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Existence, Uniqueness, and a Comparison of Nonintrusive Methods for the
Stochastic Nonlinear Poisson–Boltzmann Equation∗

Clemens Heitzinger† , Michael Leumüller† , Gudmund Pammer‡ , and Stefan Rigger§

Abstract. The stochastic nonlinear Poisson–Boltzmann equation describes the electrostatic potential in a ran-
dom environment in the presence of free charges and has applications in many fields. We show the
existence and uniqueness of the solution of this nonlinear model equation and investigate its regular-
ity with respect to a random parameter. Three popular nonintrusive methods, a stochastic Galerkin
method, a discrete projection method, and a collocation method, are presented for its numerical so-
lution. It is nonintrusive in the sense that solvers and preconditioners for the deterministic equation
can be reused as they are. By comparing these methods, it is found that the stochastic Galerkin
method and the discrete projection method require comparable computational effort and our results
suggest that they outperform the collocation method.
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1. Introduction. Approximating the solutions of stochastic partial differential equations
poses new challenges compared to partial differential equations (PDEs). One aspect that is
also of great practical importance is the development of numerical methods that separate the
spatial (physical) and the stochastic dimensions. Such methods have the advantage that both
theory and implementations for the deterministic versions of the equations can be reused for
discretizations of the spatial dimensions.

In recent years, the development of stochastic Galerkin methods has been of increasing
interest [1, 2, 3, 4, 5, 6, 7]. In this paper, we apply three popular nonintrusive methods to
the stochastic nonlinear Poisson–Boltzmann equation. A nonintrusive method is a method
that makes it possible to reuse existing theory and implementations for the deterministic
version of the equation, usually by separating the dimensions. Nonintrusive methods for
parametric and stochastic equations were discussed recently in [8, 9, 10]. While it is commonly
believed that Galerkin-type methods for stochastic partial differential equations always mix
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the spatial and stochastic dimensions necessitating the development of an entirely new theory
and implementation, this is, however, not true in general.

The model equation considered here, the nonlinear Poisson–Boltzmann equation, is an
important PDE in computational chemistry and related areas. It describes the electrostatic
potential in all situations where free charge carriers are present and in equilibrium. As a
nonlinear equation, it shows the generality of the numerical approach taken here. Linear
elliptic equations are of course included as a special case.

We first show the existence and uniqueness of solutions in an appropriate function space
for a class of stochastic elliptic partial differential equations including the stochastic Poisson–
Boltzmann equation. Subsequently we discuss regularity properties of the solution of the
stochastic Poisson–Boltzmann equation with respect to the random parameter. Recent work
regarding the existence and regularity of linear elliptic, parabolic, and hyperbolic PDEs de-
pending on countable random parameters includes [11, 12] as well as [13] for a class of semi-
linear elliptic PDEs, where the nonlinear term was modeled by a polynomial.

Then the numerical approach is developed. We have implemented these nonintrusive
methods in one and two spatial (physical) dimensions and discuss various numerical examples,
where both the operator and the forcing terms on the right-hand side are stochastic.

The rest of this work is organized as follows. Section 2 presents the model equation.
The existence of a unique solution is shown. In section 3 we show that regularity of the
data implies regularity of the solutions under certain assumptions. In section 4 we introduce
nonintrusive methods for this equation, which can be generalized to other nonlinear stochastic
partial differential equations. Section 5 tests and compares the Galerkin-type method to the
projection method and the collocation method by applying them to examples in one and
two spatial dimensions and up to three stochastic dimensions. We compare the methods by
discussing their errors and computational expenses. Finally, conclusions are drawn in section 6.

2. The stochastic Poisson–Boltzmann equation. We first discuss the model equation
and then show the existence of a unique solution.

2.1. A physical model. We consider a (spatial) domain U ⊂ Rd, d = 1, 2, 3, which
contains two species of free charge carriers, a positive and a negative one. The charge carriers
may be anions and cations in a liquid or electrons and holes in a semiconductor. Certain parts
of the domain are not accessible by the free charge carriers (see Figure 1), since they represent
impenetrable molecules (when modeling a liquid) or dielectric materials (when modeling a
semiconductor device).

The bulk concentrations of the two species of free charges are denoted by c+ and c−,
and we make the physically reasonable assumption that c+ = c−. The charges of the single
positive and negative charge carriers are denoted by q+ and q−, respectively, and we assume
that q+ = −q− =: q. This case includes monovalent ions in liquids as well as electrons and
holes in semiconductors. We also define the constant

c := c+ + c−.

The well-known Poisson equation is the elliptic equation

−∇ · (A(x)∇V (x)) = ρ(x),(1)
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Figure 1. A typical domain modeled by the Poisson–Boltzmann equation in two dimensions. The plus
and minus signs indicate positive and negative charge carriers, and an impenetrable molecule is located in the
center.

where A is the dielectric constant or permittivity, V is the electrostatic potential, and ρ is the
charge density of all charges in the system.

The charge density ρ of all charge carriers is the sum of the fixed charges ρfixed and the
free charges ρfree. The free charge carriers rearrange according to a Boltzmann distribution
due to the electrostatic potential yielding

(2) ρfree(x) = c+ exp

(
−q+V (x)

kBT

)
− c− exp

(
−q−V (x)

kBT

)
,

where kB is the Boltzmann constant and T is the absolute temperature [14]. In the monovalent
case, this expression simplifies to

ρfree(x) = −c sinh

(
qV (x)

kBT

)
.

This physical model leads to the deterministic Poisson–Boltzmann equation

(3) −∇ · (A(x)∇V (x)) = ρfixed(x)− c sinh

(
qV (x)

kBT

)
.

The coefficient c may be replaced by a coefficient function κ(x). Subdomains with vanish-
ing κ cannot be accessed by the free ions, and therefore κ is often called the ion-accessibility
function.

The stochastic generalization below of this deterministic equation describes—for example—
physical systems where the fixed charges have probability distributions and hence the free
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charges and the electrostatic potential V are stochastic as well. The different configurations
of the fixed charges may be due to the movement of the molecules or binding and unbinding
processes, for example, in biosensors [15, 16, 17, 18].

