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Kurzfassung 

Kryogene Phononendetektoren mit supraleitenden 
Thermometern erreichen die höchste Sensitivität für leichte 
Dunkle-Materie-Kern-Streuung in derzeitigen Direct-Detection 
Dunkle Materie Experimenten. Bei solchen Sensoren müssen 
die Temperatur des Thermometers und der Vorspannungsstrom 
in seinem Ausleseschaltkreis sorgfältig optimiert werden, um 
optimale Betriebsbedingungen zu erreichen. Diese Aufgabe ist 
nicht trivial und muss manuell von einem Experten durchgeführt 
werden. In unserer Arbeit automatisieren wir das Verfahren mit 
Hilfe von Reinforcement Learning in zwei Situationen. Erstens 
trainieren wir mit einer Simulation der Reaktion von drei 
CRESST-Detektoren, die als virtuelle Umgebung verwendet 
wird. Zweitens trainieren wir live mit denselben Detektoren, die 
im CRESST-Untergrundlabor betrieben werden. In beiden Fällen 
gelingt es uns, einen Standarddetektor so schnell zu 
optimieren, dass unsere Methode in der Praxis eingesetzt 
werden kann. Zum Schluss erörtern wir vortrainierte Modelle, 
die die Aufgabe ohne Feinabstimmung auf einzelnen Detektoren 
erlernen können, wenn ein umfangreicher und vielfältiger 
Datensatz für das Offline-Training zur Verfügung steht. Unsere 
Methode kann die Skalierbarkeit von kryogenen 
Detektorsystemen verbessern.
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Abstract Cryogenic phonon detectors with superconduct-
ing thermometers achieve the strongest sensitivity to light
dark matter-nucleus scattering in current direct detection dark
matter searches. In such devices, the temperature of the ther-
mometer and the bias current in its readout circuit need care-
ful optimization to achieve optimal operation conditions. This
task is not trivial and has to be done manually by an expert.
In our work, we automate the procedure with reinforcement
learning in two settings. First, we train on a simulation of
the response of three CRESST detectors, used as a virtual
reinforcement learning environment. Second, we train live
on the same detectors operated in the CRESST underground
setup. In both settings, we accomplish the optimization of a
standard detector sufficiently fast for practical applications.
Finally, we discuss pre-trained models that could learn the
task without fine-tuning on individual detectors, given a rich
and diverse data set for offline training. Our method can im-
prove the scalability of cryogenic detector setups.
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1 Introduction

Several types of particle physics experiments require the
sensitive measurement of low-energy particle recoils, e.g. di-
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rect detection dark matter (DM) searches and coherent neutrino-
nucleus scattering. One successful detector concept is that
of cryogenic phonon detectors with transition edge sensors
(TES), which were used by the CRESST experiment to reach
the currently strongest sensitivity to sub-GeV/c2 DM-nucleus
interactions [1]. These consist of a crystal and an attached
TES, acting as a thermometer, where both are cooled to
≈ 10 mK. A particle recoil in the crystal induces a distinct
phonon population, which thermalizes and produces a tem-
perature increase in the crystal and the TES, leading to a
measurable signal for recoils with as low energy as 10 eV
[2]. Such good sensitivity requires a careful setup of the de-
tectors, effectively the optimization of the bias current lead
through the TES and the base temperature of the crystal and
TES, which is governed by the current applied to a heating
resistor attached to the crystal.

The optimization of these two values is often done by an
expert and by hand. After each change to the control param-
eters, the system needs to reach its new equilibrium state be-
fore the sensitivity can be tested. Therefore the optimization
can be a lengthy process, taking up to several hours. The
objectives of future physics experiments, e.g. the planned
CRESST upgrade [3], require the simultaneous operation of
several tens, up to hundreds, detector modules. Automating
the optimization is a necessary step to achieve this objective
and stay within reasonable bounds of the required manual
workload.

The optimal parameter settings vary between similarly
manufactured detectors, due to fluctuations in the thermal
properties of the TES, crystal, and connections, and the true
values are often unknown or have large uncertainties. Cal-
culating the optimal values from theory without previously
measuring the detector is, therefore, not reliable. The de-
tector’s sensitivity is not uniquely determined by the set-
ting of the control parameters but can also depend on an
internal state of the TES, namely the fact whether it was
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Fig. 1: Schematic drawing of the detector environment. (center) The detector can be described as an electrothermal system, where the readout and
heater electronics and the temperatures in the crystal and sensor interact with each other. (right) The recorded observable from particle recoils is a
pulse-shaped voltage signal. (left) A neural network is trained with RL to control the measurement settings w.r.t. the signal-to-noise ratio (SNR)
of the observed pulses. See text in Sec. 2 and 3 for details.

in a superconducting state before the parameters were set.
Therefore simple approaches to optimizing the control pa-
rameters, such as a grid search or an educated guess, cannot
be optimal in terms of an optimization time to performance
trade-off.

In practice, a combination is often used: Choosing a small
set of educated guesses for bias currents and recording a
one-dimensional sweep of the heating resistor, starting from
warm to cold. The operation point (OP), i.e. the final con-
trol parameter configuration, is then based on the strength
of the detector response. While this approach can work, it
has two weaknesses: a) the OP with the strongest detector
response is not necessarily the OP that is most sensitive, and
b) the sweeps spend an unnecessarily large amount of mea-
surement time in regions of the control parameter space that
are unlikely to be optimal, based on the already assembled
knowledge from previous observations. While a standard
gradient-based or Bayesian optimization approach could im-
prove b) it would also rely on a hard-coded mechanism to
approach the desired point in parameter space or risk doing
measurements with an unknown internal state of the super-
conductor.

The previous arguments make it clear that the solution
to the optimization problem is not only the set of optimal
parameters but also the awareness of an allowed way to ap-
proach them, i.e. a sequence. We formulate the problem in
the framework of reinforcement learning (RL), a general
method to find optimal policies for control problems in dis-
crete time, extensively described e.g. in Ref. [4].

In RL we model the problem as the time-ordered inter-
action of an agent with an environment. Based on a learned
policy, the agent takes actions that depend on its last obser-
vation of the environment. The environment returns for each

given action a new observation and a reward. The agent’s ob-
jective is the maximization of returns, which are the sum of
rewards over time. The estimated future returns for a given
action-observation combination are called values and are learned
jointly with the policy. This framework is called a Markov
decision process (MDP) if the state satisfies the Markov prop-
erty.

RL was used to optimize control settings in physics in
Refs. [5] and [6] for particle beams, in Ref. [7] for nuclear
fusion reactors and in Ref. [8] for superconducting quantum
bits.

The state-of-the-art RL algorithms for finding optimal
policies in an environment where the actions and observa-
tions are continuous values are Actor-Critic (AC) methods,
where both policy and value function are approximated with
neural networks. Especially the Soft AC algorithm (SAC)
performs well in real-world applications, e.g. in robotics [9].
RL methods are typically associated with a low sampling
efficiency, i.e. they require many interactions between the
agent and environment to discover an optimal policy.

We can mitigate this drawback for our application by us-
ing a large experience replay buffer and the excessive train-
ing of the agent on previously observed interactions. We
provide proof of principle of our method in a virtual envi-
ronment, modeled after three CRESST detectors operated
in run 36 of the experiment and used for a DM search in
Ref. [10]. Furthermore, we optimize these three detectors
live and directly on the CRESST underground setup by in-
terfacing the experiment control software with our RL agent.
Finally, we use the collected replay buffers from the training
of our agents in virtual environments to test if a model can
be pre-trained to perform the task on new detectors without
fine-tuning. This was done similarly in Refs. [11] and [12]
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for Atari 2600 games and standard control problems, using
Transformer models, dubbed Decision Transformers (DTs).

We present the following in this work:

– Our model for the cryogenic detector response and noise
contributions is described in Sec. 2.

– We derive a reward function that expresses the goal of a
sensitive detector based on observable detector response
parameters and explain the approach of optimizing it
with SAC agents in Sec. 3.

– We train a SAC agent to optimize a cryogenic detector
in our virtual environment in Sec. 4.

– We train and operate on the CRESST setup live in Sec. 5.
– We train a DT model on the collected replay buffers, and

test is on unseen, virtual detectors in Sec. 6.

