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Abstract We review transport equations and their usage
for the modeling and simulation of nanopores. First, the sig-
nificance of nanopores and the experimental progress in this
area are summarized. Then the starting point of all classi-
cal and semiclassical considerations is the Boltzmann trans-
port equation as the most general transport equation. The
derivation of the drift-diffusion equations from the Boltz-
mann equation is reviewed as well as the derivation of the
Navier–Stokes equations. Nanopores can also be viewed as a
special case of a confined structure and hence as giving rise
to a multiscale problem, and therefore we review the deriva-
tion of a transport equation from the Boltzmann equation for
such confined structures. Finally, the state of the art in the
simulation of nanopores is summarized.

Keywords Boltzmann equation · Model hierarchy ·
Drift-diffusion-Poisson system · Navier–Stokes equation ·
Confined structure · Nanopore

1 Introduction

Artificial nanopores have received lots of attention in recent
years. They are an important building block for the control
of single molecules and DNA oligomers. Following the prin-
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ciple of the Coulter counter for counting and sizing parti-
cles suspended in electrolytes, translocation of molecules
through a nanopore or binding events inside a functional-
ized nanopore block the ionic currents through the nanopore
(see Fig. 1). This principle makes it possible to detect single
molecules. Furthermore, it has been applied to DNA sequenc-
ing, which has attracted lots of attention; an overview of the
history so far can be found in [1].

The appeal of these ideas is that they yield a direct detec-
tion method, i.e., the molecules are detected directly and
not indirectly after being marked, which is a great advan-
tage compared to currently employed technology. Of course,
despite the great experimental progress in recent years, tech-
nical hurdles still have to be overcome. Section 2 gives an
overview of some of the inspiring experiments performed
recently and discusses the problems that arise when model-
ing this young technology.

Regarding the theoretic aspects of understanding
nanopores, the starting point is the Boltzmann equation. A
short introduction to the Boltzmann equation as (one of) the
most general transport equations is given in Sect. 3. The
drift-diffusion equations and the Navier-Stokes equations are
derived from the Boltzmann equation in Sect. 4. In Sect. 5,
the derivation of a transport equation for confined structures
such as nanopores and ion channels is summarized.

After these modeling considerations, we summarize sim-
ulations based on these basic model equations in Sect. 6. The
emphasis here is on the recent works based on advanced mod-
els. Finally, the conclusions in Sect. 7 contain an outlook of
what can be expected in the future regarding the mathemati-
cal modeling and the numerical simulation of nanopores. As
nanopores are a young technology, theoretic understanding
is lagging behind experimental progress. Quantitative under-
standing, however, is important for the rational design of
nanopore sensors.
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Fig. 1 Schematic diagram (not to scale) of a nanopore. Three different
kinds of charge carriers (carrying +2, +1, or −1 elementary charges)
are shown here. The nanopore may generally have a more irregular
shape

2 Overview of experiments and modeling issues

2.1 Experimental progress

In recent years, it has become possible to manufacture sin-
gle pores with diameters in the nanometer range in a repro-
ducible manner. Although it was possible to manufacture
such small pores before by various methods, the earlier exper-
iments were not reproducible. However, well-defined diame-
ters and sizes and reproducible fabrication are a prerequisite
for well-defined functional devices that can act as sensors.
Artificial nanopores are now being used in prototypes for
next-generation DNA sequencing and for single-molecule
detection.

A schematic diagram of a nanopore is shown in Fig. 1.
In general, there are multiple species of molecules (ions or
larger molecules) that translocate the nanopore due to the
applied potential. A defining feature of a nanopore is that its
small diameter gives rise to a multiscale problem, as particle
transport in the longitudinal direction has characteristics dif-
ferent from transport in the transversal direction because of
the confinement (see Sect. 5).

Overviews of the development of experiments in this field
can be found in [1–3]. A major recent trend is the focus on
the fabrication of identical and well-defined nanopores.

Generally speaking, there are four combinations: One can
fabricate artificial nanopores or natural nanopores (ion chan-
nels) in artificial membranes (plastic, silicon) or in natural
membranes (lipid bilayers). Solid-state nanopores are very
stable, but cannot be fabricated repeatedly having the exact
same geometric shape. On the other hand, all α-hemolysin
pores—a protein—have the exact same geometric shape, but
the lipid bilayer they are embedded in is unstable. In order to
overcome the problem of lacking stability, a hybrid nanopore
has been presented in [4] and reproducible DNA-origami
structures are also been developed [5,6]. Because of this

steady experimental progress, nanopores are taking stage as
one of a few main experimental tools for controlling and
investigating single molecules and DNA strands.

2.2 Complications in modeling nanopores

Due to the importance of nanopores for controlling the
translocation of molecules and thus acting as a technolog-
ical building block, the question of their quantitative under-
standing arises. As this is a new technology, its theoretical
understanding is still in its infancy and simulations are com-
plicated by several facts and considerations:

– In measurements, ionic currents are recorded. The
molecular-dynamics approach, i.e., calculating the move-
ment of each atom, is still—despite continuous advances
—much too computationally expensive to calculate cur-
rents. The advantage of continuum models is that they
yield the currents, i.e., the measured quantities, immedi-
ately.

– In all experiments, there are multiple ionic species that
translocate the nanopore driven by an applied voltage
and/or by the background medium.

– The particle species interact with one another. They
also interact with the background medium that generally
translocates the nanopore as well.

– Therefore a self-consistent model of the system leads
to systems of equations and hence to a computationally
expensive numerical problem.

– The inside of a nanopore is a highly confined structure,
giving rising to a multiscale problem. In most nanopores,
the length (i.e., the longitudinal direction) is much larger
than the width (i.e., the transversal direction).

– The correct physical description in the form of appropri-
ate systems of equations is non-trivial, as the equations
must be coupled correctly. Many transport equations can
be derived from the Boltzmann transport equation as the
most general transport equation for particles, but at this
point it is unknown how to derive the correct systems
of equations from the Boltzmann transport equation for
multiple species of particles.

For these reasons, only continuum models, i.e., (systems
of) partial differential equations, are discussed here.

3 The Boltzmann equation

We start by considering an ensemble of M particles. We
define the probability density f (x,p, t) as the probability
that at time t particle j is at position x j (t) and has momen-
tum p j (t). Here x := (x1, . . . , xM ) and p := (p1, . . . , pM ).
Along the particle trajectories the density f does not change
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with time and therefore the total derivative vanishes, i.e.,

d

dt
f (x,p, t) = 0,

which yields the Liouville equation

∂t f + 1

m
p · ∇x f + qE · ∇p f = 0.

Here E := (E1, . . . , EM ) is the field acting on each particle
and we assume that E is a gradient field, i.e., E = −∇xV .

Using the Hamiltonian

H(x,p) := 1

2m
|p|2 + qV (x, t)

and the Poisson bracket

{g, h} := ∇xg · ∇ph − ∇pg · ∇xh,

we can write the Liouville equation simply as

∂t f + { f, H} = 0.

The probability density f in the Liouville equation is a
function of 6M + 1 variables and therefore not amenable to
computations. In order to reduce the number of variables and
thus to arrive at a feasible model, we make further assump-
tions that lead to the BBGKY hierarchy, named after Bogoli-
ubov, Born, Green, Kirkwood, and Yvon. The idea is to
replace the Liouville equation by an effective one-particle
equation via a mean-field approximation. We assume that
the field E is given by an external field Eext and the sum
of two-particle interactions, i.e., the field exerted on the j th
particle is

E j (x, t) = Eext(x j , t)+
∑

k �= j

Eint(x j , xk), (1)

where Eint(x j , xk) gives the interaction of two particles via,
e.g., the Coulomb force.

