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Optimal Approximation of the First-Order Corrector in Multiscale Stochastic
Elliptic PDE∗

Caroline Geiersbach† , Clemens Heitzinger‡ , and Gerhard Tulzer†

Abstract. This work addresses the development of an optimal computational scheme for the approximation
of the first-order corrector arising in the stochastic homogenization of linear elliptic PDEs in diver-
gence form. Equations of this type describe, for example, diffusion phenomena in materials with a
heterogeneous microstructure, but require enormous computational efforts in order to obtain reliable
results. We derive an optimization problem for the needed computational work with a given error
tolerance, then extract the governing parameters from numerical experiments, and finally solve the
obtained optimization problem. The numerical approach investigated here is a stochastic sampling
scheme for the probability space connected with a finite-element method for the discretization of the
physical space.
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1. Introduction. Stochastic multiscale differential equations describe the behavior of var-
ious important physical systems, including metamaterials, glass, fiber-reinforced composites,
or granular media [25], where the processes of interest comprise diffusion, electrostatic prob-
lems, and heat transfer [17] or flow [1, 2]. However, an analytical solution to such problems
does not exist in general cases, and even the calculation of reliable approximations of the
solution requires an enormous computational effort, which is even increased if a weak compu-
tational scheme is chosen. It is therefore crucial to have a high-performance computational
setup in order to reach manageable workloads.

In particular, when calculating the solution, the overall error comprises several sources.
In order to obtain an optimal scheme, one needs to find a balance between the involved
error components in order to maximize accuracy by minimizing the computational effort.
In this study, we derive an optimization problem for this task, we apply the framework to
our implementation of the stochastic homogenization problem, and we compute the desired
parameters to obtain a minimal computational effort for a given error tolerance. To this end,
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all the input parameters governing the error function as well as the workload are derived from
numerical experiments.

The framework of stochastic homogenization for linear elliptic PDE in divergence form goes
back to the works by Kozlov [22], Yurinskii [28], and Papanicolaou and Varadhan [24], who
independently showed the admissibility of homogenization under certain conditions and also
provided an expression for the homogenized coefficient function. However, since the calculation
of the latter requires the integration over an abstract probability space, this formula cannot
be used for the numerical computation of the desired quantity. Overcoming this challenge has
been addressed from different angles, but there are still various open questions, including the
optimization of the computational scheme.

Bourgeat and Piatnitskii [5] used a combination of periodization and cut-off procedures to
approximate the homogenized coefficient and furthermore provided error estimates in terms
of the cut-off under additional mixing conditions. Costaouec considered the stochastic case
as a small perturbation of a periodic case and derived error estimates depending on the
perturbation scale [9]. Gloria and Otto derived optimal error estimates for the corrector and
for the homogenized coefficients in the discrete setting [14, 15] and also presented a quantitative
error estimate for the continuous case under further assumptions on the spectral gap of the
diffusion coefficient [12, 13].

A rather common approach in the framework of stochastic homogenization is the use of
representative volume elements (RVE) [20, 21, 23]. However, the main open question here is
the appropriate choice of the RVE, which is considered here in connection with other crucial
parameters, namely, the mesh size and the number of samples in the Monte Carlo scheme.

Homogenization results have also be derived for nonlinear problems. The existence of a
homogenized equation and convergence rates for fully nonlinear elliptic problems have been
theoretically investigated by Caffarelli, Souganidis, and Wang [7] and Caffarelli and Sougani-
dis [6]. However, in this work, we restrict ourselves to linear problems.

This paper is organized as follows. The concept of stochastic homogenization for linear
elliptic PDEs in divergence form together with theoretical results is presented for our purposes
in section 2. We derive the optimization problem for the computational scheme in section 3.
Numerical experiments including their results are described in section 4, which are then used
to solve the optimization problem. The findings are discussed in section 5.

2. The stochastic multiscale problem. The problem formulation for the stochastic ho-
mogenization method is mainly based on [22, 24, 28]. In the following, we will briefly recall
the theoretical results that are necessary for our numerical investigations.