2 Modeling the detector response and noise

The detector’s response to particle recoils and other energy
depositions depends on the thermal properties of the ab-
sorber crystal and TES and the electrical properties of the
readout circuit. We can calculate a simplified model of the
expected detector response by independently modeling the
thermal and electrical circuits involved with ordinary differ-
ential equations (ODEs) and solving them jointly as a cou-
pled ODE system. These response calculations were per-
formed analytically for the coupled thermal system of the
absorber and TES in Ref. [13] in a small-signal approxima-
tion. Analytical calculations for the coupled system of an
isolated TES’s thermal and electrical response were studied
in Ref. [14].

The interacting components are schematically drawn in
Fig. 1. The crystal is symbolized by the grey block in the
center, the TES by the white rectangle enclosing a sketched
graph of the temperature-dependent resistance of the super-
conducting film R f (T ) that drops sharply around the su-
perconductors transition temperature Tc. The thermal circuit
connects the temperature of the heat bath Tb with the temper-
atures of the crystal (dominated by its phonon temperature)
Ta and that of the TES (dominated by its electron temper-
ature) Te. The heat flow in the system is determined by the
thermal connectivity between the components Gae, their in-
dividual links to the heat bath Geb and Gab, and the heat
capacities of the absorber Ca and TES Ce. The heat capacity
of the TES increases below its superconducting transition by
a factor of 2.43, see e.g. Ref. [15]. The TES is operated in
an electrical parallel connection with a shunt resistor Rs and
a readout coil with inductivity L. The circuit is biased with a
current Ib from a current source. We neglect the temperature
dependency of all properties other than the TES resistance
and heat capacity, which provides us with a tractable model
for a neighborhood of the critical temperature. The electri-
cal and thermal equations for the state variables are written

in Eq. (1). They are coupled through the TES temperature.
The system’s state variables are the absorber and TES tem-
peratures and the current floating through the TES branch of
the readout circuit I f . They are all time-dependent variables.
However, we omit writing their time dependency explicitly
for better readability:

Ce(Te)
dTe

dt
+(Te −Ta)Gea +(Te −Tb)Geb = Pe(t),

Ca
dTa

dt
+(Ta −Te)Gea +(Ta −Tb)Gab = Pa(t), (1)

L
dI f

dt
+RsIb − (R f (Te)+Rs)I f = 0.

The system responds to power inputs in the absorber Pa and
thermometer Pe, which are introduced by deposited energy
∆E from particle recoils in the crystal. Additionally, a con-
stant current is applied to the heating resistor RH controlled
by the digital-analog converted (DAC) value from a digital
control system. The DAC has a value range between zero
and ten and interpolates between no heating and the maxi-
mal heating current IH .

The heater system can also induce heat pulses with a
given test pulse amplitude (T PA) between zero and ten for
testing the detector response. The test pulses decay on an
exponential time scale τT P. The controlling values for the
heating current are summed and square rooted, such that
they linearly control the power inputs. A particle recoil pro-
duces an initial population of athermal phonons from which
a share ε thermalizes on a time scale τn in the TES and a
share (1− ε) in the absorber, mostly by surface scattering.
Assuming an exponential time scale for thermalization is
equivalent to assuming a monochromatic athermal phonon
population, which is a satisfying approximation for our pur-
poses.

Additional heat input in the system is from the self-heating
of the TES, with power R f I2

f . This contribution is crucial, as
it strongly influences the TES temperature and introduces
an internal state in the system. The equilibrium state differs
depending on whether the TES is in a fully superconduct-
ing state. The heat inputs are summarized in Eq. (2) and (3),
where we introduced factor δ and δH to balance the power
inputs from the constant heating and test pulses between
the TES and absorber. These factors absorb the spatial de-
pendence of the temperatures, which are non-homogeneous
across the system’s geometry for the locally induced power
from the heating resistor. Furthermore, they absorb the po-
tentially different energy distributions of produced phonons
in the constantly applied heating and the fast heater pulses.
The factors ε , δ , and δH are all values between zero and
one. The power input from athermal phonon thermalization
is in good approximation uniform across the geometry of
the components, as they spread ballistically across the sys-
tem on a much shorter time scale than they thermalize.
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Geometric effects of the temperature distribution in the
TES were studied in Ref. [13], where it was shown that such
effects could be absorbed in the thermal parameters of the
system:

Pe(t) = ε
∆E
τn

exp
(

t
τn

)
+R f I2

f

+δ
T PA
10

exp
(

t
τT P

)
+δH

DAC
10

RH I2
H , (2)

Pa(t) = (1− ε)
∆E
τn

exp
(

t
τn

)
+(1−δ )

T PA
10

exp
(

t
τT P

)
+(1−δH)

DAC
10

RH I2
H . (3)

The detector response is distorted by electrical and thermal
noise produced in the system, leading to a finite energy res-
olution. The contributions to the observed noise power spec-
trum (NPS) can be modeled as stochastic fluctuations of the
right-hand side of Eqs. (1). The major noise contributions
that we include in our model are:

– The thermal noise, or phonon noise, ∆ Ith. This noise
arises from natural thermal fluctuations along the ther-
mal coupling of the thermometer and bath, and its con-
tribution is often sub-dominant.

– The Johnson noise of the TES ∆ IJ f and the shunt resistor
∆ IJs. This noise comes from fluctuations in the move-
ment of the electrons through the resistors that typically
dominate the NPS for high frequencies. Excess electri-
cal noise was observed in experiments and described
in the literature (e.g. Ref. [14]) and can originate from
other electrical components, setup uncertainties, or in
the TES. We absorb such excess electrical noise by scal-
ing ∆ IJs accordingly.

– The noise introduced by the superconducting quantum
interference device (SQUID) amplifier ∆ Isq, which is
used to measure the magnetic field introduced by L, i.e. the
final signal that is digitized and recorded. Its contribu-
tion is determined by isq, a constant value and property
of the used SQUID system.

– The 1/f noise ∆ I1/ f , also called flicker noise. This noise
appears across all TES and other devices, and its ori-
gin is not fully clarified. It, therefore, cannot be pre-
dicted precisely but depends on an empirical scale factor
∆R f , f licker/R f 0. In Ref. [16], it was connected to resis-
tance fluctuations of the TES. It dominates the NPS for
low frequencies and is the most harmful noise contribu-
tion.

– Several characteristic peaks in the NPS are introduced
by the power supply voltage at 50 Hz and its harmonics.

Other known noise contributions exist but were omitted due
to their sub-dominance or because they are difficult to model.

This includes internal fluctuation noise and any noise sources
that would arise in the absorber crystal. Furthermore, burst
or telegraph noise was repeatedly observed in CRESST de-
vices and could usually be connected to certain regions within
the superconductors transition curve.

To acquire useful descriptions of the detector response
and noise, we solve Eqs. (1) on two temperature scales in-
dependently: the macroscopic scale of observable, individ-
ual energy depositions from heating, particle recoils, or test
pulses, and the microscopic scale of thermal and electrical
fluctuations. The assumption that these scales do not interact
with each other too strongly is, in practice, within reasonable
boundaries legitimate.

On a macroscopic scale, Eqs. (1) can be linearized and
solved analytically in a small signal approximation, where
non-linearities of the TES resistance and the temperature de-
pendency of the TES heat capacity are neglected. However,
in our approach, we will treat the detector response model
as a simulator and therefore do not require explicit formulas
for the response. We, therefore, include all described com-
plexity of the system without additional approximations and
solve the ODEs numerically with SciPy’s odeint method, a
wrapper of the FORTRAN LSODA solver that is especially
suitable for solving stiff ODE systems [17], to calculate the
observed pulse shape. On the microscopic scale, the small
signal approximation is very well satisfied, and we use it
to derive explicit formulas for the observed NPS in a given
OP, described in App. A. We use the method described in
Ref. [18] to generate colored noise traces with the calcu-
lated NPS. Once pulse shape and noise in a given OP and
for defined Pe and Pa are calculated, we superpose them and
translate them with the known SQUID settings to a small
Voltage trace that would be observed in a real-world setup.

The detector response can additionally depend on the
trajectory through which an OP is approached. To include
this large-scale time dependency, we start trajectories after a
reset of the virtual environment from an edge of the parame-
ter space and solve the ODE system continuously with large
mesh grid sizes for intervals without energy depositions, and
small ones for intervals where signals are simulated.

