temporalAttention_Block(x):
# reshape for temporal attention

x = rearrange(x, ’(b t) s e -> (b s) t e’)
x_attn = self_attn(x)
x = x + x_attn
x = rearrange(x, ’(b s) t e -> (b t) s e’)
return x

def textCrossAttention_Block(x, y, mask):
# text cross attention, mask out placeholder tokens
x_attn = cross_attn(norm(x), y, mask)
x = x + x_attn
return x

def aggregationFF_Block(x, scale_gamma, shift_beta, scale_alpha):
# AdaLN text integration

x_adaLN = norm(x) * (1+ scale_gamma) + shift_beta
x_ff = feedforward(x)
x = x + scale_alpha * x_ff
return x_ff
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class GenTron_Block():
def forward(x, c, y, maks):
# batch_size, number_of_frames, sequence_length, embed_dim
b, t, s, e = x.shape

# adaLN shift and scale parameters from conditional input c
g1, b1, a1, g2, b2, a2 = feedforward(c).chunk(6)

x = spatialAttention_Block(x, g1, b1, a1)

# Cross attention between frames and text
x = textCrossAttention_Block(x, y, mask)

x = temporalAttention_Block(x)

x = aggregationFF_Block(x, g2, b2, a2)

return x

class GenTron():
def forward(x, t, y):
# (batch_size, channels, number_of_frames, height, width)
b, c, t, h, w = x.shape
x = rearrange(x, "b c t h w -> (b t) c h w")

# patch embedding + positional Encoding
# (batch_size, number_of_frames, sequence_length, embed_dim)
x = x_embedder(x) + positional_encoding(x)

# diffusion timestep
t = t_embedder(x)

# text embedder with random dropout for classifier-free guidance
# mask is used to mask out placeholder tokens
y, mask = y_embedder(y)

y_pool = (y * mask).sum(dim=1) / mask.sum(dim=1)

c = t + y_pool

for GenTron_Block in GenTron_Block_list:
x = GenTron_Block(x, c, y, mask)

x = final_layer(x, c)

x = unpatchify(x)
x = rearrange(x, "(b t) c h w -> b c t h w")
return x
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7.2 Latte v1 Pseudocode

def attention_Block(x, scale_gamma, shift_beta, scale_alpha):
# AdaLN text integration

x_adaLN = x * (1+scale_gamma) + shift_beta
x_attn = self_attn(x)
x = x + scale_alpha * x_attn
return x

def aggregationFF_Block(x, scale_gamma, shift_beta, scale_alpha):
# AdaLN text integration

x_adaLN = norm(x) * (1+ scale_gamma) + shift_beta
x_ff = feedforward(x)
x = x + scale_alpha * x_ff
return x_ff

def textCrossAttention_Block(x, y, mask):
# text cross attention, mask out placeholder tokens
x_attn = cross_attn(norm(x), y, mask)
x = x + x_attn
return x

class Latte_Block():
def forward(x, c, y, mask, is_first_block):
# batch_size, number_of_frames, sequence_length, embed_dim
b, t, s, e = x.shape

if is_first_block:
# positional Encoding (spatial)

x = x + spatial_positional_encoding(x)

x = rearrange(x, ’b t s e -> (b t) s e’)

# adaLN shift and scale parameters from conditional input c for spatial
dimension

g1, b1, a1, g2, b2, a2 = feedforward_spatial(c).chunk(6)
x = attention_Block(x, g1, b1, a1)
x = aggregationFF_Block(x, g2, b2, a2)

# Text inseration version 1
############################################################
# Cross attention between frames and text
x = textCrossAttention_Block(x, y, mask)
############################################################

x = rearrange(x, ’b t s e -> (b s) t e’)

if is_first_block:
# positional Encoding (temporal)

x = x + temporal_positional_encoding(x)
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# adaLN shift and scale parameters from conditional input c for temporal
dimension

g1, b1, a1, g2, b2, a2 = feedforward_temporal(c).chunk(6)
x = attention_Block(x, g1, b1, a1)
x = aggregationFF_Block(x, g2, b2, a2)

return x

class Latte():
def forward(x, t, y):
# batch_size, channels, number_of_frames, height, width
b, c, t, h, w = x.shape
x = rearrange(x, "b c t h w -> (b t) c h w")

