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Abstract

This thesis is focused on the numerical treatment of stochastic homogenization in
elliptic partial differential equations. A major application, and one that we keep
in mind in this work, can be found in materials science, where one is interested in
obtaining an average conductivity for a composite containing a fine microscopic
structure. Such problems are also called “multiscale” due to the differences in
(length) scales that are of interest. Determining an average conductivity requires
first resolving at least part of the fine structure, which we can use to estimate the
conductivity on the macroscopic scale. A central issue in numerically solving a
homogenization problem comes from the fact that in order to minimize the error,
one would need to determine conductivity on the microscale for the entire body;
this is however not possible given the sheer size of such systems. One needs to
therefore content oneself with a sample of the material and use this information
to compute an average conductivity. This can be accomplished by first solving the
so-called “cell problem.” The essential contribution in this thesis is the estimation
of the error of the cell problem, which we express as a function of domain size,
mesh fineness and number of samples. We will quantify the work needed to solve
this problem and then present an optimal approach to solving the problem.






Zusammenfassung

Die vorliegende Diplomarbeit beschaftigt sich mit der stochastischen Homogen-
isierung von elliptischen partiellen Differentialgleichungen. Homogenisierung
findet vor allem in den Materialwissenschaften Anwendung. Eine Fragestellung
dieses Gebiets, auf welche wir uns in dieser Arbeit konzentrieren, ist die Berech-
nung der mittleren Leitfahigkeit eines Verbundwerkstoffs mit einer feinen mikro-
skopischen Struktur. Solche Probleme nennt man “Mehrskalenprobleme”, da die
involvierten Groflenskalen sehr unterschiedlich sind. Um die makroskopische
mittlere Leitfahigkeit zu berechnen, muss zuerst die heterogene mikroskopische
Struktur aufgelost werden. Von zentraler Bedeutung ist die Minimierung des nu-
merischen Fehlers fiir das Homogenisierungsproblem. Um diesen zu minimieren,
miisste man eigentlich das numerische Problem fiir das ganze Gebiet in der mikro-
skopischen Skala l6sen. Jedoch ist der numerische Aufwand fiir dieses Problem
wegen der bloflen Groe der zu untersuchenden Objekte nicht vertretbar. Statt-
dessen wird das Problem auf eine kleinere reprdsentative Zelle reduziert, worauf
eine Approximation der mittleren Leitfahighkeit berechnet wird. Dafiir muss das
sogennante “Zellproblem” gelost werden. Das wesentliche Resultat dieser Arbeit
sind Fehlerabschidtzungen fiir das Zellproblem als Funktion der Gebietsgrofie, Git-
terweite und Anzahl der verwendeten Stichproben. Weiters wird der numerische
Aufwand fiir die Losung des Problems quantifiziert und eine optimale Herange-
hensweise prasentiert.
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CHAPTER 1

Introduction

1.1 Introductory Examples

In this work, we will be concentrating on a body of problems that share the com-
mon property of possessing multiple scales. Such multiscale problems can be
found in numerous physics and engineering applications, where an object has
a geometrical size that is many orders of magnitude larger than the atoms and
molecules it contains. Multiscale problems can also refer to different time scales:
for example, the behavior of atoms occur on a time scale of femto-seconds (1071
second) [10, p. 6], whereas the time interval of interest may be closer to one sec-
ond. Most systems possessing multiple scales can be adequately approximated
without taking its microscopic properties into account, but in some cases, the mi-
croscopic properties play a decisive role in their macroscopic behavior. For such
problems, the goal is to describe the average behavior of the system, taking details
from all length or time scales into account.

A large class of multiscale problems is focused on describing the average prop-
erties of heterogeneous materials, or materials that consist of different phases,
such as composites or polycrystals. Processes for such materials are generally de-
scribed by differential equations with coefficients that rapidly oscillate between
the phases. Media possessing a microstructure, where the length scale of one
or more phases is much smaller than the overall material, is a particular kind of
heterogeneous material that presents its own challenges. An example of such a
medium with a microstructure can be seen in Figure 1.1, which shows an exam-
ple of a SEM micrograph of a composite. The behavior of such a medium at the
macroscopic level is often quite different from that at the microscopic level, yet
resolving the fine structure is critical to understanding the overall behavior of the
medium. However, it is not feasible to resolve the microscopic behavior in its en-
tirety; the behavior is too complex and contains too much information that is of

9



10 CHAPTER 1. INTRODUCTION

Pl s T i LN Y

Figure 1.1: SEM micrograph showing detail of a ceramic matrix SiC/SiC compos-
ite, manufactured via a CVI-process. The micrograph reveals a structure possess-
ing multiple scales. Used with permission by MT Aerospace AG, Augsburg via Wiki
Commons.

no interest to the problem at hand. In these cases, it is often enough to analyze
one or more samples of the microstructure in order to characterize the material
as a whole. Homogenization is a mathematical tool that is necessary to predict
properties of a composite if the microstructure is known. With the same tool, new
materials with desired properties that optimize the composite’s performance can
be modeled.

The enormity of the problem in characterizing such materials becomes appar-
ent when one considers the number of variables that demonstrably affect a ma-
terial’s behavior. Let us consider a simple example of a two-phase material that
is comprised of grains or inclusions and a matrix surrounding the grains. Say we
are interested in the elasticity of the material at the macroscopic level. Clearly,
a number of variables could influence this behavior; a few variables include: the
size of the inclusions compared to macroscopic scale, the distribution of inclusion
size, the density of the inclusions, clustering of inclusions, the degree of difference
between the properties of the matrix versus the inclusions, and the effect of the
grains’ orientation (in the anistropic case). When one considers a model for the
macroscopic behavior under an applied force, more questions surface: how large
must our microscale sample be in order to give us an understanding of how this
force impacts the material as a whole? What sort of boundary conditions should
we impose on the microstructure that will minimize the error in the macroscopic
problem? If we are taking multiple samples of a material to characterize the aver-
age behavior, how many samples do we need?

Periodic problems were among the first to be well-understood given their simple
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Figure 1.2: Cross-section of a periodic composite cut across the fibers.

structure; these are structures that have repeating cells as in Figure 1.2. Early con-
tributors to this field were Bakhvalov [3] and Berdichevskii [5]. These models are
rather unrealistic, however. Early, more general, results for the non-periodic case
can be found in the works of Kozlov [19], Yurinskii [33], and Papanicolaou and
Varadhan [27], who arrived at similar results, albeit by somewhat different meth-
ods.

The question of how large a sample must be is of particular importance. In appli-
cations, a sample that is “large enough” in the sense that it is statistically repre-
sentative of the behavior of the entire body is known as a representative volume el-
ement (RVE). In an extracted rock core, it may contain information about the pore
scale distribution, for instance. In order for it to be representative of the whole,
it must contain a large number of composite microheterogeneities, but this of
course leads to much larger domains, which can be computationally expensive.
Figure 1.3 shows a simulation of a cross-section of a fibrous material and a sam-
ple in higher resolution. Clearly, there is a limit to how small a RVE can be for this
material, and it depends not only on the fiber size, but also the density. There is
not yet a unified approach to determine RVEs for an arbitrary material, but much
progress has been made on this topic; see for example the papers by [21] or [26].

An important question in multiscale methods is how the boundary condition cho-
sen for the microproblem affects the error of the solution. The boundary condi-
tions used in the microproblem are in a certain sense artificial; they are needed
due to the fact that the computational domains are truncated and localized. In
[6], Bourgeat and Piatnitskii examined the use of periodization and other “cut-
off” procedures to approximate a RVE for second-order elliptic operators in diver-
gence form. They were able to approximate convergence rates when an additional
mixing condition was assumed. Yue and E [32] studied the convergence rates
numerically for the same class of problems. The authors tested several bench-
mark problems with periodic, Dirichlet, and Neumann boundary conditions; it
was found that while all three boundary conditions perform reasonably well, pe-
riodic boundary conditions generally perform best.
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Figure 1.3: Cross-section of a fibrous material, zoomed in 10 times to reveal the
microstructure. The size of the sample plays an important role in multiscale meth-
ods.

In the following pages, we will be focusing on characterizing and modeling ma-
terials with a specific subset of physical laws, namely those that can be described
using elliptic partial differential equations. While we shall focus on systems con-
taining two widely separated scales, methods described here can be extended in
a natural way to deal with systems involving many scales. To begin, let us look at
two major applications belonging to this class of problems.

Example 1.1. (2D Thermal Field in a Composite [4]) Modeling a thermal field in a
composite amounts to solving the elliptic problem

0

oy

0 0
<A6($1a$2)_u) + 8_332 <A€($1a$2)a_x2) = f(xlaxQ) v(:El?xQ) S D7 (lla)

(9:1:1
u=>0 V(ZL‘l,ﬂfg) € 8D (llb)

where u(x;,z2) quantifies the temperature at the point (z;,z) in the 2D plane,
f(z1,x9) is a smooth function describing the density of heat sources in the com-
posite, and A. is the conductivity coefficient of the composite, which rapidly os-
cillates on the microscale between two real values:

Ay, if (21, 25) is in a fiber,

Ae<$1,$2) = {

Ay, if (x1, z9) is in the matrix surrounding the fiber.

The continuity conditions [u] = 0 and [A.%%] = 0 are also imposed, where the
notation [w] means the difference between values of w on two sides of a surface.
One is interested in obtaining an equation with an “averaged” A that represents
conductivity for the macroscale.

Example 1.2. (Linear Elasticity Problem [30]) Consider a problem in elastostat-
ics, where a body D = D, U D, C R? is clamped on one side, denoted by 0D,
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and where a force f is applied to the other side, denoted by 0D,. If u denotes the
displacement of the body, then the strain tensor € can be expressed as

1 a’U,Z 8uj
Efij = — + .
2 \ Oz j 8902
A generalization of Hooke’s Law gives a linear relation between the stress tensor T
and the strain tensor € such that

Tij = Cz’jkzh P Ekh-

Here, the Einstein summation convention is used, where repeated indices are
summed, meaning c;z; represents the sum )", ¢;z;. Assume that C is symmet-
ric, i.e. C;jkn = Cjikn, = Cijnk = Cinijr and positive in the sense that

Cijkn€ij€rn > 0E€;jE;; a>0 Ve;.

If f; are the components of body forces and F; the components of surface forces,
then the governing equations are given by

T .
AL RN in D, (1.2a)
0.(17]'
u; = 0 on @Dl, (12b)
TiinN; = E on 8D2 (12(‘,)

with n denoting the unit outer normal vector to 9D. Under the assumption that
the coefficients C,;;;, are periodic and rapidly oscillating, a homogenized stress-
strain relation of the form

T = ijkh . ékh
can be constructed [30]. This new constitutive relation is used to construct the
“average” equation on the macroscale.