2.2. Existence of a unique solution. Let U ⊂ Rd, d = 1, 2, 3, be an open, bounded domain
with Lipschitz boundary and let P := (Ω,Σ,P) be a probability space. The boundary of the
domain U is partitioned into a Neumann boundary UN and a nontrivial Dirichlet boundary
UD. We consider the stochastic semilinar elliptic boundary-value problem

−∇ · (A(x, ω)∇u(x, ω)) + b(x, ω, u(x, ω)) = f(x, ω) ∀x ∈ U,(4a)

u(x, ω) = uD(x, ω) ∀x ∈ ∂UD,(4b)

ν ·A(x, ω)∇u(x, ω) = 0 ∀x ∈ ∂UN(4c)

for almost all ω ∈ Ω. Here ν is an outward-pointing normal unit vector. This includes the
stochastic nonlinear Poisson–Boltzmann equation

−∇ · (A(x, ω)∇u(x, ω)) + κ(x, ω) sinh(u(x, ω)) = f(x, ω) ∀x ∈ U,(5a)

u(x, ω) = uD(x, ω) ∀x ∈ ∂UD,(5b)

ν ·A(x, ω)∇u(x, ω) = 0 ∀x ∈ ∂UN(5c)

for almost all ω ∈ Ω as a special case.
In order to show the existence and uniqueness of a weak solution of (4) and hence (5),

assumptions on the data are needed. Similar assumptions were used in [11, 13] and are
physically reasonable [19].

Assumption 1.
1. The coefficient matrix function A : U ×Ω→ Rd×d with entries Aij for i, j ∈ {1, . . . , d}

is uniformly elliptic with constant µ and almost everywhere bounded with respect to x
with constant CA, both uniformly for almost all ω ∈ Ω.

2. We assume that the integral of b with respect to u exists and call it B, i.e.,

B : U × Ω× R→ R, (x, ω, u) 7→
∫ u

0
b(x, ω, t) dt

exists and is convex with respect to u and bounded from below by CB, both for almost
all x ∈ U and ω ∈ Ω.

3. The right-hand side f is in L2(P;L2(U)).
4. Let the Dirichlet data uD ∈ L2(P;H1/2(∂UD)) and assume the existence of a linear,

continuous extension operator ext : H1/2(∂UD) → H1(U), such that tr(ext(φ)) = φ
holds on ∂UD and ν · A∇ ext(φ) = 0 holds on ∂UN for almost all ω ∈ Ω. We may
denote ext(uD) by ūD. Additionally, let 〈B(ūD), 1〉L2(U×Ω) be finite.

Remark 2. When we assume enough regularity of the Dirichlet and Neumann boundary,
Assumption 1.4 is reasonable. Since then the trace operator t̂r : H1(U) → H1/2(∂UD) is lin-
ear and continuous and can be extended to a linear, continuous operator tr : L2(P;H1(U))→
L2(P;H1/2(∂UD)) in a meaningful way. Analogously, we define the extension operator
êxt0 : H1/2(∂UD)→ H1(U) and its natural extension ext0 : L2(P;H1/2(∂UD))→ L2(P;H1(U)).
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One can define a continuous, linear extension operator ext : L2(P;H1/2(∂UD))→ L2(P;H1(U))
such that ν · A∇ ext(v) = 0 holds on ∂UN for almost all ω ∈ Ω by defining ext(φ) for
φ ∈ L2(P;H1/2(∂UD)) as the sum of ext0(φ) and the solution of the following weak for-
mulation:

a(u+ ext0(φ), v) = 0 ∀v ∈ L2(P;H1
0,D(U)).

We define the spaces

G := L2(P;H1(U)),

GD := {u ∈ G : tr(u(·, ω)) = uD(·, ω) P-a.e.},
H1

0,D(U) := {ϕ ∈ H1(U) : t̂r(ϕ) = 0 on UD},
G0 := L2(P;H1

0,D(U))

with the inner product

〈v, w〉G := E(〈v, w〉H1(U)).

We also define the bilinear form a as

a : G×G→ R, (u, v) 7→ E
(∫

U
A(x, ω)∇u(x, ω) · ∇v(x, ω)dx

)
and the linear form F as

F : G→ R, u 7→ E
(∫

U
f(x, ω)u(x, ω)dx

)
.

To shorten notation, we will occasionally skip the arguments x and ω, and write b(u) and
B(u) instead of b(x, ω, u) and B(x, ω, u), respectively.

In order to include nonzero Dirichlet boundary conditions, we rewrite (4) using ūD. The
weak formulation then is to find u0 := u− ūD ∈ G0 such that

(6) a(u0 + ūD, v) + 〈b(u0 + ūD), v〉L2(U×Ω) = F (v) ∀v ∈ G0

holds.
We will use a variational formulation of the nonlinear problem (4) to show existence and

uniqueness.

Theorem 3. The stochastic semilinear elliptic boundary-value problem (4) has a unique
weak solution in G under Assumption 1.

Proof. To show the existence of a solution in G, we switch from the weak formulation 6
to the following variational formulation. We seek to minimize in G0

J(u) :=
1

2
a(u, u) + a(ūD, u) + 〈B(u+ ūD), 1〉L2(U×Ω) − F (u).(7)
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By Assumption 1.2, we can bound 〈B(u+ ūD), 1〉L2(P;L2(U)) from below with the constant CB.
Hence, we obtain that J is bounded from below on G

J(u) ≥ µ

2(1 + CP )2
‖u‖2G − CA‖ūD‖G‖u‖G + CB − ‖f‖L2(P;L2(U))‖u‖G

≥ CB −
(1 + CP )2

2µ
(‖f‖L2(P;L2(U)) + CA‖ūD‖G)2 > −∞.

Further, by Assumption 1.4 we deduce that |J(0)| < ∞. We may restrict the minimization
onto the nonempty, convex set

C := {u ∈ G0 : 〈B(u+ ūD), 1〉L2(U×Ω) <∞}.

Thus, the minimum must be finite and we can find a minimizing sequence uk in C such that

J(uk)→ min
v∈G

J(v) for k →∞.

Applying Young’s inequality yields

J(uk) ≥ CB +

(
µ

2(1 + CP )2
− ε
)
‖uk‖2G −

1

2ε

(
C2
A‖ūD‖2G + ‖f‖2L2(P;L2(U))

)
.

As J(uk) is bounded, choosing ε sufficiently small implies that ‖uk‖G is bounded. By the
Banach–Alaoglu theorem, the closed unit ball in G is compact with respect to the weak∗

topology which coincides here with the weak topology. Hence, we can extract a weakly
convergent subsequence (ukn)n∈N and denote the limit by u. The map

u 7→ 〈B(u+ ūD), 1〉L2(U×Ω)

is convex and continuous on C, and thus weakly lower semicontinuous; see [20, Theorem 1.2].
We infer weak lower semicontinuity of J and the minimality of u,

inf
u∈G

J(u) = lim inf
n∈N

J(ukn) ≥ J(u).