This effective one-particle equation is the Vlasov equation

∂t F + v · ∇x F + q

m
Eeff · ∇vF = 0 (2)

and can be derived from the Liouville equation. Here the
effective field is

Eeff(x, t) := Eext(x, t)+
∫

R3

n(x∗, t)Eint(x, x∗)dx∗, (3)

and F(x, v, t) is the particle number density in phase space,
i.e., the number of particles per unit volume in an infinitesi-
mal neighborhood of (x, v) at time t . The number density n

in position space is defined as

n(x, t) :=
∫

R3

F(x, v, t)dv

and it is interpreted as the number of particles per unit volume
in an infinitesimal neighborhood of x at time t .

Importantly, the Vlasov Eq. (2) has the form of a single-
particle Liouville equation. Many-body physics enter the
model only via the effective field Eeff after the mean-field
approximation. Equation (2) has the characteristics

ẋ = v, (4a)

v̇ = q

m
Eeff(x, t) (4b)

and they are the trajectories of the particles moving in the
field Eeff .

The Vlasov equation is a macroscopic description of the
motion of many-particle systems under the assumption of
weak interactions caused by a long-range force. This implies
that it does not account for scattering of particles due to
strong short-range forces. For systems where scattering is
important, it is only a useful model on a time scale much
shorter than the mean time between consecutive scattering
or collision events.

It is important to note that the Vlasov equation only
accounts for long-range interactions. Short-range interac-
tions such as collisions between particles and collisions of
a particle with the background environment are neglected.
Collisions are events where particles are instantaneously
scattered from one state into another so that their velocity
vector (and consequently their momentum and wave vec-
tors) change extremely fast, while the position changes only
slowly.

We now derive a generalization of the Vlasov equation that
includes long-range interactions and a statistical account of
scattering events. The following derivation was first made by
Ludwig Boltzmann in 1872 where he considered equilibrium
phenomena in dilute gases. We start by noting that the rate of
change of the number density F(x, v, t) of the ensemble due
to the convection caused by the effective field Eeff vanishes
along the characteristics (4) when collisions are neglected,
i.e.,

(
∂F

∂t

)

conv
= 0.

When collisions are included, we postulate that the rate of
change of the number density F due to convection and the
rate of change of F due to collisions are equal, i.e.,
(
∂F

∂t

)

conv
=
(
∂F

∂t

)

coll
.
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This yields

∂t F + v · ∇x F + q

m
Eeff · ∇vF =

(
∂F

∂t

)

coll
,

where Eeff is given by (3).
We now model and define the scattering rate s. The rate

P(x, v′ �→ v, t)

is the rate that a particle with position x changes its velocity v′
to v at time t due to a scattering event. It is assumed that
it is proportional to the occupation probability F(x, v′, t)
of the state (x, v′) at time t . Furthermore, also to account
for the Pauli principle, it is assumed to be proportional to
1 − F(x, v, t), which is the probability that the target state
(x, v) is unoccupied at time t . This yields the model

P(x, v′ �→ v, t) = s(x, v′, v)F(x, v′, t)
(
1 − F(x, v, t)

)
,

(5)

where s is the scattering rate. More precisely, s(x, v′, v)dv′
is the transition rate that a particle with position x changes
its velocity v′ in the volume element dv′, i.e., around v′, to
the velocity v. The model of the scattering rate obviously
depends on the physical situation under consideration and an
abundance of scattering mechanisms are known.

Using this model for the rate P , we can now give an expres-
sion for the collisions

(
∂F
∂t

)
coll. The rate of change of the

number density F(x, v, t) due to collisions is given by the
sum of the rates of particles being scattering from all possi-
ble states (x, v′) into the target state (x, v) at time t minus
the sum of the rates of the particles being scattering from the
state (x, v) into any possible state (x, v′) at the same time.
This yields
(
∂F

∂t

)

coll
(x, v, t)

=
∫

R3

P(x, v′ �→ v, t)− P(x, v �→ v′, t)dv′.

Inserting (5) into this expression and defining

Q(F) :=
(
∂F

∂t

)

coll

yields

Q(F)(x, v, t)

=
∫

R3

s(x, v′, v)F ′(1 − F)− s(x, v, v′)F(1 − F ′)dv′,

where F := F(x, v, t) and F ′ := F ′(x, v′, t). The opera-
tor Q is called the collision operator and Q(F) the collision
integral.

In summary, we find the Boltzmann equation

∂t F + v · ∇x F + q

m
Eeff · ∇vF = Q(F) (6)

for all x ∈ R
3, for all v ∈ R

3, and for all times t > 0,
where Eeff is given by (3). When the Coulomb force is used
as the model for the long-range interactions via the Pois-
son equation, the resulting system of equations is called the
Boltzmann–Poisson system. The self-consistent field causes
a nonlinearity and the collision integral Q(F) introduces
another quadratic nonlinearity which is nonlocal in the veloc-
ity direction. A good reference for the Boltzmann equation
is [7].

4 Macroscopic approximations to the Boltzmann
equation

Macroscopic (fluid dynamic type) equations can be derived
from the Boltzmann Eq. (6) in regimes where the collision
operator Q is dominant. We write the Boltzmann equation
for such regimes as

∂t F(x, v, t)+ v · ∇x F + q

m
Eeff · ∇vF

= 1

ε
Q(F), 0 < ε 	 1. (7)

Here the small dimensionless parameter ε denotes the mean
free path between collisions relative to the length scale under
consideration, i.e., collision events are very frequent for ε 	
1. The key to finding equations for macroscopic densities are
quantities which are conserved in the collision process, so
called collision invariants.

We have to distinguish between elastic collisions between
particles of the same species conserving mass, momentum,
and energy on the one hand and inelastic collisions, where
momentum and energy are exchanged with a background, on
the other hand. Thus we write the collision operator Q(F) as

Q = Qel + Qinel,

where the elastic collision operator Qel conserves mass,
momentum and energy, i.e.,

∫ (
1,mv,m

|v|2
2

)
Qel(F)dv = (0, 0, 0)

holds for all density functions F , and the inelastic operator
Qinel only satisfies
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∫
Qinel(F)dv = 0 ∀F.

Accordingly, we consider the macroscopic (fluid) densi-
ties (ρ, u, θ) for mass, velocity, and temperature given by

ρ(x, t) =
∫

F(x, v, t)dv,

ρu(x, t) =
∫
vF(x, v, t)dv,

(
3

2
kBθ + m

2
|u|2
)
ρ(x, t) =

∫
m

2
|v|2 F(x, v, t)dv.

Integrating the Boltzmann Eq. (7) against the correspond-
ing powers of the velocity vector v gives the balance laws for
particle density, momentum, and energy of the form

∂t

⎛

⎝
ρ

mρu
ρ
2 (m|u|2 + 3kBθ)

⎞

⎠+
⎛

⎝
∇x · (ρu)
∇x ·Φp

∇x · ϕe

⎞

⎠−
⎛

⎝
0

qρE
2qρE · u

⎞

⎠

= 1

ε

⎛

⎜⎝
0∫

mvQineldv
∫ m|v|2

2 Qineldv

⎞

⎟⎠ . (8)

Equation (8) is not closed, since it still contains the higher
moments of the transport operator given by the 3 × 3 matrix
Φp = ∫ mvv�Fdv and the vector ϕe = ∫ m

2 |v|2vFdv.
These closure terms have to be expressed in terms of the

primary variables (ρ, u, θ) via asymptotic expansions of the
solution of the kinetic Eq. (7) in the small parameter ε. The
procedure consists of a functional expansion of the form

F(x, v, t) = ψε(v, ρ(x, t), u(x, t), θ(x, t)),

where the shape function ψε is expanded into

ψε = ψ0 + εψ1 + · · · .