1.2 Overview of Homogenization

Up until now, we have used the terms “averaged equations” and “averaged coeffi-
cients” to gain an intuitive idea of homogenization. We will now be more precise.
In Example 1.1, we defined a rapidly oscillating coefficient A. that took one of two
values depending on the location. We also discussed the problem that generally
speaking, composites have inclusions that are on a much smaller scale than the
size of the body itself. The difference in scales has serious practical concerns; nu-
merically, it is not possible to resolve the microscales and macroscales at the same
time. A technique for mathematically handling these concerns is called homoge-
nization. Homogenization aims at obtaining homogenized equations with coeffi-
cients that are not rapidly oscillating, but which still yield solutions that are close
to solutions to the original equation. In the homogenized equations, the original
coefficients are replaced by so-called effective coefficients. The advantage of these
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Figure 1.4: Transformation of the elementary cell.

equations is that they can more easily be solved numerically, unlike the equations
with rapidly oscillating coefficients, where the mesh would need to be be very fine,
at the very least at transitions between materials. The homogenized equation of
Example 1.1 is

d [ - 9] 9 [+ 9]
Er (A(xl,xg)a—z?) +— <A(I’1,I2)%> = f(x1,22) ¥Y(x1,22) € D,  (1.3)

Uy = 0 V(Il, l‘g) S 8D, (13b)

where ug is the homogenized solution, which is close to the solution u of the orig-
inal problem and A is the composite’s effective coefficient of conductivity [4]. In
the next chapter, we will derive this result in the stochastic case for a general num-
ber of dimensions d.

The central idea behind the technique is as follows: to obtain the homogenized
equations, we introduce fast variables y; := x;/c. This turns an elementary cell
into one with unit length 1; see Figure 1.4. We make the assumption that our fast
variables y; are on a much smaller scale than the slow variables z;; for this reason,
homogenization is also referred to as the “method of multiple scales.” We then
seek a solution in the form of a formal power series in powers of the small param-
eter € with coefficients depending on both z; and y;; in one dimension this ansatz
looks like

U= Zgiui(m,y). (1.4)
i=0

This series is the substituted into the original equation and coefficients are equated
that have the same powers of ¢. This results in a system of decoupled equations
of the same scale that can be combined to obtain the homogenized solution. In
Section 2.1, we will see how this procedure works in the periodic case.

1.3 Outline of Thesis

Now we will summarize the contents of the remaining pages. In the next chapter,
will derive the homogenized equation for Poisson’s equation, providing the appro-
priate definitions and framework for the numerical work. The corrector equation
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(cell problem) will be introduced, which is an essential equation in homogeniza-
tion, and which will play an important role in our error analysis and numerical
results. Additionally, we will introduce the effective coefficient matrix, which we
obtain using the solution to the corrector equation.

In the third chapter, we will focus on the numerical solution to the corrector equa-
tion using the finite element method. We will see how sampling techniques can be
used for the stochastic problem. The chapter closes with a brief survey of methods
used in numerical homogenization.

In the fourth chapter, we will focus on new theoretical results obtained as part of
this study. Error bounds will be derived for the numerical solution to the corrector
equation and these bounds will be justified using both existing theory and numer-
ical simulations. An optimal approach to solving our problem will be presented
after quantifying work and solving an optimization problem.

Numerical results will be presented in Chapter 5. We will present a specific frame-
work for testing and focus on a couple of benchmark equations. Solutions to both
the corrector equation as well as the effective coefficient matrix will be calculated.
Values for the optimization problem will be determined based on these simula-
tions.

In Chapter 6, we will give a brief description of the implementation of our solver,
which was for the most part built from scratch. Finally, opportunities for future
research will be discussed in the conclusion.
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CHAPTER 2

Stochastic Homogenization of Elliptic PDEs

2.1 Derivation of the Homogenized Equation in the
Stochastic Case by Periodization

In this section, we will derive the homogenized equation for Poisson’s equation
-V (AVu,) = f Ve € D, (2.1a)
u. =0 Vo € 0D. (2.1b)

This problem describes several different types of physical settings defined on an
open and bounded set D c R%. In diffusion, A. represents diffusivity or thermal
conductivity and u. represents some quantity that diffuses, as in a concentration
of a chemical solution or the temperature in a medium. Example 1.1 belongs to
this class of problems. In electrostatics, A. represents permittivity and u. is the
electric potential. Our focus will be on a multiscale problem in which the coeffi-
cient A, fluctuates rapidly on the microscale, such as in a composite or a mixture
of several materials with different properties. The parameter £ > 0 is the ratio of
the typical length scale associated with the domain D to the typical length scale
associated with variations in conductivity [27]. To obtain the homogenized equa-
tion, we will combine techniques found in [27] and [28].

We will focus on the periodic and stochastic case. Let (2, F, P) be a probability
space where w € ) represents a single realization of a medium, F is an appropriate
c-algebra and P is a probability measure defined on (2, ). Each realization w of a
medium can be identified with a coefficient A(z, Z,w) =: A.(z,w). We will assume
that the coefficient A, takes the form A(Z,w), i.e. fluctuations in the coefficient
only take place on a microscale; the methods below can be extended to the more
general case. A is furthermore a matrix-valued random field that is assumed to be
strictly positive and bounded, meaning

JaTa” >0 a | <ETA(y,w)E < at|éf (2.2)

17
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forally € RY, w € Q, and ¢ € R We will also assume that A is 1-periodic in all d
directions. Let us recall the definition of a periodic function.
Definition 2.1. A function f : R¢ — R that satisfies

fly+e)=fly) VyeR? Vie{l,.. d}
where ¢;,i € {1,...,d} denotes the standard basis of R?, is called a 1-periodic
function.
The problem (2.1) in the stochastic form is

-V - (A(z,w)Vu(z,w)) = f(z) V(z,w) € D xQ, (2.3a)
us(r,w) =0 V(z,w) € 0D x Q, (2.3b)

where we assume, for simplicity, that f is deterministic. The goal is to find the
homogenized equation of (2.3) for a fixed realization w € ().

We seek a solution in the form of a power series expansion in ¢ as in the ansatz
(1.4). We use the idea inherent in multiscale methods: that in addition to our
“slow” variable z, our solution v is dependent on another “fast” variable, which
we introduce as y := Z. The ansatz (1.4) becomes

ue (T, w) = ug <x, E,w) + euq (x, g,w) + e%u, (a:, E,w) +oee (2.4)
€ € 5

We will treat z and y as independent variables, a main idea behind scale separation
and justified in standard literature on the subject; see for example [28, Chapter 19].

The chain rule yields
V=V,+ évy.
Defining the left hand side of (2.3a) as
A. ==V - (AV)

we see 1 1
Ao = S Ao+ - A + Ay,
£ €

where

Ao = =V - (Aly,w)Vy),
Al = _vy : (A(y,CU)VI) - v:c : (A(y7w)vy)7
AQ ==V, (A(va)vx>

The stochastic problem (2.3) can therefore be written as

(éAo + éAl + Ag) u. = f Y(z,y,w) € D x T% x Q, (2.5a)

u, =0 Y(z,y,w) € ID x T x Q. (2.5b)
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Now, plugging the ansatz (2.4) into (2.5), we have

1 1 x x 9 x B
<§Ao+ gAl +A2) [uo <$,g,w> + cuy <x,g,w> + Uy (x,;w) +} =f
1 1
— 8_2 (AoUg) + E(Aoul + A1U0) + (Aoug + A1u1 + AQUO) + 0(5) = f
Comparing coefficients for e =2, 71, and £°, we have, respectively:
AQUU = O, (26&)
A0u1 = —A1U0, (26b)
.A()UQ = —A1u1 — AQUO -+ f (26C)

Naturally, this process can be extended further to obtain higher-order terms. In
equation (2.6a), since A, contains differentials solely dependent on y, we can set
uo(x,y,w) := u(x). Later, we will see that it is indeed sensible to assume u’s in-
dependence from w, as it will be shown that u. converges weakly to a « that is the
solution to a deterministic equation; see Section 2.2. The system (2.6) in expanded
form is

=V, - (Aly,w)Vyu(z)) = 0, (2.7a)
Y, - (Al @)V (2,w)) = ¥, - (Aly,0)Vau(e)) + V. - (A(y,0)V,u(e)),  (2.7)
—Vy - (Aly, w)Vyus(z,w)) = Vy - (Aly, w) Vous (z,w))
+ Ve (Aly, w)Vyus (2, w)) (2.7¢)
+ V.- (A(y,w)Vu(x)) + f.
Note that this system can be solved sequentially. Solvability is guaranteed thanks

to the Fredholm alternative, since we know that, given our assumptions on A, the
elliptic equation

Au = f, u is 1-periodic
has a solution if and only if [28, p. 184]

f(y)dy = 0. (2.8)
']Td

This solution is unique up to an additive constant. We will in the following fix
this constant by using the condition that the solution should vanish over the unit

torus, i.e.
/ u(y) dy = 0.
Td

Note that the divergence of a matrix is defined by

(V.- A); = Z 8., Aij
J

so that
Zg Aljaxju
V, (AV,u) =V, - : = 0,,(Ayj0q,u)

Zj AgjOq;u v
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and
> 0y An O u
(V, AT Vu = : ] =D 00,,445)(0su)
Zi ayd Aia axdu b

are equal, given u = u(x). Hence, (2.6b) reduces to

Aouy =V, - (Aly,w)Vyu) + V- (Aly, w)Vyu)
= Vy ) (A(y7 W)qu)
= (Vy ) AT<y7w)> -Vzu,

so that we obtain

Aguy = (V, - AT (y,w)) - V,u, uy(zx, -, w) is 1-periodic, / ui(x,y,w) = 0.
Td

Generally, for a function g € C(T), i.e. a function that is continuously differen-
tiable and periodic on the torus, the divergence theorem shows

V.-g(y)dy =0. (2.9)

Td

Thus, the solvability condition (2.8) is again fulfilled, since

W dy= /Td(Vy AT) - Veudy = Veu- /Td(Vy - AT)dy =0,
as A is periodic. We make the separation ansatz
ui(z,y,w) = x(y,w) - Voulz),  x:T!xQ— R
and we get

Ao(x(y,w) - Vau) = (V- A (y,w)) - Vou
= (Aox(y,w)) - Vou=(V, A (y,w)) - V,u.

Thus, if x solves the cell problem (or corrector equation)

—Vy - (Aly, 0)Vyx(y,w)) = V, - AT (y, ),
. . 1. (2.10)
x is 1-periodic, / X(y,w)dy =0,
Td

then u; = x(y) - V,u(x) is a solution to (2.6b). The field x is called the first-order
corrector. Note that the cell problem has the form

—Vy ’ (A(yaw)va(yaw)) = h(va)

so that we can again use similar arguments to those used in the first step to estab-
lish existence and uniqueness: if A(y,w) is strictly positive and uniformly bounded



2.1. DERIVATION OF THE HOMOGENIZED EQUATION 21

in y and w, then the cell problem in its weak form has a unique solution if and
only if the integral of » disappears over the torus [27]. This is indeed the case, as
the integral over the right hand side vanishes on the unit torus, so the problem is
well-posed. The uniqueness of the solution y is guaranteed due to the condition

de x dy = 0.

To solve (2.10), we assume that y € C#(?I‘d). The cell problem can be written in the
form of one equation per component of y [28, p. 189] as

-V, - (Aly,w)Vyx:) =V, - (Aey), ie{l,...,d}. (2.11)

Here, e; is the i'* unit vector in R? and Ae; is the " column of A. Using that
e; = V,y;, we can write

—Vy - (A(y, w)(Vyxi + Vi) = 0.

We multiply this equation by the test function ¢ € C}(T?) and partially integrate
to get the weak form

) (Vyxi + Vyyi, Ay, w)Vye) dy = 0,
T
where (-, -) represents the scalar product. Introducing the bilinear form
a(u,v) = / <Vyv, Ay, w)Vyu> dy,
Td

we see that solving the cell problem amounts to finding x; € CL(T%), i € {1,...,d}
such that

alp,xi+yi) =0 Ve e Cu(T. (2.12)
Remark 2.2. The equations (2.12) can be written more compactly as
/Vyx -A(y,w) - Vypdy = — / Ay,w) - Vypdy Yo € C#(Td), (2.13)
Td Td
where

Vyuxt VgXxi
\V4 — Y1 Y2
uX (V?h X2 vy2X2>

in the two-dimensional case.

