
Applications of Concentration
Inequalities in Distributional

Reinforcement Learning

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Data Science

by

Florian Mayer, BSc
Registration Number 01525689

to the Faculty of Informatics

at the TU Wien

Advisor: Associate Prof. Dr.techn. Dipl.-Ing. Clemens Heitzinger

Vienna, December 2, 2024
Florian Mayer Clemens Heitzinger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Erklärung zur Verfassung der
Arbeit

Florian Mayer, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 2. Dezember 2024
Florian Mayer

iii





Abstract

Distributional reinforcement learning extends traditional reinforcement learning by mod-
eling the entire distribution of returns, providing several advantages, such as insight
into potential outcomes and associated risks. However, this approach results in higher
computational complexity.

This thesis investigates the application of different concentration inequalities, specifically
the Hoeffding, Bernstein, and Bennett inequalities to find tighter bounds on the Cramér
distance between the estimated reward distributions and the true reward distribution.
Tighter bounds enhance the analysis of algorithms, such as the speedy Q-learning
algorithm within the distributional reinforcement learning framework.

To validate the theoretical findings, a complexity analysis is conducted to determine
which inequality provides the most robust and reliable bounds under varying accuracy
requirements and environmental complexities.

In addition to that, simulation studies are performed using the Taxi and FrozenLake
environments from the Gymnasium library in Python. These simulations compare the
performance of each inequality and observe their impact on the convergence behavior of
the learning algorithms.

The tightest bound on the Cramér distance is achieved using Bennett’s inequality, followed
by the bound obtained through the Bernstein inequality. However, when the number of
training episodes is small, the bound derived from the Hoeffding inequality exceeds the
Bernstein bound in terms of tightness.
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CHAPTER 1
Introduction

1.1 Motivation and Problem Statement

In reinforcement learning, an agent learns an optimal policy by observing the outcome of
actions in terms of the expected returns.

Distributional reinforcement learning provides more information on the environment’s
dynamics and the risks associated with different actions by modeling the entire distribution
of returns. This improves decision-making under uncertainty. However, the computational
cost of distributional reinforcement learning is significantly higher than that of traditional
reinforcement learning.

As algorithms become more complex, understanding their computational needs and how
efficiently they operate becomes very important, especially if computing power is limited,
or decisions need to be made quickly and reliably. In addition to that, a complexity
analysis of an algorithm before employment can help to evaluate the number of training
episodes required to achieve a desired accuracy.

1.2 Aim of the Thesis

The main goal of this thesis is to investigate the use of different concentration inequalities
to bound the Cramér distance between the actual and estimated reward distribution.
This is essential for evaluating the effectiveness of an algorithm.

The thesis will explore several specific concentration inequalities, such as the Hoeffding,
Bernstein and Bennett’s inequalities. In the complexity analysis we will evaluate which
inequalities provide the most reliable and stable bounds under varying degrees of precision
and environmental complexities.
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1. Introduction

Moreover, an experimental evaluation will be conducted to verify the theoretical results
and determine the most appropriate concentration inequality for bounding the Cramér
distance.

The thesis aims to deepen the understanding of evaluating speedy Q-learning algorithms
in distributional reinforcement learning, which is especially important in scenarios where
decisions must be made with a high degree of reliability and precision, such as in
autonomous driving, financial forecasting, or complex control systems.

1.3 Related Work
The concept of distributional reinforcement learning was initially introduced by Bellemare
et al. (2017) in “A Distributional Perspective on Reinforcement Learning” [BDM17].

Q-learning, was developed by Christopher J.C.H. Watkins in 1989 in his PhD thesis
“Learning from Delayed Rewards” [Wat89], which he further detailed in [WD92]. More-
over, Ghavamzadeh et al. proposed speedy Q-learning in 2011 [AMGK11] as an enhance-
ment to the original Q-learning algorithm, intended to exalerate convergence.

The concentration inequalities referenced in this thesis are:

Hoeffding’s inequality: Introduced by Wassily Hoeffding in his work
“Probability Inequalities for Sums of Bounded Random Variables” in 1963 [Hoe94].

Bernstein’s inequality: Introduced by Sergei N. Bernstein in 1946 [Ber46].

Bennett’s inequality: Introduced by George Bennett in his work “Probability
Inequalities for the Sum of Independent Random Variables” in 1962 [Ben62].

Rowland et al. (2018)[RBD+18a] presented the categorical method as a practical ap-
plication of the distributional reinforcement learning concept and demonstrated its
convergence.

The paper “Speedy Categorical Distributional Reinforcement Learning and Complexity
Analysis” by Markus Böck and Clemens Heitzinger [BH22] provided an complexity
analysis of speedy categorical distributional reinforcement learning utilizing the Hoeffding
inequality.
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1.4. Structure of the Thesis

1.4 Structure of the Thesis
Firstly we discuss the important concepts and terms regarding distributional reinforcement
learning and Q-learning, especially speedy Q-learning in Chapter 2.

Following that, in Chapter 3, we will introduce bounds on the Cramér distance for the
Hoeffding, Bernstein, and Bennett concentration inequalities. Afterwards, in Chapter 4,
we numerically analyze those bounds, which includes evaluating the number of training
episodes needed to achieve the desired accuracy under varying accuracy requirements
and different levels of environmental complexity.

In Chapter 5, we validate our findings by performing an experimental evaluation using
the Gymnasium environments in Python, specifically utilizing the Taxi and FrozenLake
environments to investigate the convergence properties of the different bounds on the
Cramér distance.

We conclude the thesis in Chapter 6 with a summary and discussion of our findings.
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CHAPTER 2
Preliminaries

In this section, we present the idea of distributional reinforcement learning, particularly
categorical reinforcement learning and its integration with Q-learning.

We start by explaining the standard reinforcement learning framework as described in
Sutton and Barto (2018) [SB18].

2.1 Fundamentals of Reinforcement Learning
The objective of reinforcement learning is to learn a policy that maximizes the cumulative
reward an agent receives over time through interacting with an environment. The agent
chooses actions based on the current policy, receives rewards or penalties based on those
actions, and updates the policy accordingly to improve future rewards.

Definition 2.1.1. In RL, we define policy π as a probability distribution over actions,
which denotes the probability of choosing action a when in state x. π : X ×A → [0, 1],
where ∑a∈A π(a|x) = 1. We denote the optimal policy that maximizes the cumulative
reward as π∗.

This framework can be formally expressed using a Markov Decision Process.

2.1.1 Markov Decision Process (MDP)

We only consider a finite state space X and a finite action space A.

At each discrete time step t = 0, 1, 2, 3, ..., the agent observes the current state of the
environment, Xt, from the set of possible states X . Based on this information and the
policy, the agent selects an action, At, from the set of possible actions A. After that, the
agent receives a reward Rt+1 and transitions to a new state St+1. This sequence of states,
actions, and rewards is a trajectory of the form (X0, A0, R1, X1, A1, R2, X2, A2, ...).

5



2. Preliminaries

Definition 2.1.2. The finite Markov decision process is characterized by the tuple
(X ,A, r, p), where the set of states and actions are finite |X | < ∞, |A| < ∞. The
probability of possible values for Xt and Rt satisfies the Markov property and depends
only on the state and action immediately preceding Xt−1 and At−1, i.e.,

P
[
Rt = s,X ′ = x′|Xt = x,At = a,Xt−1 = xt−1, ...

]
= r(s|x, a, x′)p(x′|x, a),

where p(·|x, a) is the state transition probability and the kernel r(·|x, a, x′) represents
the immediate reward when transitioning from state x to state x′ with action a.

2.1.2 Bellman equation

The Bellman equation as defined by [Bel66] as

Q(x, a)π = E[Rt+1 + γQπ(x′, a′) |Xt = x,At = a],
x′ ∼ P (·|x, a), a′ ∼ π(·|x′), R ∼ r(·|x, a, x′)

(2.1)

is essential in reinforcement learning as it provides a recursive formula for calculating
value functions. These functions estimate the expected return from a given state or
state-action pair under a specific policy. It simplifies the optimization of long-term
rewards into manageable, iterative updates, making it foundational for algorithms such
as Q-learning.