This leads in zeroth order to the so called hydrodynamic equa-
tions and in first order to the Navier–Stokes equations.

In the absence of inelastic collisions, this has been carried
out originally by Maxwell [8]. More modern derivations for
different collision operators can be found in the books [7,9].
The results are closure terms of the form

Φp = mρuu� − ρP,

ϕe = ρue − ρPu + ερS,

with the energy e, the energy stress tensor P , and the heat
flux S given by

e := 3

2
kBθ + m

2
|u|2, (9a)

P := −
(

kBθ + 2εmκ

3
∇x · u

)
I

+ εmκ(∇x u� + (∇x u�)�), (9b)

S := −ν∇x (kBθ). (9c)

Here I is the 3×3 identity matrix and � denotes the transpose
of a vector or matrix. κ is the viscosity and ν is the heat
conduction in the fluid. The terms on the right side of (8),
due to inelastic collisions with the background, depend on the
relative size of the elastic and inelastic collision mechanisms.

It has been shown in [10,11] that they can be approximated
by relaxation terms of the form

(1

ε

∫
mvQineldv,

1

ε

∫
m|v|2

2
Qinel

)
=
(
− m

τp
ρu,− m

τe
ρe
)

in an appropriate regime. This gives the Navier-Stokes type
system

∂t

⎛

⎝
ρ

mρu
ρe

⎞

⎠+
⎛

⎝
∇x · (ρu)

∇x · (mρuu� − ρP)
∇x · (ρue − ρPu + ερS)

⎞

⎠−
⎛

⎝
0

qρE
2qρE · u

⎞

⎠

= −
⎛

⎜⎝
0

m
τp
ρu

1
τe
ρe

⎞

⎟⎠ , (10)

with the energy e, the stress tensor P , and the heat flux S
given by (9).

Various approximations to the system (10) are important
and are discussed in the following.

The hydrodynamic equations. Disregarding the O(ε) terms
in (10) and (9) gives the (hyperbolic) hydrodynamic sys-
tem with P = −kBθ I , ∇x · (ρP) = −kB∇x (ρθ), and
ρeu−ρPu = ρ( 5

2 kBθ+ m
2 |u|2)u, which results in the hydro-

dynamic system

∂t

⎛

⎝
ρ

mρu
ρe

⎞

⎠+
⎛

⎝
∇x · (ρu)

∇x · (mρuu�)+ kB∇x (ρθ)

∇x · (ρ( 5
2 kBθ + m

2 |u|2)u)

⎞

⎠

−
⎛

⎝
0

qρE
2qρE · u

⎞

⎠ = −
⎛

⎜⎝
0

m
τp
ρu

1
τe
ρe

⎞

⎟⎠ . (11)

The energy transport system. Assuming small velocities,
i.e., u = O(ε), considering much larger time scales, i.e.,
t1 = t/ε and ∂t = ε∂t1 , replaces the momentum balance
in (11) in the limit ε → 0 by the constitutive relation
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kB∇x (ρθ) − qρE = − m
τp
ρu and yields the energy trans-

port system

∂t1

(
ρ

3
2ρkBθ

)
+
( ∇x · (ρu)

∇x · ( 5
2 kBθρu)

)
−
(

0
2qρE · u

)

= −
(

0
3

2τe
ρkBθ

)
, (12a)

ρu = τp

m

(
qρE − kB∇x (ρθ)

)
. (12b)

The drift-diffusion equations. Finally, the drift-diffusion
equations, which are widely used for conventional semicon-
ductor device simulation, are obtained by neglecting fluc-
tuations in the temperature θ , i.e., by setting θ to a (given)
constant and solving only the particle conservation equation

∂t1ρ + ∇x · (μqρE − D∇xρ) = 0 (13)

with

μ = τp

m
, D = τp

m
kBθ.

From a practical point of view, the mobilities μ and the tem-
perature θ can usually be measured, and the relaxation times
τp and τe have to be inferred from measurements.

5 A transport equation for confined structures derived
from the Boltzmann equation

In this section, a transport equation for confined structures is
derived. Throughout [12], the calculations were performed
using dimensionless variables and the theoretical feasibil-
ity of this approach was demonstrated. Here we extend the
derivation of the transport equation to variables with units.
These calculations yield the expressions for the fluxes in the
resulting diffusion-type equation that can be applied to real-
world problems. At the same time, the present calculations
provide a verification of the correctness of the derivation by
showing that all the physical units are consistent.

The starting point is the 3D Boltzmann equation with a
suitable scattering operator and a suitable scaling of the con-
fining potential. The scaling is chosen so that transport and
scattering occur in the longitudinal direction, while the parti-
cles are confined in the two transversal directions. The result
is a diffusion-type equation for the concentration and equa-
tions for the fluxes as functions of position in the longitudinal
direction and local energy.

The transport coefficients depend on the geometry that is
given by an arbitrary harmonic confinement potential. An
important feature of the resulting transport equation is that
its coefficients are given explicitly. This has the important

computational consequence that the six position and momen-
tum dimensions of the original 3D Boltzmann equation are
reduced to a 2D problem.

The applications are any geometrically complex struc-
tures, where transport occurs in a longitudinal direction and
confinement in two transversal directions. Of course, this
includes nanopores and ion channels.

5.1 The Boltzmann equation as the starting point

The starting point is the Boltzmann transport equation in the
form

∂t f + {E, f }X P + Q[ f ] = 0, (14)

where the Poisson bracket, or commutator, is defined as

{g, f }X P := ∇P g · ∇X f − ∇X g · ∇P f. (15)

Here f (X, P, t) is the kinetic particle density, X ∈ R
3 is

position, P ∈ R
3 is momentum, t is time, E(X, P) is the

energy, and Q is the scattering operator. The energy is given
by

E(X, P) := V (X)+ |P|2
2m

.

Three-dimensional structures confined in two dimensions
with one-dimensional transport are modeled here. Therefore
we split position X and momentum P into

X = (x, y) = (x, y1, y2),

P = (p, q) = (p, q1, q2),

where x is the longitudinal direction of charge transport and
y1 and y2 are the two transverse directions of confinement.
Accordingly, p is the momentum in the longitudinal direction
and q1 and q2 are the momenta in the transverse directions.
The potential V determines the geometry of the structure and
it has the form

V (x, y) = V0(x)+ V1(x, y).

We also split the energy E into two contributions from the
longitudinal and transverse directions, i.e.,

E(X, P) = Ex (x, p)+ Ey(x, y, q),

Ex (x, p) := V0(x)+ |p|2
2m

,

Ey(x, y, q) := V1(x, y)+ |q|2
2m

.
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The units of these variables are

[t] := s,

[Xi ] := m ∀i ∈ {1, 2, 3},
[x] = m,

[yi ] = m ∀i ∈ {1, 2},
[Pi ] := kg · m

s
∀i ∈ {1, 2, 3},

[p] = [v] = kg · m

s
,

[qi ] = [wi ] := kg · m

s
∀i ∈ {1, 2},

[E] = J = kg · m2

s2 ,

[ f ] := 1

[X1][X2][X3]
1

[P1][P2][P3] = s3

kg3 · m6
,

[∂t f ] = s2

kg3 · m6
.

Therefore the Poisson bracket has the units

[{E, f }X P ] = [E][ f ]
[X1][P1] = s2

kg3 · m6
.