Now we shall turn to the third equation (2.6c). The solvability condition is that the
integral over the right hand side should be equal to zero, i.e.

At + Ayur dy = f(z)dy = f(z),

Td Td

since we assumed that f is independent of y. We see that

Ariady = = [ V. (Aly)V.ulo)) dy
T

Td

— v, ( WA(yM) dy Vru(“f))
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and
y Ajug dy = /Ed -V, - (Aly,w)Vuuy) — V- (Ay,w)Vyuy) dy
== [, 9 (A9, (xt0:) - Vi) ) dy
= [ 92 (A ) (T V(o)) .

Combining these terms, our solvability condition becomes

Vo ([ A0+ AT o) = 1

In the deterministic case, i.e. A(y,w) = A(y) we would define the effective coeffi-
cient as

A= /Td Aly) + Aly)(Vyx) " dy. (2.14)

and for 0 < ¢ < 1, the solution u. of (2.1) would be approximately given by the
solution « to the homogenized equation (see [28, p. 185]):

V- (AVu)=f VzeD, (2.15a)
u=0  VzedD. (2.15b)

We will see how this result is generalized for the stochastic case in the next section.

Remark 2.3. The effective coefficient can also be expressed in the form

Ay =alx;+ypxi+u), 1j3e{l,....d}

This is due to the fact that for x; € C,(T?), a(x;, x; + ;) = 0foralli,j € {1,...,d}.
The expression is used to justify the symmetry of A when A is symmetric; see [28,
p. 189].

2.2 Theoretical Results for the Stochastic Homogenized
Problem

In the previous section, we derived the homogenized equation for a fixed realiza-
tion w in the periodic case. Now we wish to summarize some of the main findings
in the papers by Kozlov [19], Yurinskii [33], and Papanicolaou and Varadhan [27].

Let D, := [—L L)? ¢ R? be a cube with length L centered at the origin. First, let

us recall the definition of an ergodic transformation.

Definition 2.4. Let (€2, 7, P) be a probability space and 7" : 2 — 2 be a measure-
preserving transformation. We say that 7' is ergodic with respect to the measure P
ifany F € Fwith T(F') C F implies P(F) =0or P(F) = 1.
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Now we recall the definition of a homogeneous random field.

Definition 2.5. [19] Let the probability measure P be invariant with respect to the
translation group 7, : 2 — (2, which is given by

(Tww)(y) =w(y — ) Vr,y € R%
Assume that T}, is ergodic. A homogeneous random field v : R? x () — R" satisfies

v(z +y,w) =v(z, Tw), Vr,y € R%

For a homogeneous random field, Birkhoff’s ergodic theorem [19] states that the
spatial average exists, in other words

In the ergodic case, it holds that (v) = Ev. In other words, the result of averaging
over all realizations of an ensemble is equivalent to averaging over the volume for
one realization in the infinite-volume limit [31, p. 29].

The main result by Kozlov can be summarized as follows.
Theorem 2.6 (Kozlov [19]). Assume that A is uniformly elliptic and bounded, i.e.

(2.2) holds, where A is a d x d matrix whose elements form homogeneous random
fields. Then the following statements hold.

1. There exists a unique homogeneous random fieldvy = (4! (y)), i,j € {1,...,d},
which furnishes the minimum of the variational problem

(] (y) Ajpf (y)) — minl,

oyl ouE

curl(¢;) = oo Dy
J

0, (¥i(y))=2d, ERivi<oco.

2. The effective coefficient A is given by
Ay = (WO () A (W)Y} () = (Ait]). (2.16)

3. The weak solution u. € H}(D) to (2.3) almost surely converges weakly in
H' (D) tou € H}(D), the solution of the deterministic elliptic problem

~V - (AVu) = f(z) Vz €D, (2.17a)
u(z) =0 Vx € 0D. (2.17b)

In other words, when ¢ is small, the stochastic equation can be approximated by a
deterministic equation with constant effective coefficient A. Until Kozlov’s paper,
homogenized equations had only been constructed in the case of periodic and
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almost periodic microstructures; the paper gave homogenized equations in the
general case.

It is worth mentioning that another author, Yurinskii [33], independently gave the
same results under the additional condition of strong mixing. Since this condi-
tion is more restrictive, however, Kozlov’s result is considered more general and
is therefore more frequently cited in the literature. The following theorem from
Yurinskii’s paper detailed the ergodic properties of the cell problem.

Theorem 2.7 (Yurinskii [33]). Given the boundary value problem

V- (A(Vx+b) =0 VyeDy, (2.18a)
x=0 VyedDy, (2.18b)

where the components A;;(y,w) satisfying (2.2) are homogeneous random fields
that are measurable for ally € RY and w € 2, assume that A is subject to a con-
dition of strong mixing in the form

sup  |E&E — EEES| < o(d(D, D)) (2.19)

‘£i|§17’i€{172}

where d(D, l:)) is the distance between the closures of the bounded domains D and
D. Let x, = x»,1 be a solution to (2.18). Then the limit

(Ab,t/) = lim EL™ [ (A(Vxs +0),V)dy (2.20)

L—oo DL
exists for any b, b’ € R4,

Remark 2.8. Equation (2.18) corresponds to the corrector equation with Dirichlet
boundary conditions instead of periodic boundary conditions. Equation (2.20)
gives an explicit form for the effective coefficient Aifwesetb =¢;,and b/ = e;, the
unit vectors on R¢,

A companion work to the papers by Yurinksii and Kozlov can be found in the paper
by Papanicolaou and Varadhan [27]. The authors created an analytical framework
in which the stochastic homogenization result can be understood. We will sum-
marize some of the more important elements here. Instead of working with homo-
geneous random fields, Papanicolaou and Varadhan made stationarity, ergodicity
and uniform ellipticity assumptions on the tensor A. We recall the definition of
strict stationarity.

Definition 2.9. A is referred to as strictly stationary if the joint distribution of
Ay, w), ..., A(yn,w) is the same as that of A(y; + h,w),..., A(y, + h,w) for all
y; € R i e {1,...,n}andforall h € R%

The processes A(y,w) are assumed to be stochastically continuous in the sense
that
lim P{|A(y + &, w) — A(y,w)| > d} =0 Vo > 0, vy € R

[€]—=0
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Tilde notation is introduced to associate a function with its translates that form
the stationary process; in particular,

f(z,0) = (1. f)(w) = f(r_aw).

For the periodic case, the solving of the cell problem amounts to solving the ellip-
tic equation on the torus, for which we have the Poincaré inequality. In the non-
periodic case, another strategy must be employed. As in the papers by Kozlov and
Yurinskii, Papanicolaou and Varadhan consider a modified cell problem

~V - A(I +Vxr) +T 'xr =0. (2.21)

with a zero-order term and 7' > 0, which is meant to circumvent the lack of co-
ercivity of the elliptic operator in probability [17]. We give a main result (Theorem
2) from their paper, which is essentially a restatement of Theorem 2.6.

Theorem 2.10 (Papanicolaou and Varadhan [27]). Let H = L*(Q, F, P) and let
H = N, C5°(D;). There exist uniquely defined functions ¥ (w) € H such that

d
Y E [Aij(ajk + Dl =0 VeeH!, ke{l,....d}, (2.22)
7,7=1

and .
E[f] = 0. (2.23)

Furthermore, the coefficients A;; in the homogenized (modified) equation are given
by

d
> Au(G + 97

k=1

A =E i ed{l,...,d}. (2.24)

There exist uniquely defined processes \*(x,w) that are not stationary, such that
x*(0,w) = 0 and
X" (2, w) _ ok _ ik
) = b w) = D)

so that their gradients are stationary.

In particular, this theorem agrees with existing theory for periodic problems; in
the periodic case there exist functions y;, € H' that satisfy [27, p. 848]

. L OG(w) 0p(w) S
/TdZAU(w) (@w ) St de =0 WpeH!

This corresponds to the usual cell problem in the deterministic case.
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CHAPTER 3

Numerical Methods

3.1 Finite Element Solution to First-Order Corrector

We have seen that in order to calculate the effective coefficient matrix, we first
need to solve the corrector equation (2.10). We will discuss how to approximate
the solution to this equation using the finite element method for d = 2 (the two-
dimensional setting). To begin with, assume that we are interested in solving a sin-
gle realization of the cell problem (2.10), meaning that the matrix A(y,w) is fixed.
In this section, we will simplify the notation by setting A(y,w) = A(y) and similarly
for the solution y. We will denote with

SU(T) = {u e HY(TY) [ulx € Pu(K) YK €T},

a finite element space associated with a shape-regular triangulation 7, where the
set P, (K) is the space of linear polynomials on the triangle K € 7. The space

SyH(T) = SY(T) N Hy(T?

is the restriction of S™(7) to a space with periodic boundary conditions. With
basis functions B = {p; |i = 1,...,#N}, where #\ denotes the number of nodes,
the discrete solution y; can be written for each component i as a linear combina-
tion of these basis functions: i = Zfﬁ u;p;.

3.1.1 Solution for a Diagonal A

In Chapter 2, we derived the weak formulation to the cell problem. We found that
the weak formulation (2.12) is that of finding a x; € C',(T¢) for each component :
such that

a(e, xi +vi) =0 Vp € nge(']rd)a

27
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where
a(u, v) :/ (Vyv, A(y)Vyu) dy.
Td

. All 0
observe that

B ay1X1 +1 All 0 ayl@
a(e, x1+y1) —/<( By X1 )7( 0 AQQ) (8y2<p >dy

For a 2 x 2 diagonal matrix

Td
ay X1 + 1 Allay @)
— 1 1 d
/< < Iy X1 ) ’ (1422%@ > Y
Td
= [(@xi + DA g + i Aoy =0
']I‘d
— al(Xla 80) = /alelAnaylSO + aszlAzzayg@dy = - /Anayl@dy = b1(90)-
Td Td

An analogous calculation shows that

a(e, x2 +y2) = /aszAnaylSO + (Oy, X2 + 1) A220,,ppdy =0

Td
= az(xe, p) = /ay1X2A11ay190 + Oy x2A220y,pdy = — /A228y2¢ dy =: ba(¢p).
Td Td
Therefore, using the basis functions ¢;,i € {1,...,#MN}, we can define compo-

nents of the stiffness matrices via
lej = al(@j,@i), BZQJ = a2(90j790i>
and components of the load vectors via
lil = b1 (1), li? 1= ba(i).

The algorithm for calculating the approximation y; in the diagonal case can be
summarized as follows:

1. Assemble the two stiffness matrices B!, B? and the two load vectors [! and /2.

2. Apply the periodic boundary conditions: For each master node m and cor-
responding slave node s on the boundary, add the contribution of the slave
to the master, i.e.
=1 +1! (3.1)
2 =012+ (3.2)
and then set I’ = 0, i € {1,2}. There is a corner case where a master has
more than one slave.
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3. Set ¢! = (B))"'{' and 2 = (B?)"'I%.

4. Apply the uniqueness condition by calculating, using quadrature,

C1 ~
= = dy.
c (02) /T2 Xnay

Then the unique numerical solution satisfying the condition [, xdy = 01is

given by
(9-)-)
X, X, C2
Remark 3.1. If we only need y to calculate the effective coefficient A, then step
four can be omitted, since the gradient of the constant is zero.