2.1. Formulation of the problem. The stochastic multiscale problem giving rise to the
application of a homogenization method is

−∇ · (Aε(x, ω)∇uε(x, ω)) = f(x) in D,(1a)

uε(x, ω) = 0 on ∂D,(1b)

where Aε(x, ω) = A(xε , ω), uε(x, ω) = u(x, xε , ω), f(x) is (for simplicity) a deterministic func-
tion, and D ⊂ Rd is a bounded domain. The simplification in the choice of A means that
fluctuations only take place on a microscale. Here, (Ω,F , P ) is a probability space where
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ω ∈ Ω represents a single realization of a medium, F is an appropriate σ-algebra, and P is
a probability measure defined on (Ω,F). Since the coefficient Aε is a random field, so is the
solution uε. Using homogenization, one seeks to find a limiting problem that is independent
of the fast variable y := x

ε and that allows the calculation of the statistics of the random
field solving problem (1). In order to obtain the limiting problem, we need the definitions of
stationarity of a random field and ergodicity of a map.

Definition 1. A random field is called strictly stationary if the joint distribution of A(y1, ω),
. . . , A(yn, ω) is the same as that of A(y1 +h, ω), . . . , A(yn+h, ω) for all yi ∈ Rd, i ∈ {1, . . . , n}
and for all h ∈ Rd.

Definition 2. Let T : Ω → Ω be a measure preserving transformation. We say that T
is ergodic with respect to the measure P if for any F ∈ F with T (F ) ⊂ F we have either
P (F ) = 0 or P (F ) = 1.

We are now ready to state the theorem that lays the ground for the numerical investigations
presented in this study. This result is based on the presentation in [24].

Theorem 3. Let Aε(x, ω) := Aε(Tx(ω)) be a random field for an ergodic transformation T
and let Aε be strictly stationary and obey the conditions

(2) ∃∃ a, a > 0: ∀∀y, ξ ∈ R : ∀ω ∈ Ω: a|ξ|2 ≤ ξ>A(y, ω)ξ ≤ a|ξ|2.

Then, as ε → 0+, the solution to problem (1) converges to the solution of the deterministic
problem

−∇ ·
(
A∇u0(x)

)
= f(x) in D,(3a)

u0(x) = 0 on ∂D,(3b)

in the sense that

(4) lim
ε→0

E
(∫

D
(uε(x)− u0(x))2 dx

)
= 0.

Here, A is defined by

ξ> ·Aξ̃ = lim
L→∞

1

Ld

(∫
[−L/2,L/2]d

(ξ +∇χξ(y, ω)) ·A(y, ω)(ξ̃ +∇χ
ξ̃
(y, ω)) dy

)
(5)

= E
[
(ξ +∇χξ) ·A(ξ̃ +∇χ

ξ̃
)
]

for all ξ, ξ̃ ∈ Rd, where χξ is the first-order corrector solving the so-called auxiliary or cell
problem [19]

−∇ ·A(ξ +∇χξ) = 0 in Rd,(6a)

∇χξ is stationary,(6b) ∫
∇χξ(y, ω) dy = 0 ∀ω ∈ Ω.(6c)
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This work addresses the approximation of the first-order corrector χξ by numerically
solving problem (6). The main objective is the optimization of the computational efficiency
for a given approximation error tolerance. In order to do so, we need expressions for the
necessary computational work as well as for the error introduced by discretization, cut-off,
and sampling.

2.2. Setting. We will consider a domain that describes a matrix material containing
circular hard-sphere inclusions at random positions, which means that the inclusions cannot
overlap. The two materials shall differ in their physical properties modeled by the coefficient
function A. In applications, there are many physical interpretations of this coefficient function,
ranging from the meaning of a diffusion coefficient to electric permittivity to heat-transfer
coefficient. In leading examples, A is considered to be piecewise constant throughout D and
to have the form

(7) A(y, ω) = AC1C(y, ω) +AM1M (y, ω),

where 1C and 1M denote the indicator for the circular inclusion and for the matrix material,
respectively, and AC and AM represent constant matrices. For a coefficient function of this
type, the conditions stated in (2) are valid, and the theory applies.