For the tests reported in Sec. 4 and 6, we adjust all pa-
rameters of our simulation to resemble the detector response
and noise of three detectors currently operated in run 36 of
the CRESST experiment. Data from these detectors was pre-
viously used in a spin-dependent DM search in Ref. [10],
and they follow the default CRESST-III design: two of the
detectors, called Li1P and Li2P, are optimized to collect
athermal phonons produced by nuclear recoils within their
absorber crystals made of lithium aluminate. The third de-
tector, Li1L, uses a silicon-on-sapphire (SOS) wafer to col-
lect the scintillation light produced by particle recoils in
the scintillating target of Li1P. Li1P and Li1L are operated
within a joint housing. However, for this work, we will treat
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Fig. 2: Simulation and measurement of a 5.95 keV X-ray event induced by a calibration source in the Li1P detector. (upper left) The OP (black/blue
lines) within the simulated transition curve of the TES (light red line). A measurement of the transition curve is shown for comparison (grey dots).
(upper right) The voltage pulse induced in the simulated SQUID amplifier without noise (red) and overlayed with noise generated from the
simulated NPS (black). A measured voltage pulse is shown for comparison (grey dashed). (lower part) The simulated NPS (black) has individual
noise contributions (colored). The 1/f, excess Johnson, and EM interference noise components were adjusted to the data. The measured NPS is
shown for comparison (grey dashed).

them as independent detectors. We show in Fig. 2 exemplary
for Li1P the comparison between measured and simulated
transition curve, pulse shape, and NPS, which all agree to
a satisfying degree for our purposes. In App. B, the physics
parameters extracted from the measurement and used for the
simulation are summarized.

2.1 Detector designs with more components

It is straightforward to generalize the ODE system describ-
ing a cryogenic detector to designs with more thermal com-
ponents or TES. Such devices were operated in previous
CRESST runs, e.g. composite designs with a separate car-
rier crystal [19] and mounting structures instrumented with
individual TES [1]. Designs with TES separated on a re-
mote wafer were proposed for the operation of delicate tar-
get materials [20]. For such non-standard scenarios, the elec-
trothermal system can be jointly written in matrix-vector no-

tation:

Ṫ (t) = diag(C)−1
(

P
(

t,T (t), I f (t)
)

+diag
(
Gb

)(
Tb −T (t)

)
+(G−diag(G1))T (t)

)
, (4)

İ f (t) = diag(L)−1
(

diag
(
Rs
)

Ib

−diag
(

I f (t)
)(

R f (T (t))+Rs

))
, (5)

where underlined (double underlined) quantities are vector
(matrix) valued, and G describes the symmetric matrix of
thermal couplings between components. All other quantities
are equivalently generalized to vectors from Eq. (1). As we
generally neglect noise contributions that do not originate in
the TES or the readout circuit directly, our previously intro-
duced description of the detector noise remains unchanged.
Designs with multiple TES and heaters are typically harder
to optimize as the problem’s dimensionality grows with the
number of control parameters and observables to optimize.
We adjust for our studies in Sec. 4.1 the parameters of Li1P,
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Li1P, and Li2P such that they resemble a scenario for cryo-
genic detectors with two TES and correlated heatings.

3 Optimizing the sensitivity

3.1 A metric for sensitivity

The sensitivity of physics searches with cryogenic particle
detectors depends mostly on the observable energy band-
width and the expected signal and observed background rate
within this bandwidth. The expected signal and background
rates are determined by the chosen target material, mass and
shielding, and live time. The energy bandwidth is crucially
limited towards its lower end by the energy threshold of the
detector, determined by the type of device used and the con-
ditions of its operation. This lower energy threshold Eth is
for searches conducted with superconducting thermometers,
e.g. for light DM, often the crucial value determining the
sensitivity. To frame a low energy threshold as an optimiza-
tion problem, we need to estimate it with easily accessible
observables and express its dependency on all controllable
quantities, in this case, the DAC and IB values. We derive
such a metric in the following, where we use that the sensor
noise is a small deflection from an OP and therefore falls in
the regime where the height of the observed voltage noise is
approximately linear, with proportionality constant γ , to the
power of the causing noise source (small signal approxima-
tion). Furthermore, the energy threshold of a physics search
is usually defined as a multiple of the noise resolution, which
can be reasonably well approximated by measuring the ob-
served noise’s root-mean-square (RMS) value. Finally, γ is
proportional to the inverse ratio of the pulse height PH of a
test pulse to its defined input strength T PA.

argmin
DAC, IB

(Eth)
∣∣∣small signal approximation

= argmin
DAC, IB

(γUth)
∣∣∣threshold prop. to resolution

∝ argmin
DAC, IB

(γRMS)
∣∣∣est. response with test pulses

∝ argmin
DAC, IB

(
T PA
PH

RMS
)

(6)

We omitted writing the functional dependencies in this deriva-
tion for better readability. All appearing quantities depend
on DAC and IB, except T PA. The quantity Uth is the ob-
served voltage pulse height corresponding to the energy thresh-
old. The assumption of a linear response is in practice not
necessarily satisfied, as the transition curve of the super-
conductor can saturate (flatten) when larger signals are in-
jected. In our objective, this flattening of pulses would be
equally penalized as worse noise conditions. By the choice

of strength and frequency of injected test pulses we therefore
implicitly introduce a trade-off between optimal noise con-
ditions and a linear detector response. For the physics goals
of light DM searches we are majorly interested in good per-
formance for small signals, but for practical reasons, e.g. ob-
servability of calibration lines, we want to monitor the de-
tector response also for higher energies. Instead of inject-
ing large test pulses less frequently we therefore choose to
suppress their relevance for the optimization objective, by
introducing a weight factor which we choose as the inverse
signal strength w = 1/T PA. For usage as a target function in
the following sections, we rephrase Eq. (6) to a maximiza-
tion objective.

argmin
DAC, IB

(
w

T PA
PH

RMS
) ∣∣∣choose w =

1
T PA

= argmin
DAC, IB

(
1

���T PA
���T PA
PH

RMS
) ∣∣∣phrase as maximization

≡ argmax
DAC, IB

(
−RMS

PH

)
(7)

The adapted target Eq. (7) has several convenient properties:

1. The true strength of the observed pulse is not explic-
itly contained anymore and the derived function would
therefore also work as a target to optimize a detector
with triggered pulses from a particle source, where the
true energy deposition is not known precisely, instead
with test pulses.

2. The function can be evaluated on an event-by-event ba-
sis, by measuring the noise RMS in the pre-trigger region
of a record window containing a pulse, and by taking the
maximum value in the record window as pulse height
PH.

3. The target function is always negative and has an upper
bound with value zero, which cannot be attained. Fur-
thermore, we can restrict the function to values larger
than negative one, as such values can only occur when a
record is corrupted by artifacts in the pre-trigger region,
e.g. by negative voltage spikes.

Evaluating Eq. (7) for individual events leads to fluctuating
values, due to the natural stochasticity of the sensor noise,
but it is suitable to be used as a target function in a time-
dependent optimization problem.

3.2 Reinforcement learning

RL is a general framework for optimizing time-dependent
control problems. The original formulation uses the frame-
work of MDPs, which are defined as a 4-tuple of a state
space S , an action space A , a dynamics function
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Fig. 3: The mechanics of RL: an agent follows a policy function to in-
teracts with an environment. The environment, defined by its dynamics
and reward function, responds to the agent’s actions with a reward and
observable state. Figure adapted from Ref. [4].

p : (A,S) 7→
{

probabilities for S′
}
, A ∈A , S,S′ ∈S ,

which defines state transitions for action-state pairs, and a
reward function

r :
(
S,A,S′

)
7→ R ∈ R

that assigns scalars to state transitions. The dynamics and
reward function jointly define an environment with observ-
able state, that can be interacted with through actions. The
goal of RL is to find a policy function

π : S 7→ π(A | S) = {probabilities for A given state S}

that maximizes the return R, the sum of collected rewards
over time. The policy function is thought of as an agent
that interacts with the environment and learns through ex-
perience. This framework is schematically summarized in
Fig. 3. Dynamics and reward function are a-priori unknown.
The definition of an MDP automatically satisfies the Markov
property, i.e. p and r only depend on the current state and
action and not on prior history. For many practical applica-
tions, the state of the environment is not fully observable,
and RL literature sometimes accounts for that fact by intro-
ducing an observation space separately. We will retain the
notation of a state space, but remind us of the fact that the
dynamics and reward function of our problem, which we
will not further use explicitly, might be more complex than
in a simple MDP.