The scattering operator Q is a relaxation operator defined
as

Q[ f ](x, y, p, q, t) := 1

τ

(
f −M(p)

u f (x, Ey(x, y, q), t)

N (x, Ey(x, y, q))

)
,

(16)

where M(p) is a Maxwellian distribution of the form

M(p) := c exp

(
− |p|2

2mkT

)

such that
∫

R3

M(p)d p = 1

holds. Here τ is the relaxation time, c is a constant, m is
the particle mass, k is the Boltzmann constant, and T is the
temperature. Furthermore, N is the density of states

N (x, η) :=
∫
δ(Ey(x, y, q)− η)dyq (17)

and u f is the function

u f (x, η, t) :=
∫
δ(Ey(x, y, q)− η) f (x, y, p, q, t)dypq

defined such that the scattering operator Q conserves the
transverse energy.

The units of these variables and constants are

[τ ] = s,

[M] = 1

[p] = s

kg · m
,

[c] = 1

[p] = s

kg · m
,

[N ] = [y1][y2][q1][q2]
[E] = kg · m2,

[u f ] = [ f ][y1][y2][p][q1][q2]
[E] = s2

kg · m3 ,

[Q( f )] = [ f ]
[τ ] = s2

kg3 · m6

by noting that [δ( f )] = 1/[ f ]. The units in (16) are consis-
tent iff [ f ] = [Mu f /N ], which is easily verified.

In [12, Sect. 2.2], all variables were scaled and trans-
formed into a dimensionless formulation. Here, however, we
only scale the confinement direction y and the time t by set-
ting

ys := y

ε
, ts := εt, [ε] := 1.

As usual, we simplify notation by using the same variable
names as before the scaling. In order to be consistent with
the notation in [12], we set v := p and w := q, but note that
v and w denote momenta.

Using this notation, the Boltzmann equation becomes

∂t f + {Ex + Ey, f }xp + {Ey, f }yq + Q[ f ] = 0. (18)

The units in this equation are consistent, since

[{Ex + Ey, f }xp] = [{Ey, f }yq ] = [E][ f ]
[x][p] = s2

kg3 · m6
.

5.2 The Chapman–Enskog expansion

The linear relaxation operator Q in (16) is a projection. We
define a projection operator P by

P[ f ](x, y, v, w, t) := ρ f (x, Ey(x, y, w), t)

N (x, Ey(x, y, w))
M(v), (19a)

ρ f (x, η, t) :=
∫
δ(Ey(x, y, w)− η)

· f (x, y, v, w, t)dyvw. (19b)

A straightforward calculation checks that P is indeed a
projection operator, i.e., that P2 = P holds. Furthermore,
[P( f )] = [ f ].
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Hence the relaxation operator Q is a projection operator,
since Q = I − P holds, where I is the identity. The projec-
tion P projects onto the linear manifold of functions which
are multiples of the Maxwellian M(v) and depend on y andw
only through the energy Ex (x, y, w).

The Chapman–Enskog expansion consists of deriving the
asymptotic form of the Boltzmann equation in local coor-
dinates on this manifold. To this end, we split the density
function f (x, y, v, w, t) into

f = f0 + ε f1,

where

f0(x, y, v, w, t) := P[ f ](x, y, v, w, t),

f1(x, y, v, w, t) := 1

ε
(I − P)[ f ](x, y, v, w, t).

Of course, [ f ] = [ f0] = [ f1]. Then we split the evaluation
Eq. (18) by applying the projections P and I−P . After some
calculations, this yields the system

ε∂t f0 + P[{Ex + Ey, f0 + ε f1}xv] = 0, (20a)

ε2∂t f1 + (I − P)[{Ex + Ey, f0 + ε f1}xv]
+ 1

ε
{Ey, f0 + ε f1}yw + 1

τ
f1 = 0. (20b)

It is simplified by using various properties of the projection P
and the Poisson bracket, resulting in

ε∂t f0 + P[{Ex + Ey, ε f1}xv] = 0, (21a)

ε2∂t f1 + {Ex + Ey, f0 + ε f1}xv

− P[{Ex + Ey, ε f1}xv] + 1

ε
{Ey, ε f1}yw + 1

τ
f1 = 0. (21b)

Equation (21a) describes the evaluation on the kernel mani-
fold of the operator Q, and Eq. (21b) describes the evolution
on the orthogonal complement. The macroscopic approxima-
tion is obtained by dropping the O(ε) terms in (21b). This
means that the term ε f1 stays small for all times assuming
that we start on the kernel manifold, i.e., ε f1 = 0 holds at
t = 0. This gives the system

∂t f0 + P[{Ex + Ey, f1}xv] = 0, (22a)

{Ex + Ey, f0}xv + {Ey, f1}yw + 1

τ
f1 = 0. (22b)

The consistency of the units is seen from comparing with
(18) and noting that [P( f )] = [ f ].

5.3 The conservation law

The first equation in the system, (22a), can be written as
a conservation law for the unknown density ρ f (x, η, t). To
verify this, Eq. (22a) is integrated against the test function
ψ = δ(Ey(x, y, w)− η) with respect to y, v, and w yielding

∂tρ f0(x, η, t)+Φ(x, η, t) = 0, (23)

where

Φ(x, η, t) :=
∫
δ(Ey(x, y, w)− η){Ex + Ey, f1}xvdyvw.

This is indeed a conservation law, since

∫
Φ(x, η, t)dxη =

∫
{Ex + Ey, f1}xvdxyvw = 0.

Hence it should be possible to writeΦ in divergence form as
Φ = ∇x · F x + ∂ηFη.

In order to find the fluxes F x and Fη, we integrate
Φ(x, η, t) against a test function ψ(x) and calculate
∫
ψ(x)Φ(x, η, t)dx

=
∫
ψ(x)∇x · (δ(Ey − η)

v

m
f1)

︸ ︷︷ ︸
=F x (x,η,t)

dxyvw

+
∫
ψ(x) ∂η

(
δ(Ey − η)(∇x V1 · v

m
) f1
)

︸ ︷︷ ︸
=Fη(x,η,t)

dxyvw. (24)

This equation is the weak definition of the fluxes F x and Fη.
Therefore the conservation law for the mesoscopic density

ρ f0 is

∂tρ f0(x, η, t)+ ∇x · F x (x, η, t)+ ∂ηFη(x, η, t) = 0 (25)

with the fluxes

F x (x, η, t) :=
∫
δ(Ey − η)

v

m
f1dyvw, (26a)

Fη(x, η, t) :=
∫
δ(Ey − η)(∇x V1 · v

m
) f1dyvw. (26b)

The density ρ f0 in (25) depends on the free energy η = Ey

and hence the resulting model is similar to a SHE (spherical-
harmonics expansion) model [13] for the Boltzmann equa-
tion with the difference that only part of the energy appears
as an independent variable.

Of course, the challenge is to compute the fluxes F x

and Fη. In other words, the density f1 from (22b) must
be computed for a given f0 of the form f0(x, y, v, w, t) =
M(v)ρ f0(x, Ey, t)/N (x, Ey).
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Equations (25) and (26) imply that the mesoscopic equa-
tion forρ f0 will contain second-order derivatives with respect
to x and η. This raises the question of well-posedness of
equation (25), which is solved by an entropy estimate for the
system (see Proposition 1 below).

The units in (25) and (26) are consistent. By definition
(19b), the unit of ρ f0 is

[ρ f0 ] = [ f ][y][v][w]
[E] = s2

kg · m3 .

Since ρ f0(x, η, t) is a concentration per position and energy,
we also expect

[ρ f0 ] = 1

[x][E] = s2

kg · m3 .

The units of the fluxes are

[F x ] = [v][ f1][y][v][w]
[E][m] = s

kg · m2 ,

[Fη] = [V1][v][ f1][y][v][w]
[E][x][m] = J · s

kg · m3 = 1

m · s
.

In summary, we have

[∂tρ f0 ] = [Φ] = [∇x · F x ] = [∂ηFη] = s

kg · m3

for the units in (23) and (25).