The most straightforward choice for vectors ξ in the auxiliary problem is the choice of unit
vectors ei, where we will denote the respective solution by χi with integer i. In particular, to
obtain all the entries of A, we use χ = (χ1, . . . , χd)

>, so the problem here is a vectorial one.
However, the equations for the different components are independent and can be computed
one after another. Since the structure of the problems is the same, we will set χ := χ1 and only
perform the calculations for the first component. The whole procedure applies for χ2, . . . , χd
in an analogous way.

2.3. Computational scheme. There are various approaches for the approximation of the
integral in the probability space. Numerous publications employ basic, but powerful, sampling
techniques such as Monte Carlo, quasi Monte Carlo [16], and multilevel Monte Carlo [3,
8] methods, which are favorable due to their simplicity, since algorithms for deterministic
problems can be used. Furthermore, there are also spectral techniques based on polynomial
chaos expansions [11, 18, 26], which require a new implementation of the solution algorithm
for the stochastic case.

Here, the computational scheme is based on a Monte Carlo finite-element method com-
bining approximations of the probability space and of the physical space. The overall approx-
imation error therefore comprises both parts and will in fact include a further part related to
artificial introduction of boundary conditions.

The integral over the probability space, i.e., the calculation of the expected value, is
approximated employing a Monte Carlo method. The parameter governing this method is the
number N of trials evaluated in the sampling process.

The PDE defined on the physical domain is solved using a finite-element method. The
typical parameter of importance for error estimation is the size h of the mesh. However,
since we are approximating a problem on the whole space, we also need to introduce a cut-off
distance L that defines a bounded domain on which we solve the auxiliary problem. These
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LL0

Figure 1. Sketch of the investigated domain. The random circular inclusions are also shown. The conver-
gence is studied only on the small square of length L0 in the inside of the large domain. The parameters chosen
here are L := 12, L0 := 3, and r := 0.2.

two parameters will be taken into account for the performance analysis of the implemented
scheme.

It is also necessary to prescribe boundary conditions for this given domain, which will
also introduce an error to the solution. In order to minimize this error, we consider periodic
boundary conditions, which have been shown to lead to the lowest error [27]. Moreover, to
further decrease the introduced error by the finite domain size, we will only investigate the
solution on a part of the domain which can be considered far away from the boundary and
hence its influence. We therefore consider a domain of length L0, where L0 < L, on which we
study convergence. A sketch of this idea is shown in Figure 1.

3. Optimization of the computational scheme. The goal of this section is to find the
optimal parameters for the computational scheme when calculating the first-order corrector.
Optimization is understood here in the sense that for a given error tolerance, the computational
work should be minimized.

As mentioned before, we combine a Monte Carlo sampling method for the probability
space and a finite-element method for the physical space in this derivation of the error and
work functions. We also formulate our main result, which is Proposition 5, in terms of these
functions. However, the result is still valid for any other type of numerical approximation,
if the expressions for the error and the work are adapted once according to the respective
method.

3.1. Error estimates. We will now estimate the error involved in the calculation of the
first-order corrector solving the auxiliary problem (6). As the homogenized coefficient depends
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on ∇χ, this will be the quantity of interest in the estimation. Furthermore, the L2-norm of
the gradient also introduces a norm on the space used to evaluate one single realization of the
auxiliary problem, namely, on

(8) H :=

{
u ∈ H1

#(DL0)

∣∣∣∣ ∫
DL0

udy = 0

}
,

where the hash indicates that the functions must be periodic on DL0 . The overall error
estimation will be performed on a smaller physical square DL0 := [−L0/2, L0/2)d in order to
attenuate the influence of the artificial boundary conditions (see Figure 1). The appropriate
space to consider the error is then the Bochner space L2(Ω;L2(DL0)), where L2(Ω;X) is the
space which consists of all measurable functions u : Ω→ X for which the norm

(9) ‖u‖L2(Ω;X) :=

(∫
Ω
‖u(·, ω)‖2X dP (ω)

)1/2

= E
(
‖u(·, ω)‖2X

)1/2
is finite.