3.1.2 Solution for a Non-Diagonal A

For completeness, we will write down the equations that need to be solved in the
non-diagonal case. For a 2 x 2 matrix

All A12
A=
(A21 Azz) 7
observe that

B ay1X1 +1 A11 A12 ayl(p
a(p, X1+ 1) —/<( Dy X1 )’(Am A22) (%s@ >dy
Td

- /< (ale + 1) (Allayﬁ@ + Alzay#) >dy
Oyo X1 "\ A210y, 0 + A0y, ¢
Td
_ / Oyt + V(A1 o+ A1dnp) + Oypxs (Anyp + Ansdypp) dy = 0

Td

— a1(X1; <P) = /8y1X1(A11ay1§0 + A12(9y2¢7) + aszl(AmaylSO + A223y290) dy

Td

= —/Anayl@ + A12ay290dy = bl(gp)

Td

An analogous calculation shows that

ol Xa + v2) = / Oy xa (A1 + A2 0) + (Bpaxs + 1)(Andy o + Asdyp) dy = 0

Td
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s ax(xs ) = / Oy x2(AnOy o + Ar2yp) + O xa(Andy o+ Andyup) dy
Td

= —/Am@ylso + A20,, 0 dy =: ba().
Td

As before, using the basis functions ¢;,i € {1,...,#N}, we can define compo-
nents of the stiffness matrices via

Bilj = a1(j, @), Bz'Qj = ax(;, i)

and components of the load vectors via

l@'l = bl(%‘) l? = 52(%)

and solve for y; using the algorithm from the previous section.

3.2 Monte Carlo Finite Element Method

In this section, we will describe Monte Carlo FEM as applied to elliptic PDEs in
two dimensions. Let (2, F, P) be a probability space and let D C R? be a bounded
domain. We assume that F is an appropriate o-algebra. First, consider the generic
problem

-V - (A(z,w)Vu(zr,w)) = f(z,w) V(z,w) € D x €, (3.3a)
u(z,w) = g(x,w) V(z,w) € 0D x Q. (3.3b)

We will summarize the method as presented in [23, Chapter 9]. The PDE (3.3)
is stochastic in the sense that u(z) is a random field with realizations u(z,w). The
main idea behind Monte Carlo FEM is that for individual realizations of A(-,w) and
f(-,w), Galerkin FEM can be used to approximate individual realizations of the
solution, which are unique provided some regularity of the coefficients A. Monte
Carlo sampling is then used to approximate E[u(z)] and V[u(z)]. The advantage
of this method is that one can use a deterministic solver for each realization and
then aggregate the results.

More formally, given a finite element space V;, ¢ H'(D) associated with the se-
quence of shape-regular triangulations 7, the random field u;, (x) with realizations
up(-,w) €V}, satisfies the weak form

/DA(:r,w)Vuh(x,w) -Vou(z)de = /Df(x)v(x) dz Vv € V. (3.4)

In practice, we only have approximations for A or else just exact samples at dis-
crete points. Thus, we have the weak form, using the approximation A for A,

/Dfl(x,w)Vﬂh(x,w) -Vou(z)de = /Df(x)v(a:) dz Vv € V. (3.5)
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For N i.i.d. realizations A, := A(-,w,), r € {1,..., N} of the diffusion coefficient,
we generate i.i.d. samples u;, . (x) := @,(z,w,) of the finite element solution @ (z).

To estimate E[u], we use E|[uy,], where 4, is the FEM approximation of ¢ using a
mesh fineness A, restricted to the domain D. We estimate E[u,,| using the sample
mean

N
1 -
() = & > (),
i=1

where iy, ; = (7, w®) is the i*" realization of the solution. The variance V|i;] can
be estimated by

o) = 53 22 (1nalo) ) = (Z in(e)’ - NuN,h<x>2) .

Now we will apply this method to the cell problem, dropping the inconvenient
tilde notation and solving on the domain D;, :=[-L/2,[/2)> C R?. Given a fi-
nite element space Vj, C H,; (D), we generate i.i.d. realizations 4, := A(-,w,) for
r € {1,...,N}and solve

ar(p,Xip +4:) =0 Vo e Hy(Dy), (3.6)

where
a,(u,v) ::/ <Vyv,AT(y)Vyu> dy.
Dy,

With that, we obtain i.i.d. samples x; .(z) := x;(x,w,) of the finite element solution
for each i € {1,2}. The expected value E[y;| and variance V[y;] can be approxi-
mated as before.

3.3 Numerical Homogenization

Now that we have seen how the cell problem can be solved and the effective coef-
ficient can be determined, numerically, let us see how this can be utilized in prac-
tice to get a solution to the problem (2.1). The technique for approximating this
solution is called numerical homogenization, an important tool used in a wide
variety of scientific and engineering simulations. When disparities between spa-
tial and/or temporal scales are limited, then traditional numerical techniques can
be employed. When scale separation is more pronounced, then multiscale tech-
niques become necessary: some resolution of the details on the microscopic scale
is needed to understand behavior at the macroscopic level. Even with supercom-
puters and the ability to compute processes in parallel, the sheer size of the com-
putations involved in multiscale problems is prohibitive; an enormous amount of
computer memory and CPU time is needed. Numerical homogenization is de-
signed to numerically capture the small-scale effect on larger scales without the
need to completely resolve the microscale.
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An important concept in numerical homogenization is the representative volume
element (RVE), which was already mentioned in the introduction. Often, input in-
formation about properties of a material is not available over the entire domain.
These RVEs contain essential information about the heterogeneities and can be
seen as a representative sample of the medium. Ostoja-Starzewski [26] distin-
guishes between the RVE found in continuum solid mechanics and the closely-
related statistical volume element (SVE) found in stochastic solid mechanics. He
argues that RVEs have their place in the (unrealistic) case of a unit cell in a pe-
riodic structure (as in Figure 1.2), or on an infinite set of microscale inclusions
possessing statistically homogeneous and ergodic properties. He introduces a
“mesoscale” on which the averaging takes place; this is some subset D;, C D of
the original domain. As the mesoscale grows, he shows that the SVE tends to be-
come the RVE. We already discussed conditions under which a spatial average is
equal to the statistical average, i.e. Ev = limy_,,, L4 i) Dy v(z) dz. In practice, one
does not actually solve the cell problem on the entire domain. One rather approxi-
mates the expectation on a finite domain using a finite number of sampling points
26, p. 118].

We will focus on numerical homogenization as applied to the deterministic prob-
lem (2.1). There are different approaches in numerical homogenization. In the
Multiscale Finite Element Method (MsFEM), localized basis functions are used to
capture the microscale’s effect on the macroscale. These basis functions are com-
puted on a RVE and are used to construct an average picture over the macroscopic
domain. An introduction on MsFEM can be found in, for example, [11].

We will take a closer look at the Heterogeneous Multiscale Method (HMM) as
described in [9]. This method has two main components: (1) the macroscopic
scheme for macroscopic variables on a macroscopic grid; and (2) the estimation
of missing macroscopic data from the microscale model. In the following, let 7
be a triangulation on the domain D with mesh fineness H > . Let us consider
the (more realistic) case where the coefficient A varies on both the microscale and
the macroscale. If we already knew the effective coefficient A for discrete points
on a certain element of 7,, we could evaluate the quadratic form

/DVu(x) - A(z)Vu(z) dr

by numerical quadrature: for any element U € Vy, the finite element space on the
macroscale,
Ag(U,U) = > K| Y w(VU - AVU)(x))
KeTy €K

where | K| signifies the area of the element K, z; are quadrature points and w; the
corresponding quadrature weights. Since we do not know the value of A, however,
we approximate it on a smaller domain Dy (z;) := [z, — L/2,z; + L/2)? by solving
the cell problem at each quadrature point:

-V - (A(y)Vyxri(y)) =V, - AT(y), xis 1-periodic, / x(y)dy = 0.

Dy (x;)
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The solution to each of these cell problems gives us local estimates for A. To re-
duce the effect of the periodic boundary conditions, it is advised that a subdomain
Dy, (z;) C Dp(x;) is used for the integration, so that our estimate for A takes the
form

Ap(ay) = / A) (I + Y, x00) dy.
Dpg (1)

Thus, a considerable amount of computational work is saved by solving the local
cell problems.

Theoretical error bounds exist in the periodic case for the effective coefficient. If
we define

e(HMM) := max |[|A(z) — An(x)],

e K, KeTy

then we have [9, p. 125]

o(EMM) — {Ce if Dy () = 21+ D1 0),

C(£+L) otherwise.
Gloria [13] calls the error O(¢/L) the “resonance error.” In that paper, a zero-
order term is added to the equation, which is inspired by the modified correc-
tor equation (2.21) used in the papers by Kozlov, Yurinskii, and Papanicolaou and
Varadhan. This term has the effect of dramatically reducing the effect of spurious
boundary conditions away from the boundary layer.

Note that we only discussed the deterministic, general case; these methods can be
easily extended to the stochastic case where A does not vary on the macroscale,
i.,e. A = A(y,w). For the random homogenization problem, error bounds for
Ee(HMM) exist for d = 1, taking the form O(¢/L)" with a « arbitrarily close to 6/25,
or d = 3, taking the form O(s/L)/2. Error bounds for d = 2 do not yet exist; see [9,
p. 126].
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CHAPTER 4

Error Analysis and an Optimal Computation Scheme

In this chapter, we will focus on estimating the error for d = 2 in numerically
computing the cell problem. Using these estimates, we will develop a scheme
to compute the cell problem as efficiently as possible. Before we proceed, let us
establish notation that will be used in the following section. As before, we will
denote with Dy, := [-L/2, L/2)*> € D C R? a square of length L.

We will now refine our definition of the cell problem, which was introduced in
Chapter 2. The first-order corrector is defined on a torus of length L.

Definition 4.1. Let A be a stationary ergodic random field. The first-order correc-
tor (or corrector) xy, is a L-periodic function defined by the elliptic PDE

Y, (Al @) Vs (@) = V, - AT (g, w), / e dy=0. @)

Dy,

The motivation behind this definition is a technique called “windowing.” A major
source of error is due to the periodic boundary conditions that we impose, which
are artificial. To minimize the effects of spurious boundary conditions, one im-
poses boundary conditions far from the domain of interest and then uses a sub-
domain to approximate A4, as in the following definition.

Deﬁnition 4.2. Using the first-order corrector y, as defined above, we will denote
with A, ;, for Ly < L the effective coefficient matrix, or “approximation by peri-
odization” .

o= g [ AT+ (Vx) ). @2)

Even though quantifying error in the first-order corrector is the first step towards
the quantification of the homogenization error, very few error estimates exist for

35



36 CHAPTER 4. ERROR ANALYSIS AND AN OPTIMAL COMPUTATION SCHEME

the first-order corrector. Abdulle [1, p. 452] estimated the error of the homoge-
nized solution in (deterministic) numerical homogenization, and for that needed
an estimate for the numerical error in the corrector. The case of discrete elliptic
equations has been developed to a much greater extent, where optimal estimates
for the corrector already exist (as well as approximations of the homogenized co-
efficients); see [15]. Gloria and Otto [16], [17] produced quantitative estimates for
the periodic approximation of the corrector equation for stochastic homogeniza-
tion of linear elliptic equations in divergence form. In that paper, the effective co-
efficients satisfied a spectral gap estimate in probability and results were obtained
for dimensions d > 2.