5.4 The entropy estimate

In the next step, an entropy estimate, Proposition 1, is shown.
It was shown in [12] that there is a convex functional of the
density ρ, an entropy, which decays in time. The entropy
estimate implies that the system (22) is well-posed.

We start from the system (22) and we drop the subscript
f0 of the mesoscopic density ρ f0 from here on for notational
simplicity.

After defining the two linear operators L1 and L2

L1[ f1](x, η, t) :=
∫
δ(Ey(x, y, w)− η) ·

· {Ex + Ey, f1}xvdyvw, (27a)

L2[ρ](x, y, v, w, t) :=
{
Ex + Ey,M(v)

ρ(x, Ey, t)

N (x, Ey)

}

xv
(27b)

with the units

[L1( f1)] = [E][ f1][y][v][w]
[E][x][v] = s

kg · m3 ,

[L2(ρ)] = [E][M][ρ]
[N ][x][v] = s2

kg3 · m6
,

the system (22) becomes

∂tρ(x, η, t)+ L1[ f1](x, η, t) = 0, (28a)

L2[ρ](x, y, v, w, t)+ {Ey, f1}yw + 1

τ
f1 = 0. (28b)

The operator L1 maps functions of the form f1(x, y, v,
w, t) to functions of the form ρ(x, η, t), while L2 operates
in the opposite direction. The operator L2 is related to L1 by
the following adjoint property.

Lemma 1 (adjoint property) Let Ladj
1 denote the adjoint of

L1 with respect to the L2 inner product. Then the opera-
tors L1 and L2 are related by the equation

L2[ρ](x, y, v, w, t) = −ce−(Ex +Ey)/(kT )

· Ladj
1

[
e(V0(x)+η)/(kT )ρ(x, η, t)

N (x, η)

]
(x, y, v, w, t).

Furthermore the identity

�
(∫

e(Ex +Ey)/(kT ) f ∗{Ey, f }ywdyw
)

= 0 ∀x

holds for all complex functions f (y, w), where � denotes
the real part.

Using this lemma, the system (28) takes the form

∂tρ(x, η, t)+ L1[ f1](x, η, t) = 0, (29a)

−ce−(Ex +Ey)/(kT )

·Ladj
1

[
e(V0(x)+η)/(kT )ρ(x, η, t)

N (x, η)

]
(x, y, v, w, t)

+ {Ey, f1}yw + 1

τ
f1 = 0. (29b)

This form of the system is important for two reasons. First, it
makes it possible to prove the entropy estimate, Proposition 1
below, and therefore ensures that the resulting diffusion sys-
tem is well-posed. Second, solving for f1 in terms of ρ in
the second equation (29) is nontrivial and must to be done
numerically in general. We will make sure that this numerical
approximation obeys the same entropy estimate by using the
form (29).
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Proposition 1 (entropy estimate) Solutions (ρ, f1) of the
system (29) satisfy the entropy estimate

1

2
∂t

∫
e(V0(x)+η)/(kT )

N (x, η)
|ρ(x, η, t)|2dxη

= − 1

cτ

∫
e(Ex +Ey)/(kT )| f1|2dxyvw ≤ 0.

5.5 Eliminating the lateral velocity

The Poisson bracket in the definition (27b) of L2[ρ] simpli-
fies to

L2[ρ](x, y, v, w, t)

= M(v)
v

m
·
(

∇x

(
ρ(x, Ey, t)

N (x, Ey)

)

+ ρ(x, Ey, t)

N (x, Ey)
∇x

V0 + V1

kT

)
.

Furthermore, the Poisson bracket {Ey, f1}yw does not operate
on the velocity component v, and hence Eq. (28b) allows a
solution of the form

f1(x, y, v, w, t) = M(v)
v

m
· g(x, y, w, t),

where the function g(x, y, w, t) ∈ R
d is vector valued. Cor-

respondingly, we define the operators Λ1 and Λ2 as

Λ1[g](x, η, t) := L1[M(v)
v

m
· g](x, η, t), (30a)

L2[ρ](x, y, v, w, t) = M(v)
v

m
·Λ2[ρ](x, y, w, t), (30b)

Λ2[ρ](x, y, w, t) := ∇x

(
ρ(x, Ey, t)

N (x, Ey)

)

+ ρ(x, Ey, t)

N (x, Ey)
∇x

V0 + V1

kT
. (30c)

With these definitions, the system (28) becomes

∂tρ(x, η, t)+Λ1[g](x, η, t) = 0, (31a)

Λ2[ρ](x, y, w, t)+ {Ey, g}yw + 1

τ
g = 0. (31b)

The units of the new variables are

[g] = [m][ f1]
[M][v] = s3

kg2 · m6
,

[Λ1(g)] = [L1( f1)] = s

kg · m3 ,

[Λ2(ρ)] = [L2(ρ)] [m]
[M][v] = s2

kg2 · m6

so that all terms in (31b) have the unit s2 · kg−2 · m−6.
The adjoint property still holds.

Lemma 2 (adjoint property) The operatorΛ1 is of the form

Λ1[g](x, η, t) = kT

m

∫
∇x · (δ(Ey − η)g(x, y, w, t)

)

+ ∂η
(
δ(Ey − η)∇x V1(x, y) · g

)
dyw

and the operatorΛ2 is given in terms of the adjoint ofΛ1 by

Λ2[ρ](x, y, w, t) = − m

kT
e−(V0+Ey)/(kT ) ·

·Λadj
1

[
e(V0+η)/(kT ) ρ(x, η, t)

N (x, η)

]
(x, y, w, t).

Furthermore the identity

�
( ∫

e(Ex +Ey)/(kT )gH {Ey, g}ywdyw
)

= 0 ∀x (32)

holds for all complex functions g(y, w).

5.6 Energy and angle variables

To obtain a closed equation for the charge concentration
ρ(x, η, t), the second Eq. in the system must be solved for g
in terms of ρ and substituted into the first equation. For a
general confinement potential V1(x, y), it is only possible to
do this approximatively. The approximation takes the form
of a series expansion, i.e., a Galerkin solution, of the second
equation in [12].

To make the calculations tractable, we use a bijective
variable transformation mapping the 4-dimensional vector
(y, w) to the scalar energy u = Ey(x, y, w) and a 3-
dimensional angular variable θ . In other words, we will find
an x-dependent variable transformation (u, θ) = Γ (x, y, w)
and its functional inverse (y, w) = Ω(x, u, θ) satisfying

Ey(x,Ω(x, u, θ)) = u,

Γ (x,Ω(x, u, θ)) = (u, θ),

Ω(x, Γ (x, y, w)) = (y, w)

for all x ∈ R, y, w ∈ R
2, u ∈ R, and θ ∈ R

3. Employing the
transformation (y, w) = Ω(x, u, θ) still to be determined,
we define the operator A as

g1(x, u, θ, t) := g(x,Ω(x, u, θ), t), (33a)

A[g1](x, η, t) := Λ1[g](x, η, t), (33b)

where

[g1] = [g] = s3

kg2 · m6
,

[A(g1)] = [Λ1(g)] = s

kg · m3 .
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To find the system (31) after the transformation (y, w) =
Ω(x, u, θ), we have to transform the operatorsΛ1,Λadj

1 (after

using Lemma 2 to replace Λ2 by Λadj
1 ), and {Ey, g}yw.

For the Jacobian matrices ∂Ω and ∂Γ , we introduce the
notation

∂Ω(x, u, θ) = ∂(y, w)

∂(u, θ)
=
(
∂y
∂u

∂y
∂θ

∂w
∂u

∂w
∂θ

)
=:
(
ω11 ω12

ω21 ω22

)
,

∂Γ (x, y, w) = ∂(u, θ)

∂(y, w)
=
(
∂u
∂y

∂u
∂w

∂θ
∂y

∂θ
∂w

)
=:
(
γ11 γ12

γ21 γ22

)
.