There are three sources of error arising during the numerical approximation of ∇χ:
(i) Discretization error: This is the error introduced by the approximation of the exact

solution ∇χ by a discretized solution ∇χh calculated on the whole space.
(ii) Error due to cut-off and artificial boundary conditions: Since the auxiliary problem

cannot be solved numerically on the whole space, a truncation of the domain is neces-
sary. This includes the prescription of artificial boundary conditions that do not exist
for a problem defined on the whole space. This approximation of ∇χh will be denoted
by ∇χL,h, where L denotes the side length of the truncated domain.

(iii) Statistical error: The expected value of ∇χL,h is approximated by a stochastic sam-
pling method. The sample mean over N independent realizations will be denoted by
µN,L,h, yielding

(10) µN,L,h =
1

N

N∑
i=1

∇χ(i)
L,h,

where the superscript (i) indicates specific realizations of ∇χL,h. The notation ∇χL,h
as the gradient of a discrete solution χL,h is to be understood in a piecewise sense, i.e.,
on each element of a finite element solution.

The quantity we are then interested in is the overall error in the Bochner space.

Proposition 4. Assume that the error eFEM introduced by the discretization, the error eBC

introduced by cutting off the domain, and the error eMC introduced by Monte Carlo sampling
are given by

eMC ≤ ν0N
−σ,(11a)

eFEM ≤ ν1h
α,(11b)

eBC ≤ ν2L
−β.(11c)
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Then the error bound

(12) ‖µN,L,h − E[∇χ]‖L2(Ω;L2(DL0
)) ≤ ν0N

−σ + ν1h
α + ν2L

−β =: E(h,N,L)

holds for the Monte Carlo finite element method estimator µN,L,h.

Proof. We have

‖µN,L,h − E[∇χ]‖L2(Ω;L2(DL0
))

≤ ‖µN,L,h − E(µN,L,h)‖L2(Ω;L2(DL0
)) + ‖E(µN,L,h)− E(∇χh)‖L2(Ω;L2(DL0

))

+ ‖E(∇χh)− E(∇χ)‖L2(Ω;L2(DL0
))

≤ ‖µN,L,h − E(∇χL,h)‖L2(Ω;L2(DL0
))︸ ︷︷ ︸

=:eMC

+ ‖∇χL,h −∇χh‖L2(Ω;L2(DL0
))︸ ︷︷ ︸

=:eBC

(13)

+ ‖∇χh −∇χ‖L2(Ω;L2(DL0
))︸ ︷︷ ︸

=:eFEM

,

by the triangle inequality, where we have used Jensen’s inequality in the last step. Since
E(µN,L,h) is an unbiased estimator, we have furthermore used E(µN,L,h) = E(∇χL,h). By
using (11) for each of the components of the error, the assertion follows.

To be able to make use of this proposition, we check the assumptions on the error estimates.
The convergence of the statistical error in Monte Carlo sampling methods is well-known and
therefore requires no further attention. The important part is the estimate in terms of the
two other parameters. In particular, the question is whether these expressions are sufficient
or whether a mixed term is necessary. We therefore calculated the error for many different
parameters in a representative range for h and L and calculated the best fit for the estimate
above as well as for an expression with an additional mixed term ν3h

ρL−τ . It was found that
the error for the expression with the additional mixed term is marginally better (less than
1% difference). Given that the new expression comprises three additional parameters (ν3, ρ,
and τ), the error must be smaller, yet in view of the small size of the improvement it is safe
to say that the assumptions used here are valid.

3.2. Computational work. In order to model the computational work, the expression for
the work will depend on the mesh size h, the size of the domain L, and the number N of
realiziations used in the Monte Carlo simulation.

Calculating one realization of the auxiliary problem consists of several steps that all scale
differently in h and L. The procedure can be split into n steps that all scale in the form

(14) Wi ∝ h−ξiLγi .

Altogether, the computational work for a whole Monte Carlo simulation comprising N samples
is therefore given by

(15) W (h,N,L) = N

n∑
i=1

µih
−ξiLγi .
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In order to minimize this expression under the constraint E(h,N,L) ≤ ε for a given error
tolerance ε, we employ Lagrange multipliers and the Karush–Kuhn–Tucker (KKT) conditions
which yield necessary conditions for an optimal solution to our problem.