Moreover, J is strictly convex, which the following computation for u1, u2 ∈ C, u1 6= u2 and
t ∈ (0, 1) shows,

(8) tJ(u1) + (1 − t)J(u2) − J(tu1 + (1 − t)u2) ≥ 1

2
t(1 − t)a(u1 − u2, u1 − u2) > 0,

implying that u is the unique minimizer.

From this general existence and uniqueness result for stochastic semilinear elliptic equa-
tions, the existence and uniqueness of solutions of the Poisson–Boltzmann equation (5) follows
immediately. Note that the ion-accessibility function κ takes values between zero and the bulk
ionic concentration, and is therefore nonnegative.

Corollary 4. Let κ ∈ L2(P;L2(U)) be nonnegative and let ūD ∈ L2(P;H1/2(∂UD)) be such
that Assumption 1.4 is satisfied for B(x, ω, u) = κ(x, ω)(cosh(u) − 1). Then the stochastic
boundary-value problem (5) has a unique solution u in G.
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Proof. Assumption 1 is satisfied for the nonlinearity

b(x, ω, u(x, ω)) := κ(x, ω) sinh(u(x, ω)).(9)

The function b has an antiderivative u 7→ B(x, ω, u) with respect to u, which is bounded from
below and convex. Hence, Theorem 3 can be applied.

3. Regularity and best approximation property. Our goal in this section is to prove
regularity results for (5) as well as a best approximation property using the cut off deterministic
weak formulation.

Lemma 5. The weak solution u described by Theorem 3 satisfies the weak formulation of
the deterministic version of (4) almost everywhere, i.e., there exists a set Ω̃ ⊆ Ω of full
measure such that

(10)

∫
U
A(ω)∇(u(ω)) · ∇φ + (b(ω, u(ω)) − f(ω))φ dx = 0 ∀ω ∈ Ω̃, ∀φ ∈ H1

0,D(U).

Proof. Since u is Bochner-measurable, we conclude for fixed φ ∈ H1
0,D(U) the measurabil-

ity of

ω 7→ Zφ(ω) :=

∫
U
A(ω)∇u(ω) · ∇φ+ (b(ω, u(ω))− f(ω))φ dx.

Hence, for any φ ∈ H1
0,D(U), we can split Ω into three disjoint, measurable sets

Ω0 := Z−1
φ ({0}), Ω+ := Z−1

φ ((0,∞)), Ω− := Z−1
φ ((−∞, 0)),

which lets us define the test function v ∈ G0

v(x, ω) :=


φ(x) ω ∈ Ω+,

−φ(x) ω ∈ Ω−,

0 else.

By plugging v into the weak formulation, we obtain that

0 = E
[
1Λ+Zφ + 1Λ−Z−φ

]
,

where now the integrand is nonnegative. This implies the existence of a set Ωφ ⊆ Ω of full
measure such that

0 = Zφ(ω) ∀ω ∈ Ωφ.

As H1
0,D(U) is separable, we may choose a countable, dense subset H̃ of H1

0,D(U). The set

Ω̃ :=
⋂
φ∈H̃

Ωφ

is of full measure and satisfies (10) for all φ ∈ H̃, and because H̃ is dense in H1
0,D(U) even for

φ ∈ H1
0,D(U).
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Henceforth we will restrict ourselves to the analysis of (5) even though under more restric-
tive assumptions the following techniques could also be applied to the more general setting of
(4).

Proposition 6. The solution u of (5) is in L∞(P;L∞(U)) iff the solution of the associated
stochastic linear elliptic boundary-value problem, i.e., (4) with vanishing function b, is in
L∞(P;L∞(U)).

Proof. We denote by ulin the solution of the stochastic linear elliptic boundary-value prob-
lem and define w := u− ulin. Then, w ∈ G0 satisfies the following weak formulation:

E
[∫

A∇w · ∇vdx

]
= E

[∫
−κ sinh(u)vdx

]
∀v ∈ G0.(11)

First, we assume boundedness of ulin and let M := ‖ulin‖L∞(P;L∞(U)). By plugging v :=
max(w −M, 0) into (11) and using Poincaré’s inequality, the uniform ellipticity of A, and
Stampacchia’s theorem, we obtain

‖1w>Mw‖2G . E
[∫

A∇w · ∇vdx

]
= E

[∫
−κ sinh(u)vdx

]
≤ 0,

which implies that w ≤ M almost surely, and u ≤ 2M almost surely. By repeating the
argument for v := max(w+M, 0), we obtain the desired boundedness of u. Due to symmetry
reasons the reverse implication follows analogously.

Remark 7. By choosing P appropriately such that P is a Dirac measure and defining the
coefficients in (5a) suitably, Proposition 6 can be applied to the deterministic case.

To analyze the regularity of solutions with respect to the stochastic parameters, we want
to avoid working on an abstract probability space P, and hence we introduce a parameter
space Λ endowed with a useful topology.

Assumption 8. We assume that there is a random variable ξ : Ω→ Λ where the parameter
space Λ is an open subset of Rn, and that for almost all x ∈ U and ω ∈ Ω

A(x, ω) = Ã(x, ξ(ω)), b(x, ω, u) = b̃(x, ξ(ω), u),

κ(x, ω) = κ̃(x, ξ(ω), f(x, ω) = f̃(x, ξ(ω)).

Remark 9. The general case where Λ is infinite-dimensional can be reduced to the finite-
dimensional case by virtue of dimension reduction techniques such as the Karhunen–Loéve
expansion [21].

Instead of working on the abstract probability space P, by applying Theorem 4 we may
obtain a solution ũ for the altered problem with permittivity Ã, nonlinearity b̃, and forcing
term f̃ on the state space of ξ, Q := (Λ,B(Λ), ξ#P), satisfying the weak formulation of (4).
Moreover, ũ ◦ ξ satisfies the weak formulation of the initial problem and hence is the desired
unique solution. By courtesy of Assumption 8 we are able to restrict ourselves to the associated
problem on the parameter space Q, where we can also study regularity of the solution with
respect to that parameter. In the following, we will abuse notation and refer to Ã by A, ũ by
u, and so forth.
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Before we prove regularity results, we introduce a lemma that we will employ several
times.

Lemma 10. For i ∈ {1, 2}, let fi : U × Λ → R be measurable and uniformly bounded, i.e.,
|fi(x, p)| ≤ K almost everywhere in U × Λ for some K > 0. Let pn be a sequence in Λ such
that fi(pn) → 0 in L2(U) as n → ∞ and let un ∈ H1(U) \ {0}. Then, for wi ∈ L2(U), the
sequence In defined as

(12) In :=
1

‖un‖H1(U)

[∫
U
f1(pn)unw1 + f2(pn)∇unw2 dx

]
satisfies In → 0 as n→∞.