# patch embedding
x = x_embedder(x)

# diffusion timestep
t = t_embedder(x)

# text embedder with random dropout for classifier-free guidance
# mask is used to mask out placeholder tokens
y, mask = y_embedder(y)

y_pool = (y * mask).sum(dim=1) / mask.sum(dim=1)

c = t + y_pool

for i in range(len(GenTron_Block_list)):
block = GenTron_Block_list[i]
if i == 0:

x = block(x, c, y, mask, True)
x = block(x, c, y, mask, False)

x = final_layer(x, c)

x = unpatchify(x)
x = rearrange(x, "(b t) c h w -> b c t h w")
return x
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7.3 Latte v2 Pseudocode

def attention_Block(x, scale_gamma, shift_beta, scale_alpha):
# AdaLN text integration

x_adaLN = x * (1+scale_gamma) + shift_beta
x_attn = self_attn(x)
x = x + scale_alpha * x_attn
return x

def aggregationFF_Block(x, scale_gamma, shift_beta, scale_alpha):
# AdaLN text integration

x_adaLN = norm(x) * (1+ scale_gamma) + shift_beta
x_ff = feedforward(x)
x = x + scale_alpha * x_ff
return x_ff

def textCrossAttention_Block(x, y, mask):
# text cross attention, mask out placeholder tokens
x_attn = cross_attn(norm(x), y, mask)
x = x + x_attn
return x

class Latte_Block():
def forward(x, c, y, mask, is_first_block):
# batch_size, number_of_frames, sequence_length, embed_dim
b, t, s, e = x.shape

if is_first_block:
# positional Encoding (spatial)

x = x + spatial_positional_encoding(x)

x = rearrange(x, ’b t s e -> (b t) s e’)

# adaLN shift and scale parameters from conditional input c for spatial
dimension

g1, b1, a1, g2, b2, a2 = feedforward_spatial(c).chunk(6)
x = attention_Block(x, g1, b1, a1)

# Text inseration version 2
############################################################
# Cross attention between frames and text
x = textCrossAttention_Block(x, y, mask)
############################################################

x = aggregationFF_Block(x, g2, b2, a2)

x = rearrange(x, ’b t s e -> (b s) t e’)

if is_first_block:
# positional Encoding (temporal)

x = x + temporal_positional_encoding(x)
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# adaLN shift and scale parameters from conditional input c for temporal
dimension

g1, b1, a1, g2, b2, a2 = feedforward_temporal(c).chunk(6)
x = attention_Block(x, g1, b1, a1)
x = aggregationFF_Block(x, g2, b2, a2)

return x

class Latte():
def forward(x, t, y):
# batch_size, channels, number_of_frames, height, width
b, c, t, h, w = x.shape
x = rearrange(x, "b c t h w -> (b t) c h w")

# x.shape = (batch_size, number_of_frames, sequence_length, embed_dim)
x = x_embedder(x)

# diffusion timestep
t = t_embedder(x)

# text embedder with random dropout for classifier-free guidance
# mask is used to mask out placeholder tokens
y, mask = y_embedder(y)

y_pool = (y * mask).sum(dim=1) / mask.sum(dim=1)

c = t + y_pool

for i in range(len(GenTron_Block_list)):
block = GenTron_Block_list[i]
if i == 0:

x = block(x, c, y, mask, True)
x = block(x, c, y, mask, False)

x = final_layer(x, c)

x = unpatchify(x)
x = rearrange(x, "(b t) c h w -> b c t h w")
return x
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7.4 Latte v3 Pseudocode

def attention_Block(x, scale_gamma, shift_beta, scale_alpha):
# AdaLN text integration

x_adaLN = x * (1+scale_gamma) + shift_beta
x_attn = self_attn(x)
x = x + scale_alpha * x_attn
return x

def aggregationFF_Block(x, scale_gamma, shift_beta, scale_alpha):
# AdaLN text integration

x_adaLN = norm(x) * (1+ scale_gamma) + shift_beta
x_ff = feedforward(x)
x = x + scale_alpha * x_ff
return x_ff

def textCrossAttention_Block(x, y, mask):
# text cross attention, mask out placeholder tokens
x_attn = cross_attn(norm(x), y, mask)
x = x + x_attn
return x

class Latte_Block():
def forward(x, c, y, mask, is_first_block):
# batch_size, number_of_frames, sequence_length, embed_dim
b, t, s, e = x.shape

if is_first_block:
# positional Encoding (spatial)

x = x + spatial_positional_encoding(x)

x = rearrange(x, ’b t s e -> (b t) s e’)