After several calculations (see [12, Sect. 4.2]), the system
(31) becomes

∂tρ(x, η, t)+ A[g1](x, η, t) = 0, (34a)

− m

kT
e− V0+u

kT Aadj
[

e
V0+η

kT
ρ(x, η, t)

N (x, η)

]
(x, u, θ, t)

+ σ(S · ∇θ )g1 + σ

τ
g1(x, u, θ, t) = 0, (34b)

where

A[g1](x, η, t) = kT

m

∫
∇x · (σg1(x, η, θ, t)

)

+ ∂η
(
σ(x, η, θ)∇1V1(x,Ωy(x, η, θ)) · g1

)
dθ,

S(x, u, θ) = (γ21γ
�
12 − γ22γ

�
11)(x,Ω(x, u, θ),

σ (x, u, θ) = |det(∂Ω(x, u, θ))| .

The units are

[u] = [E] = kg · m2

s2 ,

[θ ] = 1,

[S] = [γ21γ
�
12] = [γ22γ

�
11] = [θ ][u]

[y1][w1] = 1

s
,

[σ ] = [y][w]
[u][θ ] = kg · m2,

and hence all three terms in (34b) consistently have the unit
s2 · kg−1 · m−4.

5.7 Series expansions

The basis functions κK (θ), K ∈ K, are chosen as an ortho-
normal system satisfying

∫
κK (θ)

∗κK ′(θ)dθ = δK K ′ ,

where K is a multiindex varying in a 3-dimensional index
set K. We expand g1 into the basis functions by writing

g1(x, η, θ, t) =
∑

K∈K
κK (θ)G K (x, η, t).

We choose the units as

[G K ] := [g1] = s3

kg2 · m6
,

[κK ] := 1.

After the series expansion and with all units, the second
equation (34b) in the system becomes

m

kT
aK (x, η)

∗e−V0/(kT )∇x
(
eV0/(kT ) ρ

N

)

+ m

kT
AK (x, η)

∗e−η/(kT )∂η
(
eη/(kT ) ρ

N

)

+
∑

K ′∈K
CK K ′(x, η)G K ′(x, η, t) = 0 ∀K ∈ K, (35)

where

aK (x, η) := kT

m

∫
κK (θ)σ (x, η, θ)dθ, (36a)

AK (x, η) := kT

m

∫
κK (θ)σ (x, η, θ)

∇1V1(x,Ωy(x, η, θ))dθ, (36b)

CK K ′(x, η) :=
∫
κK (θ)

∗σ(x, η, θ)
(
(S · ∇θ )κK ′(θ)

+ 1

τ
κK ′(θ)

)
dθ, (36c)

S(x, η, θ) = (γ21γ
T
12 − γ22γ

T
11)(x,Ω(x, η, θ)), (36d)

σ(x, η, θ) = |det(∂Ω(x, η, θ))| . (36e)

The units are

[aK ] = kg · m4

s2 ,

[AK ] = kg2 · m5

s4 ,

[CK K ′ ] = kg · m2

s

and all the three terms in (35) have the unit s2 · kg−1 · m−4.
The 2-dimensional flux vector F x and the scalar flux Fη

are

F x = kT

m

∫
σg1(x, η, θ, t)dθ,

Fη = kT

m

∫
σ∇1V1(x,Ωy(x, η, θ)) · g1dθ.
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After the series expansion, they become

F x (x, η, t) = − m

kT

∑

K ,K ′∈K
aK (x, η)C

−1
K K ′(x, η)

·(aK ′(x, η)∗e− V0
kT ∇x

(
e

V0
kT
ρ

N

)

+ AK ′(x, η)∗e− η
kT ∂η

(
e
η

kT
ρ

N

))

and

Fη(x, η, t) = − m

kT

∑

K ,K ′∈K
AK (x, η)

T C−1
K K ′(x, η)

· (aK ′(x, η)∗e− V0
kT ∇x

(
e

V0
kT
ρ

N

)

+ AK ′(x, η)∗e− η
kT ∂η

(
e
η

kT
ρ

N

))
.

5.8 Harmonic confinement potentials and the variable
transformation

The formulas for the fluxes F x and Fη can be simplified
dramatically whenever the confinement potential V1(x, y) is
quadratic in y, i.e., when it is a harmonic potential at each x .
This means it is of the form

V1(x, y) = 1

2

(
y − b(x)

)�
B(x)

(
y − b(x)

)
, (37)

where y, b ∈ R
2 and the diagonal matrix B(x) is

B(x) =
(

B1(x) 0
0 B2(x)

)
.

Of course, we require that B1(x) > 0 and B2(x) > 0 for all x
so that the particles are indeed confined. Recalling [yi ] = m,
the units of the Bi are defined as

[Bi ] := kg

s2

such that [V1] = J.
We now define the variable transformation (y, w) =

Ω(x, η, θ) in two steps. In the first step, we transform
(y1, y2, w1, w2) to (r1, r2, θ1, θ2) using polar coordinates by
setting

y j =: b j +
√

2r j

B j
cos θ j , w j =: √2mr j sin θ j

where r j ∈ [0,∞), θ j ∈ [−π, π), [r j ] = J, and [θ j ] = 1 for
all j ∈ {1, 2}. The energy Ey becomes Ey(x, y, w) = r1 +r2.

In the second step, we define the transformation

η := r1 + r2, θ3 := r2 − r1

r2 + r1
,

r1 = η
1 − θ3

2
, r2 = η

1 + θ3

2
,

where η ∈ [0,∞) and θ3 ∈ [−1, 1]. Thus the energy Ey

becomes Ey(x, y, w) = η. Both transformations result in

(
y
w

)
= Ω(x, η, θ) =

⎛

⎜⎜⎜⎜⎝

b1 +
√
η(1−θ3)

B1
cos θ1

b2 +
√
η(1+θ3)

B2
cos θ2√

mη(1 − θ3) sin θ1√
mη(1 + θ3) sin θ2

⎞

⎟⎟⎟⎟⎠
.

After applying the transformationΩ , the volume elements
become

dyw = m√
B1 B2

dr1r2θ1θ2 = mη

2
√

B1 B2
dηθ1θ2θ3,

and hence

σ(x, η, θ) = |det(∂Ω(x, η, θ))| = mη

2
√

B1(x)B2(x)
,

N (x, η) =
∫
σ(x, η, θ)dθ = 4π2mη√

B1(x)B2(x)
.

With this definition of the transformation, the units are con-
sistent.

We choose the basis functions κK as

κK (θ) := 1

2π
eik1θ1+ik2θ2 Lk3(θ3), K = (k1, k2, k3),

where the Lk3(θ3) are the Legendre polynomials of degree k3

normalized in the L2-norm on the interval [−1, 1] and the
units are [κK ] = 1 and [Lk3] = 1.

With these definitions, the coefficients aK become

aK (x, η) = kT

m

∫
κKσdθ

=
√

2πkTη√
B1 B2

∫
κ∗

0κK dθ =
√

2πkTη√
B1 B2

δ0,K .

The coefficients AK become

AK (x, η) = πkTη

2
√

B1 B2
·

·
(1

4
η∂x (ln B1)δk2,0(δk1,−2

+ 2δk1,0 + δk1,2)(
√

2δk3,0 −√2/3δk3,1)

+ 1

4
η∂x (ln B2)δk1,0(δk2,−2

+ 2δk2,0 + δk2,2)(
√

2δk3,0 +√2/3δk3,1)

−√ηB1∂x b1δk2,0(δk1,−1 + δk1,1)L
−
k3

−√ηB2∂x b2δk1,0(δk2,−1 + δk2,1)L
+
k3

)
.
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To compute the coefficients CK K ′ , we note that

S(x, η, θ) =

⎛

⎜⎜⎝

−
√

B1(x)
m

−
√

B2(x)
m

0

⎞

⎟⎟⎠ .