Proof. We show the claim by proving that every subsequence of In has a subsubsequence
that converges to 0. To this end, we choose an arbitrary subsequence, for convenience again
denoted by In. As fi(pn) → 0 in L2(U) for n → ∞, there is a subsequence nk such that
fi(x, pnk

)→ 0 for almost every x ∈ U . Using Cauchy–Schwartz, we find

|Ink
| ≤

(∫
U
f2

1 (pnk
)w2

1 dx

)1/2

+

(∫
U
f2

2 (pnk
)w2

2 dx

)1/2

.

As the integrands on the right-hand side are dominated by Kw2
i ∈ L1(U) and converge to 0

pointwise a.e. in U , the dominated convergence theorem implies the claim.

Theorem 11. Additionally to Assumptions 1 and 8, if the data is continuous, i.e.,
1. Aij ∈ C(Λ;L1(U)) for i, j ∈ {1, . . . , d} such that Assumption 1.1 holds pointwise for

all x ∈ U and p ∈ Λ,
2. κ ∈ C(Λ;L2(U)) nonnegative,
3. f ∈ C(Λ;L2(U)),
4. uD ∈ C(Λ;H1/2(U)),
5. for all p ∈ Λ, the unique (weak) solution of the deterministic equation

−∇ · (A(x, p)∇u(x, p)) + κ(x, p) sinh(u(x, p)) = f(x, p) ∀x ∈ U,(13a)

u(x, p) = uD(x, p) ∀x ∈ ∂UD,(13b)

ν ·A(x, p)∇u(x, p) = 0 ∀x ∈ ∂UN ,(13c)

satisfies u(p) ∈ L∞(U),
then the solution u of the parametric boundary value problem (10) has a representative in
C(Λ;H1(U)).

Proof. The continuity of the data admits to pose the deterministic weak formulation
pointwise for each p ∈ Λ such that there is a unique solution u(p) ∈ H1(U) satisfying
t̂r(u(p)) = uD(p). We proceed to show that the map p 7→ u(p) is continuous from Λ to
H1(U). Let p, q ∈ Λ and write u0(p) := u(p)− uD(p). The idea is to substract the weak for-
mulations for u(p) and u(q) and linearize the resulting equation by applying the mean value
theorem to the hyperbolic sine. Up to a perturbation term involving A(p)−A(q), the resulting
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weak formulation corresponds to that of a linear PDE, so standard estimation techniques can
be applied. Substracting the weak formulations yields∫

U
A(p)∇(u0(p)− u0(q)) · ∇φ+ κ(p) cosh(η(u(p), u(q)))(u0(p)− u0(q))φdx

=

∫
U
−A(p)∇(uD(p)− uD(q)) · ∇φ+ (A(q)−A(p))∇(u0(q)− uD(q)) · ∇φ

+ (κ(q)− κ(p)) sinh(u0(q))φ+ (f(p)− f(q))φdx ∀φ ∈ H1
0 (U),

where η : R× R→ R is a measurable selection of the set-valued map

Φ: R× R→ B(R),

(x, y) 7→ {z ∈ [min(x, y),max(x, y)] : cosh(z)(x− y) = sinh(x)− sinh(y)}.

Due to the continuity of sinh, cosh and the mean value theorem, Φ maps to closed, nonempty
subsets of B(R) and is lower semicontinuous in the sense of set-valued maps. Utilizing Cas-
taing’s representation theorem [22, Theorem 6.6.8], we may choose η as the desired measurable
selection.

By Poincaré’s inequality, the uniform coercivity of A, and the positivity of κ and cosh,
and by choosing φ = u0(p)− u0(q), we obtain

‖u0(p)− u0(q)‖2H1(U) .
∫
U

(A(q)−A(p))∇u(q) · ∇(u0(p)− u0(q))dx

+
(
‖uD(p)− uD(q)‖H1(U) + ‖κ(p)− κ(q)‖L2(U) + ‖f(p)− f(q)‖L2(U)

)
‖u0(p)−u0(q)‖H1(U).

Dividing this inequality by ‖u0(p) − u0(q)‖H1(U) and applying Lemma 10, we deduce that
u0 ∈ C(Λ, H1(U)). By the triangle inequality

‖u(p)− u(q)‖H1(U) ≤ ‖u0(p)− u0(q)‖H1(U) + ‖ūD(p)− ūD(q)‖H1(U),

we find that p 7→ u(p) ∈ C(Λ;H1(U)). By Lemma 5 and the uniqueness of the deterministic
problem, the weak solution given by Theorem 3 agrees with u(p) almost everywhere in Λ,
which concludes the proof.

Denote by (ei)
n
i=1 the canonical basis of Rn and by ∂pi the partial derivative along ei.

Theorem 12. Additionally to Assumptions 1 and 8, we now consider the Dirichlet boundary-
value problem. Let the data be continuously differentiable, i.e.,

1. p 7→ Aij(x, p) ∈ C1(Λ;R) for a.e. x ∈ U and there is a K1 > 0 such that

‖∂piA(p)‖L∞(U×Rd×d) ≤ K1 ∀p ∈ Λ

and i ∈ {1, . . . , n},
2. κ ∈ C1(Λ;L2(U)) nonnegative,
3. f ∈ C1(Λ;L2(U)),
4. uD ∈ C1(Λ;H1/2(U)),
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5. there is a K2 > 0 such that for all p ∈ Λ the unique (weak) solution of the deterministic
equation

−∇ · (A(x, p)∇u(x, p)) + κ sinh(u(x, p)) = f(x, p) ∀x ∈ U(14a)

u(x, p) = uD(x, p) ∀x ∈ ∂U,(14b)

satisfies ‖u(p)‖L∞(U) ≤ K2,
then the solution u of the parametric boundary value problem (10) has a representative in
C1(Λ;H1(U)).

Proof. As a first step, we identify a candidate w for the derivative by formally taking the
derivative of the boundary-value problem (14) with respect to pi.

∂pi (−∇ · (A(x, p)∇u(x, p)) + κ(x, p) sinh(u(x, p))) = ∂pif(x, p) ∀x ∈ U,
∂piu(x, p) = ∂piuD(x, p) ∀x ∈ ∂U.

For a given u, this yields a linear equation for the “derivative” w.

−∇ · (A∇w) + κ cosh(u)w = ∂pif +∇ · (∂piA∇u)− ∂piκ sinh(u) on U,

w = ∂piuD on ∂U.