Definition 2.1.3. The state-action value function Qπ(x, a) defined as

Q(x, a)π := E
[ ∞∑

t=0
γtR(xt, at) |x0 = x, a0 = a

]
(2.2)

is the expected return of taking action a ∈ A in state x ∈ X , then following the policy π.
The optimal state-value function Q∗ is defined as

Q∗(x, a) := Qπ∗(x, a) = sup
π
Qπ(x, a),

where π∗ is an optimal policy.

Definition 2.1.4. The Bellman operator T π and the Bellman optimality operator T are
defined as

T πQ(x, a) = E[R(x, a) + γQ(x′, a′),

T Q(x, a) = E
[
R(x, a) + γmax

a′∈A
Q(x′, a′)

]
,

X ′ ∼ p(·|x, a), A′ ∼ π(·|X ′),

(2.3)

where x′ ∼ p(·|x, a) and a′ ∼ π(·|A′). These operators both fulfill the following properties:

• Qπ is a fixed point of T π and Q∗ is a fixed point of T . That means that Qπ = T πQπ

and Q∗ = T Q∗ hold.
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• Both T π and T are γ-contraction in the supremum norm ∥.∥∞, e.g. ∥T πQ1 −
T πQ2∥∞ ≤ γ∥Q1 −Q2∥∞.

This operator, which is a contraction mapping, ensures convergence to the optimal value
function through its repeated application as shown in [Tsi94].

2.2 Distributional Reinforcement Learning

Distributional reinforcement learning deviates from conventional reinforcement learning
by modeling the full distribution of possible returns.

The return distribution function is defined by [BDM17] as follows.

Definition 2.2.1. The return at (x, a) ∈ X ×A is the sum of discounted rewards along
the trajectory of the agents in interactions with the environment, when following the
policy π. The return distribution function Zπ is the mapping of state-action pairs to
random variables, i.e.,

Zπ(x, a) =
∞∑

t=0
γtR(xt, at),

xt ∼ P (·|xt−1, at−1), at ∼ π(·|xt),
(2.4)

where the parameter x = X0 and a = A0 are the starting point of the discounted sum of
the cumulative reward and Z denotes the set of all return distribution functions.

In distributional reinforcement learning, the value function Qπ (see definition 2.1.3) can
be interpreted as the expected value of the return distribution function Zπ, i.e.,

Qπ(x, a) = EZπ(x, a). (2.5)

The Bellman equation, as specified in the subsection 2.1, can be extended to the distribu-
tional case.

Zπ(x, a) D= R+ γZπ(x′, a′),
x′ ∼ P (·|x, a), a′ ∼ π(·|x′), R ∼ r(·|x, a, x′)

(2.6)

where the equality sign D= indicates that the random variables are equally distributed.

Similarly, the Bellman operators can also be extended to the distributional Bellman
operator T π : Z → Z and the distributional Bellman optimality operator T π : Z → Z.

T πZ(x, a) = R(x, a) + γZ(X ′, A′), X ′ ∼ p(·|x, a), A′ ∼ π(·|X ′)
T Z = R(x, a) + γZ(X ′, A∗), X ′ ∼ p(·|x, a), A∗ = arg max

a∈A
E[Z(X ′, a)]. (2.7)
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2. Preliminaries

The underlying probability distribution of the random variable Zπ(x, a)

η(x,a)
π ((−∞, z]) = P [Zπ(x, a) ≤ z],
Zπ(x, a) ∼ η(x,a)

π ∀(x, a) ∈ X ×A
(2.8)

satisfies the distributional variant of the Bellman equation as shown in [BDM17]. From
this statement, it follows that the equation

η(x,a)
π = (T πηπ)(x,a) (2.9)

is satisfied for ∀(x, a) ∈ X ×A, where T π : P(R)X ×A → P(R)X ×A is the distributional
Bellman operator that can be written in terms of cumulative distribution functions as

FT πη
(x,a)
π

(z) = E
[
Fη(X′,A′)

(
z −R
γ

)]
. (2.10)

2.2.1 Categorical Distributional Reinforcement Learning

A fundamental challenge in distributional reinforcement learning is accurately approxi-
mating the return distributions. Approximating these distributions is complex because it
is not feasible to represent the entire space of probability distributions P(R) by a finite
collection of parameters.

We use the categorical approach presented in [RBD+18a], where we utilize the parametric
family of categorical distributions P ⊂ P(R) with set bounds for the return Vmin, Vmax
over a fixed set of N equally spaced supports z1 < · · · < zN , ∆z = (Vmax−Vmin)/(N −1),
i.e.,

Pz =
{

N∑
i=1

piδzi : pi ≥ 0,
N∑

i=1
pi = 1

}
(2.11)

where δzi is the Dirac measure at zi.

The Bellman operator modifies the return distribution by scaling it with γ and adding
the reward, causing categorical distributions to lose stability in this operation. As a
result, it is necessary to define the categorical projection operator ΠC : P(R) → P to
project the distribution back on the fixed support.

The operator is defined by [BDM17] as follows.

Definition 2.2.2. The categorical projection operator ΠC : P(R)→ P is defined by

ΠC(δy) :=


δz1 , y ≤ z1,
zi+1−yj

zi+1−zi
δzi + yj−zi

zi+1−zi
δzi+1 , zi ≤ yj ≤ zi+1,

δzN , y ≥ zN ,

ΠC

(
N∑

i=1
piδyi

)
=

N∑
i=1

piΠC(δyi).

(2.12)

The operator redistributes the probability of a point across the two adjacent fixed atoms.
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2.3. Q-Learning

The Cramér distance defined in [RBD+18b] for this operator is used to quantify the
difference between two probability distributions. It is based on the squared differences of
their cumulative distribution functions (CDFs).

Definition 2.2.3. The Cramér distance l2 between two distributions v1, v2 ∈ P [R], with
cumulative distribution functions Fv1 , Fv2 , is defined as

l2(v1, v2) :=
(∫

R
(Fv1(x)− Fv2(x))2dx

)1/2
. (2.13)

Moreover the supremum-Cramér metric l̄2 between two distribution functions η, µ ∈
P [R]X ×A is calculated as

l̄2(η, µ) = sup
(x,a)∈X ×A

l2(η(x,a), µ(x,a))

= sup
(x,a)∈X ×A

(∫
R

(Fη(x,a)(x)− Fµ(x,a)(x))2dx

)1/2
.

(2.14)

The operator ΠCT π, which is the composition of the distributional Bellman operator T π

2.1.4 and the projection operator ΠC 2.2.2 is a √γ-contraction in l̄2.
In addition, there is a unique distribution function ηC ∈ PX ×A, such that for any
η0 ∈ P(RX ×A), the convergence (ΠCT π)mη0 → ηC holds for l̄2 as m→∞ converges.
However, because we can only approximate distributions, ηC ̸= ηπ.

Increasing the number of atoms [z1, zN ] that support the return distribution η(x,a)
π for all

(x, a) ∈ X ×A improves the precision of the approximation, i.e.,

l̄2(ηC , ηπ) ≤ 1
1− γ max

1≤i≤N
(zi+1 − zi). (2.15)

2.3 Q-Learning
Q-learning, first introduced by [WD92], is a fundamental reinforcement learning algorithm.
It iteratively updates the Q-values, which estimates the expected rewards for actions
taken in specific states, allowing the agent to make decisions that maximize future rewards.
Notably, Q-learning operates without requiring a model of the environment, enhancing
its applicability across diverse and complex scenarios.
The update rule in Q-learning is defined as follows.