After integration, the coefficients become

CK K ′(x, η) = m

8π2

η√
B1 B2

∫
e−ik1θ1−ik2θ2 Lk3(θ3)

·
(

−ik′
1

√
B1

m
− ik′

2

√
B2

m

+ 1

τ

)
eik′

1θ1+ik′
2θ2 Lk′

3
(θ3)dθ,

meaning that this particular choice of Galerkin basis func-
tions makes the matrix C(x, η) diagonal. This is of great
computational importance, as otherwise the matrix C(x, η)
would have to be inverted numerically at each grid point
(x, η). The elements of the inverse C−1

K K ′(x, η) are calcu-
lated as

C−1
K K ′(x, η) = 2τ

√
B1 B2

mη

1 + τ
(

k1

√
B1
m + k2

√
B2
m

)
i

1 + τ 2
(

k1

√
B1
m + k2

√
B2
m

)2 δK K ′ ,

whose unit is

[C−1
K K ′ ] = s

kg · m2 .

The expressions for the fluxes simplify to

F x (x, η, t) = − m

kT
a0(x, η)C

−1
00 (x, η)

·
(

a0(x, η)
∗e− V0

kT ∇x
(
e

V0
kT
ρ

N

)

+ A0(x, η)
∗e− η

kT ∂η
(
e
η

kT
ρ

N

))

and

Fη(x, η, t) = − m

kT

2∑

k1=−2

2∑

k2=−2

∞∑

k3=0

AK (x, η)C
−1
K K (x, η)

·
(
δ0,K a0(x, η)

∗e− V0
kT ∇x

(
e

V0
kT
ρ

N

)

+ AK (x, η)
∗e− η

kT ∂η
(
e
η

kT
ρ

N

))
.

Further simplifications yield the fluxes summarized in the
next section.

5.9 The diffusion-type equation for confined structures

It is quite surprising that explicit expressions for the fluxes
F x and Fη can be found in the case of harmonic confinement
potentials using this approach.

In summary, we have derived the conservation law

∂tρ(x, η, t)+ ∂x F x (x, η, t)+ ∂ηFη(x, η, t) = 0 (38)

with the fluxes F x and Fη given by

F x (x, η, t) = −4π2kT τη√
B1 B2

T1

− π2kT τη2

√
B1 B2

(
∂x (ln B1)+ ∂x (ln B2)

)
T2 (39)

and

Fη(x, η, t) = −π
2kT τη2

√
B1 B2

(
∂x (ln B1)+ ∂x (ln B2)

)
T1

− π2kT τη2

6
√

B1 B2

(
12m B1(∂x b1)

2

m+τ 2 B1
+12m B2(∂x b2)

2

m + τ 2 B2

+ 2η∂x (ln B1)∂x (ln B2)

+ η(3m + 8τ 2 B1)(∂x (ln B1))
2

m + 4τ 2 B1

+ η(3m + 8τ 2 B2)(∂x (ln B2))
2

m + 4τ 2 B2

)
T2 (40)

after defining

T1 := e−V0/(kT )∇x
(
eV0/(kT ) ρ

N

)
,

T2 := e−η/(kT )∂η
(
eη/(kT ) ρ

N

)
.

The confinement potential V is given by

V (x, y) = V0(x)+ V1(x, y),

where V0 is the applied potential and V1(x, y) has the form
(37).

The units in the transport Eq. (38) are

[ρ] = 1

[x][η] = 1

m · J
= s2

kg · m3 ,

[F x ] = s

kg · m2 ,

[Fη] = 1

m · s

so that all three terms have the unit s/(kg · m3).
This resulting equation is a diffusion equation because of

the first-order partial derivatives with respect to x and η in
the expressions for the fluxes (39) and (40). The resulting dif-
fusion matrix has automatically the right eigenvalues, since
the entropy estimate Proposition 1 holds.
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Importantly, numerical solutions of the diffusion-type
Eq. (38) can be calculated as fast as solutions of a two-
dimensional diffusion equation.

6 Simulation studies

After the overview of the modeling approaches in the pre-
vious Sects. 3, 4, and 5, simulation studies are summarized
here.

6.1 Using the drift-diffusion–Poisson system

The drift-diffusion equations have a long history under vari-
ous names. They are also known as the convection-diffusion
equations, the Fokker–Planck equations, the Nernst–Planck
equations, the scalar transport equation, and the Smolu-
chowski equations. They always describe—with minor dif-
ferences in the particular area—the transport of species of
charged particles governed by two effects: drift (due to an
electric field) and diffusion (due to a concentration gradient).
Then coupling the drift-diffusion equations with the Poisson
equation and solving iteratively ensures self-consistency. As
we have seen in Sect. 4, the drift-diffusion equations can be
derived from the Boltzmann equation.

The drift-diffusion–Poisson system [14,15] is the system

−∇ · (A∇V ) = q(C + p − n), (41a)

∂p

∂t
= −∇ · Jp/q, (41b)

∂n

∂t
= −∇ · Jn/(−q), (41c)

Jp/q = −Dp∇ p − μp p∇V, (41d)

Jn/(−q) = −Dn∇n + μnn∇V, (41e)

where V denotes the electric potential (and hence the elec-
tric field is −∇V ), A is the permittivity, n and p are the
concentrations of the free carriers, namely electrons n and
holes p, C is the concentration of fixed charges, q > 0 is
the elementary charge, and Jn and Jp are the densities of
the electron and hole electric currents, Dn and Dp are the
diffusion coefficients of electrons and holes, and μn and μp

are the mobilities of electrons and holes. Hence Jn/(−q)
and Jp/q are the particle currents of electrons and holes, for
which the continuity Eq. (41b) and (41c) hold.

The diffusion coefficients and the mobilities are related
by the Einstein relations

Dn = μn
kB T

q
,

Dp = μp
kB T

q
,

where kB is the Boltzmann constant and T is the absolute
temperature.

The first Eq. (41a) is the Poisson equation. The second and
third Eq. (41b) and (41c) are continuity equations meaning
that electrons and holes are conserved. The last two Eq. (41d)
and (41e) mean that the particle currents Jp/q and Jn/(−q)
are proportional to the gradients of the particle concentrations
(the diffusion part) and to the electric field −∇V (the drift
or advection part of the model), i.e.,

Jp/q = J diff
p + J drift

p ,

Jn/(−q) = J diff
n + J drift

n .

How are these four currents modeled? The current densi-
ties J diff

p and J diff
n of the diffusion process are proportional

to the concentration gradient and opposite in direction, since
the gradient points towards higher concentrations. Therefore
we have

J diff
p = −Dp∇ p,

J diff
n = −Dn∇n.

The electric field E = −∇V gives rise to the drift currents
J drift

p and J drift
n . The drift currents are the products of the car-

rier concentrations and the average drift velocities vp = μp E
and vn = −μn E . The drift of holes has the same direction as
the electric field, whereas the drift of electrons has opposite
direction. Furthermore, the drift velocities are proportional
to the electric field. This yields

J drift
p = pvp = μp pE = −μp p∇V, (42a)

J drift
n = nvn = −μnnE = μnn∇V . (42b)

In summary, these expressions for the four currents yield the
two current relations (41d) and (41e) for the particle currents
Jp/q and Jn/(−q).

The boundary ∂Ω of the domain Ω where the problem
(41) is posed commonly consists of a Dirichlet part ∂ΩD and
a Neumann part ∂ΩN with ∂ΩD ∩ ∂ΩN = ∅. Contacts give
rise to Dirichlet boundary conditions, whereas zero Neumann
boundary conditions are usually used everywhere else.