4.1 Error in Numerical Calculation of the Corrector

We will now estimate the error involved in calculating the first-order corrector
(4.1) using Monte Carlo FEM as outlined in Section 3.2. The error of the gradient of
the first-order corrector and the effective coefficient are closely related, as we see
in the formula for the effective coefficient (4.2). Thus, the first step in quantifying
the error of the approximation to A is estimating the error incurred by numerically
approximating V. To this end, we will seek to estimate the L? error of the gradient
of each element of x on the domain D; = [~1/2,1/2)2. This norm is sensible not
only because we are interested in the effect of the error in y on A, but also since
this defines a norm in the space

H = {uEH#(Td)‘ /Tdudy:()},

which is exactly the space we use to solve the cell problem. This space also comes
equipped with a norm || - || 5 that is defined by ||u|| i := ||Vu||p2(re) foru € H [28, p.
24].

The domain D; on which the error is calculated is chosen for ease of notation, but
these results can naturally be extended to other domains. In the following, the
norm || - || zr(o,x) is defined by

1/
[ ul| Lo o) = [Jo, (-, w)|5 dP(w)] 7 = E[jJu(-, w)||%]? < oo 1< p< oo,
; €8s SUPyeq [[u(-, w)llx p = oo.

For the remainder of this chapter, we will assume that we are calculating the error
for one element of x = (x!, x?)" only, meaning we are looking for either the error
in x! or . Thus we will simply use the notation y for one or the other element.

We will now establish some notation to help quantify this error. y will be the exact
solution to the cell problem, i.e. the y that satisfies (2.20). x, will be the discrete
solution that is (theoretically) solved on R? but for an approximation of the ma-
trix A as discussed in Section 3.2. x; ; will be the discrete solution with periodic
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boundary conditions on the domain D, and xy,, be the sample mean of N in-
dependent realizations of Vxy,;; = Vx.(z,w®), in other words

1 N
UN,Lh = N Z VXLhi-

=1

Note that the notation Vyy,;, as the gradient of a discrete solution x , is to be
understood in a piecewise sense, i.e. on each element of a finite element solution.
There are three sources of error present in the approximation of Vy:

e Discretization error: This is the error of E[Vx] by E[Vx;], which is due to
spatial discretization. This includes the error incurred by using approximate
data as described in Section 3.2, which scales like the error of the spatial
discretization as long as A does not vary on a length scale that cannot be
captured by spatial discretization [23, p. 379].

e Error due to boundary conditions: The domain is artificially trimmed to a
finite domain and boundary conditions are chosen that are not, a priori,
given. The expected value of the spatial discretization E[Vy,] is therefore
approximated by E[Vx, p].

o Statistical error: The expected value E[V ;] is approximated by a sample
mean py, 7, Of N realizations of Vi, 5.

We will now state the main result.
Theorem 4.3. Assume that for almost all w € , realizations A(-,w) of the coeffi-

cient satisfy (2.2). Assume that there exist constants «, (3, vy, v, and v, > 0 indepen-
dent of L, h and N such that

IVxn — Vxll2c200)) < v1h?, (4.3a)
VXL — Vxallz2@iz2 o) < v L7, (4.3b)

14
E[IE[Vxza] = pvoallizn,)] < NO (4.30)

hold. Then the error of the MCFEM estimator yuy 1., satisfies
len.en — E[VX][l2@r2(py) = O(NY2) + O(h*) + O(L77). (4.4)

Proof. Since || - || 12(0;r2(p,)) IS @ norm, we can use the triangle inequality twice to
obtain

IEVX] = i all @200 < [EIVX] = EIVXa]ll2@iL201)) +

~\~
‘—€FEM

+ |E[Vxn] = E[VXplll2 @01 + (4.5)

N~
I—EBC

+ ﬂE[VXL,h] - MN,L,h||L2(Q;L2(D1)l~

~~
I=EeMC
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For the first two errors, we use assumptions (4.3a) and (4.3b) to get

erem + eae = E [IVX = Vixall 2oy + [[VXn — Vel z2oon)]
S Vlha + VQLiﬁ.

For the third error, the inequality (4.3c) means that E[e},] < %, which implies
[23, p. 385] that for the random variable ey and any ¢ > 0,

]P)(el\/IC > N—1/2+6) < l/gN_Qe.

This means that the statistical error is O(N~1/2); see [23, p. 386]. O

In the proof, we already showed the motivation behind the bound for the statisti-
cal error (4.8c). The constant 1, can be explicitly determined by the expression

Kp
vy = a—_||f||L2(D1)a

where K, is the Poincaré constant and f is the right-hand side of the partial dif-
ferential equation [23, p. 385]. The error from the boundary, egc, will be shown
to have the form O(L~?) later in numerical tests. The theoretical basis for this
convergence behavior comes from the idea of windowing as discussed at the be-
ginning of this chapter. The discretization error (4.3a) has some more solid basis
in the theory, so we will highlight it here.

Let us recall that deterministic bounds of the form ||Vy, — Vx||r2p,) < v1h®
have their basis in finite element theory. The standard result is formulated from
[29, pp. 95-96] in Theorem 4.4, where we recall the definition of the seminorm

|U|Hk(D) = Z /(Do‘u)zdx.
D

la|=k

Theorem 4.4. Letu € V be the exact solution to the generic elliptic problem
findueV: a(u,v)=f(v) Yo eV,

where V' is a (Hilbert) subspace of H'(2), a(-,-) : V x V' — R is a continuous and
coercive bilinear form, and f(-) : V — R. Let u;, denote the discrete solution to

findueV: a(un,v) = f(uvp) Yoy, € Vi,

whereV,, is a finite-dimensional subspace of V with basis functions of orderp. Then,
ifu € HPT1(D), there exists a constant C, independent of h and u such that

5
||u — UhHHl(D) < EClhp\u|Hp+1(D), (4.6)

where 3 and « refer to the boundedness and coercivity constants, respectively, of the
bilinear form a(-, -). Moreover, there exists a constant C such that

HU — uhHL2(D) < élhp+1|U‘Hp+1(D). (47)
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Theorem 4.4 can be used to now justify the error bound (4.3a) in the stochastic
case. We assume some regularity for y, in this case that there exists a constant
Csy > Osuch that y € L*(Q, HP™'(D,)) and

IX| 22 (.m0 = ElX|5m0] 2 < Coll fll L2 on) Vf e L*(Dy).

For each x(-,w) € V and corresponding finite element approximation y(-,w) € V4,
it follows from (4.6) that

6 2
9 0)= VX0 ()21 < X1 =x0 )y < (aclhﬂx(-,w)m@l)) .
Taking the expectation on both sides of the inequality yields

5 2 6 2
E[lIVx = VxallZ2(py)] < (aclhp E[|x[7r+1(ny) < { =C107|| fll2my) | -

«

Finally, taking square roots on both sides yields an inequality of the form (4.3a).

Remark 4.5. In other words, we should expect the error ||[Vx, — Vx| 2(.22(p,)) tO
scale like O(h) if we are using linear basis functions. Later, to determine an effi-
cient solving strategy, we will need to provide an explicit bound for the constant v,
given in the theorem. Methods for explicitly computing the bounds for the finite
element method can be found in, for example, [2], [22], or [24]. However, for our
numerical simulations, we will be using bounds that are generated numerically,
since they also depend on the implementation.

4.1.1 Alternate Error Estimate

Now we will present an alternative estimate that involves using our knowledge of
the variance of Vi, ;, to estimate the error.

Theorem 4.6. Using the notation introduced at the beginning of this section, as-
sume that there exist constants «, 3, vy, 11, and v, > 0 independent of L, h and N
such that

v
IVxh = Vxlli2(@r2(py) < Zlha, (4.8a)
Vo _
HVXL,h - thH%LQ(Q;LQ(Dl)) < ZQL B, (4.8b)
v
IVIVxLalllio) < 50 (4.8¢)

hold. Then the error of the MCFEM estimator iy 1. 1, satisfies

14
liw,n = E[VXI I 2@sr2(pyy) < NO +h® + 1 L7, (4.9)
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Proof. We have, using the triangle inequality,

lan,n = BIVXI 2 L2 (00
<E (e = Bl zi)llzon + 1E(enz.) = E(VX) |l z20,) ] (4.10)

< 2E [HMN,L,h - E(NN,L,h)H%?(Dl)] + 2K [HE(NN,L,h) - E(VX)H%Q(DQ} =+ 5.

We used the simple inequality (a + b)? < 2(a® + b?) to obtain the last line. Now,

F—2 / E (.00 — E(in.o))? dy = 2 / V (uxs) dy

D1 Dl
N
1 i
= 2V () o0y = 2V (N Zw&) o (4.11)
2 & _ Yo
Fg v (VX )HLI D) < —HV(VXL oy < 5

Using E (un.rn) = E(Vxz,n) since py, 15 is an unbiased estimator,

2
Fy <2E (| (Vxea) — E(Vxu)llzzoy + 1B (Vxn) = E(VX)|l2(0y))
< 4E (IIVxea — Vialaon ) + 4B (VX0 = VXI3200,)) (4.12)
S I/2L76 + I/lha.

Combining the estimates in equations (4.11) and (4.12) yields the desired result.

]

4.2 Optimal Monte Carlo Method

In any homogenization problem, and especially in the case of stochastic homog-
enization, it would be useful to construct a method that will yield the lowest error
with the least amount of computational effort. In the following, we will present an
optimal approach to computing the solution to the cell problem (4.1).

As we have already discussed, there are three main sources of error in this prob-
lem: discretization error, error due to the boundary, and statistical error. The error
takes the general form

14
E(N,L,h) = \/—ON + 1A + 1 L7,
where the v;, a, and g are positive constants. N, L and h refer to the number of
Monte Carlo simulations, the length of the sample domain and the mesh fineness,
respectively. It is noted that in order for N, L and h to be physically meaningful,
these are all positive numbers.
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The general expression for computational work is given by

W(N,L,h) =N pLh™%%, (4.13)
k=1
where n indicates the number of differently scaled steps in the computation and
Uk, Yk, and & are also positive constants. To minimize the objective function
W(N, L, h) given the inequality constraint £(N, L, h) < ¢ for a given error toler-
ance ¢, we employ Karush-Kuhn-Tucker (KKT) conditions. To summarize, we wish
to minimize the Lagrange function

L(N,L,h,s)=W(N,L,h)+s(E(N,L,h) — ). (4.14)
Proposition 4.7. Assuming an error of the form

E(N,L,h) = \;_ON T h® L P,

the optimal choice of N, L, and h to achieve minimal error E(N, L, h) < ¢ is equiv-
alent to solving the system of equations

n

> (moamh® — vaBGLT) pp L h% =0, (4.15a)

k=1
Y
VN — =0 4.15b
e — v he — vy LP ’ ( )
" 21/26[1_6 —
— Lh =8 = (. 4.15
(’Yk g — I/1ho‘ — I/QLﬁ) ik ( C)

k=1

Proof. The Lagrange function is given by

- - Yo _
L(N,L,h,s)=N» ugL"™h fk+s(—+uho‘—l—1/2LB—5>.
2 Vo

The necessary conditions for a minimum translate to the system of equations

¢ _
§ Jup LR 6 2N3/2 —0, (4.16a)
EM 1 I3 B—1
E =N g Vi L* T T — s BLTP T =0, (4.16b)
86 —&—1 a—1
= -N E Eepu LR 4 sy b =0, (4.16¢)
oL
ds _\/y?\f +uh® + L™ —e=0. (4.16d)

Clearly, condition (4.16a) implies

3/2
2N/ Zﬂklﬂkh &
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Inserting s into (4.16b) yields

