
D I P L O M A R B E I T

Deep Reinforcement Learning with
Applications to Autonomous Driving

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Mathematik

eingereicht von

Helmut Horvath

Matrikelnummer: 01526425

ausgeführt am Institut für Analysis und Scientific Computing
der Fakultät für Mathematik und Geoinformation
der Technischen Universität Wien

Betreuer: Assoz. Prof. Dipl.-Ing. Dr. techn. Clemens Heitzinger

Wien, 19. März 2024
Helmut Horvath Clemens Heitzinger

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit, einschließlich Tabellen, Karten und Abbildungen, die anderen Werken oder dem
Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe
der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 19. März 2024
Helmut Horvath

iii

Kurzfassung

Deep Reinforcement Learning hat sich seit der Veröffentlichung des DQN Algorithmus
rasant weiterentwickelt. In dieser Arbeit untersuchen wir die Evolution von DQN hin
zu populären off-policy, modellfreien Algorithmen für kontinuierliche Kontrollproble-
me, indem wir die theoretischen Grundlagen kohärent aufarbeiten, Lücken zwischen
Theorie und praktischen Algorithmen diskutieren und anschließend die Algorithmen an
eigens im CARLA Simulator implementierten Kontrollproblemen des autonomen Fahrens
vergleichen.

v

Abstract

Deep Reinforcement Learning has seen rapid development ever since the publication of
the DQN algorithm. In this work we study the evolution from DQN to popular off-policy,
model free algorithms for continuous control by working out a coherent theoretical basis,
discussing the theory-praxis gap of practical algorithms and comparing the algorithms
on customly implemented autonomous driving tasks within the CARLA simulator.

vii

Acknowledgements

First, I want to thank Prof. Heitzinger for his guidance and his enthusiasm for reinforce-
ment learning and artificial intelligence in general.
I would particularly like to thank Tobias Kietreiber for being a great collaborator in

the autonomous driving project and for proofreading this thesis.
I want to thank my family and friends for always supporting me throughout my studies.
Last but not least, I want to thank the amazing technical support teams of CLIP and

VSC for always addressing technical issues promptly and supporting my special use cases.

ix

Contents

Introduction 1

1 Theoretical Framework 3
1.1 Markov Decision Process . 3

1.2 Optimality Criteria . 5

1.3 Existence of Optimal Policies . 6

1.4 Theoretical Foundations of Q-learning . 9

1.5 Distributional Operators . 10

1.6 Reinforcement Learning Terminology . 13

1.7 Multi-Objective RL . 14

2 Algorithms and Implementation 16
2.1 Q-Learning . 16

2.2 Q-Learning with Function Approximation 18

2.2.1 Semi-Gradient method . 18

2.2.2 Residual Method . 19

2.2.3 Notes on Function Approximation 19

2.3 Deep Q-Learning . 20

2.4 Double DQN . 22

2.5 Deep Deterministic Policy Gradient . 23

2.6 Issues of Policy Gradient Methods . 25

2.7 Twin Delayed DDPG . 26

2.8 Soft Actor Critic . 27

2.8.1 Theory . 27

2.8.2 Implementation . 31

2.9 Quantile Regression DQN . 33

2.9.1 Quantile Dynamic Programming 33

2.9.2 Quantile Q-learning . 34

2.9.3 QR-DQN . 36

2.10 Implicit Quantile Networks . 36

2.11 Truncated Quantile SAC . 39

2.11.1 Distributional SAC . 39

2.11.2 TQC . 39

2.12 Neural Network Architecture . 40

2.12.1 Critic-only Networks . 40

2.12.2 Actor-Critic Networks . 42

2.12.3 Concrete Architecture . 42

xi

3 Environment for Autonomous Driving 44
3.1 Problem Formulation and Scope . 44
3.2 Environment Setup . 45

3.2.1 Time Steps and Synchrony . 45
3.2.2 Episode Setup . 45
3.2.3 Terminal States and Truncation 47
3.2.4 Action Space Design . 48

3.3 Reward Design . 48
3.3.1 Cruise Control Reward . 48
3.3.2 Adaptive Cruise Control Reward 49
3.3.3 Lane Keeping Reward . 50
3.3.4 Combined Control Reward . 51
3.3.5 Highway Obstacle Avoidance Reward 51
3.3.6 Combining Multiple Objectives . 52

3.4 State Space Design . 52
3.4.1 Vectorized Observations . 53
3.4.2 Camera Image Observations . 54
3.4.3 Preprocessing . 56