Proposition 5. Parameters (h,N,L) that are in the interior of the domain of admissible
parameters and that minimize the computational work for a prescribed error tolerance ε nec-
essarily solve the system of equations

n∑
i=1

(
ξi −

ν1αh
α

σ(ε− ν1hα − ν2L−β)

)
µih
−ξiLγi = 0,(16a)

n∑
i=1

(
γi −

βν2L
−β

σ(ε− ν1hα − ν2L−β)

)
µih
−ξiLγi = 0,(16b)

Nσ − ν0

ε− ν1hα − ν2L−β
= 0.(16c)

Proof. The Lagrange function associated to the optimization problem is given by

(17) L(h,N,L, s) := W (h,N,L) + s · (E(h,N,L)− ε) ,

where W (h,N,L) and E(h,N,L) are given by (15) and (12), respectively. The necessary
conditions for a minimum are obtained by calculating the partial derivatives of L with respect
to N , L, h, and s, which yields

0 =
∂L(h,N,L, s)

∂N
=

n∑
k=1

µkL
γkh−ξk − sσ ν0

Nσ+1
,(18a)

0 =
∂L(h,N,L, s)

∂L
= N

n∑
k=1

γkµkL
γk−1h−ξk − sν2βL

−β−1,(18b)

0 =
∂L(h,N,L, s)

∂h
= −N

n∑
k=1

ξkµkL
γkh−ξk−1 + sν1αh

α−1,(18c)

0 =
∂L(h,N,L, s)

∂s
=

ν0

Nσ
+ ν1h

α + ν2L
−β − ε.(18d)

Equation (18a) translates to

(19) s =
Nσ+1

ν0σ

n∑
k=1

µkL
γkh−ξk ,

while we obtain

(20) Nσ − ν0

ε− ν1hα − ν2L−β
= 0

from (18d). Finally, inserting the expression for s into (18b) and (18c) yields (16a) and (16b),
which completes the proof.
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Remark 6. The coefficients as well as the exponents in (15) generally depend on the precise
algorithm used and even on its implementation and the hardware. Therefore their exact
numbers will be determined by numerical experiments in section 4.

Remark 7. After having computed these candidates for the minimum, it must be checked
that the parameters actually yield a minimum. This can be achieved by calculating the
determinant of the Hessian matrix of the Lagrange function L. If this quantity is negative
for the parameters, this point is a minimum. The determinant of this 4× 4 matrix is a large
expression, however, so it is not recorded here.

Remark 8. The analysis of the KKT conditions shows that the minimal work is obtained
for E(h,N,L) = ε (and not for E(h,N,L) < ε), i.e., one will not obtain a lower error than
the prescribed one after minimization.

4. Results. For carrying out the numerical experiments, we used an Intel Core i7-3770
3.4GHz CPU with 32 GB of RAM running Linux.

Here, we used the coefficient function stated in (7) with

AC :=

(
20 0
0 10

)
, AM :=

(
2 0
0 1

)
.

The density of the inclusions is set to one per unit square, where each inclusion is placed
randomly in the domain such that there is no overlapping. The radius of the circular inclusions
was chosen to be 0.2, which leads to a coverage of approximately 13%. For the subdomain, we
always used a length of L0 := 3. As already mentioned, we used periodic boundary conditions
and employed a periodic continuation of circles at the boundary. A typical realization on DL0

together with its solution are shown in Figures 2(a) and 2(b), respectively.

4.1. Error function. Before we can address the optimization problem, we need to cal-
culate the parameters involved in the error function as well as in the function describing
the computational work. To this end, we performed Monte Carlo simulations for different
mesh sizes and cut-off lengths and determined the required coefficients by a regression after
a logarithmic conversion. Since exact solutions of the auxiliary problem are unknown, we
computed reference solutions to which we could compare the results on smaller domains and
on coarser meshes, yielding the convergence rates. The obtained errors compared to the ref-
erence solutions are shown in Figure 3. The extracted parameters for the error function are
given in Table 1. Although theoretical results exist on the convergence rates with respect
to the mesh size and the number of realizations, we also derived these coefficients from the
numerical experiments, since correct optimization results can only be obtained based on the
actual coefficients, because they provide sharper estimates than theoretical bounds do.