Definition 2.3.1. After observing the current state x in episode k, performing an action
a that leads to observing the subsequent state x′ and receiving the immediate reward r′,
the Q(x, a) value gets adjusted according to the update rule

Qk+1(xk, ak) = Qk(x, a) + αk(x, a)[rk + γmax
a∈A

Qk(x′, a)−Qk(x, a)], (2.16)

where α is the learning rate that balances the weight given to recent rewards versus past
experiences, influencing the convergence speed and stability of the learning process.

9



2. Preliminaries

We denote Q∗(x, a) as the unique optimal value function.

If the reward is bounded |rk| ≤ Rmax for each episode and the learning rate 0 ≤ αk < 1
fulfills the conditions ∞∑

k=1
αk(x, a) =∞,

∞∑
k=1

αk(x, a)2 <∞
(2.17)

for ∀x, a, then

Qk(x, a)→ Q∗(x, a) as n→∞ with probability 1 (2.18)

according to [WD92].

The optimal learning rate for standard Q-learning is defined as αk = 1/(k + 1)ω, where
ω ∈ (0.5, 1], as described in [EDMB03].

The distributional counterpart of the Q-learning update rule 2.3.1 was introduced by
[RBD+18a].

Definition 2.3.2. We define the categorical distributional update rule for the sample
(xk, ak, rk, xk+1) and the action chosen by a policy at+1 as

η
(xk,ak)
k+1 := (1− αk(xk, ak))η(xk,ak)

k + αk(xk, ak))ΠCT π
k η

(xk,ak)
k , (2.19)

where T π
k is the distributional Bellman operator as defined in 2.1.4 at episode k and ΠC

is the categorical projection operator as defined in 2.2.2.

As demonstrated by [LBC19], the same policies are obtained by the distributional version
2.3.2 and the value-based version of the update rule 2.3.1.

Proposition 2.3.3. Let η(x,a)
0 ∈ Pz, Q0(x, a) = E

Z∼η
(x,a)
0

(Z), ηt result from the update
rule as described in 2.3.2, z1 ≤ −Rmax/(1− γ) and zN ≥ Rmax/(1− γ). Then the state
action value functions are updated as

Q(x, a)k :=
{

(1− αk(x, a))Qk−1(x, a) + αk(x, a)[r′ + γmaxa∈AQk(x′, a′)], ∀(x, a) = (xk, ak)
Qk−1(x, a), ∀(x, a) ̸= (xk, ak)

(2.20)
and satisfy

Qk(x, a) = E
Z∼η

(x,a)
t

(Z), ∀(x, a) ∈ X ×A, ∀k ≥ 0. (2.21)

Speedy Q-Learning

In this thesis we will focus on speedy Q-learning, which was introduced by [AMGK11],
since it shows faster convergence compared to standard Q-learning.

10



2.3. Q-Learning

Definition 2.3.4. After observing the state xk during episode k, and taking action ak

that results in observing the new state x′ and obtaining the immediate reward r′, the
Q(x, a) value is updated by the rule

Qk+1(x, a) := Qk(x, a) + αk[rk + γmax
a∈A

Qk(x′, a)−Qk(x, a)]

+(1− αk)(Qk(s, a)−Qk−1(s, a)),
(2.22)

where α is the learning rate and the third term (1 − αk)(Qk+1(s, a) − Qk(s, a)) is the
“speedy”-adjustment, which uses the previous and new Q-values to accelerate convergence
by correcting the update with the difference between Qk+1(s, a) and Qk(s, a).

Speedy Q-learning as just described in 2.3.4 can be translated to categorical distributional
reinforcement learning similar to standard Q-learning and the update rule can be defined
as

η
(x,a)
k+1 := η

(x,a)
k + αk(ΠCT π

k η
(x,a)
k − η(x,a)

k ) + (1− αk)(ΠCT π
k η

(x,a)
k −ΠCT π

k η
(x,a)
k−1 ). (2.23)

The update rule for speedy Q-learning in algorithm format can be expressed as follows:

Algorithm 2.1: Speedy Q-learning in Categorical Distributional RL
Input: initial distribution η0, policy π, discount factor γ, number of iterations T

1 η−1 ← η0
2 a0 ← 1
3 for i← 2 to n do
4 Update learning rate:
5 αk ← 1/kω Sample x′

k ∼ p(·|x, a), a′
k ∼ π(·|x′

n), rk ∼ (·|x, a, x′
k)

6 Bellman update:
7 T π

k η
(x,a)
k ←

∑N
i=1 p

(x′
k,a′

k)
k,i δrk

8 Update η:
9 η

(x,a)
k+1 ← η

(x,a)
k +αk(ΠCT π

k η
(x,a)
k − η(x,a)

k ) + (1−αk)(ΠCT π
k η

(x,a)
k −ΠCT π

k η
(x,a)
k−1 )

10 end

The formula 2.23 can be written as

η
(x,a)
k+1 = k

k + 1η
(x,a)
k + 1

k + 1Dk[ηk, ηk−1](x,a), (2.24)

where Dk is defined as

Dk[ηk, ηk−1](x,a)ΠCT π
k η

(x,a)
k − (k − 1)ΠCT π

k η
(x,a)
k−1 . (2.25)

We choose the learning rate αk = 1/(k+1) because it can been shown that the convergence
of speedy Q-learning is optimized with a linear learning rate. This is different from
standard Q-learning for which a polynomial learning rate is optimal for convergence as
shown in [EDMB03].
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CHAPTER 3
Bounding the Cramér Distance in

Categorical Distributional
Reinforcement Learning

In this chapter we use different concentration inequalities to calculate the bounds for the
Cramér distance in categorical distributional reinforcement learning.

The construction of the bounds follows the outline of [BH22]. In the following, we present
assumptions necessary for deriving bounds on the Cramér distance.

Assumption 3.0.1. Consider a finite state-action space with n := |X × A| elements.
The categorical distribution ηc is established as the unique fixed point of the operator
ΠCT π. Rewards are bounded by a maximum value of Rmax > 0. We introduce the
variable β̂ = 1/(1−√γ) that is defined by γ < 1. We calculate the upper limit of possible
returns, Vmax, using Rmax/(1− γ). For the N discretely defined atoms in this setting,
the bounds are set as z1 = −Vmax and zN = Vmax. Initially, the return distributions η−1
and η0 are identical. Updates to ηk are according to the formula 2.24.

Prior to bounding the Cramér distance, we establish the martingale representation of the
errors. Additionally, we formulate several lemmas that provide the theoretical foundation
necessary to apply martingale inequalities.

3.0.1 Error Martingal

The history of the Q-learning algorithm at time k can be mathematically defined as a
filtration, which consists of σ-fields generated by the trajectories r1, x

′
1, a

′
1, · · · , rk, x

′
k, a

′
k,

where (x, a) ∈ X ×A.

13



3. Bounding the Cramér Distance in Categorical Distributional Reinforcement
Learning

Filtrations are defined by the following properties:

• Filtrations contain the empty set ∅.

• Filtrations are closed under complementation, meaning that if A ∈ F , then AC ∈ F
also holds.

• Filtrations are closed under countable unions, meaning that if A1, A2, · · · are sets
in F then the union ⋃∞

i=1Ai is also in F .

• Filtrations consist of a sequence of σ-fields, indexed by the number of iterations k,
that is non-decreasing. This means that for any ki ≤ kj the σ-field Fki

is a subset
of Fkj

, ensuring that the information grows or remains the same.

Filtrations grow over time as the agent interacts with the environment, but are capable
of handling the structure of all possible events that could potentially be observed.

The expected update is defined as

D[ηk, ηk−1](x,a) := E
[
Dk[ηk, ηk−1](x,a) | Fk−1

]
= kΠCT πη

(x,a)
k −(k−1)ΠCT πη

(x,a)
k−1 . (3.1)

Now we can formulate the error ϵ(x,a)
k and cumulative error of the sample update E(x,a)

k

as
ϵ
(x,a)
k := D[ηk, ηk−1](x,a) −Dk[ηk, ηk−1](x,a),

E
(x,a)
k :=

k∑
i=0

ϵ
(x,a)
i .