For framing detector operation as a reinforcement learn-
ing problem, we define the state and action spaces:

S := {PH,RMS, IB,DAC,T PA,CPH},
A := {DAC, IB},

where PH and RMS are the maximum and RMS of the pre-
trigger region of an injected test pulse, IB and DAC are the
set control parameters at the time of recording the pulse and
T PA is the strength of the injected pulse. Additionally, we
choose to inject after every test pulse with defined T PA a
control pulse, a test pulse with maximal signal strength, and
include its pulse height CPE in the state. This is done in
the CRESST setup per default during detector operation to
monitor the position of the OP within the superconducting
transition. The values of PH and RMS are directly propor-
tional to the applied bias current. To reduce the complexity
of the state space, we divide them by IB and do only al-
low for positive bias currents. We normalize all action and
state values such that they are continuous values within the
range (−1,1). We use Eq. (7) as our reward function. The
fact that RL maximizes rewards over time implicitly adds
the live time of the detector as an additional target, in an
equal trade-off with the objectives of a low energy threshold
and linear response.

3.3 The Soft Actor-Critic algorithm

We have several requirements for the algorithm we use to
train our RL agent. The continuous state and action spaces
that cannot be meaningfully discretized require an algorithm
that uses function approximators instead of a tabular internal
logic. The algorithm should be relatively sample efficient,
as the collection of experience in a cryogenic experiment re-
quires O(s) measurement time for each injected test pulse.
The initial threshold of finding the superconducting transi-
tion in the parameter space requires an algorithm that gener-
ally encourages exploration, i.e. the training time spent with
the primary objective of collection experience in the envi-
ronment, in a balance with exploitation, i.e. the time spent
with primarily maximizing returns by interpolating the col-
lected experience. The SAC algorithm showed good perfor-
mance in Ref. [9] in a real-world robotics task with similar
requirements, and we therefore chose it for our application.

AC algorithms use – additionally to the policy function
π , in this context also called an actor – a value function, or
critic

q : (S,A) 7→ Q ∈ R,

which maps action state pairs to estimates of the future re-
turn. For the function approximators of both policy and critic
we use neural networks πθ , qφ and train their weights θ ,
φ with gradient descent. For the policy function, we pa-
rameterize with the outputs of the neural network a Gaus-
sian function with the dimensionality of the action space,
to obtain an explicit conditional probability distribution for
actions in a given state. The collected experience is stored
in an experience replay buffer from where state transitions
(S,A,R,S′) are sampled as training data.
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Fig. 4: The returns per episode during training for all 105 versions of the three detectors Li1P (red), Li1L (blue), and Li2P (green). The thick lines
are the medians of all curves. The median rises close to the apex of the curves after 15 to 20 episodes. During the first 10 episodes, only little return
is collected. The distribution of curves is clearly not normal distributed around the median, which is due to the different phases and hyperparameter
settings in the detector versions.

The critic is trained to minimize the soft Bellman resid-
ual, with a′ ∼ πφ (·|S′),

Jq(θ) ∝ (qθ (S,A)− (R+ γ(q
θ
(S′,a′)−α lnπφ (a′|S′))))2,

where the term with the hyperparameter α , called tempera-
ture, as coefficient is designed to encourage exploration. The
discount factor γ is introduced for numerical stability of long
trajectories, and not to be confused with the similarly named
factor used for the reward derivation in the previous section.
The weights θ of the target critic are discussed later in this
section.

The target function minimized by the policy quantifies
the Pareto-optimum between exploration and exploitation,
with a ∼ πφ (·|S):

Jπ(φ) ∝ α lnπφ (a|S)−qθ (S,a).

There are several technical details of this algorithm that sta-
bilize the training procedure and the exploration-exploitation
trade-off:

– Two critics are trained simultaneously, and the minimum
of their outputs is used for inference.

– The loss function for the critics makes use of predicted
values by their target critics. These are versions of the
neural networks with weights θ that are obtained by ex-
ponentially smoothing the critic weights θ .

– The value of α is automatically adjusted jointly with the
gradient steps done for the neural networks.

SAC is an off-policy algorithm, i.e. the policy function that
is learned during training is not necessarily the policy that
was used to collect the experience. The fact that data collec-
tion and training are two independent processes is useful for
practical applications and is exploited in Sec. 5.

4 Operation in a virtual environment

We test the optimization of control parameters with RL in
a virtual environment. For this, we wrap the simulation of

the three CRESST detectors introduced in Sec. 2 in an Ope-
nAI1 gym environment and define actions, state, and reward
as described in Sec. 3. We send test pulses in random order,
with T PA values containing all integers from 1 to 10 and
the values 0.1 and 0.5. After each test pulse, the agent can
adjust the control settings, which jointly represents one envi-
ronment step. We run episodes of 60 environment steps and
reset the detector to a randomly chosen value on the edge
of the control parameter space at the start of each episode.
One environment step corresponds to the equivalent of 10
seconds of measurement time on the CRESST setup.

We train individual SAC agents for a total of 105 ver-
sions of detectors for Li1P, Li1L and Li2P each. All pa-
rameters used for the simulation are randomized by 20 %
of their original value in each version, where we use the
version number as random seed. The training is done for
40 episodes, and we separate the trained versions into three
phases of 35 versions each:

1. In the first phase, we do not apply any additional adap-
tions to the previously explained procedure.

2. In the second phase, we perform a fast sweep of the envi-
ronment parameters before the training is started and add
the collected experience to the replay buffer. This sweep
is done by gradually lowering the DAC value from its
maximal value to zero, while the IB value oscillates for
each DAC value either from its highest value to zero or
vice versa. In total, 120 environment steps are spent in
the initial sweep.

3. In the third phase, we study an additional effect that is
expected in real-world environments: temperature changes
in cryogenics generally take place slowly, as additional
components of the structures surrounding the detector
might be impacted by the heating on much larger time
scales than the observed pulse shapes. The potential im-
pact of this handicap is simulated by delaying the ef-

1The main development of this open source project was recently trans-
ferred to a fork maintained by the Farama foundation.
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Fig. 5: Returns during training of the different version of the virtual detectors, grouped into violins for each phase (violet, turquoise, yellow) and
setting of the hyperparameters learning rate (lr), batch size (bs), γ and gradient steps (gs). Each violin includes five version of Li1P, Li1L and
Li2P respectively, sampled and trained with individual random seeds. The red bars indicate the median values of the violins and their thickness
the density of the represented return distribution. The dotted horizontal lines indicate the means values of the collected returns of the first (lowest),
second (slightly higher) and third (highest) phase of detector versions. The dotted vertical lines separate the violines with different hyperparameter
settings. The values for the hyperparameters are written in the ticks on the abscissa.

fect of the constant heating controlled by the DAC value
on an exponential time scale of 20 seconds, the equiv-
alent of two environment steps. This delay is also im-
plemented for the other phases, mostly to stabilize the
behavior of the numerical ODE solver, but set to a value
of 1 second which has no observable impact on the time
scale of environment steps.

The resulting return per epoch within the training is shown
in Fig. 4 for all versions and detectors. For the large major-
ity of trained detector versions, the return settles on a high
value after 15 to 20 episodes, which indicates that an opti-
mal OP is found. This exploitation period is preceded by an
exploration period until the agent finds the superconducting
transition and a good OP within it.

Within each phase, we iterate through seven different
settings for a chosen subset of hyperparameters: the learning
rate and batch size for the training of the neural networks,
the discount factor γ for the RL training, and the number
of gradient steps for which the neural networks are trained
on the replay buffer after each environment step. The first
setting corresponds to the default setting chosen in Ref. [9]
but with a lower batch size and a higher number of gradient
steps. Each hyperparameter setting is then repeated for five
detector versions and random seeds to reduce the impact of
stochastic fluctuations in the training and detector param-
eters. The results are visualized separately in Fig. 5 for the
phases and hyperparameter settings. No significant improve-
ment is visible from the first to the second phase over the du-
ration of the whole training. However, when done only for
the first half of the training, the identical plot shows a wider
gap between the returns in the first two phases, indicating
a small, positive effect of the sweep on the ease of finding
the superconducting transition. Optimal OPs are seemingly
faster found in the third phase, where the constant heating
has a delayed effect, and once found, the collected rewards
are also higher. While the second observation is intuitively

clear, namely that the randomized exploratory actions of the
agent do not lead it as far away from the optimal point as
in the other phases, the first observation can be interpreted
in different ways. It is e.g. possible that the agent spends
more time during the training period, which is dominated
by exploration, in certain regions of the control parameter
space and can identify them more easily as opportune or un-
favorable. More technical details for the implementation and
training of the SAC agents are to be found in appendix App.
C.1.

In inference trajectories, the agent moves directly to the
learned optimal OP. This is in most cases close to the steep-
est point of the superconductors transition curve, which is
for our simplified transition curves at the point of half of
its normal conducting resistance. We have observed that the
SAC agent moves the chosen control parameters slightly af-
ter each pulse. This is likely because multiple OPs in the
parameter space are equally optimal, and the agent is not pe-
nalized for switching OPs frequently. While this behavior is
not generally malicious as long as one of the optimal OPs is
fixed for the later period of data taking, it is also not desired.