4.2. Work function. Solving the auxiliary problem consists of several computational
steps. Measurements of the computational work show that each of them scales differently
in terms of h and L. In order to obtain a proper expression for the work function, we consider
each step by itself and add the terms. In particular, we consider four steps:

1. the mesh generation,
2. the assembly of the stiffness matrix for the finite-element method,
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(a) Mesh showing a typical realization for the auxiliary problem on the
subdomain DL0 .
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(b) Auxiliary problem solution to the realization shown in Figure 2(a).

Figure 2. Mesh for a typical realization and solution to the auxiliary problem based on this realization.
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Figure 3. Error in terms of (a) cut-off length L, (b) mesh size h, and (c) number N of samples compared
to the reference solution. The convergence rates and coefficients obtained from a least-squares fit are given in
Table 1.

Table 1
Numerical values for the parameters governing the error function as given in (11). All these constants

have been derived from numerical experiments addressing the convergence of the solution.

Parameter Numerical value

ν0 0.574
ν1 0.645
ν2 0.539
α 0.827
β 1.630
σ 0.577
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Table 2
List of steps necessary to solve the auxiliary problem together with the coefficients µi, ξi, and γi as given

in (15). A more detailed description of all steps is given in the text.

Step Description µi ξi γi

1 Generate mesh 5.09 · 10−5 2.00 2.22
2 Assemble stiffness matrix 2.09 · 10−6 2.13 2.54
3 Solve the system 4.97 · 10−7 2.82 2.98
4 Apply uniqueness condition 8.26 · 10−8 2.79 3.40

3. the solution of the system of equations, and
4. the application of the uniqueness conditions as described in the definition of the func-

tion space H in (8).
The mesh is generated using the GMSH package [10], where the mesh was aligned with

the circles such that each element had a constant value for A. The remaining steps have been
performed using Julia [4]. The assembly of the stiffness matrix also includes the application
of the periodic boundary conditions. Step 3 consists of applying the backslash operator
implemented in Julia. The application of the uniqueness condition is necessary since the
solution obtained is unique only up to an additive constant. However, this last step is not
necessary if one only calculates the homogenized coefficient A, since the constant disappears
over the gradient.

The parameters related to the computational work function are presented in Table 2. Here,
we used mesh sizes between 0.02 and 0.1 and cut-off distances between 6 and 22 to obtain the
scaling of the different steps. The resulting work-function values for each step are shown in
Figure 4. Since the axes show logarithmic scaling, the surfaces describing the data points are
planes.

4.3. Optimal method. With these coefficients, we prescribe an error tolerance and solve
(16). The resulting optimal values for the three quantities depending on the error tolerance
are shown in Figure 5. A straightforward, but long, calculation shows that the determinant of
the Hessian matrix is negative at all points considered, which confirms that we actually found
a minimum of the Lagrange function within the region of admissible values for L, N , and h.

As an example, we consider the optimal values for two prescribed error tolerances, which
are stated in Table 3 for further discussion. These values are all admissible in the sense that
they lie in the interior the region of admissible values (a minimum requirement being that L,
N , and h are all positive and that h is smaller than the diameter of the domain), and therefore
no further restrictions on them are required to obtain a suitable optimum. This confirms that
the optimization method works as intended.

For the first case, the mesh is very fine and 239 Monte Carlo samples are used. The com-
putational work is approximately 1151 core hours on the computer we used and is parallelized
trivially.

The second example shows the results for a larger error tolerance. Although the mesh is
still relatively fine (the radius of one circle is 0.2 such that its shape is resolved very well) and
the domain size is still around 10, the core hours required are down to approximately 3 in this
case, which is due to the much lower number of samples of 84.
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Figure 4. Computational work necessary for one realization depending on the mesh size h and the cut-off
length L. Each diagram shows one step. Note the logarithmic scaling of the axes. The parameters found are
shown in Table 2.