(3.2)

Now we can also write the sample update as

η
(x,a)
k+1 := k

k + 1η
(x,a)
k + 1

k + 1
(
D[ηk, ηk−1](x,a) − ϵ(x,a)

k

)
. (3.3)

The error can be turned into a martingale as described in [BH22].

A martingale is defined by the characteristic that the conditional expected value of the
next observation, given all past observations, is equivalent to the most recent observation.
This property implies that the expected future value of the process remains consistent
with the present value, assuming knowledge of all prior values.

Mathematically, a stochastic process (Xn) is a martingale with the properties

• Xn is integratable, its expected value is well-defined and finite E [|Xn|] ≤ ∞.

• Xn is Fn-measurable, which means that Xn takes all information up to time n into
account.
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• The conditional expectation of Xn+1 given the σ-field Fn is equal to Xn, e.i.,

E[Xn+1|Fn] = Xn. (3.4)

Before we formulate the lemmas that show that the error can be defined as a martingal,
we have to define L as the set of finite signed Borel measures

L = {v signed measure | ∃Fv : R→ R, v((a, b]) = Fv(a),
|v(R)| <∞, lim

z→−∞
Fv(z) = 0, | lim

z→∞
Fv(z)| <∞}. (3.5)

We can extend the categorical distributions to a subspace of the signed measures by

Pz ⊆ Lz =
{

N∑
i=1

ciδzi | ci ∈ R ⊆ L
}
. (3.6)

As described in [BH22]
Dk[ηk, ηk−1](x,a) ∈ P(Pz),

η
(x,a)
k ∈ P(Pz)

(3.7)

holds for all k ≥ 0, where P(Pz) is the set of random measures with values in Pz. Moreover
[BH22] introduced the following lemmas.

Lemma 3.0.2. The inclusions ϵ(x,a)
k ∈ P(Lz) and E(x,a)

k ∈ P(Lz) hold for all k ≥ 0. For
each atom zi, it holds that the cumulative distribution functions of the error ϵk evaluated
at zi form a uniformly bounded martingale different sequence, i.e.,

∀k ≥ 0 : E
[
F

ϵ
(x,a)
k

(zi) | Fk−1

]
= 0 ∧ | F

ϵ
(x,a)
k

(zi) | ≤ 1. (3.8)

As Lz is a vector space we introduce the l2-norm for the distributional case as

∥x∥l2 :=
(

N−1∑
i=1

(zi+1 − zi)Fv(zi)2 + Fv(zN )2
) 1

2

(3.9)

for all v ∈ Lz.

We can also define l̄2 as a norm by taking the supremum over all state-action pairs

∥v∥l̄∞ := sup
(x,a)∈X ×A

∥v∥l∞ = sup
(x,a)∈X ×A

max
1≤i≤N

|Fv(zi)|. (3.10)

Due to the definition of the l2-norm, the l∞-norm and the assumption 3.0.1 the following
inequalities hold for all µ, v ∈ Pz:

l2(µ, v) = ∥µ− v∥l2 ≤
√

2Vmax∥µ− v∥l∞ ≤
√

2Vmax

∥Ek∥l̄2 ≤
√

2Vmax∥Ek∥l̄∞
(3.11)
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3. Bounding the Cramér Distance in Categorical Distributional Reinforcement
Learning

Lemma 3.0.3. For all k ≥ 1, the equality

ηk = 1
k

(ΠCT πη0 + (k − 1)ΠCT πηk−1 − Ek−1) (3.12)

holds.

If lemma 3.0.3 holds, the statement

ηk ≈ ΠCT πηk−1 (3.13)

also holds, because the influence of the initial state and the error term decreases as k
increases. As k grows larger, the term ΠCT πηk−1 becomes the dominant component in
the expression. With the help of the equation 3.11, the lemmas 3.0.3 and 3.0.2 and the
fact that ΠCT π is a √γ-contraction in l̄2 [BH22] showed the following lemma.

Lemma 3.0.4. For all k ≥ 1, the inequality

∥ηC − ηk∥l̄2 ≤
√
γβ̄

k

√
2Vmax + 1

k

k∑
j=1

√
γk−j∥Ej−1∥l̄2 (3.14)

holds.

Now we can bound the Cramér distance in categorical distributional reinforcement
learning.

3.0.2 Concentration Inequalities

Concentration inequalities are used for bounding the probability that a random variable
deviates from some value.

Definition 3.0.5. Let X be a random variable with expected value E[X]. A concentration
inequality gives a bound of the form

P [|X − E[X]| ≥ ϵ] ≤ f(ϵ), (3.15)

where ϵ > 0 is a deviation threshold and f(ϵ) is a function that decays as ϵ decreases.

We now utilize concentration inequalities alongside the equation 3.11 and the lemmas
3.0.3 and 3.0.4, to derive bounds on the Cramér distance l̄2(ηC , ηT ). This distance is a
measure of the difference between two probability distributions, initially described in
[Cra28].

This method provides a foundation for the complexity analysis later and helps us to
understand the convergence behaviors of distributional RL algorithms.
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3.1. Maximal Hoeffding–Azuma Inequality

3.1 Maximal Hoeffding–Azuma Inequality
Hoeffding’s inequality was introduced by Wassily Hoeffding (1963) [Hoe94] and provides
an exponential bound on the tail probabilities of the sum of independent random variables
within a specified range.

Definition 3.1.1. Let X1, X2, ..., XT be a sequence of independent random variables
such that ak ≤ Xk ≤ bk holds for all 1 ≤ k ≤ T . The sum is defined as ST = ∑T

k=1Xk.
Then the inequality

P [ST − E[ST ] ≥ ϵ] ≤ exp
(
− 2ϵ2∑T

k=1(bk − ak)2

)
(3.16)

holds for any ϵ > 0.

The maximal Hoeffding–Azuma inequality extends the classic Hoeffding inequality to
handle the maximum of partial sums of a martingale difference sequence and is defined
as follows.

Definition 3.1.2. Let V = V1, V2, ..., VT be a bounded martingale difference sequence
|Vk| ≤ L with respect to the filtration Fk(E[Vk|Fk−1] = 0) for 1 ≤ k ≤ T . Let the
associated martingale be defined as the sum

Sk =
k∑

j=1
Vj . (3.17)

Then the inequality

P
[

max
k=1,...,T

Sk > ϵ

]
≤ 2 exp

(
− ϵ2

2TL

)
(3.18)

holds vor all constants ϵ, ν > 0, where T is the number of time steps.

With the help of this inequality another lemma can be shown.

Lemma 3.1.3. For all ϵ > 0 and all time steps T , under the assumption 3.0.1 the
inequality

P
[

max
i≤k≤T

∥Ek−1∥l̄∞ > ϵ

]
≤ 2nN exp

(
−ϵ2

2T

)
(3.19)

holds.

The paper [BH22] showed that under assumption 3.0.1 and with 3.1.3 the following
inequality

l̄H2 (ηC , ηT ) ≤
√

2Vmaxβ̄

√γ
T

+

√
2 ln 2nN

δ

T

 (3.20)

holds with probability of at least 1− δ.
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3. Bounding the Cramér Distance in Categorical Distributional Reinforcement
Learning

3.2 Bernstein Inequality
The Bernstein inequality introduced by Sergei N. Bernstein (1946) [Ber46] can offer
tighter bounds by incorporating information about both the variance and the range of
the random variables.

Definition 3.2.1. Let X1, X2, ..., XT be a sequence of independent random variables,
each bounded such that |Xk| ≤M holds almost surely for all 1 ≤ k ≤ T . The sum and
total variance are defined as ST = ∑T

k=1Xk and σ2 = ∑T
k=1 Var(Xk) Then the inequality

P [ST − E[ST ] ≥ ϵ] ≤ exp
(
− ϵ/2
σ2 +Mϵ/3

)
(3.21)

holds for any ϵ > 0.

We utilize a specific form of the Bernstein inequality, which is modified for martingale
difference sequences.