# adaLN shift and scale parameters from conditional input c for spatial
dimension

g1, b1, a1, g2, b2, a2 = feedforward_spatial(c).chunk(6)
x = attention_Block(x, g1, b1, a1)

# Text inseration version 3
############################################################
# Cross attention between frames and text
x = textCrossAttention_Block(x, y, mask)
############################################################

x = aggregationFF_Block(x, g2, b2, a2)

x = rearrange(x, ’b t s e -> (b s) t e’)

if is_first_block:
# positional Encoding (temporal)

x = x + temporal_positional_encoding(x)

81



7. Appendix

# adaLN shift and scale parameters from conditional input c for temporal
dimension

g1, b1, a1, g2, b2, a2 = feedforward_temporal(c).chunk(6)
x = attention_Block(x, g1, b1, a1)

# Text inseration version 3
############################################################
# Cross attention between frames and text
x = textCrossAttention_Block(x, y, mask)
############################################################
x = aggregationFF_Block(x, g2, b2, a2)

return x

class Latte():
def forward(x, t, y):
# batch_size, channels, number_of_frames, height, width
b, c, t, h, w = x.shape
x = rearrange(x, "b c t h w -> (b t) c h w")

# x.shape = (batch_size, number_of_frames, sequence_length, embed_dim)
x = x_embedder(x)

# diffusion timestep
t = t_embedder(x)

# text embedder with random dropout for classifier-free guidance
# mask is used to mask out placeholder tokens
y, mask = y_embedder(y)

y_pool = (y * mask).sum(dim=1) / mask.sum(dim=1)

c = t + y_pool

for i in range(len(GenTron_Block_list)):
block = GenTron_Block_list[i]
if i == 0:

x = block(x, c, y, mask, True)
x = block(x, c, y, mask, False)

x = final_layer(x, c)

x = unpatchify(x)
x = rearrange(x, "(b t) c h w -> b c t h w")
return x
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7.5 SnapVideo v1 Pseudocode

def crossAttention_Block(x, y):
x_attn = self_attn(norm(x), y)
x = x + x_attn
return x

def selfAttention_Block(x, y):
x_attn = self_attn(norm(x))
x = x + x_attn
return x

def feedForward_Block(x, y):
x_ff = feedforward(norm(x))
x = x + x_ff

class SnapVideo_Block():
def forward(x, latents, c, c_pool, mask):
# batch_size, number_of_groups, latents_in_group, latents_embed_dim
b, n, l, e_l = latents.shape

# batch_size, number_of_groups, patches_in_group, patches_embed_dim
b, n, p, e_x = x.shape

latents = rearrange(latents, ’(b n) l e -> b (n l) e’)
latents = crossAttention_Block(latents, c, mask)
latents = feedForward_Block(latents)

latents = rearrange(latents, ’b (n l) e -> (b n) l e’)
latents = crossAttention_Block(latents, x)
latents = feedForward_Block(latents)

latents = einops.rearrange(latents, ’(b n) l e -> b (n l) e’)
for self_attn_l, ff_l in global_attn:
latents = selfAttention_Block(latents)
latents = feedForward_Block(latents)

latents = rearrange(latents, ’(b n) l e -> b (n l) e’)
x = selfAttention_Block(x, latents)
x = feedForward_Block(latents)

return x, latents

class SnapVideo():
def forward(x, t, y, latents_prev):
# batch_size, channels, number_of_frames, height, width
b, c, t, h, w = x.shape
x = rearrange(x, "b c t h w -> (b t) c h w")

# x.shape = (batch_size, number_of_frames, sequence_length, embed_dim)
x = x_embedder(x) + positional_encoding(x)
# x.shape = (batch_size, number_of_groups, patches_in_groups, embed_dim)
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x= group(x)