3.5 Implementation Details . 56
3.5.1 Simulation Setup . 56
3.5.2 Gymnasium Interface . 57
3.5.3 Data Retrieval . 58
3.5.4 Determinism . 59
3.5.5 Error Recovery . 59

4 Numerical Results 60
4.1 Methods . 60

4.1.1 Data Generation . 60
4.1.2 Performance Metrics . 61
4.1.3 Statistical Significance . 61

4.2 Algorithm Comparison across Environments 62
4.2.1 Cruise Control . 62
4.2.2 Adaptive Cruise Control . 62
4.2.3 Lane Keeping . 63
4.2.4 Lane Keeping from Pixels . 64
4.2.5 Combined Control . 65
4.2.6 Combined Control from Pixels . 66
4.2.7 Adaptive Combined Control . 67
4.2.8 Adaptive Combined Control from Pixels 68
4.2.9 Obstacle Avoidance . 68
4.2.10 Navigation . 69
4.2.11 Adaptive Navigation . 71

4.3 Summary . 72
4.4 Own Publication . 73

xii

4.5 Hyperparameters . 74

Bibliography 77

xiii

Introduction

This thesis originated from a project practicum in reinforcement learning that had the
goal to use reinforcement learning to formulate and solve autonomous driving problems
in a simulator (CARLA).
In Chapter 1, we formulate the underlying theory for the algorithms introduced in

Chapter 2 as well as for the reinforcement learning problem formulation of the autonomous
driving tasks in Chapter 3, particularly the reward design. Contrary to most of the
reinforcement learning literature, we formulate the theory for continuous state and action
spaces, motivated by the continuous nature of our control problems and adjust the model
assumptions to serve as a coherent basis for the formulation of our autonomous driving
tasks.
In Chapter 2, we introduce popular state-of-the-art deep reinforcement learning al-

gorithms that turned out to be successful for solving our autonomous driving tasks.
Although theoretical convergence guarantees for deep reinforcement learning algorithms
are still a topic of ongoing research, our aim in this chapter is to give a clear motivation
for the design choices of the algorithms, draw parallels between them and discuss theo-
retical issues. Our focus is on off-policy model free algorithms that fit into a theoretical
Q-iteration framework and their distributional extensions.

Chapter 3 is devoted to the formulation of practically motivated autonomous driving
tasks as reinforcement learning problems, especially the design of the state space and the
reward functions which turned out to be vital for successful results.

Finally, in Chapter 4, we empirically compare the algorithms introduced in Chapter 2
for our own autonomous driving problems.

1

1 Theoretical Framework

1.1 Markov Decision Process

We base our definition mostly on [Put05, Sec. 2.3.2] and [Fei11, Sec. 3], however we allow
the reward function to also depend on the successor state. The space of all probability
measures over a measure space (X,Σ) is denoted by P(X).

Definition 1.1.1. A Markov Decision Process (MDP) is given by a tuple (T , S, ρ0, A,
p, r), where

1. T is a set of (time) steps.

2. S = (S,B(S)) is a standard Borel space on a set of states S with σ-algebra B(S).

3. ρ0 is a probability measure on B(S), the initial state distribution.

4. A = (As)s∈S is family of action sets, where As ∈ B(A) and (A,B(A)) is a standard
Borel space, such that there exists a measurable function µ : S → A with µ(s) ∈ As.
Let G := {(s, a) | s ∈ S, a ∈ As}.

5. p : G → P(S), (s, a) 7→ p(· | s, a) is a transition kernel such that p(X | ·, ·) is
measurable with respect to B(G) for all X ∈ B(S).

6. r : G× S → R is a reward function satisfying

a) r(·, ·, ·) is measurable with respect to B(G× S).
b) r(s, ·, s′) is integrable with respect to all q ∈ P(As) for all s, s′ ∈ S.

A state is s ∈ S is called absorbing if p({s} | s, a) = 1 for all a ∈ As.

We only consider discrete-time MDPs, i.e., T ⊆ N with the following additional
requirements: r is bounded and r(s, a, s) = 0 for all a ∈ A for all absorbing states s ∈ S.
Furthermore, in this work we assume As = A for all s ∈ S and we identify A as (A,B(A)).