The existence, uniqueness, and continuity (in p) of the solution w of the parametric boundary
value problem above follows from a similar reasoning as in the proof of Theorem 11. It remains
to show that w is indeed the desired derivative of u with respect to pi. To shorten notation,
we denote the differential quotient for a function in p by

Di
hu(p) :=

u(p+ hei)− u(p)

h
.

For h 6= 0, we introduce the solution wh of the auxiliary problem

−∇ · (A∇wh) + κ cosh(u)wh = ∂pif +∇ · (∂piA∇u)− ∂piκ sinh(u) on U,

wh = Di
huD on ∂U.

Again, standard estimates for linear PDEs show that wh(p) → w(p) in H1(U) as h → 0 for
each p ∈ Λ. By substracting the weak formulation at the points p and p+ hei, we obtain for
h 6= 0 and φ ∈ H1

0 (U)∫
U

[
A(p+ hei)∇(Di

hu(p)) + (Di
hA(p))∇u(p)

]
· ∇φ

+
[
κ(p+ hei)D

i
h sinh(u)(p) +Di

hκ(p) sinh(u(p))
]
φ

− [Di
hf(p)]φdx = 0.
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For h 6= 0, define

φh :=
u(p+ hei)− u(p)

h
− wh(p) ∈ H1

0 (U),

I0,h :=

∫
U
A(p+ hei)∇φh · ∇φh dx,

I1,h :=

∫
U

[
(A(p)−A(p+ hei))∇w(p) + (∂piA(p)−Di

hA(p))∇u(p)
]
· ∇φh

+ (κ(p)− κ(p+ hei)) cosh(u(p))w(p)φh dx,

I2,h :=

∫
U

[
∂piκ(p)−Di

hκ(p)) sinh(u(p)) + (Di
hf(p)− ∂pif(p))

]
φh dx,

I3,h :=

∫
U
κ(p+ hei)(cosh(u(p))w −Di

h sinh(u)(p))φh dx.

By computing the difference of the weak formulation of w and the differential quotient Di
hu,

and testing with φ = φh, we obtain

I0,h = I1,h + I2,h + I3,h.

The coercivity of A implies the estimate

‖φh‖H1(U) .
1

‖φh‖H1(U)
(I1,h + I2,h + I3,h).

The mean value theorem together with the boundedness of ∂piA(p) shows that

|Di
hA(x, p)− ∂piA(x, p)| ≤ 2‖∂pi(A(p))‖ ≤ 2K1

for almost every x ∈ U . Hence, we can apply Lemma 10 to show that the first term involving
I1,h vanishes as h → 0. Using the boundedness of u and Cauchy–Schwartz, the same follows
for the term involving I2,h. We rewrite the final term using the measurable selection η defined
in the proof of Theorem 11 where we denote η(u(p+ hei), u(p)) by ηh

I3,h =

∫
U
κ(p+ hei)

[
(cosh(u(p))w − cosh(ηh)Di

hu(p)
]
φh dx

=

∫
U
κ(p+ hei) ([cosh(u(p))− cosh(ηh)]w + cosh(ηh) [(w − wh)− φh])φh dx

≤
∫
U
κ(p+ hei) [cosh(u(p))− cosh(ηh)]wφh dx

+

∫
U
κ(p+ hei) cosh(ηh)(w − wh)φh dx.

Again employing Lemma 10 and Cauchy–Schwartz, we see that 1
‖φh‖H1(U)

I3,h vanishes as

h → 0. This implies that ‖φh‖H1(U) → 0 as h → 0, which in turn implies Di
hu(p) → w(p) in

H1(U) as h→ 0, completing the proof.
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The cut off function bα : U × Ω× R→ R is defined as

bα(x, ω, u) =


κ(x, ω) sinh(−α) u ≤ −α,
κ(x, ω) sinh(u) −α ≤ u ≤ α,
κ(x, ω) sinh(α) α ≤ u.

Since we assume κ ∈ L∞(U ×Ω), we obtain the Lipschitz continuity of bα in u with Lipschitz
constant L. Assume u0 ∈ G0 solves

a(u0 + ūD, v) + 〈bα(u0 + ūD), v〉L2(U×Ω) = 〈f, v〉L2(Ω×U) ∀v ∈ G0,(15)

where ūD is defined as in Assumption 1. Let Vh be a subspace of H1
0 (U) and uh ∈ L2(P;Vh)

the solution of

a(uh + ūD, vh) + 〈bα(uh + ūD), vh〉L2(U×Ω) = 〈f, vh〉L2(U×Ω) ∀vh ∈ L2(P;Vh),(16)

then there holds the following best approximation property.

Theorem 13. The cut off deterministic weak formulation satisfies the best approximation
estimate

‖u0 − uh‖G ≤
(1 + Cp)

µ
(CA + L) inf

vh∈L2(P;Vh)
‖u0 − vh‖G.

Proof. Because of the uniform ellipticity of A and monotonicity of bα there holds

(17) E
[
‖∇u0 −∇uh‖2L2(U)

]
≤ 1

µ
a(u0 − uh, u0 − uh) +

1

µ
〈bα(u0)− bα(uh), u0 − uh〉L2(U×Ω).

By using the galerkin orthogonality of u0 − uh we may exchange uh with an arbitrary vh ∈
L2(P;Vh) to obtain

(18) E
[
‖∇u0 −∇uh‖2L2(U)

]
≤ 1

µ
a(u0 − uh, u0 − vh) +

1

µ
〈bα(u0)− bα(uh), u0 − vh〉L2(U×Ω).

Next we use the boundedness of a, the Lipschitz continuity of bα, and the Poincaré inequality
and divide by ‖u0 − uh‖G to get

(19) ‖u− uh‖G ≤
1 + CP
µ

(CA + L) ‖u− vh‖G.

Taking the infimum over all vh ∈ Vh and applying the Poincaré inequality concludes the
proof.

4. Stochastic Galerkin-type method. In this section, a nonintrusive Galerkin discretiza-
tion is presented for the stochastic Poisson–Boltzmann equation. This general Galerkin-type
approach originates from [8].

Consider the following general setting: let (Hi, 〈·, ·〉Hi) for i = 1, 2 be Hilbert spaces, where
H1 represents the state space and H2 represents some external influence. Their elements φ are
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functions φ : U → R. The operator A : H1 → H2 models the physics of the system depending
on a parameter p such that the equation

(20) ∀p ∈ Λ: A(p;φ) = f(p)

holds for f(p) ∈ H2. We require the problem (20) to be well-posed, meaning that for fixed
p ∈ Λ the operator φ 7→ A(p;φ) is bijective and continuously invertible.

