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Abstract
Purpose – The current paper aims to develop a reduced order discontinuous Galerkin method for solving
the generalized Swift–Hohenberg equation with application in biological science and mechanical engineering.
The generalized Swift–Hohenberg equation is a fourth-order PDE; thus, this paper uses the local
discontinuous Galerkin (LDG) method for it.
Design/methodology/approach – At first, the spatial direction has been discretized by the LDG
technique, as this process results in a nonlinear system of equations based on the time variable. Thus, to achieve
more accurate outcomes, this paper uses an exponential time differencing scheme for solving the obtained system
of ordinary differential equations. Finally, to decrease the used CPU time, this study combines the proper
orthogonal decomposition approach with the LDG method and obtains a reduced order LDG method. The
circular and rectangular computational domains have been selected to solve the generalized Swift–Hohenberg
equation. Furthermore, the energy stability for the semi-discrete LDG scheme has been discussed.
Findings – The results show that the new numerical procedure has not only suitable and acceptable
accuracy but also less computational cost compared to the local DG without the proper orthogonal
decomposition (POD) approach.
Originality/value – The local DG technique is an efficient numerical procedure for solving models in the
fluid flow. The current paper combines the POD approach and the local LDG technique to solve
the generalized Swift–Hohenberg equation with application in the fluid mechanics. In the new technique, the
computational cost and the used CPU time of the local DG have been reduced.
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1. Introduction
The discontinuous Galerkin (DG) method is one of the improvements of the finite element
method. The DG technique has been used for solving several physical models such as
computational fluid dynamics (Cockburn, 2001; Li, 2006), convection-dominated diffusion
problems (Badia and Hierro, 2015; Cockburn and Shu, 1989; Demkowicz et al., 2012; Ellis
et al., 2014), the nonlinear Hamilton-Jacobi equations (Cheng and Shu, 2007, Hu and Shu,
1998), second-order elliptic problems (Arnold et al., 2002), time-dependent convection-
diffusion systems (Cockburn and Shu, 1998a), nonlinear Schrödinger equations (Ai and Li,
2005; Liang et al., 2015), 2D Brusselator system (Dehghan and Abbaszadeh, 2016b),
multidimensional thermal radiation problems (Cui and Li, 2004), elliptic eigenvalue
problems (Giani, 2015), viscous Burgers–Poisson system (Ploymaklam et al., 2016) and fully
coupled microscopic SNPP system (Frank et al., 2015; Frank et al., 2011). The main aim of
(Marti et al., 2017) is to propose a new elemental enrichment technique to improve the
accuracy of the simulations of thermal problems containing weak discontinuities. Authors
of (Karakus et al., 2018) developed a high-order discontinuous Galerkin method for the
solution of unsteady, incompressible, multiphase flows with level set interface formulation.
A fully discrete local discontinuous Galerkin (LDG) finite element method has been
proposed in (Wei et al., 2013) for solving a time-fractional advection-diffusion equation. To
find information for DG method the interested readers can refer to (Chou et al., 2014;
Cockburn et al., 1990; Shu, 2014; Wang et al., 2015; Zhang and Shu, 2010).

The Swift–Hohenberg equation has been introduced in Swift and Hohenberg (1977) as
follows:

@u
@t

¼ �m uð Þ � Dk4u� 2Dk2Du� DD2u; in X� 0;T½ �;

@u
@z

¼ 0;
@

@z
2Dk2uþ DDuð Þ ¼ 0; on @X� 0;T½ �;

u x; 0ð Þ ¼ u0 xð Þ;8x 2 X;

8>>>>>>>>><>>>>>>>>>:
(1.1)

in which k,D, [Rþ. Equation (1.1) has some applications in Gabbrielli (2009):
� foams physics;
� cellular materials;
� crystallography;
� biology science;
� metallurgy; and
� data compression.