Definition 1.1.2. Let Hn := (G)n × S denote the set of histories up to time n and let
H :=

⋃∞
n=1Hn. For hn ∈ Hn let hnn ∈ S denote the last element. A policy π is a mapping

π : H →
⋃
s∈S
P(As), hn 7→ π(·, hn)

such that π(·, hn) ∈ P(As) with s = hnn and such that hn 7→ π(Y, hn) is measurable on Hn

for every Y ∈ B(As). A policy is called deterministic if for each hn ∈ H the probability

3

measure π(·, hn) is concentrated at one point a ∈ As, otherwise it is called stochastic.
We call a policy π stationary if domπ = S. The set of all policies of an MDP is denoted
by Π, the set of all stationary policies by Πs and the set of all stationary, deterministic
policies by Πd.

The following theorem has been adapted to our continuous formulation from [LS20,
p. 514, Sec. Probability Spaces] and [Put05, p. 30] and ensures the existence of a
probability measure for infinitely long state-action sequences.

Theorem 1.1.3 (existence theorem). Let (T , S, ρ0, A, p, r) be an MDP and let (Ω,Σ)
be the canonical probability space of the MDP, where Ω := G∞ is the Cartesian product
endowed with the product σ-algebra Σ :=

⊗B(G). For (s1, a1, s2, a2, . . .) =: ω ∈ Ω we
define random variables

St(ω) := st, At(ω) := at.

Then, for any policy π and any measure µ ∈ P(S) there exists a unique probability
measure Pπµ over (Ω,Σ) satisfying

1. Pπµ(S0 ∈ X) = µ(X) for all X ∈ B(S).

2. Pπµ(At+1 ∈ A | S0, A0, . . . , St, At) = π(A | S0, A0, . . . , St, At) for all A ∈ B(A).

3. Pπµ(St+1 ∈ X ′ | S0, A0, . . . , St, At) = p(X ′ | St, At) for all X ′ ∈ B(S).

Proof. The theorem directly follows from the Ionescu-Tulcea theorem.

Property 3 is known as Markov property, i.e., the only part in the history of the
stochastic process that matters for the probability of the next state is the previous state
and action.

Definition 1.1.4. In the above theorem, we call Ω trajectory space or sample space and
ω ∈ Ω a trajectory or sample path. Likewise, we also refer to the sequence of random
variables S0, A0, . . . as the trajectory.

Definition 1.1.5. An MDP is said to have an indefinite horizon, if for any policy π and
starting state distribution µ

Pπµ({ω ∈ Ω : ∃n ∃a ∈ S ∀t ≥ n : ωt = a, a is absorbing}) = 1.

Otherwise, the MDP is said to have an infinite horizon. A trajectory ending in an
absorbing state is called episode.

In the reinforcement learning literature, tasks modelled by indefinite horizon MDPs are
called episodic, while infinite horizon tasks are called continuing [SB18, p. 70], absorbing
states are usually called terminal. As soon as the agent environment interaction modelled
by the MDP ends in a terminal state, the agent starts in a new initial state. We formulated
all of our definitions from the beginning to give a unified perspective on episodic and
continuing tasks as described in [SB18, Sec. 3.4].

4

1.2 Optimality Criteria

Definition 1.2.1. Let γ ∈ [0, 1) be a discount factor and s ∈ S. For a trajectory starting
in S0 = s with s ∈ S and Ri := r(Si−1, Ai−1, Si) for i ≥ 1 we define the random variable

Gπγ (s) :=
∞∑
k=0

γkRk.

For a trajectory with S0 = s and A0 = a with s ∈ S, a ∈ A we define the random variable

Zπγ (s, a) :=
∞∑
k=0

γkRk.

Both random variables are referred to as return.

Remark 1.2.2. It is common in the MDP literature to define Ri := r(Si−1, Ai−1),
however we consider it practical to give the reward as feedback depending on the outcome
of the action, thus we allow dependence on the successor state.

Both random variables in Definition 1.2.1 are well-defined in case of a bounded reward
function with ∀s ∈ S ∀a ∈ A : rl ≤ r(s, a) ≤ ru, as for every ω with S0(ω) = s we have

rl ·
1

1− γ =
∞∑
k=0

γkrl ≤ Gπγ (s)(ω) ≤
∞∑
k=0

γkru = ru ·
1

1− γ

and analogously for Zπ. With regard to Theorem 1.1.3 we have µ = δs, where δs is the
Dirac measure concentrated on the point s.