The Bernstein inequality for martingales which is also known as the Freedman inequality
is defined by [Fre75] and [CBL06] as follows

Definition 3.2.2. Let V = V1, V2, ..., VT be a bounded martingale difference sequence
|Vk| ≤ L with respect to the filtration Fk(E[Vk|Fk−1] = 0) for 1 ≤ k ≤ T . The associated
martingale is defined as the sum

Sk =
k∑

j=1
Xj , (3.22)

and the sum of the conditional variances by

Σ2
T =

T∑
t=1

E[X2
t |Ft−1]. (3.23)

Then the inequality

P
[

max
k=1,...,T

Sk > ϵ ∧ Σ2
T ≤ ν

]
≤ exp

(
− ϵ2

2(ν + Lϵ/3)

)
(3.24)

holds for all constants ϵ, ν > 0. Therefore the inequality

P
[

max
i=1,...,T

Si >
√

2νϵ+ (
√

2/3)Lϵ ∧ Σ2
T ≤ ν

]
≤ e−ϵ (3.25)

also holds.

We now want to define an inequality to bound the Cramér distance l̄2(ηC , ηT ) similar to
3.20.
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3.2. Bernstein Inequality

Lemma 3.2.3. Under the assumption 3.0.1 the inequality

P
[

max
i≤k≤T

∥Ek−1∥l̄∞ > ϵ

]
≤ nN exp

(
− ϵ2

2(T + ϵ/3)

)
(3.26)

holds for all ϵ > 0 and time steps T .

Proof. We define

Ei
k = F

E
(x,a)
k

(zi) =
k∑

j=0
F

ϵ
(x,a)
j

(zi) (3.27)

for (x, a) ∈ X ×A. By Lemma 3.0.2 the martingal difference sequence Vj = F
ϵ

(x,a)
j

(zi), j =
0, . . . , T with regards to the filtration Fj is uniformly bounded by 1. We can therefore
use the Bernstein inequality 3.2.2 on Ej

k and Σ2
T is at most T . We therefore get the

inequality

P
[

max
i≤k≤T

|Ei
k−1| > ϵ

]
≤ exp

(
− ϵ2

2(T + ϵ/3)

)
. (3.28)

To get an inequality for Ek−1, we first must take the union over all atoms

P
[

max
i≤k≤T

∥Ek−1∥l̄∞ > ϵ

]

= P
[

max
i≤k≤T

max
1≤i≤N

|Ei
k−1| > ϵ

]
= P

[
N⋃

i=1
max

i≤k≤T
|Ei

k−1| > ϵ

]

≤ N exp
(
− ϵ2

2(T + ϵ/3)

)
.

(3.29)

When extending this to the n state-action pairs (x, a) ∈ X ×A we get

P
[

max
i≤k≤T

∥Ek−1∥l̄∞ > ϵ

]
≤ nNexp

(
− ϵ2

2(T + ϵ/3)

)
. (3.30)

With the help of those inequalities we can show the Cramér distance using the Bernstein
inequality.

Lemma 3.2.4. Under the assumption 3.0.1 the inequality

l̄B2 (ηC , ηT ) ≤
√

2Vmaxβ̄

√γT +
2
3 ln

(
nN
δ

)
+
√

(−2
3 ln

(
nN
δ

)
)2 + 8T ln

(
nN
δ

)
2T

 (3.31)

holds for all ϵ > 0 and all time steps T.
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Proof. Firstly we set the right hand side of the inequality in 3.2.3

P
[

max
i≤k≤T

∥Ek−1∥l̄∞ > ϵ

]
≤ nN exp

(
− ϵ2

2(T + ϵ/3)

)
(3.32)

to δ and get the ϵ. Starting with the inequality

nN exp
(
− ϵ2

(2(T + ϵ/3)

)
= δ (3.33)

we isolate the exponent leading to

− ϵ2

2(T + Lϵ/3) = ln
(
δ

nN

)
. (3.34)

Now simplifying this equation results in the quadratic equation

ϵ2 + 2ϵ
3 ln

(
δ

nN

)
+ 2T ln

(
δ

nN

)
. (3.35)

Solving this quadratic equation yields

ϵ =
−2

3 ln
(

δ
nN

)
±
√

(2
3 ln

(
δ

nN

)
)2 − 8T ln

(
δ

nN

)
2 . (3.36)

We will use the positive quadratic solution

ϵ =
−2

3 ln
(

δ
nN

)
+
√

(2
3 ln

(
δ

nN

)
)2 − 8T ln

(
δ

nN

)
2 . (3.37)

Because it the only solution that yields a guaranteed positive ϵ. We now rewrite the
inequality as

P

 max
i≤k≤T

∥Ek−1∥l̄∞ ≤
−2

3 ln
(

δ
nN

)
+
√

(2
3 ln

(
δ

nN

)
)2 − 8T ln

(
δ

nN

)
2

 ≤ 1− δ. (3.38)

The inequality as defined in 3.0.4 can now be modified to find

∥ηC − ηT ∥l̄2 ≤
√
γβ̄

T

√
2Vmax + 1

T

k∑
j=1

√
γT −j∥Ej−1∥l̄2

≤
√
γβ̄

T

√
2Vmax + β̄

T

√
2Vmax max

1≤j≤T
∥Ej − 1∥l̄∞

≤
√
γβ̄

T

√
2Vmax + β̄

T

√
2Vmax

−2
3 ln

(
δ

nN

)
+
√

(2
3 ln

(
δ

nN

)
)2 − 8T ln

(
δ

nN

)
2

=
√

2Vmaxβ̄

√γT +
2
3 ln

(
nN
δ

)
+
√

(−2
3 ln

(
nN
δ

)
)2 + 8T ln

(
nN
δ

)
2T

 .

(3.39)
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3.3. Bennett’s Inequality

3.3 Bennett’s Inequality
Bennett’s inequality as introduced by George Bennett (1962) [Ben62] provides a refined
bound under certain conditions, especially when the variance is relatively small compared
to the maximum possible deviation. This approach often leads to tighter bounds in
practice.

Definition 3.3.1. Let X1, X2, ..., XT be a sequence of independent real-valued random
variables such that they have zero mean and Xk ≤ 1 holds with probability 1. The sum
and total variance are defined as ST = ∑T

k=1Xk and σ2 = ∑T
k=1 Var(Xk). Then the

inequality
P [ST > ϵ] ≤ exp

(
−σ2h

(
ϵ

nσ2

))
, (3.40)

holds for any ϵ > 0, where h(u) = (1 + u) log(1 + u)− u for u ≥ 0.

The martingale difference sequence V = V1, V2, ..., VT fulfills conditions for Bennett‘s
inequality.

We can now extend Bennett‘s inequality to martingales which originally has been shown
by David Pollard [Pol].

Definition 3.3.2. Let V = V1, V2, ..., VT be a bounded martingale difference sequence
|Vk| ≤ L for L > 0 with respect to the filtration Fk(E[Vk|Fk−1] = 0) for 1 ≤ k ≤ T . The
associated martingale is defined as the sum

Sk =
k∑

j=1
Vk, (3.41)

and the sum of the conditional variances by

Σ2
T =

T∑
t=1

E[V 2
t |Ft−1]. (3.42)

Then the inequality

P(ST > ϵ) ≤ P(Σ2
T > W ) + exp

(
− ϵ2

2W ψ

(
Lϵ

W

))
(3.43)

holds for all constants ϵ, ν > 0, where ψ(t) denotes the function

ψ(t) := (1 + t) log(1 + t)− t
t2/2 . (3.44)

With the assumption defined in 3.0.1, we can now formulate a lemma similiar to 3.20
and 3.2.4.
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Lemma 3.3.3. Let V = V1, V2, ..., VT be a bounded martingale difference sequence
|Vi| ≤ 1 under the assumption 3.0.1 with respect to the filtration Fk(E[Vk|Fk−1] = 0).
The associated martingale is defined as the sum

Sk =
k∑

j=1
Vj , (3.45)

and the sum of the conditional variances by

Σ2
T =

T∑
t=1

E[V 2
t |Ft−1]. (3.46)

Then the following inequality holds for all constants ϵ,

P
[

max
k=1,...,T

Sk > ϵ

]
≤ exp

(
− ϵ2

2T ψ
(
ϵ

T

))
(3.47)

where T is the number of iterations and ψ(t) is defined as

ψ(t) := (1 + t) log(1 + t)− t
t2/2 . (3.48)

Proof. It is trivial that we can use the inequality from 3.3.2 with P [maxi=1,...,T Si > ϵ].