Fig. 6: Return per episode for Li1P (red), Li1L (blue) and Li2P (green)
adjusted to two TES. The thick line represents the median of five
trained versions of the detectors, sampled with different random seeds.
The shaded region shows the upper and lower standard deviations.
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Fig. 7: Schematic visualization of the implemented setup to optimize CRESST detector control. (right side) The detectors are operated in a
cryostat and read out by a DAQ system. The parameters of recorded test pulses are sent via an MQTT broker to a client as state. (left side) The
client calculates the reward from the state, stores the data in an experience replay buffer, and responds to the DAQ system with new control
parameters. An independent process trains the AC agent on the buffer.

We experimented with adding an additional regularisation
term to the reward function, which penalizes large steps in
the parameter space, by subtracting the Euclidean distance
between current and new OP, multiplied by a hyperparame-
ter ω . This regularization did not change the behavior visi-
bly for small values of ω , and had a negative impact on the
exploratory behavior of the agent for large values of ω . The
regularization was therefore not used in the reported experi-
ments.

4.1 Optimization of multi-component detectors

We investigated how the measurement time required for train-
ing scales with the dimensionality of the control parameter
space, and the complexity of the detector design. We apply
the equivalent procedure described throughout this section
to our adaptions of Li1P, Li1L, and Li2P with two TES, de-
scribed in Sec. 2.1. We use no adaptions to the default train-
ing procedure (first phase) and the default (first) set of hy-
perparameters. The training is repeated for five versions and
random seeds and the resulting returns during training are
visualized in Fig. 4 for the detectors separately. The training
is successful for all versions of Li1L and Li2P, and finding
optimal OPs takes roughly twice as long as for the version
with a single TES. For the majority of the Li1P versions,
only one TES transition is found, and the agent sticks to this
local return maximum instead of exploring the environment
further. The task is likely harder for the Li1P versions be-
cause the superconducting transition curves are closer to the
edges of the parameter space, which are less likely to be ex-
plored by the Gaussian distributed exploration actions of the
agent. In a practical application, this trapping in local op-

tima can be prevented by enforcing more exploration and
accepting longer training times.

Overall, it was shown in this section that SAC agents
can be trained to find optimal OPs for TES-based cryogenic
calorimeters within our virtual environment, for both stan-
dard detector designs and such with more observables and
control parameters. The required equivalent measurement
time varies with the chosen hyperparameters and detector
but can be estimated to be several hours. While an expert
can likely do this task faster per hand, it is to note that this
procedure can be parallelized for all operated detectors, and
executed during time periods when manual interactions are
cumbersome, e.g. at night. In the following section, we vali-
date our method by operating on the real-world environment
of the CRESST experimental setup.

5 Live operation on the CRESST setup

A measurement interval of 12 days in February 2023 was
dedicated to testing the method of optimizing detector oper-
ation live on the CRESST underground setup in the Labo-
ratori Nationali del Gran Sasso (LNGS). Experiments were
performed with the real-world versions of Li1P, Li1L, and
Li2P, the three detectors of which virtual twins were de-
scribed in Sec. 2 and used for RL experiments in virtual
environments in Sec. 4. For the first week of the measure-
ment interval, data taking was stopped, and the technical
setup was implemented. Normal operation and data taking
were continued after this initial week with the other detec-
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Fig. 8: (left) Average rewards per test pulse sent during the live training on the CRESST setup, smoothed with a moving average of 60 test
pulses. Results from six runs with different training settings are shown for Li1P (red), Li1L (blue, blue dashed), and Li2P (green, green dashed,
green dotted). (right) Exemplary trajectories of IB (blue), DAC (orange), and CPH (black) were obtained by a SAC agent in inference on Li1L
after training run 2. The lines connecting environment steps are a guide for the eye. The thick, vertical grey lines mark the beginning of the
periodically injected test pulse strengths, starting from the smallest strength. The agent prefers different OPs for different injection strengths, the
lowest (highest) CPH corresponding to the OP chosen highest (lowest) in the transition is marked with a white (black) cross, and an intermediate
OP is marked with a red cross.

Fig. 9: Contour plot (yellow – high values, violet – low values) of the Gaussian policy (left) and the minimum of the critic functions (right) of a
SAC agent trained on Li1L (run2), in a certain state (red cross, white text left) during inference. The same inference trajectories are visualized in
Fig. 8, and the black, white, and red crosses correspond to each other.

tor modules in the setup, on which no RL experiments were
performed.

On the CRESST setup test pulses are induced in cyclic
order, with the same T PA values that we used in the vir-
tual environment. The communication between our Python-
based RL infrastructure and the control and data acquisition
(DAQ) software of the CRESST setup was realized via mes-
sages sent through an MQTT broker. The DAQ system, act-
ing as the RL environment, induces test and control pulses
through the heater electronics and records the detector re-
sponse. Pulse shape parameters are calculated, and an MQTT
message is broadcast via the broker and received by the ma-
chine on which we run the RL infrastructure. On this ma-
chine, we run two parallel processes:

1. The first process receives messages, calculates rewards,
and writes data to the replay buffer. A policy model is
queried with the state of each received message. The

outputs are compiled into a reply containing new con-
trol settings.

2. The second process continuously trains the agent with a
SAC algorithm on the replay buffer. If the desired num-
ber of gradient steps is reached before new data is added
to the replay buffer, the process is paused. The accessi-
bility of the replay buffer from both processes is realized
through memory-mapped arrays.

This setup is schematically visualized in Fig. 7. We run ex-
periments consecutively as our current implementation of
device communication does not support work on multiple
channels in parallel. A total of 48 experiments were run with
measurement times between one and three hours, where the
majority was used for implementation and debugging of the
setup, and the final 6 runs were used as performance bench-
marks of the method. We made individual adaptions to the
hyperparameters, the configuration of the state space, and
the number and length of training episodes in all runs. These
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and further details of the training process are summarized in
App. C.2.

One performance run was performed with Li1P, two with
Li1L, and three with Li2P. Each run was started with a rough
sweep of the action space, as done in phases 2 and 3 of the
detector versions in Sec. 4. We have observed delays un-
til strong changes in the heating take place, as modeled in
phase 3 of virtual versions. However, the obtained returns in
the live setup are not directly comparable to those obtained
in the virtual setup due to technical differences in calculat-
ing pulse shape parameters. The average rewards obtained
during training, depending on the number of test pulses sent
since the start, is shown in Fig. 8 (left). In all runs, a high
plateau of rewards is reached before 600 test pulses were
sent, corresponding to roughly 1.5 hours of measurement
time. In comparing the runs, we have qualitatively observed
that a richer state space leads to a longer required time until
an optimal OP is found, but also to generally better respon-
sitivity to the environment. After training is completed, we
run inference trajectories with all trained agents. They all
find suitable OPs and feature a similar strategy that is exem-
plary visualized for Li1L run2 in Fig. 8 (right). The agent
adjusts the OP to the T PA value of the injected test pulse ex-
pected next in the cyclic test pulse queue. The height of the
OP in the superconducting transition curve can be inferred
from the height of control pulses. The behavior of cyclically
choosing different OPs is additionally visualized in Fig. 9,
where the values of both the Gaussian policy and the mini-
mum of the critic functions are shown as contours in the two-
dimensional control parameter space for a fixed state. Given
the current state, we can infer the position of the supercon-
ducting transition in the control parameter space from the
values of the critic functions. The negative tilt of the favored
IB and DAC combinations observable in the critic functions
can be interpreted as the effect of the self-heating that is pro-
portional to IB2. The policy has learned to move between
OPs, visible by the apex of the Gaussian distribution that
indicates the next control parameter setting the agent will
choose, depending on the T PA value expected to be injected
next in the periodically repeating sequence.