Definition 1.2.3. We write Ωs := {ω′ | (s, ω′) ∈ Ω} and Ωs,a := {ω′ | (s, a, ω′) ∈ Ω}.
We equip those sets with the respective Borel σ-algebras and the respective marginal
measure of Pπδs (for Ωs,a we require π(·|s) = δa) and denote those by Pπs and Pπs,a.

Definition 1.2.4. The value function of a policy is defined as

vπγ : S → R, s 7→ E
[
Gπγ (s)

]
,

the action value function of a policy is defined as

qπγ : S ×A→ R, (s, a) 7→ E
[
Zπγ (s, a)

]
.

The value of a state s ∈ S thus is the expected total discounted reward of a trajectory
starting in s.

Definition 1.2.5. For a given γ ∈ [0, 1) a policy π∗ is said to be uniformly optimal if

vπ
∗

γ (s) ≥ vπγ (s) ∀π ∈ Π ∀s ∈ S.

The optimal value function is defined as v∗γ(s) := supπ∈Π v
π
γ (s). A policy π is said to be

ε-optimal if vπ(s) ≥ vπ(s)− ε for all s ∈ S.

5

Definition 1.2.6. A policy π∗ is said to be Blackwell-optimal if there exists a γ ∈ [0, 1)
such that π∗ is uniformly optimal for every γ′ ∈ [γ, 1).

Definition 1.2.7. For γ ∈ [0, 1), we call a policy π weakly-optimal if it maximizes the
objective function

Jγ(π) := Es∼ρ0vπγ (s)

where ρ0 is the initial state distribution of the MDP.

Since a policy π′ is uniformly better than π if vπ
′
(s) ≥ vπ(s) ∀s ∈ S the induced order

relation is only partial, while the weaker notion J(π′) ≥ J(π) defines a total order.

1.3 Existence of Optimal Policies

The formulation of definitions and results in this section is inspired by the treatment of
[Lig24], who abstracted various results of prior literature, however we adapt the treatment
to our setting. In particular the reward function is dependent on s′ as well, and we treat
the case of stochastic policies as well.
Given Borel spaces (X,B(X)) and (Y,B(Y)) we denote the class of all measurable

functions from X to Y by U(X,Y). For any set S we denote the space of real valued
bounded functions by B(S). Furthermore, we denote the integral of a function f with
regard to a measure µ as

∫
f(x) µ(dx).

Definition 1.3.1. Let S be the state set, As the action set of a state s ∈ S, r the reward
function and p the transition kernel of an MDP. For v ∈ U(S,R) ∩ B(S) the Bellman
optimality operator is defined as

Tv(s) := sup
a∈As

∫
S
r(s, a, s′) + γv(s′) p(ds′, s, a)

and for π ∈ Πs the Bellman Operator

Tπv(s) :=

∫
As

∫
S
r(s, a, s′) + γv(s′) p(ds′, s, a)π(da, s).

By Ta we denote the operator Tπ with the Dirac measure π(· | s) = δa.

Lemma 1.3.2. The operators Tπ and T are both γ-contractive regarding the supremum
norm ∥.∥ on B(S).

Proof. For any s ∈ S via the triangular inequality we have

|Tπf(s)− Tπg(s)| ≤ γ
∫
As

∫
S
|f(s′)− g(s′)| p(ds′, s, a)π(s, da) ≤ γ∥f − g∥. (1.1)

Thus, via the supremum over s ∈ S we arrive at ∥Tπf − Tπg∥ ≤ γ∥f − g∥. By Eq. (1.1)
it follows that for all s ∈ S, any f, g ∈ B(S) and a ∈ As the inequalities

Taf(s) ≤ Tag(s) + γ∥f − g∥ ≤ Tg(s) + γ∥f − g∥

6

hold. Via the supremum over a ∈ As we arrive at Tf(s) ≤ Tg(s) + γ∥f − g∥. The
same argument can be repeated with the roles of f and g exchanged, thus a symmetry
argument yields |Tf(s)− Tg(s)| ≤ γ∥f − g∥ and taking the supremum does the rest.

The following lemma is common knowledge from mathematical analysis, a proof can
also be found in [BDR23, Proposition 4.7]. Compared to Banach’s fixed point theorem,
completeness of the underlying space is not required.

Lemma 1.3.3. Let (M,d) be a metric space and T :M →M be a γ-contractive mapping
for γ ∈ [0, 1) with fixed point u∗. Then u∗ is the unique solution of Tu = u and for any
u0 ∈ M the sequence (uk)k≥0 defined by uk+1 = Tuk converges to u∗ with respect to d,
i.e., limk→∞ d(uk, u

∗) = 0.