Mathematical model (1.1) is solved by using different approaches for instance Gomez and
Nogueira (2012a) developed a new numerical procedure with the nonlinear stability
property. In other hand, Gomez and Nogueira (2012a) proposed the Galerkin B-spline
method to solve equation (1.1). Akyildiz et al. (2010) presented a semi-analytic approach
based homotopy analysis method (HAM). Sanchez et al. used the finite difference method to
simulate equation (1.1). Lloyd et al. (2008) investigated several numerical procedures for
stationary spatially localized hexagon patterns. Also, Zhao et al. proposed the Fourier
spectral procedure to analogize the Swift–Hohenberg equation. Furthermore, the interested
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readers can refer to (Kudryashov and Sinelshchikov, 2012; McCalla and Sandstede, 2010;
Park and Park, 2014; Thiele et al., 2013). Also, there are some numerical methods to solve the
some equations in the biology field. For example, authors of (Dehghan et al., 2011) used He’s
Exp-function method (EFM) to construct solitary and soliton solutions of the nonlinear
evolution equation. The main aim of (Dehghan et al., 2012) is to present the solution of the
Rosenau–Hyman equation by using the semianalytical approaches based on the homotopy
perturbation method (HPM), variational iteration method (VIM) and Adomian
decomposition method (ADM).

1.1 The structure of paper
The main purpose is to find a new numerical procedure to simulate generalized Swift–
Hohenberg equation based on the LDGmethod.We used the LDG approach for discretizing the
spatial direction that leads to a nonlinear system of ordinary differential equations. Finally, we
solve the obtained system using the exponential time differencing (ETD) scheme Also, we will
obtain the energy stability for the semi-discrete LDG scheme. The rest of the current paper is as
follows: in Section 2, the local DG method has been used to discrete the main model; in Section
3, we describe the proper orthogonal decomposition method and how to build the new bases; in
Section 4, some examples have been considered to illustrate the efficiency of the proposed
technique; and in Section 5, the conclusion of the paper has been proposed in this section.

2. The local discontinuous Galerkin approximation
In the current section, we present a brief mathematical introduction for the LDG method. At
first, we introduce some notations. Let Th be a regular triangulation for the computational
domain in whichK denotes an arbitrary triangle element and also

h ¼ max
K

diam Kð Þ� �
:

Let nT be the unit normal on @K. For any interior triangle, two triangles K– and Kþ are
common. Now, we define

z6 xð Þ ¼ lim
d!0þ

z x� dnK6ð Þ: (2.1)

The average and jump of z on each edge can be defined as

fjz jg ¼ 1
2

z � þ z þð Þ; z½ �½ � ¼ z �nK� þ z þnKþ ; (2.2)

respectively.
To implement the LDGmethod, equation (1) must be changed as follows:

ut ¼ �m uð Þ � Dk4u�r � v; (2.3)

v ¼ rw; (2.4)

w ¼ 2Dk2uþ Dr � z; (2.5)

z ¼ ru: (2.6)

The LDG scheme to solve the system (2.3)-(2.6) is as follows:
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Find u, w [Vh and v; z 2 Vd
h such that, for all test functions f 1, f 2 [Vh and h1; h2 2 Vd

hð
K

@u
@t

w 1dK ¼ �
ð
K

m uð Þw 1dK � Dk4
ð
K

uw 1dK þ
ð
K

v � rw 1dK �
ð

@K

v̂ � n!w 1ds;

(2.7)

ð
K

v � h1dK ¼ �
ð
K

w � rh1dK þ
ð

@K

ŵ � n!h1ds; (2.8)

ð
K

ww 2dK ¼ 2Dk2
ð
K

uw 2dK � D
ð
K

z � rw 2dK þ D
ð

@K

ẑ � n!w 2ds; (2.9)

ð
K

z � h2dK ¼ �
ð
K

u � rh2dK þ
ð

@K

û � n!h2ds: (2.10)

Theorem 2.1. (energy stability for the semi-discrete LDG scheme) The solution of LDG
scheme (2.3)-(2.6) satisfies the energy dissipative:

d
dt

ð
X

W uð Þ þ D
2

2 w� 2Dk2uð Þ2 � 2k2z � zþ k4u2
h i� �

dx # 0: (2.11)

Proof. We select the following test functions:

w 1 ¼ ut; w 2 ¼ wt � 2k2ut; h2 ¼ zt: (2.12)