In summary, RL is a practically applicable method for
finding optimal control parameters for cryogenic TES-based
calorimeters in the real world. Our studies from the virtual
environment discussed in Sec. 4 generalized well or were
exceeded by the results obtained on the CRESST setup. We
generally expected the agents to respond to all information
contained in the state, including the sent T PA values. The
observed responsiveness in inference can therefore be inter-
preted as a confirmation that the agents adapt to the detectors
they are trained on appropriately. For physics data taking,
fixing one OP out of the control parameter region favored
by the agent is preferable. The time period needed for train-
ing is comparable to the time period that is needed by an

Fig. 10: Schematic visualization of a DT model. Returns (orange),
states (green), and actions (red) are individually and linearly embed-
ded into a latent space of fixed shape. Their position in the sequence is
jointly encoded. They are then consecutively input to an autoregressive
Transformer encoder model that predicts the next item in the sequence,
with future items causally masked. Figure adapted from Ref. [11].

expert to do the optimization via manual interventions. It is
in this setup necessary to train an individual SAC agent for
each detector, as the policy weights encode inextricably both
the strategy to approach an OP and the knowledge of the
physics of the detector at hand that determines the position
of optimal OPs in the control parameter space. Possibilities
to disentangle this information and shorten the necessary ex-
ploratory phase for new detectors are discussed in Sec. 6.

6 Towards a universally pre-trained model

The information that has to be learned by the agent by pro-
cessing the environmental responses can be thought of in
three layers:

1. the current state of the detector,
2. the physics parameters of the detector worked at,
3. and a general strategy for optimizing control parameters

of cryogenic TES-based detectors.

The state of the superconductor is suitably encoded in the
observable state of the RL environment, given the overall
knowledge of the expected response from the detectors worked
at. An individual state does not contain enough information
to learn the physics parameters of a detector, but a suitable
sequence of states does. The reward is also required to com-
municate its decisions’ quality to the agent. When we train
SAC agents on individual detectors, the physics parameters
and general strategy are both encoded in the policy parame-
ters. However, a properly engineered state that accumulates
all relevant information from a longer sequence of observa-
tions can also contain the information of the physics parame-
ters of the detector, leaving only the general state-depended
optimization strategy to be hardwired in the trained policy
parameters. This can enable an agent, pre-trained on a di-
verse set of detectors, that can, during an inference trajec-
tory, combine exploratory actions with exploitation and adapt
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Fig. 11: (left, center) Distribution of the chosen control parameters DAC (left) and IB (center) by the DT model (blue) and SAC agents (orange)
during 21 inference trajectories with Li1P, Li1L, and Li2P detector versions each. (right) A statistic of the performance of the DT model normalized
to the SAC agents. The performance is individually stated for the versions of Li1P (left), Li1L (center), and Li2P (right), marked by the ticks on
the abscissa and separated by dotted black lines, and the three phases (violet, turquoise, yellow – see also Fig. 5). See the text for a definition of
the performance metric.

its strategy by that to new detectors without the need for in-
dividual training. Such approaches were studied for other
RL environments in Refs. [21–23] by using dedicated net-
work architectures or randomization techniques to control
robots that adapt to individual real-world uncertainties in
the observed state; and in Ref. [12], where one DT model
was trained to reach an expert level on multiple Atari 2600
games and reduce the required time for finetuning to new
games. We report in this section on our studies of using a
DT model that we train offline on the replay buffers which
were collected during the training in virtual environments,
reported in Sec. 4.

6.1 Decision Transformers

The Transformer neural network architecture was introduced
in Ref. [24]. Since then, it has become the state-of-the-art
model for extracting information from and predicting se-
quences and is widely used in natural language processing.
Large pre-trained language models, such as the Generative
Pre-trained Transformer (GPT) models [25], have recently
started significantly impacting academia, industry, and soci-
ety.

The Transformer architecture has an encoding and a de-
coding component. We focus on the encoder, which is rele-
vant to this work. The encoder consists of three major parts,
where all functions are trainable neural networks:

– Sequence elements are linearly mapped into a fixed-sized
embedding space. Additionally, the position in the se-
quence is linearly mapped to the same shape and added
to the embedded sequence element.

– A self-attention head extracts a composite state contain-
ing information from all relevant sequence elements. A
self-attention head consists of three linear mappings, con-
structing key vectors ki, value vectors vi, and query vec-
tors qi from the i’th embedded sequence element. The

inner product of the key and query provides a weight
factor, quantifying the relevance of the information con-
tained in the keyed sequence element to the querying
one. The sum of the weighted values accumulates into
a composite state zi for each sequence element:

zi := softmax
(

qiKT
√

dk

)
V,

where softmax is the softmax function, K and V are ma-
trices containing the query and keys vectors of all se-
quence elements as their rows, and dk, is the number
of dimensions of the key and query vectors, providing
a practically useful scaling factor.

– This composite state zi is input to a deep neural network.
If multiple self-attention heads are used, their outputs are
concatenated and jointly input into the network.

The Transformer encoder can be thought of as a general-
ization of feature extraction methods, where neighborhood
and contextual relations are not hardwired in the network’s
architecture but learned from the data jointly with the de-
sired logic. Typically larger amounts of data and computing
power are needed than for the training of convolutional, re-
current, or graph neural networks.

The RL problem is approached by DT models differently
than by AC algorithms, namely by modeling it as a sequence
prediction problem. The Transformer is trained offline on
trajectories of successive return-to-go, states, and actions.
There is no direct interaction with the environment during
training, the data has to be collected previously. Return-to-
go is the sum of the rewards that will be collected later
in the trajectory. The trajectory input to the transformer is
causally masked, i.e. future actions, states, and returns are
not observable for predicting prior actions. By this, the DT
model learns to predict actions that are expected to lead to
the given returns in the further trajectory. In inference, the
DT trajectory is started with a high but reasonably achiev-
able return for a trajectory in the given environment, and
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received rewards are subtracted from this initially prompted
return while the trajectory evolves through interaction with
the environment. In Ref. [11], it was shown that this ap-
proach works equally well as AC methods by training on
collected data for individual and fixed environments. A gen-
eralization to multi-game scenarios, where one model learns
to act optimally in multiple environments, was presented in
Ref. [12].

6.2 Generalizing to unseen detectors

During the training of virtual detector versions (see Sec. 4),
a total replay buffer data set of 756,000 state transitions
in the cryogenic detector environment was collected from
315 randomized versions of Li1P, Li1L, and Li2P and dis-
tributed to 12,600 training episodes. We split this data set
into three parts in the ratio 6/2/2 by accumulating trajecto-
ries from 3/1/1 with similar settings but different random
seeds sampled and trained detector versions into a train-
ing/validation/test set. We trained a Transformer architec-
ture with 40 M parameters that was successfully used in
Ref. [12]. We also trained smaller architectures, which reached
only worse performance. It is a known phenomenon, which
was also studied in Ref. [12], that larger Transformer ar-
chitectures train faster and scale better with their number
of parameters than other neural network architectures. The
validation set is used to monitor the training process, and
the test set is used to state performance benchmarks. The
loss values obtained on all three sets are in a similar order of
magnitude, and the validation and test loss are almost identi-
cal. The evolution of validation and training loss during the
training show similar characteristics, which usually signals
that the model does not significantly overfit the data con-
tained in the training set. Details of the models and training
are contained in App. C.3.

We run inference trajectories on the detector versions
contained in the test set and record the state, action, and re-
ward sequences for the contained 21 versions of Li1P, Li1L,
and Li2P each, equally distributed to the three phases of de-
tector versions. In inference, we start the trajectories by pro-
viding a return-to-go value to the DT model of −1.59, which
is the highest return in the training data set. To compare the
performance between the trained SAC models and the DT
model, we calculate a performance metric that represents if
the model can find OPs in the superconducting transition
curve. The performance is quantified by counting the num-
ber of detector versions for which an OP in the supercon-
ducting transition curve is found, i.e. where at least 10 out
of 60 of the chosen actions in the inference trajectory lead
to a TES resistance between 10 % and 90 % of its normal
conducting value.

Overall, the DT model reaches 75.34 % of the perfor-
mance of the SAC models. A more refined performance dis-

tribution is shown in Fig. 11 (right). A significant effect
is not visible between the detector models but between the
third phase of training and the first two, where the DT model
performs better on the first two. This performance differ-
ence is possibly due to the similarity between the first two
phases, effectively making generalization easier. Note that
SAC agents were trained and tested exclusively on one de-
tector version each, while the DT model had not seen the
detector versions in the test set before.