In the example of the Poisson–Boltzmann equation, we have H1 := H1(U), H2 := L2(U)
and the operator A takes for p ∈ Λ the following form:

A(p;φ) := −∇ · (A(p)∇(φ+ φ̄D)) + κ(p) sinh(φ+ φ̄D),

where φ̄D is an appropriate function (depending on p) in H1(U) ensuring the boundary con-
ditions. By passing over to the weak formulation, we conclude in the setting of Theorem 11
the well-posedness of the problem.

Furthermore, we require the existence of quadrature formulas on Q, quadrature points
(qz)z∈Z , and appropriate weights (wz)z∈Z , such that

∫
Λ
g(p)ξ#P(dp) =

∫
Ω
g(ξ(ω))P(dω) ≈

∑
z∈Z

wzg(pz).

Suppose that an iterative solver S for the deterministic problem, i.e., for the problem with
fixed parameter p, is known, which converges pointwise for all p ∈ Λ, and may depend on the
parameter p, the previous iteration uk(p), and the iteration count k.

As usual in the Galerkin setup, we define a set of linearly independent ansatz functions
(ψα)α∈I and a set of linearly independent test functions (ψ̃α)α∈I , such that ψα, ψ̃α ∈ L2(Q;R)
for all α in the set of indices I. For convenience, we may also assume that these sets form
an orthonormal system in L2(Q;R) with ψα = ψ̃α for all α ∈ I, whereby the former is
always possible due to Gram–Schmidt. For random variables with basic distributions, like
uniform, gamma, or Gaussian distributions, or for general random variables, one considers the
orthogonal polynomials associated with the (optimal) generalized polynomial chaos expansion
[23, 24] of the random variable, respectively, the Askey scheme [25].

We strive to find an approximation ũ of the solution u such that

ũ =
∑
α∈I

uαψα, uα ∈ H,(21) ∫
Λ

(f(p)−A(p; ũ(p)))φα(p)dξ#P(p) = 0 ∀α ∈ I,(22)

where we denote the residuum f(p) − A(p, u(p)) by R(p, u). Based on a general parametric
formulation, the following nonintrusive Galerkin-type Algorithm 1 was developed in [8]. We
may represent the solution of this algorithm ũ as a (finite) vector u of elements of H.
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Algorithm 1 Nonintrusive Galerkin-type block–Jacobi iteration.

1: Start with an initial guess u(0) = [. . . , u
(0)
α , . . . ]>.

2: k ← 0
3: while not converged do
4: for α ∈ I do
5: ∆u

(k)
α ← 0

6: end for
7: for z ∈ Z do
8: ∆u

(k)
z ← S(pz;u

(k)(qz))− u(k)(qz)

9: rz ← wz∆u
(k)
z

10: for α ∈ I do
11: ∆u

(k)
α ← ∆u

(k)
α + rzψα(qz)

12: end for
13: end for
14: u(k+1) ← u(k) + ∆u(k)

15: k ← k + 1
16: end while

In short, the algorithm starts with an initial guess u(0). We initialize ∆u
(k)
α with 0 and

compute an approximation of ∆u
(k)
α until convergence, namely,

∆u(k)
α =

∫
Λ

(S(p;u(k)(p))− u(k)(p))ψα(p)ξ#P(dp)

≈
∑
z∈Z

wz (S(qz;u
(k)(qz))− u(k)(qz))︸ ︷︷ ︸

=:∆u
(k)
z

ψα(qz),

by iterating through the set of indices of the interpolation points Z. Adding up the previ-

ous approximation u(k) = [. . . , u
(k)
α , . . . ]> and ∆u(k) := [. . . ,∆u

(k)
α , . . . ]> yields the desired

approximation u(k+1). By construction and as discussed in [8], this method minimizes the
residuum error.

4.1. Discrete projection. For comparison purposes, we introduce a discrete projection
method [8, 26, 27]. As in the previous section, we want to find an approximative form of u
such that

ũ =
∑
α∈I

uαψα.

In the simplest form the algorithm can be summarized as the projection of u onto {φψα : φ ∈
H, α ∈ I}. Therefore, we compute the coefficient using quadrature

uα =

∫
Λ
u(p)ψα(p)ξ#P(dp) ≈

∑
z∈Z

wzu
kz(qz)ψα(qz).

Due to [8, Corollary 3.4], it is expected that the Galerkin-type method and the discrete
projection method require a similar amount of solver calls to reach comparable accuracy if the
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convergence speed of the solver S is linear. For further investigations of convergence speed we
refer the reader to [8]. However, the additional calculations, which the Galerkin-type method
requires, are not considered in this estimate. In each iteration, there are further additions and
multiplications, which often can be regarded as insignificant compared to a solver call. We
conclude that if the computational effort is measured in solver calls, then the block-Jacobi
algorithm and the projection algorithm require comparable effort.

4.2. Stochastic collocation. Another nonintrusive method of interest is stochastic collo-
cation methods as in [28]. Given a set of collocation nodes N ⊆ Λ, we compute the solution
uβ of the deterministic problem for each β ∈ N and obtain an approximation

ũ(p) =
∑
β∈N

uβlβ(p),

where (lβ)β∈N denotes the multivariate Lagrange basis at the collocation nodes N . When we
choose N as the set of interpolation points Z which are described above, the stochastic collo-
cation method and the discrete projection method require the same amount of computations.
Hence, they are directly comparable.

5. Implementation and numerical results. In this section, we apply the algorithms of
the previous section to the stochastic nonlinear Poisson–Boltzmann equation introduced in
section 2. To acquire an approximation of the solution u of (5), we solve pointwise for p ∈ Λ the
resulting deterministic equation by coupling low-order finite elements with Newton’s method.
The code was written in Julia. We use gmsh, an open-source mesh generation software, to
create a triangulation of the spatial domain.

5.1. The physical domains. We consider two different geometries corresponding to the
domain U := [−1, 1]d, d ∈ {1, 2}, Figures 2 and 3. The position of a molecule (green) is
uniformly distributed in the area, which is highlighted in grey. The solvent contain ions and
electrons. Therefore κ = κsolvent is assumed to be positive and piecewise constant on this
region, whereas there are no free charge carriers inside the molecule available, which yields
that κ vanishes there.