- o2N3/2
NZ%M!«L%_%_&“ - ( MkL%h_&“) WAL =0

k=1 I
= 2V Nv,SL~7°

= Z(vk—\/_z—zﬁ) L = 0 (4.17)
k=1

— MkL'Yk_lh_Sk —
kz:; 2\/_V25L A

Similarly, inserting s into (4.16c¢) yields

n n 2N3/2
N Gup LR 4 (Z ” MkL”’“h‘S’“) nah® ' =0
0

Z%M LT, (4.18)

k=1 k=1

. 2V Nvjah®
— Z —& + @ Mklﬂkh—ﬁk—l =0
Yo

- 2v/ Nvyah®
e

v
k=1 0

= L tp=8 = L= tp =8, (4.19)
; o 5 rulaha Z Skl
Combining (4.18) and (4.19), we see that
1
[k~ 1h e L%~ lh ék 4.20
vaBL- ﬁZWch Vahaz&uk (4.20)

Clearly, this is equivalent to (4.15a). Next, a trivial calculation shows that (4.16d)
implies

VN = 7

g — l/lha — VQLifB’

which is equivalent to (4.15b). We substitute the expression for v/N into (4.17) to

get
. 20,31
> (- L S =0,
g — Vlha — VQL_B
k=1
which yields (4.15c). O

In the special case v, = & for each step of the work, which we will later be able to
justify numerically, we can simplify even further:
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Corollary 4.8. Under the additional assumption that-, = & foreveryk € {1,...,n},
the optimal choice of N, L, and h to achieve minimal error E(N, L, h) < ¢ is equiv-
alent to solving the equation

i 21/25[176 -1 VQB /e
_ Lk = 0.
Z (% e — v he — VQL_ﬁ) Hi vl

k=1

The resulting h is then given by

_ ([ »B e
viaLP

2
Yo
N = :
(5 — l/lha — VQL_B>

Proof. Since v, = &, we follow from (4.20) that

(B "
viaLP '

We can substitute this into the expressions for 4 and N into (4.17) to get the equa-

and N is given by

tion
- 2, BL° L mB T
_ Ll =0
; (% e — v he — y2L5> Hi (ylaLﬁ ’
which we can solve numerically for L. O

Remark 4.9. The setup of the solution procedure is such that solutions can be
computed in parallel. If we have m cores available for computing, then we should
adjust the work function to

N n
W= —=> juL*h™.
m
k=1

4.2.1 Optimal Method Using the Alternate Error Estimate

In this section, we will state the optimal method using the alternate error estimate.
The proofs for these methods are nearly identical, so they will be omitted.

Proposition 4.10. Assuming an error of the form

E(N,L,h) = % Fh® + L
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the optimal choice of N, L, and h to achieve minimal error E(N, L, h) < ¢ is equiv-
alent to solving the system of equations

n

> (moayh® = vaBGL%) pp L =0, (4.21a)
k=1
Yo
N — = 4.21
e — v h® — vy L=F 0, ( b)
& VQBL_ﬁ 17—
— L 1p=8% = . 4.21
(% E—l/lha—l/gL’B) [k 0 (4.21c)

k=1

Corollary 4.11. Under the additional assumption that v, = &, the optimal com-
bination of N, L, and h to achieve minimal error E(N, L,h) < ¢ is equivalent to
solving the equation

- VQBL_B -1 VQB e/
- JAL e =0
Z (’Yk € —vihe — I/QLB) a ylaLB

k=1

for a given maximal error e for L. The resulting h is then given by

. VQB 1/«
vy LP

Yo
g — I/lhO‘ — VQL_ﬂ ’

and N is given by

N =

The alternate error estimate is based on the mean square error, which was hoped
to provide a sharper estimate. In our case, in addition to the statistical error, we
have two other errors (due to the boundary conditions and the discretization) that
require us, twice, to use the rather coarse estimate (a + b)? < 2(a® + v?). Thus, the
first error estimate in Theorem 4.3 is preferred, as we do not need to make esti-
mates of this kind. The alternate error estimate is stated here for completeness.
Additionally, the alternate optimal method shows that it is still possible to deter-
mine an optimal method if the statistical error scales differently from O(N~'/2).
This would be of use should an optimization problem be solved using, for in-
stance, error estimates obtained through quasi-Monte Carlo sampling instead of
Monte Carlo sampling, the former of which generally converges faster.



CHAPTER 5

Numerical Results

In this chapter, we will discuss the results of the numerical tests. First, we will
discuss the basic setup and introduce notation. Then, we will see how the error
of the solution to the cell problem scales as a function of domain length, mesh
fineness, and number of realizations. In the next section, given a sample problem,
we will determine the optimal strategy for solving the cell problem given certain
error bounds. In the final section, we will present the results of tests done on the
effective diffusion tensor A.

5.1 General Setup of Numerical Tests

We will now discuss the general setup of the numerical tests that are used for the
remainder of this chapter. Our focus will be on the numerical solution to the cell
problem as well as the related effective coefficient matrix. In all tests, we will use
adomain Dy = [-L/2,L/2)*> C R? in the two-dimensional plane. To remain con-
sistent with the theory presented in previous chapters, we will assume that A is
periodic, and hence the first-order corrector y from the cell problem. Our goal
is to simulate a hard-sphere system, i.e. a composite that has circular inclusions
that cannot overlap. We will assume that the reference domain has a fixed num-
ber of circles. Such systems have many applications, including liquids, glasses,
fiber-reinforced composites, particulate composites, packed beds and granular
media [31].

For the generation of an set of hard spheres, we use a random sequential addition
(RSA) process. In this process, inclusions are placed randomly, irreversibly and
sequentially such that none are overlapping. If an inclusion overlaps another in-
clusion in the process, another attempt is made until a nonoverlapping placement
can be made. Of course, this method is subject to a limit at which no further in-
clusions can be placed; for RSA, the saturation limit in R? for circles with identical

45
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‘&c ‘.0_1
X LIPS

(a) Circles randomly generated using (b) A naive periodization of the unit cell from (a),
a RSA process without periodization where the cellis repeated on a 2x2 grid. New shapes
on the torus T2. are introduced.

Figure 5.1: Incorrect periodization of the unit cell.

radii is approximately 55 percent coverage [31, p. 87].

The naive approach to periodize the domain Dy, is to simply generate inclusions
according to the RSA process and then solve the corrector equation on that do-
main with periodic boundary conditions. This introduces new shapes on the torus,
however, so that the process is no longer stationary; see Figure 5.1. The correct
way to periodize is to construct the coefficient field A on the forus, meaning that
inclusions that would be cut on one side are periodically extended to the oppo-
site side; see Figure 5.2. This results in inclusions that are not cut on the bound-
ary, meaning that the statistics of the periodized coefficient field are translation
invariant, just like the original matrix A. This process also produces an ergodic
ensemble [31, p. 148]. The coefficient field A created in this manner is a stationary
and ergodic; in particular, the theory introduced in Section 2.2 applies. This idea
is not limited to a configuration with hard spheres; Gloria [14] describes this pe-
riodization applied to a homogeneous material with spherical inclusions that are
distributed according to a Poisson point process.

All tests in this chapter began with the generation of a domain D;, oflength L with
a fixed number of inclusions, which were periodically extended as in Figure 5.2.
For such a configuration, a new mesh needed to be created that was aligned with
the circles; see Figure 5.3. This ensemble then determined the structure of the
function A for a given test. Each of these matrices had the form

Aly,w) = AD1O (y,w) + A™ 1M (y, w),

where the function 1% (y,w) represents the indicator function for the circular in-
clusions (i = ¢) and the surrounding matrix (i = m), respectively. A and A(™)
gave the values for the coefficient A in the circles and surrounding matrix. Since
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s - »‘é“é‘
D.a. ,0&,‘£‘

(a) Circles randomly generated using (b) Correct periodization of the unit cell from (a),
a RSA process with periodization on where the cell is repeated on a 2 x 2 grid.
the torus T2.

Figure 5.2: A correct periodization of the unit cell yields a stationary and ergodic
coefficient field.

the mesh was aligned with the circles, each element of the mesh had a constant
value for A. In the numerical tests, we will consider two different functions for A:

the function
20 0Y .. 2 0\ .
ate) = (3 1) 19w+ (5 9) 100,

which will be used later as the example for the optimization problem, and the
high-contrast function

200 0 ¢ 2 0 m
Asly,w) = ( 0 100) 19y, w) + (0 1) 1 (y, w).

Once a mesh was generated for a given configuration, the cell problem (4.1) could
be solved on each element for this randomly generated realization. The solutions
for the first and second component of y = (x!, x?)" using the mesh in Figure 5.3
can be seen in Figure 5.4. The outlines of the circles are clearly visible.

In the following section, we will focus on the convergence of the solution to the
cell problem. We recall the following definitions, where we use x* as the reference
solution (best discrete approximation) to the i** component of the exact solution
and ! as a less exact discrete solution. For a given domain D, 7, will denote the
triangulation and K an element of the triangulation. The error in the L? norm is

R / =Py = 3 / ¢ — [ d.

KeTy,
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Triangulation

1.0

ASY
AN

\/

-1.0 -0.5 0.0 0.5
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Figure 5.3: A sample mesh created from the random placement of four circles on
a domain of length 2. The orange points represent the centroids of elements that
belong to circles.
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Figure 5.4: The discrete solution y;, solved on the mesh generated in Figure 5.3.
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The error in the H! norm is

||Xi_X2H%11(DL):/ Ixi—xilzdy+/ VX' = VX, dy
DL DL

= / Ixi—xZIQder/ VX' = VxiI* dy.
K K

KeTy

Finally, the error in the H' seminorm is

\xi—xﬁllél(m):/ !VXi—Vxﬁ;de:/ VX' = Vi[> dy.
D K

L

5.2 Numerical Solution to Cell Problem

In this section, we will examine some convergence results for the solution to the
cell problem. Throughout, an obstacle in measuring error will be the fact that we
do not know the exact solution y for a given realization of A. It will be possible to
approximate this solution, however, in order to obtain convergence rates.

5.2.1 Error of Solution as a Function of Domain Length

In this section, we will see how the error in the numerical solution to the cell prob-
lem scales is affected by the domain length. For the reference solution, we used
Dos = [—25/2,25/2)? this is the domain on which the reference solution y, is was
calculated. A fixed number of circles (n = 252 = 625) was chosen for the tests.
Since each circle had radius » = 0.2, this corresponded to approximately 13 per-
cent coverage by circles. A mesh with fixed fineness & = 0.05 was chosen.

For each of the samples, a solution y;, was calculated on the reference domain.
Then, for each of the lengths L € {4.0,6.0,8.0,...,24.0}, a solution x,, was cal-
culated on the subdomain D; C D,s. The error between the solution on the sub-
domain and the solution on the reference domain was computed in the L? and
H' norms and H' seminorm as defined in the previous section. To enable a fair
comparison and to observe the decreasing influence of the boundary conditions
with increasing L, this error was computed on the subdomain D3 = [—3/2,3/2)2.

For each length L, to obtain an approximate error in the norm || - ||;2(q.x), the
square root of the empirical mean of N samples of the error in ||y, — xz.x|l% Was
computed. Then, linear regression was used to fit a relation of the form

log(error) = log(L) + a,
which corresponds to an error function of the form

error = LP . e,
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In the first numerical example, we will look at convergence of the solution y when
A = A,. A total of 262 samples were collected for this test. In Figure 5.5, we see
the average L? error plotted as a function of length L (log-log scale) for each com-
ponent of y = (x1, x2) ' . Convergence is observed with respect to L. In Figures 5.6
and 5.7, convergence is observed in the H' norm and H' seminorm, respectively.
In each plot, we observe an artificial “hyper-linear” convergence in the solution
as described by Gloria in [14]; this comes from the fact that we are using a large
domain as the reference solution. For that reason, when using linear regression,
the last few points were thrown out since they skew the convergence. We see that
not only do our results correspond to the theoretical error bound (4.8b), but we
are able to estimate the constants in these bounds using numerical results.