We choose W from the inequality in 3.3.2 to be T , therefore the term P(Σ2
T > W )

disappears as Σ2
T ≤ T holds due to the martingale difference being bounded by 1.

Now we want to define an inequality to bound the Cramér distance l̄2(ηC , ηT ) similar to
3.20 and 3.2.4.

Therefore, we define the following lemma.

Lemma 3.3.4. Under the assumption 3.0.1 the inequality

P
[

max
i≤k≤T

∥Ek−1∥l̄∞ > ϵ

]
≤ nN exp

(
− ϵ2

2T ψ
(
ϵ

T

))
(3.49)

holds for all ϵ > 0 and time steps T , where ψ(t) denotes the function

ψ(t) := (1 + t) log(1 + t)− t
t2/2 . (3.50)

Proof. We define

Ei
k = F

E
(x,a)
k

(zi) =
k∑

j=0
F

ϵ
(x,a)
j

(zi) (3.51)

for (x, a) ∈ X ×A.
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3.3. Bennett’s Inequality

By lemma 3.0.2 the martingal difference sequence Vj = F
ϵ

(x,a)
j

(zi), j = 0, ..., T with
regards to the filtration Fj is uniformly bounded by 1. We can therefore use Bennett’s
inequality for martingales 3.3.3 on Ej

k and Σ2
T is at most T . We define the inequality

P
[

max
i≤k≤T

|Ei
k−1| > ϵ

]
≤ exp

(
− ϵ2

2T ψ
(
ϵ

T

))
. (3.52)

To get an inequality for Ek−1, we first must take the union over all atoms

P
[

max
i≤k≤T

∥Ek−1∥l̄∞ > ϵ

]

= P
[

max
i≤k≤T

max
1≤i≤N

|Ei
k−1| > ϵ

]
= P

[
N⋃

i=1
max

i≤k≤T
|Ei

k−1| > ϵ

]

≤ N exp
(
− ϵ2

2T ψ
(
ϵ

T

))
.

(3.53)

When extending this to the n state-action pairs (x, a) ∈ X ×A, we get

P
[

max
i≤k≤T

∥Ek−1∥l̄∞ > ϵ

]
≤ nN exp

(
− ϵ2

2T ψ
(
ϵ

T

))
. (3.54)

Now we can bound the Cramér distance using the Bennett inequality.

Lemma 3.3.5. For all ϵ > 0 and all time steps T , under the assumption 3.0.1 the
inequality

l̄Be
2 (ηC , ηT ) ≤

√
2Vmaxβ̄

√γ
T

+

√
ln(nN

δ )
T

 (3.55)

holds.

Proof. Firstly we set the right hand side of the inequality in 3.2.3 to find

P
[

max
i≤k≤T

∥Ek−1∥l̄∞ > ϵ

]
≤ nN exp

(
− ϵ2

2T ψ
(
ϵ

T

))

≤ nN exp
(
− ϵ2

2T
(1 + ϵ

T ) log(1 + ϵ
T )− ϵ

T

ϵ2/2T 2

)

≤ nN exp
(
−T

(
1 + ϵ

T

)
log

(
1 + ϵ

T

)
− ϵ

T

)
.

(3.56)

We simplify the term log(1 + ϵ/T ) to ϵ/T because solving the equation later for ϵ is not
feasible as it is a transcendental equation.
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It is possible to simplify the term, as log(1 + ϵ/T ) < x holds for x > 0. In addition it is
a good approximation when ϵ/T is small, as supported by the Taylor series expansion of
the logarithm function around zero. We find

P
[

max
i≤k≤T

∥Ek−1∥l̄∞ > ϵ

[
≤ nN exp

(
−T

(
1 + ϵ

T

)
ϵ

T
− ϵ

T

)
≤ nN exp

(
−ϵ

2

T

)
.

(3.57)

To get δ and ϵ we do some transformations. Starting with the inequality

nN exp
(
−ϵ

2

T

)
= δ (3.58)

we isolate ϵ to get

ϵ =
√
−T ln

(
δ

nN

)
. (3.59)

The inequality 0 < δ/nN < 1 always holds and therefore the expression inside the square
root is positive and provides a real solution. We now substitute ϵ and get the equation

P
[

max
i≤k≤T

∥Ek−1∥l̄∞ ≤
√
−T ln

(
δ

nN

)]
≤ 1− δ. (3.60)

As a final step we modify the inequality as defined in 3.0.4

∥ηC − ηT ∥l̄2 ≤
√
γβ̄

T

√
2Vmax + 1

T

k∑
j=1

√
γT −j∥Ej−1∥l̄2

≤
√
γβ̄

T

√
2Vmax + β̄

T

√
2Vmax max

1≤j≤T
∥Ej − 1∥l̄∞

≤
√
γβ̄

T

√
2Vmax + β̄

T

√
2Vmax

√
−T ln

(
δ

nN

)

= β̄

T

√
2Vmax

(
√
γ +

√
−T ln

(
δ

nN

))

=
√

2Vmaxβ̄

√γ
T

+

√
ln(nN

δ )
T

 .

(3.61)
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CHAPTER 4
Convergence and Complexity

Analysis

In this section, we analyze the convergence properties and computational complexity of
the algorithm, based on the bounds of the Cramér distance established in the preceding
section.

Our primary objective is to compare the minimum number of time steps T required for
the algorithm to achieve a specified precision ϵ. This analysis is crucial to understanding
the practical applicability of the algorithm in real-world scenarios, where both accuracy
and computational resources are of great importance.

Lemma 4.0.1. Under the assumption 3.0.1 the inequality

√
2Vmaxβ̄

√γ
T

+

√
ln(nN

δ )
T



≤
√

2Vmaxβ̄

√γT +
2
3 ln

(
nN
δ

)
+
√

(−2
3 ln

(
nN
δ

)
)2 + 8T ln

(
nN
δ

)
2T



≤
√

2Vmaxβ̄

√γT +

√√√√2 ln
(

2nN
δ

)
T



(4.1)

holds for ln2(nN/δ)/18 ln(2nN/δ) ≤ T .
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Proof. After simplifying the first term and dividing by
√

2Vmaxβ̄, it is sufficient to show
that the inequality

√
ln(nN

δ )
T

≤
2
3 ln

(
nN
δ

)
+
√
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holds. We square the inequality and now have to show that the following two inequalities
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hold. We begin by demonstrating that the initial inequality is satisfied. Because
ln(nN/δ) > 0 always holds, it suffices to show that the inequality
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δ )
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)
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holds. which is the case for all T > 0.

We show the second inequality by showing that the following inequalities
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hold. The first inequality holds for

T ≥
ln2(nN

δ )
18 ln(2nN

δ )
. (4.6)

We show this by squaring both sides
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and isolating T

T ≥
ln2(nN

δ )
18 ln(2nN

δ )
. (4.8)
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2
3 ln
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δ )
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. (4.9)

The second inequality√
4
9 ln2(nN

δ ) + 8T ln
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nN
δ

)
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√√√√(ln(2) + ln(nN
δ )
)

T
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ln2(nN

δ )
9(ln(2)− ln(nN

δ )
)

(4.10)

holds for all T > 0. This is valid for any T > 0, since ln (nN/δ) > ln(2) always holds,
due to n ≥ 2, N ≥ 1 and δ < 1.