The permittivity A is assumed to be piecewise constant on the different regions taking
the values Asolvent and Amolecule. Further, the molecule is supposed to be charged yielding the
system of equations (23). Let p = (p1, p2) ∈ Λ := [−1, 1]n1+n2 , where n1 ∈ {1, 2} and n2 = 1

Molecule

Solvent

Possible molecule
positions

Figure 2. First example—one dimension. The domain U contains a solvent. The area of possible molecule
positions is shown grey. The green area represents a molecule.
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Molecule

Solvent

Possible molecule
positions

Figure 3. Second example—two dimensions. The domain contains a solvent. The area of possible molecule
positions is shown grey. The green circle represents a molecule.

determine the position and size of the molecule, respectively. Let K(p) := {x ∈ U : ‖x−p1‖ ≤
r(p2)}, where r is an affine function of p2. We consider the problem

−∇ · (A(x, p)∇u(x, p)) + κ(x, p) sinh(u(x, p)) = 1K(p)(x) ∀x ∈ U,(23a)

u(x, p) = 0 ∀x ∈ ∂UD.(23b)

In this setting, the assumptions of Theorem 3 are satisfied, implying the existence and
uniqueness of the solution. Furthermore, we have A ∈ C(Λ;L1(U)d×d) \C1(Λ;L1(U)d×d) and
κ, f ∈ C(Λ;L2(U)) \ C1(Λ;L2(U)). We would like to apply Theorem 11 to obtain continuity
in p of the solution, but it is not obvious whether u(p) ∈ L∞(U) for every p ∈ Λ. In general,
finding L∞-bounds for solutions of semilinear elliptic equations seems to be delicate; see [29]
for a survey. However, by virtue of Remark 7, we may prove pointwise boundedness for
the deterministic semilinear problem (23) by considering the associated linear problem with
κ ≡ 0. Applying Theorem 8.15 in [30] to the linear problem, we find that the assumptions of
Theorem 11 are satisfied, yielding u ∈ C(Λ;H1

0 (U)). From now on we will only consider the
FEM-discretization of (23). We will not distinguish between the exact solution u at parameter
p and the computable FEM-approximation.

5.2. Numerical results. We set the L2(U)-norm of the increment as a convergence cri-
terion for the FEM-solver of the deterministic equation and the L2(P;L2(U))-norm of the
increment ∆u(k) of the Galerkin-type method (cf. section 4).

To validate the numerical results, we use a quasi–Monte Carlo method, namely, the Sobol
sequence [31], and a sufficiently large number of samples to calculate quantities of interest,
like the expected value

ū(x) := E[u(x, ξ)],
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the residuum error

Res(uI) := E
(
‖R(ω, uI(ω))‖2L2(U)

)1/2
,

and the root-mean-square error (RMSE)

RMSE(uI) := E
(
‖u− uI‖2L2(U)

)1/2
.

The sample size is chosen sufficiently large such that we have 99% confidence that the com-
putational error is less than 1%.

To quantify the difficulty of the different test cases, we compute the coefficient of variation
or the signal-to-noise ratio (SNR), namely, the quotient of mean value and standard deviation,
in similar fashion. Then, the errors of the investigated stochastic approximation methods are
compared. These results are visualized in tables and figures, where m denotes the maximal
degree of the Legendre polynomials used and m1 denotes the degree of the quadrature rule
used, always satisfying m ≤ m1. In addition the quadrature nodes are used as collocation
nodes for the stochastic collocation method.

5.2.1. The one-dimensional case. We investigated three different test cases in one di-
mension, κsolvent ∈ {0, 1, 104}. In all test cases, the differences in RMSE and residuum error
between the Galerkin and discrete projection methods were negligible, since the error of both
methods agreed in the first 5–6 digits. Overall, the Galerkin method required up to 1/3 more
solver calls than the projection method.

Especially in the cases with higher SNR (2.8 and 2.5) where κsolvent = 0 and κsolvent = 1,
increasing the amount of ansatz functions did not lead to an increase of accuracy as the solution
is rather smooth and already well-approximated by low-order polynomials. Therefore, it was
more effective to increase the precision of the used quadrature formula.

On the contrary, when the problem is more difficult, i.e., the SNR is lower (0.4) as in the
case of κsolvent = 104, increasing the amount of Ansatz functions as well as the precision of the
quadrature formula is required to experience a substantial decrease of relative residuum error
and RMSE. Here, it turned out that choosing as many ansatz functions as the quadrature
formula permits proves as optimal.

Figure 4 shows oscillations of the approximative solutions which are caused by the used
space of ansatz functions. Note that even though the exact solution is nonnegative, the
approximations do not share this property.

5.2.2. The two-dimensional case. In this section, we consider the stochastic Poisson–
Boltzmann equation (5) on the two-dimensional (2D) domain introduced in section 5.1. Here,
we set the permittivity constant as A = 1 and κsolvent ∈ {1, 103}. The SNR is 3.0 in the case
of the weak nonlinearity (κsolvent = 1). Choosing a stronger nonlinear term (κsolvent = 103)
in turn decreases the SNR to 0.9. Overall the different methods fare similar as in the 1D
case. The investigated methods need a comparable amount of solver calls for convergence as
in Table 1. Notably, the discrete projection and collocation methods require the same amount
of solver calls whereas the Galerkin-type method needs more solver calls to reach convergence
in the case of a smaller SNR. Varying the convergence criterion ε does not lead to different
results in terms of relative residuum error and RMSE. This can be explained on the one hand
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Figure 4. 1D problem. κsolvent = 104. Solutions obtained by the Galerkin method compared to the exact
solution for a certain parameter p with varying dimension of Ansatz space.

Table 1
Comparison of required solver calls of Galerkin (G), discrete projection (P), and collocation method (C)

for a given convergence criterion ε = 10−8 to reach convergence.

κsolvent = 1 κsolvent = 103

m P G C P G C

5 100 100 100 325 350 325
10 400 400 400 1299 1500 1299
15 900 900 900 2923 3600 2923
20 1600 1600 1600 5197 6800 5197
25 2500 2500 2500 8118 10625 8118
30 3600 3600 3600 11693 16200 11683
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Table 2
Comparison of relative residuum error and RMSE of Galerkin (G), discrete projection (P), and collocation

method (C) for κsolvent = 1 and m1 = 2m− 1.