In Figures 5.8, 5.9, and 5.10, we see the corresponding results for 191 samples
when using the matrix A = As.
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Figure 5.5: Convergence of solution y in the L? norm with low-contrast example
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A,.
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Figure 5.10: Convergence of solution y in the A' seminorm with high-contrast
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5.2.2 Error as a Function of Mesh Fineness

We use a standard method for approximating the error to the discrete solution.
Samples were run on the domain D3 = [-1.5,1.5)% For each sample, a set of
n = 3? = 9 circles were randomly placed in the domain according to an RSA pro-
cess, using a mesh fineness of » = 0.02 as the reference solution. Solutions were
then calculated on coarser grids with mesh fineness & € {3, 55,1, 3} Linear
interpolation was then used to calculate each solution onto a structured mesh T
with equally spaced nodes (z,y) = (—1.5 + hi, —1.5 + hj),i,j € {0,..., 2}. Then it
was easily possible to approximate the error in each norm. The process of interpo-
lating onto a structured mesh was extremely time-intensive, so only nine samples
were collected for this test. The small sample size may partially explain why the er-
ror in the L? norm, see Figure 5.11, scales better than expected; observed error for
x! and y? is proportional to 2*™ and h?7, respectively. We would expect error to
scale more like h? since this corresponds to the finite element estimate (4.7). The
results in the A! norm and H' seminorm (Figures 5.12 and 5.13) are on the other
hand less than the expected convergence rate of 2'. The main reason why there
is a discrepancy between theoretical bounds and observed bounds, however, is
likely due to the fact that we use a mesh that is more or less uniform, meaning
each element has approximately the same diameter h. To obtain the theoretical
convergence rate, it might be necessary to use an adaptive mesh to account for
the rapid variation between the inclusions and surrounding domain.

5.2.3 Error as a Function of Number of Samples

Results of the convergence test for the statistical error are shown in Figure 5.14.
We ran 2,000 samples of the solution to the cell problem solved on the domain
D¢ with a coarse mesh of h = 0.1. The value E[Vy ] was approximated by the
sample mean of the gradient using 2,000 solutions; uy, represents the sample
mean using N < 2,000 solutions. For this test, a structured mesh was chosen and
all values were linearly interpolated onto this mesh. Then, the H'! seminorm error
for ! on the domain D; was calculated. Results show that convergence is even
better than the expected N ~'/? with statistical error proportional to N %5,
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Figure 5.14: x! error in the A! seminorm as a function of number of samples N.

5.3 Computation Time

In order to find an optimal method for solving a given problem, we need to mini-
mize equation (4.14). A necessary ingredient for solving this problem is determin-
ing the coefficients pu, vk, & in the work function (4.13); it was also necessary to
determine which parts of the solver scaled differently in time.

For fixed L and varying h, we make the ansatz
t= ,ukh_g’“

for each step. Discrete steps were determined by testing how certain functionality
scaled as a function of mesh fineness 4 and domain length L. Those that scaled
differently were split into groups. In order of function calls, times ¢; were measured
for the groups

1. Mesh generation;

2. Stiffness matrix M; and load vector [; assembly (one call for each compo-
nent);

3. Solving of the linear system M, '[; fori € {1,2};

4. Application of the uniqueness condition [ x; dy = 0.
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L 1 &1 B $ M3 €3 Ha &4

10.0 || —3.877 | —1.896 || —5.295 | —1.771 || —5.814 | —2.412 || —5.302 | —2.093
15.0 || —2.928 | —1.892 || —5.129 | —2.010 || —4.808 | —2.473 || —5.261 | —2.433
20.0 || —2.342 | —1.888 || —4.709 | —2.081 || —4.578 | —2.706 || —4.988 | —2.607

Table 5.1: Computation time ¢t = y;h% for fixed length L and different values of &
for the four steps in the work function.

h M 71 o V2 M3 73 Ha V4

0.02 || —1.639 | 2.285 || —4.930 | 2.898 || —4.096 | 3.415 || —4.571 | 3.315
0.03 || —2.326 | 2.229 || —4.108 | 2.233 || —5.545 | 3.521 || —5.254 | 3.195
0.04 || —2.784 | 2.154 || —5.387 | 2.404 || —4.878 | 2.944 || —5.009 | 2.745
0.05 || —3.528 | 2.318 || —4.427 | 1.982 || —5.914 | 3.187 || —5.268 | 2.685
0.06 || —3.302 | 2.111 || —4.596 | 1.904 | —5.747 | 2.962 || —5.130 | 2.489
0.07 || —4.111 | 2.288 || —6.554 | 2.492 || —5.645 | 2.749 || —5.408 | 2.434
0.08 || —4.375 | 2.215 || —5.654 | 2.067 || —6.775 | 2.971 || —4.945 | 2.113
0.09 || —4.561 | 2.274 || —5.468 | 1.969 || —6.110 | 2.673 || —5.640 | 2.336
0.1 —4.555 | 2.268 || —4.648 | 1.604 || —7.200 | 3.085 || —5.680 | 2.346

Table 5.2: Computation time ¢ = y,; L for fixed length % and different values of L
for the four steps in the work function.

In Table 5.1, for different fixed domain lengths L, we observe how the computation
time scaled with respect to i for the four steps of our solver. Columns y; and &;
correspond to mesh generation, where we see that the scaling ¢; is about what we
would expect, given that our mesh generator advertises linear assembly time (as
a function of nodes). Assembly (columns y; and &) appears to also be ideal; that
will be confirmed in Chapter 6. The matrix division and the uniqueness condition
scaling is given in the columns 3, &3, 114 and &. Convergence plots for L = 20 for
the four steps are shown in Figure 5.15.

Similarly, we looked at values for fixed ~ and varying L, where we made the ansatz
t= ,uk[ﬂ’“ .

Convergence for the four steps can be seen for different fixed values of i in Table
5.2. Plots for the four steps of the solver for fixed & = 0.02 are shown in Figure 5.16.

Recall that we made the assumption that v, = y, in order to simplify the expres-
sion for the optimization problem. This assumption led to the easier, decoupled
systems of equations presented in Corollary 4.8 and Corollary 4.11. We now wish
justify this assumption used in the next section’s results. In Figure 5.17, we see the
plots of work as a function of L /h for the four steps. The points do not fall entirely
on the line obtained through linear regression, but some amount of variability in
computation time is to be expected for our problem. In particular, the parame-
ter h is the input parameter for the mesh generator. Depending on the ensemble,
though, the generator may need to add elements to the mesh so that circles that
are very close to each other are resolved.
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Figure 5.15: Work (computation time) as a function of mesh fineness h for a fixed
domain length (L = 20) for different components of solver.
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5.4 Optimal Method

We will now produce an optimal method for solving the cell problem for the spe-
cific example

20 0\ .. 2 0\ ..,
i) = () 1) 1900+ (5 ) 170

from Section 5.2.1. We can use the values that we obtained in Sections 5.2 and 5.3
to obtain an optimal method for this problem. First, we obtained the convergence
coefficients for x! from Figures 5.7, 5.13, and 5.14. We used the results from Figure
5.17 to make the assumption v, = & for each step of the work. This means that
we could use Corollary 4.8 to determine an optimal method. Note that we used
this assumption for simplicity and that better results would be expected should
we have solved the coupled system (4.15).

Using the findroot function in Mathematica [25], optimal combinations of L, h,
and N were computed that minimize the Lagrange function for different errors;
see Table 5.3. For error values ¢ > 2 - 1072, reasonable values for our parameters
were obtained, although for the lower error values, the values given for L, , and
N are not very realistic in terms of computation time and memory. Additionally,
plots of optimal values as a function of error tolerance ¢ are shown for L, h, and
N in Figures 5.18, 5.19, and 5.20, respectively. These values are combined on one
plot to compare scaling; see Figure 5.21. We see that the number of trials needed
is the most sensitive parameter with respect to error; the cut-off length is the least
sensitive. Finally, it was also possible to plot the work function (4.13) as a function
of error tolerance; see Figure 5.22.

To summarize, given a problem with a fixed distribution and corresponding ma-
trix field A, we first obtained a-priori estimates to measure error in the cell prob-
lem as a function of domain cut-off length, mesh fineness and number of sam-
ples. We measured work for the solver and then minimized the Lagrange function
(4.14) in order to obtain optimal combinations for our parameters given a certain
error tolerance. In this way, we can proceed with our calculations in a systematic
and efficient way. This algorithm could be extended to a wide array of stochastic
homogenization problems using similar error estimates.

€ L h N
21073 | 41.36 | 0.00053 | 112624
-1072 | 33.39 | 0.00092 | 54748
21072 | 22.05 | 0.00268 | 13336
-1072 | 14.61 | 0.00773 3178
21072 | 11.49 | 0.01430 1356

O N = ]

Table 5.3: Various optimal values for L, h, and N given an error tolerance ¢.
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Figure 5.18: Optimal values for cut-off length L as a function of error.
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Figure 5.20: Optimal values for the number of samples NV as a function of error.
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Figure 5.22: Computational work as a function of error.

5.5 Calculation of the Effective Coefficient

In this section, we would like to briefly discuss a few tests that were run on the
effective coefficient. In Figure 5.23, we show a convergence plot for the effec-
tive coefficient matrix A as a function of domain length L. For this test, 50 sam-
ples were collected, where the reference solution A,.; was calculated on a domain
D5 = [—25/2,25/2)% as before, using the same mesh fineness, lengths and number
of circles as described in Section 5.2.1. For each sample, the error ||A,.; — A||r was
calculated, where the Frobenius norm || - || is defined by

1/2
1BllF = <Z’sz!2) :

i?j

We see that the convergence exhibits the same hyper-linear convergence of the
solution x with ||A, — A||r proportional to L=%%. As we mentioned in Section
3.3, convergence rates for the stochastic problem do not yet exist for d = 2, so it is
uncertain whether our results coincide with the theory. It should be noted that for
the periodic, deterministic case, numerical tests found that convergence rates for
the effective coefficient matrix were closer to L~ [32].
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Figure 5.23: A error as a function of length.

Up until now, convergence rates for a fixed number of circles in a given sample
were examined. We wish to see what occurs to the effective coefficient matrix
when more circles are added to the domain. We will observe quantities for 10
percent and 30 percent coverage by circles; see Figure 5.24 for an example of re-
alizations with these coverage percentages. We will observe A values for both the
low-contrast example A; as well as the high-contrast A,. To generate these val-
ues, a fixed mesh size of h = 0.03 was chosen and the cell problem was solved on
a domain of length L = 5. The solution was then used to calculate the effective
coefficient matrix on the same domain. A total of 5,000 samples were generated
for each example, where it is noted that a couple of results needed to be discarded
due to bad meshes.

Table 5.4 shows the mean and standard deviation of the 5,000 simulations for the
low-contrast example A;. Both the mean values and standard deviations are listed
for each matrix element and each coverage percentage (10 and 30 percent). Both
the mean values and the standard deviations are larger for 30 percent coverage.
Table 5.5 shows the same test for the high-contrast example A,. We see that the
sample mean values shift as expected; in particular, the sample mean on the di-
agonal elements increases since the diagonal values of A in a circle are higher.
Additionally, the standard deviations increase for the high-contrast example.