# Self projection
if latents_prev is not None:
latents = latents + latent_prev_ln(self.latent_prev_ff(latents_prev))

# diffusion timestep
t = t_embedder(x)

# text embedder with random dropout for classifier-free guidance
# mask is used to mask out placeholder tokens
y, mask = y_embedder(y)
# add learnable parameters as text registers
y = torch.cat[y, text_registers]
# self attention on text
for i in range(2):
y = self_attn[i](y)

c = torch.cat([t, y], dim=1)
# only mask out empty tokens in text, don’t mask timestep
mask = torch.cat([torch.ones(batch_size, 1), mask])

for SnapVideo_Block in SnapVideo_Block_list:
x = SnapVideo_Block(x, latents, c, c_pool, mask)

x = final_layer(x, c)

x = ungroup(x)
x = unpatchify(x)
x = rearrange(x, "(b t) c h w -> b c t h w")
return x, latents
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7.6 SnapVideo v2 Pseudocode

def crossAttention_Block(x, y):
x_attn = cross_attn(norm(x), y)
x = x + x_attn
return x

def selfAttention_Block(x, y, c=None):
x_norm = norm(x)
if c is not None:
scale, shift, gate = feedforward(cond).chunk(3)

# AdaLN text integration
x_adaLN = (x_norm * (scale + 1)) + shift
x = x + gate * self_attn(x_adaLN)

else:
x = x + self_attn(x_norm)

return x

def feedForward_Block(x, y, c = None):
x_norm = norm(x)
if c is not None:
scale, shift, gate = feedforward(cond).chunk(3)

# AdaLN text integration
x_adaLN = (x_norm * (scale + 1)) + shift
x = x + gate * feedforward(x_adaLN)

else:
x = x + feedforward(x_norm)

x = x

class SnapVideo_Block():
def forward(x, latents, c, c_pool, mask):
# batch_size, number_of_groups, latents_in_group, latents_embed_dim
b, n, l, e_l = latents.shape

# batch_size, number_of_groups, patches_in_group, patches_embed_dim
b, n, p, e_x = x.shape

latents = rearrange(latents, ’(b n) l e -> b (n l) e’)
latents = crossAttention_Block(latents, c, mask)

# AdaLN text ingegration
latents = feedForward_Block(latents, c_pool)

latents = rearrange(latents, ’b (n l) e -> (b n) l e’)
latents = crossAttention_Block(latents, x)
latents = feedForward_Block(latents)

latents = einops.rearrange(latents, ’(b n) l e -> b (n l) e’)
for self_attn_l, ff_l in global_attn:

# AdaLN text ingegration
latents = selfAttention_Block(latents, c_pool)
latents = feedForward_Block(latents)
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latents = rearrange(latents, ’(b n) l e -> b (n l) e’)
x = selfAttention_Block(x, latents)
x = feedForward_Block(latents)

return x, latents

class SnapVideo():
def forward(x, t, y, latents_prev):
# batch_size, channels, number_of_frames, height, width
b, c, t, h, w = x.shape
x = rearrange(x, "b c t h w -> (b t) c h w")

# x.shape = (batch_size, number_of_frames, sequence_length, embed_dim)
x = x_embedder(x) + positional_encoding(x)
# x.shape = (batch_size, number_of_groups, patches_in_groups, embed_dim)
x= group(x)

# Self projection
if latents_prev is not None:
latents = latents + latent_prev_ln(self.latent_prev_ff(latents_prev))

# diffusion timestep
t = t_embedder(x)

# text embedder with random dropout for classifier-free guidance
# mask is used to mask out placeholder tokens
y, mask = y_embedder(y)
y_pool = (y * mask).sum(dim=1) / mask.sum(dim=1)
# add learnable parameters as text registers
y = torch.cat[y, text_registers]
# self attention on text
for i in range(2):
y = self_attn[i](y)

c = torch.cat([t, y], dim=1)
c_pool = y_pool + t

# only mask out empty tokens in text, don’t mask timestep
mask = torch.cat([torch.ones(batch_size, 1), mask])

for SnapVideo_Block in SnapVideo_Block_list:
x = SnapVideo_Block(x, latents, c, c_pool, mask)

x = final_layer(x, c)

x = ungroup(x)
x = unpatchify(x)
x = rearrange(x, "(b t) c h w -> b c t h w")
return x, latents
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Used

ChatGPT (Version GPT-4, OpenAI, December 2024) was utilized to assist in finding
synonyms.
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