Substituting the above test functions in equations (2.7)-(2.10), we have:ð
K

utð Þ2dK ¼ �
ð
K

m uð ÞutdK � Dk4
ð
K

uutdK

þ
ð
K

v � rutdK �
ð

@K

v̂ � n!utds; (2.13)

ð
K

w� 2k2Duð Þ wt � 2k2Dut
� �

dK ¼ �D
ð
K

z � r wt � 2k2Dut
� �

dK

þD
ð

@K

ẑ � n! wt � 2k2Dut
� �

ds; (2.14)
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D
ð
K

z � ztdK ¼ �D
ð
K

u � rztdK þ D
ð

@K

û � n!ztds: (2.15)

Thus, we can write:

d
dt

ð
X

W uð Þ þ D
2

w� 2Dk2uð Þ2 � 2k2z � zþ k4u2
h i� �

dxþ
ð
K

utð Þ2dK

¼
ð
K

v � rutdK �
ð

@K

v̂ � n utds

�D2
ð
K

z � r wt � 2kD2ut
� �

dK þ D2
ð

@K

ẑ � nð Þ wt � 2kD2ut
� �

ds

þD
ð
K

urztdK � D
ð

@K

û � nð Þ ztds:

Finally, summing up the above relation overK and noticing the fluxes are from the opposite
sides of @K as well as the periodic boundary conditions, we have:

d
dt

ð
X

W uð Þ þ D
2

w� 2Dk2uð Þ2 � 2k2z � zþ k4u2
h i� �

dxþ
ð
K

utð Þ2dK ¼ 0; (2.16)

which completes the proof.h
Now, we explain the implementation of LDG method for the generalized Swift–

Hohenberg equation.We rewrite equations (2.7)-(2.10) as follows:ð
K

w 1utdK ¼ �
ð
K

w 1m uð ÞdK � Dk4
ð
K

w 1udK þ
ð
K

rw 1ð Þ � vdK �
ð

@K

w 1ð Þv̂ � n!ds;

(2.17)ð
K

h1 � vdK ¼ �
ð
K

rh1ð Þ � wdK þ
ð

@K

h1ð Þŵ � n!ds; (2.18)

ð
K

w 2wdK ¼ 2Dk2
ð
K

w 2udK � D
ð
K

rw 2 � zdK þ D
ð

@K

w 2 ẑ � n!ð Þds; (2.19)

ð
K

h2 � zdK ¼ �
ð
K

rh2 � udK þ
ð

@K

h2 û � n!ð Þds: (2.20)

Thus, the semi-discrete scheme corresponding to equations (2.17)-(2.20) is:
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ð
K�

w 1;h@tuh tð ÞdK ¼ �
ð

K�

w 1;hm uh tð Þ
� �

dK � Dk4
ð

K�

w 1;huh tð ÞdK þ
ð

K�

rw 1;h
� � � vh tð ÞdK

�
ð

@K�

w�
1;h

� � fjvhjg � n!T� þ j

hT�
vh tð Þ
� 	� 	

� n!T�


 �
ds; (2.21)

ð
K�

h1;h � vh tð ÞdK ¼ �
ð

K�

ru 1;hð Þ � wh tð ÞdK

þ
ð

@K�

h1;hð Þ fjwhjg � n!T� þ j

hT�
wh tð Þ
� 	� 	

� n!T�


 �
ds; (2.22)

ð
K�

w 2;hwh tð ÞdK ¼ 2Dk2
ð

K�

w 2;huh tð ÞdK � D
ð

K�

rw 2;h � zh tð ÞdK þ D
ð

@K�

w 2;h fjzhjg � n!T�
�

þ j

hT�
zh tð Þ
� 	� 	

� n!T� �ds; (2.23)

ð
K�

h2;h � zh tð ÞdK ¼ �
ð

K�

rh2;h � uh tð ÞdK

þ
ð

@K�

h2;h fjuhjg � n!T� þ j

hT�
uh tð Þ
� 	� 	

� n!T�


 �
ds: (2.24)