In Figures 5.25 and Figures 5.26, we see the distribution of values from Table 5.4 for
each component of the effective coefficient matrix. The shift in the mean as well
as the increase in the standard deviation is clearly visible. While coverage per-



72 CHAPTER 5. NUMERICAL RESULTS
Matrix entry 10 010 30 030
Ap 3.310 | 0.003 || 6.017 | 0.009
Ao 0.000 | 0.002 | 0.000 | 0.007
Ay 0.000 | 0.002 | 0.000 | 0.007
Ay 1.672 | 0.002 || 3.073 | 0.007

Table 5.4: Four elements of A for low-contrast example A;. Mean values o; and
standard deviations y; are listed for coverage percentages i = 10, i = 30.

Matrix entry 10 010 30 030
Ay 15.354 | 0.012 || 42.207 | 0.020
Aqg 0.000 | 0.014 || 0.000 | 0.023
Ay 0.000 | 0.005 || 0.002 | 0.135
Ay 7.704 | 0.007 || 21.217 | 0.120

Table 5.5: Four elements of A for high-contrast example As,.

centage is only one parameter that can be adjusted in our model, this experiment
demonstrates the need for our a-priori estimates when constructing an optimal
approach.
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Figure 5.25: Low-contrast example A;, 10 percent coverage. Results from 5000
simulations on a domain of length L = 5 and mesh fineness 7 = 0.03.
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CHAPTER 6

Implementation

6.1 Software

In this chapter, we will outline some of the implementation work that went into
producing the results from the previous chapter. After testing FreeFem++ [18] and
FEniCS [20] as possible solvers for the periodic problem, it was found that there
was no existing software available for the unique makeup of this problem (namely,
a periodic geometry, allowing for any number of circular inclusions with varying
size, with periodic boundary conditions). Early on, efforts were therefore focused
on creating a solver that would work for this specific problem. GMSH [12] was
chosen to create the finite element mesh for a given geometry. Julia [7] was chosen
as the programming language for the heart of the solver, as it has a reputation
for being easy and fast; parallel computing, which is necessary for Monte Carlo
simulations, is also especially convenient in this language. Since Julia is relatively
new, however, the disadvantage was that a PDE package did not already exist. Part
of this thesis was therefore focused on the practical questions of how one should
implement an efficient FEM solver in Julia.

6.2 Description of Code

Here, we will briefly discuss what code was necessary to carry out the numerical
tests in Chapter 5. The code can be divided into several functional groups:

1. Geometry,
2. Mesh generation,

3. Solver,
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4. Tests and auxiliary functions.

Additionally, several new types were created to help make the code more readable.
A Circle data type stored the midpoint of each circle, the radius, the shape (since
circles overlapping an edge needed to be defined differently), and location (inner,
south, east, north, and west). A Mesh data type stored all information about the
mesh: nodes, edges, elements, edges, and their corresponding physical properties
(such as whether they belonged to a boundary or circle). For the boundary, we
distinguished between master and slave nodes. Data types mirroring those in
GMSH were used to make the creation of the input files for GMSH convenient.

6.2.1 Geometry

For any given numerical test, it was always necessary to define the dimensions of
the domain as well as the circles and their placement. Often, it was also necessary
to define the geometry of a subdomain (that included only some of the circles
from the original domain). The essential functions for these tasks included:

e Generation of circles: Given a desired number of circles and domain length
L, generate the list of midpoints and radii that were created according to an
RSA process. For each circle, random points z,y ~ U[—L/2, L/2) (uniformly
distributed on the interval [—1/2, L/2)) were created. The radius of circles
was, for most tests, fixed. A test was run to see if the circle overlapped any
others (including overlapping on the torus); if it did, a new set of points was
created and the test was repeated until an appropriate placement could be
found. A limit was set so that the function would throw an error if no place-
ment was found after a certain number of tries. For each circle, the shape
and location were also defined to make mesh generation easier.

e Periodization: Given a list of circles and a length L, add circles on the torus
for each circle overlapping a side.

e Subdomain creation: Given a list of circles defined on D; and a subdomain
length 0 < L, < L, determine the subset of circles that have a midpoint in
the domain D;,,. Shapes that were not intersecting the original domain were
redefined to account for their new shape and location.

The creation of the subdomain has one unavoidable problem: when the subdo-
main intersected with a circle that was originally entirely contained in the full do-
main, and the subdomain was required to have a periodic structure, then it was
possible that this circle intersected with another one on the torus. Thus, some
circles had to be discarded that would otherwise be included on the subdomain.

6.2.2 Mesh Generation

Building the mesh used for the finite element solver involved:
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e Input file creation: An input file for GMSH was written that included all
pertinent details about the geometry (placement of circles, handling of cir-
cles that overlapped the boundaries, and the definition of periodic boundary
conditions).

¢ Reading of output file and conversion into the Mesh data structure: This in-
cluded a call to GMSH and subsequent reading of the output file, storing all
information in the Mesh data type.

For some tests, errors for different solutions on subdomains of the same geometry
needed to be calculated. For instance, the tests in Section 5.2.1 observed the error
on the domain D, for different subdomains D, , D;,,..., D, of D, such that
Dy, C Dy, C...C Dy, C Dy. To allow for the efficient calculation of the error, a
special mesh was created for each subdomain that contained exactly the same
points on Dy,. An example of this idea is shown in Figure 6.1.

6.2.3 Solver

The functionality of the solver included:

¢ Stiffness matrix and load vector assembly: for a problem of the form

-V - (AVu) = f Ve € D,
u=gq YV € 0D,

assemble the stiffness matrix M and load vector [ such that the numerical
approximation u;, ~ wu is given by the relation Mwu, = [. This function had
the option to assemble M and [ given periodic boundary conditions (instead
of Dirichlet, as displayed here). The stiffness matrix was assembled using an
efficient algorithm presented in [8, pp. 15-16].

e Solving of system: Compute u;, = M !l (here, using the backslash operator
as one would use in MATLAB); also, where relevant, the uniqueness condi-
tion was applied.

e Computation of effective coefficient matrix: Once the numerical solution
Xz to the cell problem has been calculated, the effective coefficient matrix
Ap 1, as presented in (4.2) can be approximated by the matrix A;,, where

Ao _Lig / AW) (I + (Vyxe)T) dy

Dr,
N An Ap) (Ouxpn+1 Ouxiy A
~ Z A A 1 2 dy = Ah-
K 21 22 ayQXL,h aszL,h +1

KE'ThﬂDLO

Integration over each element in K is calculated using quadrature.
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L5 Triangulation

1.0

0.5 1

-1.5
-1.5 -1.0 -0.5 0.0 0.5 1.0 15

X

(a) Mesh of fineness h = 0.1 on original domain D; = [-1.5,1.5)? with
fixed Dy, = [-0.5,0.5)? and periodic circles added on the torus.

Triangulation

1.0

0.5

(b) Mesh of fineness h = 0.1 on subdomain D;, = [~1,1)? with fixed
Dp, = [-0.5,0.5)2.

Figure 6.1: Two different meshes for the same geometry sharing a common inner
structure on the square D;,,. The midpoints of circles are marked with orange dots.
Boundary nodes are marked by their category: slaves are in green and masters are
in red.
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6.2.4 Tests and Auxiliary Functions

There were a number of other functions used in the numerical tests. All tests that
were presented in the numerical results first needed to be programmed. These
tests included methods to calculate convergence, functions to perform parallel
calculations for Monte Carlo simulations, and tests for computation time. Addi-
tionally, a number of auxiliary functions needed to be implemented, including
the calculation of the L? and H! norms as well as the H! seminorm; functions that
performed numerical quadrature; and functions for interpolation.

6.3 Performance

Figure 6.2 compares the performance of the assembly function (the assembly of
the stiffness matrix M and load vector /) with the performance of the same in MAT-
LAB for different meshes of fineness h. The performance of our solver compares
quite favorably to that of MATLAB. Future work will involve further optimization
of the Julia code. The first naive implementation of the solver was highly ineffi-
cient; several things were done that sped up calculations considerably.

e Julia’s built-in det function was found to be a very inefficient way of calcu-
lating the area of a mesh element; this was replaced with a direct calculation
based on the lengths of the sides of each triangle.

e For-loops were avoided where possible; operations were vectorized instead,
considerably speeding up calculations. This meant that nested types were
to be avoided: the Mesh data type was originally comprised of arrays of other
types (Nodes, Edges, and Elements), which could not be vectorized. The Mesh
type was therefore modified to include simple arrays that could be vector-
ized.
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Performance of Julia assembly compared to Matlab assembly

ol — Matlab |

log(CPU time)

-6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5
log(h)

Figure 6.2: Performance of FEM assembly implemented in Julia compared to as-
sembly in MATLAB.



CHAPTER 7

Conclusion

In this thesis, we focused on the stochastic homogenization of elliptic partial dif-
ferential equations. We discussed the main theoretical results and applications as
well as numerical methods used to compute approximations to two-dimensional
solutions.

The main contribution of this work was Chapter 4, where error bounds for the
solution to the cell problem were estimated. In this chapter, an optimal computa-
tional scheme was also presented. The theoretical error bounds agreed well with
numerical results presented in Chapter 5. Additionally, convergence of the solu-
tion to the cell problem as well as the effective coefficient matrix was observed
numerically. We ran tests to approximate the missing constants in the optimiza-
tion problem and found an optimal method for stochastic homogenization.

Finally, the numerical results that were presented here were carried out using orig-
inal Julia code that was summarized in Chapter 6 and that will be provided to the
Julia programming community.

7.1 Future Work

We close with a few words about next steps in our research. In the development
of the optimal approach, we made the assumption that the work and error of x
scaled at the same rate for both components; the error bounds and optimal ap-
proach in Chapter 4 were created using one component of y. A natural next step
would be to determine the optimal approach using both error and work values for
! and y2.

While we focused on tests for diagonal A, these tests could easily be run for the
non-diagonal case as described in Section 3.1.2. We focused entirely on the case
of hard spheres (wWhere overlapping is not allowed), but an area of future research
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would be the overlapping case described by a Poisson point process. The theory
for this case is much more developed; theoretical results already exist by Gloria
and Otto [16] but numerical results are still missing. Part of what makes the nu-
merical setup here so difficult, however, is the construction of a proper mesh. The
geometry of a domain with overlapping circles introduces new shapes that must
be handled individually, so modeling this is quite difficult. Some of those diffi-
culties could potentially be overcome if we used quasi-Monte Carlo points for the
circles. For certain setups with “small” circles, these points could be used to ap-
proximate ensembles derived from a Poisson Point Process.

The existing code could be pretty easily tweaked to allow for related shapes (like
ellipses); also, tests could be easily run for circles with varying radii. Some work
would be involved in extending the implementation to the three-dimensional case.
The creation of the mesh and the setup of the solver (to ensure periodic condi-
tions on all sides) would require adjustments. The use of an adaptive mesh might
be beneficial in the two-dimensional case.

Gloria [13] has shown that the addition of a zero-order term in the deterministic
problem can substantially reduce the error; this also reduces the hyper-linear con-
vergence that we were seeing in the convergence plots in L. The question would
be to what extent this strategy works in the stochastic case.

Finally, while out of scope for this thesis, it would be beneficial to compare the
results of our simulations to measured outcomes in materials science.
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