We demonstrated in lemma 4.0.1 that the bound on the Cramér distance utilizing the
Bennett inequality for martingales 3.3.5 is the tightest bound followed by the bound
utilizing the Bernstein inequality for martingales.

Both bounds are tighter than the bound utilizing the Maximal Hoeffding–Azuma inequal-
ity 3.20 for ln2(nN/δ)/18 ln(2nN/δ) ≤ T . It is important to note that l̄Be

2 (ηC , ηT ) ≤
l̄H2 (ηC , ηT ) holds for all T > 0.

For the inequality 3.20 the following corollary has been shown in [BH22].

Corollary 4.0.2. Under the assumption 3.0.1, ηT converges to ηC almost surely in
l̄H2 (ηC , ηT ).

Consequently, ηT also almost surely converges to ηC for both bounds l̄B2 (ηC , ηT ) and
l̄Be
2 (ηC , ηT ), given their increased tightness as demonstrated in 4.0.1.

Now we can proceed with the complexity analysis to find and compare the minimum
number of time steps T required to get the corresponding bound that has the specified
precision ϵ.

4.1 Analysis of l̄H2 (ηC , ηT )
We start of by examining the number of iteration T for the Maximal Hoeffding–Azuma
Cramér Distance bound to have the precision ϵ as this serves as our baseline.

Lemma 4.1.1. Under the assumption 3.0.1, the inequality l̄H2 (ηC , ηT ) ≤ ϵ holds for any
0 ≤ ϵ ≤
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iterations of speedy Q-learning.
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Proof. We define κ =
√

2Vmaxγβ̄ and τ =
√
Vmax ln (2nN/δ)β̄ and can therefore write
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By setting x =
√
T , we get

ϵx2 − 2τx− κ = 0

x1,2 = 2τ ±
√

4τ2 + 4ϵκ
2ϵ = τ ±

√
τ2 + ϵκ

ϵ

(4.13)

by using the quadratic formula. We choose the larger solution because it provides the T
that satisfies the inequality, and then substitute the terms back in and get
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4.2 Analysis of l̄B2 (ηC , ηT )
We proceed with analysing the Bernstein Cramér distance in more detail, which is tighter
than the Maximal Hoeffding–Azuma Cramér Distance bound if the number of iteration
exceeds ln2(nN/δ)/18 ln(2nN/δ) as shown in lemma 4.0.1.

The following lemma demonstrates the number of iterations T necessary for the bound
to be tighter than ϵ.

Lemma 4.2.1. Under the assumption 3.0.1, the inequality l̄B2 (ηC , ηT ) ≤ ϵ holds for any
0 ≤ ϵ ≤
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iterations of speedy Q-learning.
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Proof. We start off by defining constants

A =
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2Vmaxβ̄, B = √γ, C = ln(nN
δ

) (4.16)

to simplify the inequality 3.2.4. Then the inequality 3.2.4 becomes
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By simplifying and multiplying both sides by 2T we have
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Next we isolate the square root term√
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Let D := B + 1/3C, then √
4
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2 + 8TC ≤ 2ϵT
A
− 2D (4.20)

holds. After expanding the right side, bringing all terms to one side and dividing both
sides by 4 we get
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We now multiply both sides by A2 to eliminate denominators and set the quadratic equal
to zero to apply the quadratic formula and get the solution
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After simplifying and focusing on the solution corresponding to the positive root, we get
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Therefore after simplifying, the minimum T satisfying the inequality after substituting is
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4.3 Analysis of l̄Be2 (ηC , ηT )
We continue with analysing the Bennett Cramér distance in more detail, which is the
tightest of the bounds according to lemma 4.0.1.

Now we define a new lemma similiar to the one regarding the Maximal Hoeffding–Azuma
Cramér Distance 3.20 and the Bernstein Cramér Distance 3.2.4.

Lemma 4.3.1. Under the assumption 3.0.1, the inequality l̄Be
2 (ηC , ηT ) ≤ ϵ holds for any
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iterations of speedy Q-learning.

Proof. The proof is structured similiar to the proof of 4.1.1. We start off by defining the
following variables κ :=

√
2Vmaxγβ̄ and τ :=

√
Vmax ln
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δ

)
β̄ and can therefore write

(3.20) as follows
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By setting x :=
√
T , we can solve this using the quadratic formula to get
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We choose the larger solution because it provides the T that satisfies the inequality, and
then substitute the terms back in to get
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4.4 Complexity Analysis and Comparison
We derived theroretical bounds on the number of iteration T required for the speedy
Q-learning algorithm to achieve a specified precision ϵ in the Cramér distance between the
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estimated and true return distributions. In addition to that we analyzed the convergence
properties under the Maximal Hoeffding–Azuma inequality, the Bernstein inequality, and
the Bennett inequality, resulting in progressively tighter bounds as established in Lemma
4.0.1.

In this subsection, we aim to confirm our theoretical findings with numerical simulations,
by plotting the required number of updates T against varying levels of the precision ϵ
and varying levels of complexity of the environment n = ∥X ×A∥.

The code for the plots can be found on GitHub.

4.4.1 Plotting the Number of Updates T against the Precision ϵ

We start by examining how the required number of updates T varies with the desired
precision ϵ for each of the convergence bounds. By fixing the complexity of the environ-
ment, we can isolate the impact of precision on the convergence rate of the algorithm
under different inequalities.

To accurately reflect the framework, we integrate the specified parameters and conditions
from our assumptions 3.0.1 into the numerical simulation as follows:

• The maximal reward Rmax is set to 1, satisfying Rmax > 0.
• Vmax is calculated as Rmax/(1− γ) = 10.
• The discount factor is set at γ = 0.9, which is considered a standard choice in

reinforcement learning literature.
• The complexity of the environment n is set to 3000, reflecting the complexity of

the taxi environment as described by [Die00].
• The number of atoms of the categorical distributions N is fixed at 51 in accordance

with the C51 algorithm detailed in [BDM17].
• β̄ is calculated using β̄ = 1/(1−√γ).
• δ is set to 0.05 to represent a 95% confidence lvel.

We implement the convergence bounds derived from the Hoeffding inequality, the Bern-
stein inequality, and the Bennett inequality as Python functions. The simulations involves
determining the required number of updates T for achieving a specified precision level ϵ,
where ϵ ranges between 0.01 and 0.1.

The precision parameter ϵ is plotted on a logarithmic scale to enhance the visibility
of the differences between the convergence bounds, escpecially between l̄H2 (ηC , ηT ) and
l̄Be
2 (ηC , ηT ).

31

https://github.com/floom9/Applications_of_Concentration_Inequalities_in_Distributional_Reinforcement_Learning


4. Convergence and Complexity Analysis

Figure 4.1: Updates vs precision requirement

We observe that l̄Be
2 (ηC , ηT ) (Bennett bound) requires significantly fewer updates com-

pared to the other bounds to achieve the same level of precision. This advantage becomes
even more significant as ϵ decreases, which suggests that l̄Be

2 (ηC , ηT ) is more effective
in high-precision scenarios. This makes the Bennett bound a more practical choice
when minimizing the number of updates T is crucial, especially in cases where reducing
computational cost is a priority.

Next, we plot the difference in the number of updates required by l̄H2 (ηC , ηT ) (Hoeffding
bound) and l̄B2 (ηC , ηT ) (Bernstein bound) to more closely examine their differences. This
allows us to better understand the performance gap between the two bounds across
varying levels of precision.
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4.4. Complexity Analysis and Comparison

Figure 4.2: Updates vs environment complexity, difference between Hoeffding bound and
Bernstein bound

As we observe, the difference decreases as the precision increases, meaning the performance
gap between the two bounds narrows for lower precision requirements.

Overall, it can be concluded that both l̄B2 (ηC , ηT ) (Bernstein bound) and l̄Be
2 (ηC , ηT )

(Bennett bound) outperform l̄H2 (ηC , ηT ) (Hoeffding bound), particularly in high-precision
scenarios.

This demonstrates the superiority of these bounds when it is crucial to minimize the
number of updates while maintaining a high degree of precision.