Let the local solution for the unknown functions be:

uh x; tð ÞjKr
¼
XN
j¼1

Urj tð Þf rj xð Þ; (2.25)

vh x; tð ÞjKr
¼
XN
j¼1

V 1
rj tð Þ

V 2
rj tð Þ

24 35f rj xð Þ; (2.26)

wh x; tð ÞjKr
¼
XN
j¼1

Wrj tð Þf rj xð Þ; (2.27)

zh x; tð ÞjKr
¼
XN
j¼1

Z1
rj tð Þ

Z2
rj tð Þ

24 35 tð Þf rj xð Þ: (2.28)

Now, we have:
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XN
j¼1

@tUrjðtÞ
ð
Kr

f riðxÞf rjðxÞdK ¼ �
ð
Kr

f riðxÞm
XN
j¼1

UrjðtÞf rjðxÞ
0@ 1AdK

�Dk4
XN
j¼1

UrjðtÞ
ð
Kr

f riðxÞf rjðxÞdK þ
XN
j¼1

X2
m¼1

Vm
rj ðtÞ

ð
Kr

ð@xmf riðxÞÞf rjðxÞdK

�
ð

@Kr

f r�iðxÞ
1
2

X2
m¼1

nm
r�

XN
j¼1

Vm
r�jðtÞf r� iðxÞ þ

XN
j¼1

Vm
rþjðtÞf rþiðxÞ

8<:
9=;

264

þ h

hKr�

XN
j¼1

Wm
r�jðtÞf r� iðxÞ þ

XN
j¼1

Wm
rþjðtÞf rþ iðxÞ

8<:
9=;
35ds; (2.29)

XN
j¼1

Vm
rj tð Þ

ð
Kr

f ri xð Þf rj xð ÞdK ¼ �
XN
j¼1

Wrj tð Þ
ð
Kr

@xmf ri xð Þð Þf rj xð ÞdK

þ 1
2

ð
@Kr

f r�i xð Þnm
r�
XN
j¼1

Wr�j tð Þ tð Þf r�j xð Þ
24

þ
XN
j¼1

Wrþj tð Þ tð Þf rþj xð Þ
#
ds; m ¼ 1; 2f g;

(2.30)

XN
j¼1

Wrj tð Þ
ð
Kr

f ri xð Þf rj xð ÞdK ¼ 2Dk2
XN
j¼1

Urj tð Þ
ð
Kr

f ri xð Þf rj xð ÞdK

�D
XN
j¼1

X2
m¼1

Zm
rj tð Þ

ð
Kr

@xmf ri xð Þð Þf rj xð ÞdK

þD
ð

@Kr

f r�i xð Þ 1
2

X2
m¼1

nm
r�

XN
j¼1

Zm
r�j tð Þf r� i xð Þ þ

XN
j¼1

Zm
rþj tð Þf rþi xð Þ

8<:
9=;

264

þD
h

hKr�

XN
j¼1

Um
r�j tð Þf r� i xð Þ þ

XN
j¼1

Um
rþj tð Þf rþi xð Þ

8<:
9=;
35ds; (2.31)
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XN
j¼1

Zm
rj tð Þ

ð
Kr

f ri xð Þf rj xð ÞdK ¼ �
XN
j¼1

Urj tð Þ
ð
Kr

@xmf ri xð Þð Þf rj xð ÞdK

þ 1
2

ð
@Kr

f r� i xð Þnm
r�
XN
j¼1

Ur�j tð Þf r�j xð Þ
24

þ
XN
j¼1

Urþj tð Þf rþj xð Þ
#
ds;m ¼ 1; 2f g: (2.32)

Finally, the following nonlinear system of ODEs can be driven:

A
dX
dt

¼ BX tð Þ þ F X tð Þð Þ; (2.33)

that should be solved using an efficient algorithm. Now, we use an ETD scheme (Asante-
Asamani et al., 2016) for solving equation (2.33). Consider the following initial boundary
value problem:

ut þ Au ¼ f t; uð Þ; in X; t 2 0;Tð Þ;

u 0; �ð Þ ¼ u0;

8<: (2.34)

in which:
� X is a Banach space.
� � A generates an analytic semigroup E(t) = e�At in X.
� f is an sufficiently smooth nonlinear term.
� A : D Að Þ ! X.