We performed tests to investigate if the Transformer model
mostly memorizes information, in this case, if it learns to
make good guesses individually for the Li1P, Li1L, and Li2P
detector versions, or if it learns the desired logic of decision-
making. For this, we plot the distribution of chosen actions,
the DAC, and IB values, of the DT model and the SAC model
in Fig. 11 (left, center). The SAC actions are more tightly
distributed around certain values, while the DT actions are
more spread out. This is expected as the SAC agents simply
revert in inference to OPs learned during training, while the
DT model has to start inference trajectories generally with
exploratory actions to familiarize with the yet unseen de-
tector version. While the distribution of chosen actions, and
with that, the distribution of optimal OPs, is not uniformly
distributed in the control parameter space, it is relatively
widespread and covers almost the full available parameter
space. This is an indication that in our data set while being
built from only three original detector models, through the
randomization procedure, we reach a meaningful diversity
in the final data set. In inference trajectories, the DT model
appears to use the strategy of initially guessing suitable pa-
rameters and then slowly sweeping the heating down until
either pulses or a transition in the observed noise is visible.
This strategy is also commonly used by human experts but
not explicitly contained in the training set, as it requires the
simultaneous observation of multiple time steps to work ef-
ficiently. We interpret this as an indication that the model
does indeed learn an underlying logic to strategically opti-
mize detector control parameters.

However, the current version of the trained model is lim-
ited: when an optimal OP is not below the initially guessed
DAC value, the model usually does not find an OP, and the
learned logic is not fully consistent as sometimes, despite
the observation of a pulse the model does not steer back to
the corresponding region of the parameter space. The model
varies the bias current more strongly than the constant heat-
ing, which is also done by the SAC agents and can therefore
be a learned feature from training data or be because the
bias current generally has less impact on the position in the
transition curve. Also, the current version of the trained DT
model generally obtains lower rewards than the SAC models
trained on individual detector versions.

We expect that the performance of the DT model can be
significantly improved by a larger data set with more diver-
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sity in the contained detector versions, subsequently larger
models, and longer training. Furthermore, there are more
sophisticated ways initial return values can be prompted,
e.g. used in Ref. [12]. However, already the presented ver-
sion can be useful in practice to find suitable initial values
in a search for optimal control parameters on new, unknown
detectors.

7 Conclusion

In this work, we presented studies for automating the op-
timization of control parameters of TES-based cryogenic
calorimeters with RL. We simulated the response and noise
of three CRESST detector modules operated in run 36 of the
experiment and trained SAC agents to find optimal OPs for
them. We sampled randomized versions of the detectors and
systematically studied hyperparameters of the training and
RL setting on a total of 105 different versions of each de-
tector. Furthermore, we test five randomized versions of the
three detectors each, adapted to designs with two TES. We
tested our method on the real-world versions of the worked-
on detectors operated in the underground CRESST setup in
6 representative test runs across the three detectors. In all
our experiments, the required equivalent measurement time
to complete training was in the order of magnitude of several
hours, fast enough for practical usage. The training was suc-
cessful on all representative runs on the live setup and most
runs in the virtual environment. We concluded our studies
by training a DT model on a subset of the collected replay
buffers dedicated to training to do the task without finetun-
ing on unseen detectors. The model reaches 75.34 % of the
individually trained SAC performance on a test set of detec-
tor versions, benchmarked by the capability of finding OPs
in the superconducting transition curve.

SAC agents and the DT model are two ends of a spec-
trum of model choices. Intermediate steps would be e.g. AC
algorithms with Long Short Term Memory [26] or attention-
based policy and value functions. The policy and value net-
works used for the SAC model have the additional advan-
tage that they can be run on small machines or dedicated
hardware for fast inference. The DT model has the advan-
tage that only one model has to be maintained for all de-
tectors, which can be hosted on a central server and queried
remotely. Fur future works, the presented method could be
combined with more control parameters, e.g. that of an ac-
tive magnetic field compensation. Furthermore, richer in-
formation extracted from the observed ADC signal, e.g. a
combination with networks that discriminate pulses from
artifacts and pile-up as reported in Ref. [27], could addi-
tionally improve the stability and convergence speed of the
agents. Stable measurement setups with fast relaxation time
can also be used with higher rates of test pulses, reducing
the required measurement time.

In summary, the presented method can significantly re-
duce the required time for the initial control parameter op-
timization of large multi-detector setups and increase the
overall detector live time. Jointly with the previously by the
CRESST collaboration published deep learning method for
automated data cleaning for cryogenic detectors [27], we
can improve the possibilities of scaling up the number of
simultaneously operated detectors in future experimental se-
tups.
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App. A: Noise contributions

The here presented derivation of the noise contributions fol-
lows Ref. [14], the model of flicker noise Ref. [16]. We con-
sider only the thermal equation of the TES and the electri-
cal equation of its readout circuit, the first and third line in
Eq. (1), and ignore fluctuations that might arise from the in-
teraction of absorber and TES. These equations can be lin-
earized in a small signal approximation. Then, equations for
the resulting temperature fluctuations in the TES ∆Te and
current fluctuation in the TES branch ∆ I f for small, linear
inhomogeneities, i.e. power fluctuations ∆Pe in the TES and
voltage fluctuations ∆U in the readout circuit, can be de-
rived. These can be summarized in a transition matrix

(
∆Te
∆ I f

)
=

(
s11(w) s12(w)
s21(w) s22(w)

)int/ext (
∆Pe
∆U

)
,

where the matrix elements read differently for noise that has
its origin in the TES, dubbed int, and in other parts of the
readout loop, dubbed ext. The relevant matrix elements are
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sint
21 (w) =− 1

I f 0

[
L

τelLI
+
(
R f 0 −Rs

)
+2πiw

Lτ

LI

(
1
τ
+

1
τel

)
− 4π2w2τL

LI

]−1

,

sint
22 (w) =−sint

21 (w)I f 0
1

LI
(1+2πwiτ),

sext
21 (w) =− 1

I f 0

[
Lτ

τelτILI
+2R f 0

+2πiw
Lτ

LI

(
1
τI

+
1

τel

)
− 4π2w2τL

LI

]−1

,

sext
22 (w) = sext

21 (w)I f 0
LI −1

LI
(1+2πwiτI),

where we used the same definitions as in Ref. [14]:

τ :=
Ce

Geb
, τel :=

L
R f 0 +RS

,

LI :=
I2

f 0

Geb

dR f

dTe

∣∣∣∣
Te0

, τI :=
τ

(1−LI)
.

The thermal or phonon noise can then be calculated by

|∆ I f (w)|2ph =
∣∣sint

21 (w)
∣∣2 |∆Pe|2ph,

|∆Pe|2ph = 4kBT 2
e Geb

2
5

1−
(

Tb
Te0

)5

1−
(

Tb
Te0

)2 ,

the electrical Johnson noise in the TES by

|∆ I f (w)|2J f =
∣∣sint

22 (w)
∣∣2 |∆U |2J f ,

|∆U |2J f = 4kBTeR f 0,

the electrical Johnson noise in the shunt resistor, scaled by a
factor EJ to account for excess electrical noise, by

|∆ I f (w)|2Js =
∣∣sext

22 (w)
∣∣2 |∆U |2Js,

|∆U |2Js = 4kBTsRsEJ ,

and the 1/ f or flicker noise by

|∆ I f (w)|2f licker =
∣∣sint

21 (w)
∣∣2 |∆Pe|2f licker,

|∆Pe(w)|2f licker =

(
∆R f , f licker

R f 0

)2
R2

f 0

wα
I2

f 0,

where
(

∆R f , f licker
R f 0

)
and α are parameters to be extracted from

the data.

Additionally, the SQUID produces an amount isq of white
noise that is directly added to the SQUID output current, de-
coupled from feedbacks in the readout circuit, and peaks in
the spectrum from electromagnetic interference are added
with height p0/p1/p2 at the frequencies 50/150/250 Hz, and
scaled to the observed heights in the data as well.

The noise contributions are assumed to be Gaussian and
independent with respect to each other and can therefore be
summed quadratically.

App. B: Parameters used in the simulation

We report in Tab. 1 the parameters used for the simulation
that was introduced in Sec. 2.

We calculated the heat capacities for the absorbers fol-
lowing the Debye model, with the Debye temperature of
lithium aluminate calculated from the elasticity constants
from Ref. [29], with the value 429 K, and for sapphire taken
from Ref. [30], with the value 1041 K. We evaluate them at
the transition temperature Tc and scaled them to the absorber
volume Va.

We calculated the heat capacities for the tungsten TES
with the Sommerfeld constants taken from Ref. [31]. The
values are evaluated at Tc and scaled to the TES volume Vf .
The stated value is without the increase by factor 2.43 ap-
pearing in the transition curve, which is dynamically calcu-
lated when the differential equations are numerically solved.

The calculated value does only include the part of the
tungsten film that is not covered by aluminum. The aluminum-
covered part functions solely as an athermal phonon collec-
tor.

The normal conducting resistance of the TES R f 0 and its
transition temperature Tc are measured values.