Existence and local uniqueness (whenever the Dirichlet
boundary conditions, i.e., the applied potentials are suffi-
ciently small) can be shown for the system (41). Existence
and local uniqueness for an extended system with interface
conditions whose size is determined in a self-consistent loop
were shown in [16].

Is the solution globally unique? It is not. There are reasons
why global uniqueness of the solution cannot be expected:

– There is numerical evidence that the solution is not unique
when large voltages are applied. It is usually observed
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that the numerical solution starts to oscillate between two
functions when the voltages are stepped up.

– There are also good reasons to expect the drift-diffusion
equations to fail to be a good model when the applied volt-
ages are too large or when the electron or hole currents are
too large. Recalling the derivation from the Boltzmann
equation in Sect. 4, we see that the drift-diffusion equa-
tions implicitly assume that velocities of the particles are
distributed according to a Maxwellian distribution, i.e.,
they are in thermal equilibrium. In other words, the con-
centrations p(x, t) and n(x, t) do not depend on velocity
or momentum. However, large applied voltages (yield-
ing large currents) result in particles with high speed and
these particles are obviously modeled insufficiently by a
Maxwellian distribution centered at v = 0.

Of course, the drift-diffusion–Poisson system has been
applied to the simulation of ion channels and artificial
nanopores as one of its many applications. It has become
the standard model for electro-diffusion in ion channels
and nanopores. References to works on the drift-diffusion–
Poisson system in various contexts are [14,16–19]; refer-
ences to works specific to ion channels and nanopores are
[20–29] among several others.

Numerical methods for the drift-diffusion–Poisson sys-
tem are well-known. The work by Scharfetter and Gummel
was motivated by applications of the drift-diffusion–Poisson
system to early semiconductor devices [30–33].

It is important to note that the drift-diffusion–Poisson sys-
tem neglects the background medium apart from the diffu-
sion constants and the mobilities of the particles in the back-
ground medium. In other words, the background medium is
assumed to be stationary and homogeneous. In particular, the
background medium is a homogeneous bulk in contrast to the
real situation where particles move from bulk conditions into
a highly confined geometry and then into a bulk again. These
limitations lead to the next section.

6.2 Using the drift-diffusion-Stokes–Poisson system

More recently, the effect of the background medium has
begun to be included in continuum models by adding the
Stokes equation for the background medium, i.e., water,
to the drift-diffusion–Poisson system, arriving at the drift-
diffusion–Stokes–Poisson system.

In [34], the drift-diffusion–Stokes–Poisson system in
cylindrical coordinates was used to simulate ionic flow
through a nanopore. In [35], the authors solved the drift-
diffusion–Stokes–Poisson system in two dimensions using
an arbitrary Lagrangian–Eulerian (ALE) method.

In [36], the authors coupled the Poisson–Boltzmann
equation with the Stokes equation. The nonlinear Poisson–
Boltzmann equation was solved in one-dimensional geome-

tries. Since the Poisson–Boltzmann equation can be obtained
from the drift-diffusion equations by assuming that the sys-
tem is in equilibrium, assumptions on the interaction of the
ions with the background medium are made.

In [37], the drift-diffusion–Poisson equations were cou-
pled with the Navier–Stokes equations in an axisymmet-
ric geometry. In [38], the authors used the drift-diffusion–
Stokes–Poisson system to investigate the cause for the high
ionic current through a single-walled carbon nanotube.

In [39], the drift-diffusion–Stokes–Poisson system was
used to investigate electrically gated nanopores and nanopores
acting as sensors. The system of equations used there is the
drift-diffusion–Poisson system

∇ · (εw∇ψ)+ q(C+ − C−) = 0, (43a)

q∇ · (−D+∇C+ − μ+C+∇ψ + C+u) = 0, (43b)

−q∇ · (−D−∇C− + μ−C−∇ψ + C−u) = 0, (43c)

where ψ is the electrostatic potential, εw the fluid permit-
tivity, C± are the ion concentrations, μ± the ion mobilities,
D± the ion diffusion coefficients, and u is the fluid velocity.
The fluid is modeled as an incompressible, Newtonian Stokes
flow governed by the Stokes divergence equations

−∇ p + γΔu − q(C+ − C−)∇ψ
− kB T ∇(C+ + C−) = 0, (44a)

∇ · u = 0, (44b)

where p is the pressure and γ the viscosity. Eqs. (43) and
(44) together constitute the drift-diffusion–Stokes–Poisson
system. A descreening effect interesting for sensors applica-
tions was found in the numerical results in [39].

Although the drift-diffusion–Stokes–Poisson system cap-
tures the physical properties of nanopores more realistically
than the drift-diffusion–Poisson system, it still does not take
the momenta of the particles into account. It makes the
assumption that the momenta of all particles are distributed
according to a Maxwellian distribution.

6.3 Using a transport equation for confined structures

The transport equation for confined structures discussed in
Sect. 5 was solved numerically. The significance of the
derivation in Sect. 5 for computations is that the (6 + 1)-
dimensional problem of the original Boltzmann equation
(three space dimensions and three momentum dimensions
and time) is reduced to a (2 + 1)-dimensional diffusion-type
problem (position and local energy and time), which can be
solved quickly. The significance for nanopores and ion chan-
nels is that the current can be calculated from the solution of
(38) immediately in contrast to molecular-dynamics calcula-
tions.
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Fig. 2 The simulated current through Gramicidin A versus experi-
ments as a function of the ionic concentration for applied potentials
of 25 mV and 100 mM

It is quite surprising that such a transport equation can be
derived at all and it is even more surprising that explicit for-
mulas for the geometry dependent fluxes can be given. These
fluxes play the role of geometry dependent transport coeffi-
cients. The advantage of this fact for calculating numerical
solutions is that the solutions can be calculated as fast as 2D
diffusion problems without any additional preprocessing or
other computational steps.

To calculate the current through realistic structures, an
approximate harmonic confinement potential must be con-
structed first. How to construct such a potential, i.e., how
to calculate the functions b1(x), b2(x), B1(x), and B2(x) in
Sect. 5.8, was discussed in [12]. These functions can also
be estimated from the geometries and potential walls to be
modeled. These coefficients then appear in the fluxes in (39)
and (40).

The transport Eq. (38) was applied to two structures,
namely Gramicidin A (an antibiotic) and the KcsA chan-
nel (a potassium channel). Very good agreement between
simulation and measurement was found (see Fig. 2).

6.4 Other approaches

The other main approach in addition to continuum mod-
els are molecular-dynamics simulations representing an
atomic approach. Nanopores have been simulated using the
molecular-dynamics approach (see, e.g., [40,41]). Although
molecular dynamics is indispensable for understanding bio-
molecules and great progress has been made in speeding it
up, it calculates the movement of each atom of the back-
ground medium and the results are known to depend on the
force field used.

An interesting alternative approach to continuum mod-
els is reviewed in [42]. There the authors use the varia-
tional formulation and constructed the total-energy func-
tional of a charge-transport system including the polar and
non-polar free energies of solvation and chemical-potential
related energy. They derive coupled Laplace–Beltrami and
Poisson–Nernst–Planck equations using the Euler–Lagrange
variation. The solution of these equations leads to the mini-
mization of total free energy.

7 Conclusions

Their quantitative understanding is still in its infancy. It can
be argued that the modeling of nanopores is more compli-
cated than, e.g., the one of semiconductor devices, since the
systems of equations become more involved.

Here an overview of the mathematical modeling and the
simulation of nanopores using continuum models was given.
The starting point was the Boltzmann equation, to which all
other transport models here can eventually be traced back.
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