The proposed method in Asante-Asamani et al. (2016) is based on finding a numerical
solution for the following integral form:

u tð Þ ¼ e�tAu0 þ
ðt
0

e� t�sð ÞAf s; u sð Þð Þds; 8t 2 0;T½ �: (2.35)

Now, the following recurrence relation can be concluded (Asante-Asamani et al., 2016):

u tnþ1ð Þ ¼ e�Aku tnð Þ þ
ðtnþ1

tn

e� tnþ1�sð ÞAf s; u sð Þð Þds: (2.36)

Let s = tn þ tk that tn = nk for 0# k # k0, 0# n#N and t [ [0, 1] then we can rewrite
equation (2.36) as follows (Asante-Asamani et al., 2016):
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u tnþ1ð Þ ¼ e�Aku tnð Þ þ k
ð1
0

e�Ak 1�tð Þf tn þ tk; u tn þ tkð Þð Þdt : (2.37)

The above result is a basic issue in ETD scheme. Finally, the ETD scheme is as follows
(Asante-Asamani et al., 2016):

unþ1 ¼ I þ 1
3
Ak

� ��1

9un þ 2kf tn; unð Þ þ kf tnþ1; u*
� �h i

(2.38)

þ I þ 1
4
Ak

� ��1

�8un � 3k
2
f tn; unð Þ � k

2
f tnþ1; u*
� �
 �

;

u* ¼ I þ Akð Þ�1 un þ kf unð Þ� 	
: (2.39)

Now, we solve equation (2.33) using the above algorithm.

3. Proper orthogonal decomposition (POD) method
The proper orthogonal decomposition (POD) method is one of the reduced order methods
(ROM) (Berkooz et al., 1993; Everson and Sirovich, 1995; Kerschen et al., 2005). The POD
technique produces a new set of orthogonal basis function to apply in the numerical
methods such as finite difference, finite element and finite volume. The POD technique can
be found in several research papers for solving different physical models The POD
technique is considered by many scholars (Chaturantabut, 2009; Chaturantabut and
Sorensen, 2012; Fang et al., 2009; Lin et al., 2017; Ravindran, 2000a; Ravindran, 2000b;
S� tef�anescu and Navon, 2013; S� tef�anescu et al., 2014; Xiao et al., 2015b). The POD approach
has been used to solve the multi-species host-parasitoid system (Dimitriu et al., 2015),
compressible fluid and fractured solid (Fang et al., 2009; Ravindran, 2000a; Ravindran,
2000b; Xiao et al., 2017), Pacific Ocean model (Cao et al., 2007), shallow water model
(S� tef�anescu and Navon, 2013; S� tef�anescu et al., 2014), 2D Burgers equation (Wang et al.,
2016), multiphase porous media flows (Xiao et al., 2015b), Navier–Stokes equations (Xiao
et al., 2014), fluid-structure interaction (FSI) (Xiao et al., 2013), dynamic PDEs based on the
Smolyak sparse grid collocation (Xiao et al., 2015a), transient heat conduction problems
(Zhang and Xiang, 2015), convection-diffusion problems (Zhang et al., 2016) and
incompressible Navier–Stokes equation (Dehghan and Abbaszadeh, 2016a; Du et al., 2012;
Du et al., 2013; Luo et al., 2008; Xiao et al., 2015b).

Consider the following difference scheme:

MUnþ1 ¼ NUk þ F k; (3.1)

in whichM; N ; F and Uk denote the coefficients matrices, source term and the solution at
the k-th step. Let Usnap be the snapshots matrix (Zhang and Xiang, 2015):

Usnap ¼ Un1Un2 . . .Und

� 	
m�d: (3.2)

Applying the SVDmethod for matrix Usnap, results (Zhang and Xiang, 2015):
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Usnap5Um�m

P
r 0

0 0

 !
VT

d�d; (3.3)

in which: X
r

¼ diag s 1;s 2; . . . ;s rð Þ;

andmatrixUm�m= (ev1, ev2,. . .evm), is the orthogonal eigenvectors ofUsnapU
T
snap. Now, we

set (Zhang and Xiang, 2015):

ˆ l ¼ Uk;n1
1 ;Uk;n2

2 ; . . . ;Uk;nl
m

� 
; l ¼ 1; 2; . . . ; d: (3.4)