As can be seen from these two examples, the computational work highly increases with
decreasing error tolerance. This dependence is shown in Figure 6. A fit in the log-log scale
reveals that the relation between W and ε is

(21) W ∝ ε−5.66.

This large number for the exponent again emphasizes the necessity of a well-balanced setup
that leads to an optimal simulation scheme.

4.4. Discussion. First, it turns out that only very few realizations of the system are re-
quired for the estimation of the computational work, especially compared to the large number
of samples necessary in the actual calculation of the effective coefficient. Furthermore, one
can—at least in parts—include the realizations calculated during the optimization step in the
homogenization procedure such that almost no computational time is spent in vain. What is
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Figure 5. Dependence of L (blue), N (yellow, both on left y-axis), and h (green, on right y-axis) on the
error tolerance ε.

Table 3
Example for optimal values for a prescribed error tolerance and resulting computational work. The optimal

solution found is in the interior of the admissible values, so that no further restrictions are necessary.

ε L h N W [h]

1.7 · 10−2 19.0 4.9 · 10−3 239 1151
4.5 · 10−2 10.4 1.6 · 10−2 84 3

even more advantageous is the fact that the parameters related to the computational work
need to be estimated only once if one calculates several effective coefficients, e.g., for different
coefficient functions. This reduces the computational cost for the optimization procedure even
more.

The data gathered for determining the governing coefficients shows linear behavior on the
log-log scale, which justifies the use of power laws for the involved quantities.

However, after the calculation of the parameters giving a minimal work function value, one
in general needs to check if the value found is indeed a minimum. First, it has to be admissible.
Then, of course, the minimal property can be confirmed by calculating the determinant of the
Hessian matrix of L(h,N,L, s).

The choice of a suitable error tolerance is a delicate task. Choosing a value too small such
as ε = 5.5 · 10−3 leads to parameters that require enormous computational work (around 106

hours ≈ 114 years) and are therefore out of reach. Choosing a too large value, however, yields
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Figure 6. Dependence of the computational work using optimal parameter values on the prescribed error
tolerance ε. The slope here is −5.66. It is obvious that the solutions for the lowest error tolerances are way out
of reach since they require too much computational effort.

parameters that will not give meaningful results. For example, the mesh size always needs to
be small enough such that the inclusions are properly resolved, the cut-off distance needs to
be at least a bit larger than the inner domain on which the convergence is studied, and at
least a few tens of realizations will be needed. These minimal requirements are necessary to
obtain meaningful results. Of course, meaningful bounds for the error tolerance will always
depend on the application.

The chosen stochastic process for the generation of the random inclusions can easily be
generalized in several ways. First, the size of the inclusions could also be treated as a random
process, which leads to variable quota for the two materials. Second, we prohibited overlapping
of the circular inclusions, which is a suitable choice for many applications. However, for certain
materials, allowing overlapping might be a better model, when the inclusions are free to form
more complicated shapes.

5. Conclusions. In this work, we derived an optimal method for the numerical stochastic
homogenization of elliptic problems, when a prescribed error tolerance is to be met. The
optimization is based on finding the optimal variables, namely, the mesh size h, the cut-off
distance L, and the number N of samples in the Monte Carlo part. Several coefficients gov-
erning the work function and the error function were determined using numerical experiments,
and afterward the optimization problem was solved for different error tolerances. The com-
putational work for the optimization step is small compared to the calculation of the effective
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coefficient, and the values obtained during the optimization step can even be reused in the
latter part of the computation. The resulting optimal values for the variables are reasonable
and as a consequence admissible without any further constraints on the optimization problem.

Calculations and the examples shown here confirmed that the necessary computational
work strongly depends on the error tolerance and increases with a large exponent for a decreas-
ing prescribed error tolerance. This fact again emphasizes the need for a properly designed
and optimal computational scheme.

It goes without saying that the numerical results of the optimization problems also depend
on the algorithms, implementations, and even hardware used. The coefficients in the error
and the work functions should therefore be determined on the hardware used for the actual
calculations in order to obtain optimal results.

Finally, the optimization algorithm presented in this work can be used for many similar
computational problems. To do so, only the definitions for the error and work functions must
be modified.
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