Rs, η , L, isq, IH , IBmin and IBmax are known values of the
setup. η is the conversion factor that translates a current in
the SQUID branch of the readout circuit to the observable
voltage, determined by the SQUID settings.

The thermal couplings, τn, and ε were fitted to the pulse
shape parameters of observed absorber recoils.

δ , δH , RH , ∆R f , f licker
R f 0

, k, β , EJ , p0, p1, p2 and α are ad-
justed to match the measured data. The parameter k controls
the steepness of the TES transition curve, which we sim-
plify as a logistics function. The derivative of the transition
curve at its steepest point has the value 4kR f 0. The param-
eter β is a scale factor between the injected test pulses and
the constant heating current. The values p0, p1, and p2 are
coefficients of numerical templates of the electrical poles in
the frequency spectrum.

All stated values are effective parameters that, within our
model, reproduce the behavior of the real-world detectors.
They are not necessarily a unique combination that repro-
duces the behavior of the real-world detectors and do not



17

Quantity Li1P Li1L Li2P

Vf (mm3) 4.08 ·10−4 2.04 ·10−4 4.08 ·10−4

Va (mm3) 4 ·103 2 ·102 4 ·103

Ce (pJ/mK) 2.11·10−3 9.75·10−4 2.5·10−3

Ca (pJ/mK) 0.113 1.61·10−4 9.7·10−2

Geb (pW/mK) 0.15 0.5 0.138
Gab (pW/mK) 1.5 5·10−3 1.16
Gea (pW/mK) 9.72·10−2 5·10−3 9.45·10−2

τn (s) 3.82·10−4 9.4·10−5 4·10−4

τT P (s) 4.97·10−3 2.98·10−3 4.97·10−3

ε 0.132 0.37 0.104
δ 0.047 0.587 0.129
δH 0.05 0.99 0.2

Rs (Ω ) 4·10−2 4·10−2 4·10−2

RH (Ω ) 9.16 7.06 1.07
R f 0 (Ω ) 0.11 0.115 0.1

L (H) 3.5·10−7 3.5·10−7 3.5·10−7

Tc (mK) 30.7 23 29.4
k (1/mK) 4.4 13.5 5.52

β 2.25·10−2 6.25·10−3 2·10−2

IH (µA) 4.8 0.904 8.27

isq (pA/
√

Hz) 1.2 1.2 1.2
EJ 6 4 7
∆R f , f licker

R f 0
(pJ) 3.5·10−4 9·10−4 3·10−5

α 2.5 1.5 1.5
p0 1.5 ·10−5 3 ·10−5 3 ·10−5

p1 1 ·10−5 2 ·10−5 2 ·10−5

p2 1.5 ·10−5 2 ·10−5 2 ·10−5

IBmin (µA) 0.5 0.5 0.5
IBmax (µA) 17.9 17.9 17.9

η (V/µA) 5.77 5.77 5.77

Table 1: Values used in the simulation of the detectors Li1P,
Li1L and Li2P. See text, Sec. 2 and App. A for definitions.

necessarily correspond exactly to the true underlying physi-
cal quantities, as several effects, e.g. that of the spatial reso-
lution, are absorbed in the parameters. For this reason, we do
not report uncertainties, but only the exact values we used.

When we randomized the values stated in Tab. 1 for the
detector version used for training in Sec. 4 we multiplied
them by a Gaussian random number ∼ N (µ = 1,σ = 0.2).
We tested for every detector version if the transition is reach-
able with the available heating and bias currents and resam-
pled the parameters with a new random seed otherwise.

When we adjusted the values to two TES versions used
in Sec. 4.1, we copied the parameters of the TES to a third
thermal component, with an independent readout circuit, but
divided the collection efficiency ε by two, assuming that the
athermal phonon population would likely distribute among
the two TES.

App. C: Details of models and training

We use for the training and evaluation of models the Vi-
enna CLIP computing cluster. Neural networks were imple-
mented with the PyTorch library [32].

App. C.1: Details of training in virtual environment

We run individual single-CPU jobs for the training of each
detector version, they take between one and two hours to be
completed. For the detector versions with two TES modules,
we require between 6 and 8 hours of training time. Depend-
ing on the number of gradient steps about half of the time is
spent in the simulation which is in our current implementa-
tion only CPU-supported. We would therefore not gain sig-
nificantly through operation on a GPU.

The policy and value functions of our SAC agents are
2-layer neural networks with 256 nodes in each layer, and
ReLU activation functions.

We optimize their weights with the ADAM optimizer
[33], using a weights decay of 1 · 10−5. The learning rates,
batch sizes, γ values of the temporal difference method, and
the number of gradient steps after each environment step
are different in each phase of detector versions and stated
in Fig. 5. For training the 2 TES detector versions, we used
the same hyperparameters as in the first phase. We put the
τ update parameter of the SAC algorithm to the value 0.005
and the initial entropy coefficient α to 0.2. Training is started
as soon as one full batch of state transitions is collected in
the replay buffer. Gradients are clipped at the norm 0.5.

App. C.2: Details of live training

For live training on the CRESST setup, we connected a com-
puting node of the Vienna CLIP cluster with an SSH tunnel
to the MQTT broker that was operated in the LNGS net-
work.

We used for all performance runs the same neural net-
work architectures for policy and value functions as for train-
ing in the virtual environment. The neural networks were
trained with the ADAM optimizer, with a batch size of 16
and 20 gradient steps after each test pulse, a learning rate of
3 · 10−4 and weight decay of 1 · 10−5. Usually performing
the 20 gradient steps took much less time than the interval
between test pulses, the total time required for training was
therefore determined by the measurement time on the exper-
iment. Gradients were clipped at the norm 0.5.

We set the initial entropy of the SAC algorithm to 0.2,
and the τ update parameter to 5 ·10−3. Several hyperparam-
eters and settings of the RL problem were varied throughout
the six performance runs, and an overview of them is con-
tained in Tab. 2.
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Detector Li1P Li1L Li2P Li2P Li2P Li1L
run 1 1 1 2 3 2

γ 0.9 0.99 0.99 0.99 0.99 0.99
Reward - Eq. (6) - Eq. (6) - Eq. (6) - Eq. (6) Eq. (7) Eq. (7)
TP int. (s) 20 20 10 10 10 10
DACmax 10 10 5 5 5 10
IBmin 0.5 0.1 0.5 0.5 0.5 0.1
IBmax 5 3 5 5 5 3
ADC range ±10 ±0.3 ±1 ±1 ±1 ±0.3
TPA in state yes no no no no yes
CPH in state no no no no yes yes
ADCs/IB no no yes no yes yes

Table 2: Hyperparameter and settings of the RL problem used for the six performance runs on the CRESST underground
setup. See the text for explanations.

The reward function was varied between using the weight-
ing with inverse T PA values or not (see Sec. 3). The time
interval between test pulses was for two runs set to a higher
value than the default of 10 seconds, to test if thermal relax-
ations on larger time scales have an impact on the training.
The normalization intervals for the DAC and IB values were
individually adjusted for the detectors, as well as the value
range of the analog-digital converter (ADC). The state space
of the RL problem was adjusted to contain the T PA and CPH
values for a subset of the runs. Furthermore, the division of
the values that scale with the ADC and IB, PH, and RMS,
by the IB value is done for a subset of the runs.

App. C.3: Details of Transformer training

We use for our experiments the Huggingface DT implemen-
tation [34]. We test three architectures of different sizes: the
architecture from the original Ref. [11] with 1 M parameters,
which was shown to perform well on individual RL environ-
ments; and the architectures with 10 M and 40 M parameters
from Ref. [12] that were shown to perform well in multi-task
settings. Their architectures and the hyperparameters used
during training are contained in Tab. 3. Parameters not men-
tioned here are the Huggingface defaults. We use a learning
rate scheduler that increases the learning rate to its nominal
value linearly in the first 10 % of targeted gradient steps and
decreases it afterward linearly to zero until the target num-
ber of training epochs is reached. The context length was for
all architectures set to 20 environment steps.

During training, we evaluate the model performance af-
ter 500 optimizer steps on the validation set. The resulting
validation losses are contained in Fig. 12. Discontinuities
in the curves are points where we restarted training from
recorded checkpoints but with different states of the learn-
ing rate scheduler. For reference we also plot a curve of the
smallest architecture, trained and evaluated only on only one
detector version, where it reaches identical performance as
the SAC agent, to obtain a benchmark for an ideal behavior.

The training was done on a computing node with a single
Tesla V100 GPU.
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