The projectionPq is defined as (Zhang and Xiang, 2015):

Pq ˆ lð Þ ¼
Xq
i¼1

evi;ˆ lð Þevi; (3.5)

in which q# d. According to (Luo et al., 2007):

kˆ l � Pq ˆ lð Þk2#s qþ1: (3.6)

Thus, ev1, ev2,. . . evm represent the optimal POD basis. Thus, we put (Zhang and Xiang,
2015):

M ¼ ev1; ev2; . . . ; evq½ �: (3.7)

Applying the new basisM to equation (3.1), yields:

cMUnþ1 ¼cNUk þ bF k
; (3.8)

in which:

cM ¼ MTMM; cN ¼ MTNM;
cF k ¼ MTF k;

cUk ¼ MTUk; (3.9)

respectively, and also bU0 ¼ MTU0: Thus, the new difference scheme is reduced to q
elements. To calculate the energy of the snapshot data, we use the following term (Buchan
et al., 2015; Wang et al., 2016)

I ¼
Xd
i¼1

s i

0@ 1A Xr
i¼1

s i

 !�1

; d ¼ f1; 2; . . . ; rg: (3.10)

Theorem 3.1. (Luo et al., 2013; Luo et al., 2012) Let l 1 � l 2 . . . � l l > 0 be the positive
eigenvalues of A and #1, #2, . . ., #l be the associated orthonormal eigenvalues. Then, the
elements of POD basis of rank d# l can be defined as:
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Ui ¼ 1ffiffiffiffiffiffiffiffi
Ll i

p
XL
j¼1

#i
jvj; 1# i# d# l: (3.11)

Also, the following error formula holds:

1
L

XL
i¼1

kvi �
Xd
j¼1

vi;Uið ÞvUjk2v ¼
Xl
j¼dþ1

l j: (3.12)

4. Investigation of numerical results
We use the explained numerical procedure for solving equation (1.1). We performed our
computations using the MATLAB 2017 b software on an Intel Core i7 machine with 32 GB
of memory.

The computational order of the developed method is checked by using the method of
reference solution.

4.1 Test problem 1
The Swift–Hohenberg equation is (Gomez and Nogueira, 2012a):

@u
@t

¼ �m uð Þ � Dk4u�r2 2Dk2uþ Dr2uð Þ; in X� 0;Tð Þ; (4.1)

@

@n
2Dk2uþ Dr2uð Þ ¼ 0; on C� 0;T½ �; (4.2)

@u
@n

¼ 0; on C� 0;T½ �; (4.3)

u x; 0ð Þ ¼ u0 xð Þ; in X: (4.4)

In this model u is the scalar phase variable (Gomez and Nogueira, 2012a).
We solve this problem using the LDGmethod. We use initial guess s.t. if x1< x< x2 then

u(x, y, 0) = 1 and else u(x, y, 0) = 0 (Gomez and Nogueira, 2012a) in which:

x1 ¼ sin
2p
10

y

� �
þ 15; x2 ¼ cos

2p
10

y

� �
þ 25: (4.5)

Figure 1 demonstrates the RMSE and the singular values (SVs) using 500 and 1,000
snapshots with t = 10�4 and h=1/100 for Test problem 1.

By computing the singular values in Figure 1, we can conclude that l 20# 5.31� 10�10

for step size h=1/100. Furthermore, from equation (3.10), we find that I(1) = 0.99842 and
I (7) = 0.999998. From Figure 1, we conclude l 20# 5.31� 10�10 then in this example, we can
chose 20 POD basis.
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Figure 2 shows the numerical solutions for Test problem 1 based onD=1, k=1, g=0, e = 2,
h=1/2 and t = 0.01. Figure 3 presents the numerical simulation with D=1, k=1, g=0.5,
e = 2, h=1/2 and t = 0.01 for Test problem 1. Also, errors and computational orders
obtained for the present method for Test problem 1 are reported in Table I.

Table I presents the errors and computational orders obtained for present method for
Test problem 1. Table II shows the used CPU time with D=1, k=1, g=0.5, e = 2 and t =
10�4.