4.4.2 Plotting the Number of Updates T against the Complexity of
the Environment n

Next, we investigate how the required number of updates T scales with the complexity
of the environment n = ∥X ×A∥, for a fixed precision ϵ.

Our goal is to assess the scalability of the algorithm in more complex environments.

We utilize mostly the same parameters as in the numerical simulation with the exception
that we now fixate the value of ϵ at 0.1 and vary the complexity of the environment n
between 10 and 1× 106.
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Figure 4.3: Updates vs environment complexity

Similar to the previous results in 4.4, we can observe that l̄Be
2 (ηC , ηT ) (Bennett bound) con-

sistently outperforms the other bounds. Additionally, we can investigate that l̄B2 (ηC , ηT )
(Bernstein bound) needs less updates across increasing environment complexity than
l̄H2 (ηC , ηT ) (Hoeffding bound).
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To illustrate how steep the number of updates increases with higher environment com-
plexity we employ a semi-logarithmic scale (scaled x-axis).

Figure 4.4: Updates vs environment complexity with semi-logarithmic scale

It is clear that the divergence between l̄Be
2 (ηC , ηT ) (Bennett bound) and the other bounds

grows with increasing environmental complexity.

This further underlines the benefits of the Bennett’s bound, making it especially suitable
for complex scenarios requiring precision while also being computationally efficient.

4.4.3 Summary of Findings

The numerical analysis confirms that l̄Be
2 (ηC , ηT ) (Bennett bound) provides the tightest

bound among the bounds defined in 3. It requires significantly fewer total updates
to achieve the specified precision, especially in high-precision scenarios and complex
environments. The Bernstein bound also outperforms the Hoeffding bound but to a lesser
extent than the Bennett bound.

These results illustrate the benefit of employing the Bennett’s inequality to optimize the
convergence rate of the speedy Q-learning algorithm to reduce computational expenses.
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CHAPTER 5
Experimental Evaluation

In this chapter we want to analyse and compare the bounds defined in 3 under the given
assumption 3.0.1 using Gymnasium environments [TTK+23] to validate the performance
of these bounds in practical reinforcement learning settings.
For this experiment we select two distinct environments from the Gymnasium library:
Taxi-v3 and FrozenLake-v1. We choose these environments due to their compatability
with our assumptions and both having a deterministic action-state space, as they are
both grid-based problems. This means that the environment is represented as a grid
of tiles. Each tile represents a state, and the agent can navigate through the grid by
selecting actions and moving from one state to another.
Additionally, these environments vary in complexity, with the FrozenLake-v1 environment
introducing a stochastic element, allowing us to evaluate the bounds under varying
conditions.
Each environment undergoes training for 1000 episodes, with each episode being capped
at a maximum of 1000 steps. The code can be found on GitHub.

5.1 Taxi Environment
In the Taxi-v3 environment the agent must navigate a gridworld to pick up and drop off
passengers. The taxi can be in any of 25 distinct positions in the 5× 5 grid world, while
the passengers can start from one of five specific locations and have one of four designated
destinations. Together with the 6 possible actions available to an agent (moving north,
south, east, or west, picking up the passenger, dropping off the passenger), this results in
a state-action space of 3000.
Successfully picking up and dropping off a passengers results in a positive reward. The
agents receives a negative reward for each time step it takes in order to achieve the fastest
routes possible, as well as for incorrectly picking up and or dropping off passengers.
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5. Experimental Evaluation

Figure 5.1: Bounds comparison for the Taxi-v3 environment

We can investigate in figure 5.1 that l̄Be
2 (ηC , ηT ) (Bennett bound) clearly performs best,

however the difference between the bounds shrinks as the number of updates increases.

Additionally we can investigate that for a lower number of updates l̄H2 (ηC , ηT ) (Ho-
effding bound) outperforms l̄B2 (ηC , ηT ) (Bernstein bound), which further highlights
our findings from 4.0.1, where we showed that l̄B2 (ηC , ηT ) ≤ l̄H2 (ηC , ηT ) holds for
ln2(nN/δ)/18 ln(2nN/δ) ≤ T , while l̄Be

2 (ηC , ηT ) ≤ l̄H2 (ηC , ηT ) for all T > 0.
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5.1. Taxi Environment

Figure 5.2: Difference between Hoeffding and Bernstein bound for the Taxi-v3 environ-
ment

Evaluating the expression ln2(51× 3000/0.05)/18 ln(2× 51× 3000/0.05) yields approxi-
mately 0.8. This result indicates that each distribution η(x,a) must be updated around 0.8
times. This finding is supported by the total number of updates ranging between 1× 103

and 1 × 104 in our experiment, before l̄B2 (ηC , ηT ) ≤ l̄H2 (ηC , ηT ) holds true, considering
the size of the state-action space of 3000.
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5.2 FrozenLake Environment
The FrozenLake-v1 environment is a stochastic gridworld environment, where the agent
must navigate across a frozen lake (4× 4 tiles big) to reach a goal. Each tile is either
frozen (safe) or a hole (terminal state). The agent can choose from four different actions:
moving left, right, up, or down, making the state-action space equal to 64. Furthermore,
there is a 33% probability that the agent will slip and move in an unintended direction
upon taking an action. The reward function is quite simple: the agent earns a reward of
1 for reaching the goal and 0 otherwise. Moreover, the episode terminates if the agent
falls into a hole.

Figure 5.3: Bounds Ccmparison for the FrozenLake-v1 Environment

This experiment yields the same results as the experiment above and further highlights
them.
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5.2. FrozenLake Environment

Figure 5.4: Difference between Hoeffding and Bernstein bound for the FrozenLake-v1
Environment

Due to the smaller state-action space of the FrozenLake-v1 environment we can observe
that the inequality l̄B2 (ηC , ηT ) ≤ l̄H2 (ηC , ηT ) already holds for the number of total updates
being < 1× 103.
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CHAPTER 6
Conclusion and Future Work

6.1 Conclusion

In this thesis, we investigated the application of different concentration inequalities,
specifically the Hoeffding, Bernstein, and Bennett inequalities, to enhance the analysis of
the speedy Q-learning algorithm within the framework of distributional reinforcement
learning (RL).

We demonstrated in 4.0.1 that the bound on the Cramér distance obtained by using
the Bennett inequality is the tightest, followed by the Bernstein inequality. Specifically,
the Bennett bound was shown to be tighter than the Hoeffding bound for all number of
updates T > 0, while the Bernstein bound becomes tighter when the number of updates
T exceeds ln2(nN/δ)/18 ln(2nN/δ).

In the complexity analysis, we examined how the number of iterations T necessary
for the algorithm to reach a given precision ϵ varies with differing levels of precision
and environmental complexity n = ∥X × A∥. Those simulations demonstrated that
l̄Be
2 (ηC , ηT ) (Bennett bound) consistently requires fewer iterations compared to the
l̄B2 (ηC , ηT ) (Bernstein bound) and l̄B2 (ηC , ηT ) (Hoeffding bounds). This was even more
significant in scenarios with higher required precision and in environments with greater
environmental complexity. The results also indicated a lower rise in required iterations
as environmental complexity increased for l̄Be

2 (ηC , ηT ) (Bennett bound), suggesting that
the gap between the bounds widens with increasing environmental complexity.

In the experimental evaluations using the Gymnasium environments Taxi-v3 and
FrozenLake-v1 the l̄Be

2 (ηC , ηT ) (Bennett bound) also performed best.
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6.2 Future Work
Future work could explore applying these concentration inequalities to other distributional
reinforcement learning algorithms. In addition to that the analysis could also be extended
to environments with continuous state-action spaces.

Moreover, additional concentration inequalities could be assessed to determine if even
tighter bounds on the Cramér distance can be found.

Developing adaptive algorithms that dynamically select the most appropriate bound
on the Cramér distance based on the specific characteristics of the environment or the
data observed during the learning process could also be an interesting topic for future
research.
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