Rel. residuum error Rel. RMSE

m P G C P G C

5 5.0 · 10−3 5.0 · 10−3 4.8 · 10−3 9.0 · 10−3 9.0 · 10−3 7.4 · 10−3

10 2.6 · 10−3 2.6 · 10−3 2.4 · 10−3 5.1 · 10−3 5.1 · 10−3 5.7 · 10−3

15 1.7 · 10−3 1.7 · 10−3 1.5 · 10−3 4.9 · 10−3 4.9 · 10−3 5.7 · 10−3

20 1.3 · 10−3 1.3 · 10−3 1.2 · 10−3 4.9 · 10−3 4.9 · 10−3 5.7 · 10−3

25 1.1 · 10−3 1.1 · 10−3 1.1 · 10−3 4.8 · 10−3 4.8 · 10−3 5.4 · 10−3

30 1.0 · 10−3 1.0 · 10−3 1.1 · 10−3 4.8 · 10−3 4.8 · 10−3 5.4 · 10−3

Table 3
Comparison of relative residuum error and RMSE of Galerkin (G), discrete projection (P), and collocation

method (C) for κsolvent = 103 and m1 = 2m− 1.

Rel. residuum error Rel. RMSE

m P G C P G C

5 1.9 · 10−1 1.9 · 10−1 1.7 · 10−1 9.4 · 10−2 9.4 · 10−2 7.3 · 10−2

10 8.6 · 10−2 8.4 · 10−2 7.6 · 10−2 3.8 · 10−2 4.1 · 10−2 3.6 · 10−2

15 5.4 · 10−2 5.3 · 10−2 4.9 · 10−2 3.2 · 10−2 3.5 · 10−2 3.3 · 10−2

20 4.0 · 10−2 3.9 · 10−2 3.8 · 10−2 3.1 · 10−2 3.4 · 10−2 3.3 · 10−2

25 3.3 · 10−2 3.3 · 10−2 3.4 · 10−2 3.1 · 10−2 3.3 · 10−2 3.2 · 10−2

30 2.9 · 10−2 2.9 · 10−2 3.1 · 10−2 3.1 · 10−2 3.3 · 10−2 3.2 · 10−2

by the fast convergence of Newton’s method and on the other hand by the dominant error
caused by the chosen polynomial spaces and collocation nodes.

Tables 2 and 3 show a comparison of relative residuum error and RMSE of the different
methods when varying m the amount of ansatz functions in both test cases. In the case of a
moderate SNR (Table 2) the different methods need the same amount of solver calls. Addition-
ally, the errors of the Galerkin and projection methods are not discernable. On the contrary
the collocation method fares comparably better for smaller m, but soon stagnates especially
when comparing relative RMSE. The case of less SNR (Table 3) shows the expected differences
between the discrete projection method and the Galerkin: the former method performs better
in terms of relative RMSE while the latter performs better in terms of relative residuum error.

5.2.3. The two-dimensional case—Additional randomness. looseness=1As a final ex-
ample we choose κsolvent = 1 and the permittivity A piecewise constant with values Asolvent

and Amolecule. For additional randomness, we introduce the varying diameter of the molecule
which we assume to be uniformly distributed on [0, 1/3]. Figures 5, 6, and 7 show the depen-
dency of relative residuum error and error on the fineness h of the FEM-discretization. Since
discrete projection and the Galerkin method behave similarly the latter one is not included
in Figures 5 and 6. Interestingly enough, decreasing h leads to a significant improvement in
terms of relative RMSE, required solver calls, and, more so, residuum error. Comparing the
number of solver calls for small h is not very meaningful since the computation time for each
solver call grows excessively fast as h goes to 0. Therefore it is also necessary to compare
the overall computation time. For h ∈ {0.05, 0.045, . . . , 0.03}, the computation time for one
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Figure 5. Comparison of relative residuum error varying m, m1 = 2m − 1 and fineness of the spatial
discretization h, which is displayed in the legend. Asolvent = 1 and Amolecule = 10.

Figure 6. Comparison of relative RMSE varying m, m1 = 2m− 1 and fineness of the spatial discretization
h, which is displayed in the legend. Asolvent = 1 and Amolecule = 0.01.

Figure 7. Comparison of relative residuum error and RMSE of discrete projection and the collocation
method varying m, m1 = 2m− 1. h = 0.03, Asolvent = 0.01, and Amolecule = 1.
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solver call increases 1.5-fold when h decreases by 0.05. It becomes apparent for all three test
cases and methods that decreasing the mesh size is more efficient in terms of residuum error,
whereas increasing the amount of used ansatz functions (for fixed h) fares better in terms of
RMSE. It is worth mentioning that since the permittivity A was dependent on the random
parameter different stiffness matrices had to be computed. This turned out to be disadvan-
tageous for the Galerkin-type method, as in each iteration of Algorithm 1 these matrices are
required, which in turn leads either to increased computational overhead or excessive memory
consumption.

6. Conclusions. We have proved the existence and uniqueness for solutions of the stochas-
tic nonlinear Poisson–Boltzmann equation. Under additional assumptions regularity proper-
ties of the solution were shown. Apart from that, different nonintrusive stochastic approxima-
tion methods were implemented, using Legendre nodes and weights for numerical quadrature
and interpolation. The great advantage of a nonintrusive approach is that it makes it possible
to reuse any existing solvers for the deterministic equation. Analogous algorithms can imme-
diately be used for other stochastic partial differential equations. We use Newton’s method
and low-order finite elements for solving the nonlinear deterministic equation.

Several test cases in one and two dimensions with varying coefficients (5) are discussed.
The considered methods were investigated in view of relative residuum error and RMSE. This
was done by varying the number of ansatz functions, precision of quadrature formulas, and
fineness of spatial discretization. By comparing the Galerkin method to the discrete projection
method, it was found that the Galerkin method is an alternative, which overall requires the
same number of or slightly more solver calls to reach a comparable accuracy in both error
notions. Particularly in the last test case, the structure of Algorithm 1 turned out to be a
disadvantage for the Galerkin-type method. The collocation method outperformed the other
methods when a smaller amount of ansatz functions and collocation nodes were used. Results
seem to indicate that for more difficult problems with a higher-dimensional parameter space,
the collocation method would prove to be more efficient, as in order to obtain convergence, the
other methods require ansatz spaces which suffer distinctly from the curse of dimensionality.
In order to reduce the effect of dimensional scaling, in the case where the randomness stems
from many identical molecules, integration methods exploiting symmetry properties can be
applied [32, 33]. Looking deeper into the results, one observes a numerical confirmation of
the theoretical part of [8], concerning the convergence of the Galerkin-type method. Due
to the fast convergence rate of Newton’s method, it was not of great interest to look at
different convergence criteria. The influence of the number of ansatz functions, of the number
of quadrature nodes, and of different convergence criteria was investigated. Increasing the
number of ansatz functions and quadrature nodes reduces relative residuum error and RMSE
as expected. Our results suggest that decreasing the mesh size is more efficient in terms of
residuum error, whereas increasing the amount of used ansatz functions (for fixed h) fares
better in terms of RMSE.
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