4.2 Test problem 2
For the next example, we consider the following model (Klapp and Ovando, 2014):

Figure 1.
RMSE using 500 and
1,000 snapshots with

h=1/100 and t =
10�4 (left panel) and
the singular values

(right panel) for Test
problem 1
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Figure 2.
Approximation
solution withD=1,
k=1, g=0, e = 2,
h=1/2 and t = 0.01
for Test problem 1
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Figure 3.
Numerical

simulations with
D=1, k=1, g=0.5,
e = 2, h=1/2 and
t = 0.01 for Test

problem 1
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Table I.
Results based on the
present method for
Test problem 1

t
h=1/4 h=1/8

L1 C1-order L1 C1-order

1/10 9.0913� 10�1 � 8.9791� 10�2 �
1/20 6.0629� 10�1 0.5844 4.9590� 10�2 0.8565
1/40 3.7001� 10�1 0.7124 2.9257� 10�2 0.7612
1/80 2.0122� 10�1 0.8787 1.5894� 10�2 0.8803
1/160 1.0169� 10�1 0.9847 8.0409� 10�3 0.9830
1/320 4.8393� 10�2 1.0713 3.8421� 10�3 1.0655
1/640 2.0926� 10�2 1.2095 1.6676� 10�3 1.2041
1/1,280 7.0056� 10�3 1.5787 5.5936� 10�4 1.5759

Table II.
CPU Time (s) created
with t = 10�4

h
Main model PODLDG-ROM
CPU time (s) 15 basis 20 basis 30 basis

1 187 11 17 25
1/2 342 19 28 46
1/4 633 26 39 71
1/8 1,139 34 58 102
1/10 2,307 57 87 188

Figure 4.
RMSE using on 500
and 1,000 snapshots
with g=0.5, e = 0.05,
h=1 and t = 10�4

and the singular
values for Test
problem 2
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Figure 5.
Approximation

solution with g=0.5,
e = 0.05, h=1 and
t = 0.005 for Test

problem 2
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@u
@t

¼ � Dþ 1ð Þ2uþ m uð Þ; X� 0;Tð Þ; (4.6)

in which:

m uð Þ ¼ «uþ gu2 � u3; (4.7)

based on the random initial guess and the periodic boundary condition.Figure 4 displays the
RMSE using 500 and 1000 snapshots with g=0.5, e = 0.05, t = 10�4 and h=1 (left plane)
and the singular values (right panel).

According to Figure 4 and by computing the singular values, we can see
l 15# 4.37� 10�11 for step size h= 1. As well as Test problem 1, in the current example
we use 15 POD basis associated to spatial size h= 1. Approximation solutions of Test
problem 2 based on the g= 0.5, e = 0.05, h= 1 and t = 0.005 have been demonstrated in
Figure 5.

Figure 6 illustrates the RMSE using 500 and 1,000 snapshots with g=0, e = 0.3, h=1
and t = 10�4 (left plane) and the singular values (right panel) for Test problem 2. Figure 7
confirms that the hexagonal patterns are composed in T=300. Furthermore, the
approximation solutions of Test problem 2 with e = 0.3, g=0, h=1 and t = 0.005 have been
depicted in Figure 8.

5. Conclusion
In this article, we considered generalized Swift–Hohenberg equation as a nonlinear
fourth-order partial differential equation. The LDG finite element approach is used for

Figure 6.
RMSE using 500 and
1,000 snapshots with
g=0, e = 0.3, h=1
and t = 10�4 and the
singular values for
Test problem 2
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obtaining the numerical solutions of this model. First, the spatial direction has been
discretized using the LDG finite element method and the energy stability for the semi-
discrete LDG scheme has been proved. At the end of this process, a system of nonlinear
ODEs has been achieved and to get the suitable and accurate results, an ETD scheme
has been used. The developed algorithm has been examined on two different examples
closed to the real problems. The achieved results acknowledge the susceptibility of the
new numerical scheme.

Figure 7.
Approximation

solution based on the
g=0, e = 0.3, h=1
and t = 0.005 for
Test problem 2

Figure 8.
Approximation

solution based on the
g=0, e = 0.3, h=1
and t = 0.005 on

circular domain for
Test problem 2
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