Theorem 1.3.4. Let D ⊆ U(S,R) ∩B(S) be Bellman closed i.e., Tπf ∈ D for π ∈ Πs

and every f ∈ D. Then the value function vπ with respect to policy π ∈ Πs is the unique
function in D that satisfies

vπ = Tπv
π,

notably for every f ∈ D we have vπ = limk→∞ T kπ f .

Proof. We start by showing the equation

vπ(s) =

∫
Ω
G(s)(ω) Ps(dω)

for vπ. With Fubini’s theorem for the product measure we obtain:

=

∫
As

∫
S

∫
Ωs,a

r(s, a, s′) + γG(s′)(ω′) Ps,a(dω′)p(ds′, s, a)π(da, s)

=

∫
As

∫
S
r(s, a, s′) + γvπ(s′) p(ds′, s, a)π(da, s) = Tπv(s).

We have now shown that vπ is a fixed point of Tπ. Lemma 1.3.3 concludes the proof.

Theorem 1.3.5. Let D ⊆ U(S,R) ∩ B(S) be a complete metric space with respect to

the supremum norm such that the constant function y(x) :=
sups,s′∈S,a∈A r(s,a,s

′)

1−γ ∈ D and
for every f ∈ D we have Tf ∈ D. If for every f ∈ D there exists λ ∈ Πd such that
Tf(s) = Tλf(s) for every s ∈ S, then:

1. The optimal value function v∗ is the unique solution of v = Tv.

2. There exists a stationary deterministic policy π such that v∗ = vπ.

Proof. By Banach’s fixed point theorem the operator T has a unique fixed point x. We
start by showing v∗ ≤ x. Since v∗ ≤ y and y ∈ D, by Theorem 1.3.4 we have

vπ(s) =

∫
As

∫
S
r(s, a, s′) + γv(s′) p(ds′, s, a)π(da, s)

7

≤ sup
a∈As

∫
S
r(s, a, s′) + γv∗(s′) p(ds′, s, a)

≤ sup
a∈As

∫
S
r(s, a, s′) + γy(s′) p(ds′, s, a) = Ty(s)

for any policy π. Taking the supremum over all π ∈ Π yields v∗ ≤ Ty. By induction, it
follows that v∗ ≤ Tny and since Tny → x as n→∞ by Banach’s theorem we arrive at
v∗ ≤ x.
It remains to show that x ≤ v∗. Per assumption there exists a λ ∈ U(S,A) ∩G such

that Tλx = Tx. Since Tx = x we have Tλx = x and thus x = vλ by Theorem 1.3.4. Thus,
we arrive at

v∗ ≤ x ≤ vλ ≤ v∗

and thus v∗(s) = x(s) = vλ(s) for all s ∈ S.

Definition 1.3.6. The equation v = Tπv is called Bellman equation, the equation v = Tv
is called Bellman optimality equation.

There are various choices of D studied in the literature, depending on the restrictions
imposed on the MDP. For an overview see [Lig24] and [Fei11]. The choice D = U(S,R)∩
B(S) does not work in general as there are f ∈ D such that Tf ̸∈ D, see [Lig24, p. 8].

Theorem 1.3.7. Let (T , S, ρ0, A, p, r) be an MDP with the assumptions:

1. As is compact for all s ∈ S and s 7→ As is upper semi-continuous.

2. (s, a) 7→ p(·|s, a) is weakly continuous, i.e., if sn → s and an → a, then p(·|sn, an)
converges weakly to q(·|s, a).

3. r(s, a, s′) is a bounded upper semi-continuous function on S ×A× S.
Then there exists a stationary deterministic optimal policy.

Proof. Let D be the class of all bounded upper semi-continuous functions on S, which is
a closed subset of the complete metric space B(S) and thus complete. It can be shown
that under the conditions imposed on the MDP v∗ ∈ D, Tf ∈ D for all f ∈ D and that
there exists λ ∈ Πd such that Tf(s) = Tλf(s) for every s ∈ S. For the latter we refer to
the proof of the selection theorem in [Mai68]. Thus, Theorem 1.3.5 can be invoked.

Even these compactness and continuity conditions do not hold it can still be shown,
that ε-optimal policies exist [Fei11, Theorem 20]:

Theorem 1.3.8. If the class of policies is extended to the class of universally measur-
able functions, then for any ε > 0 there exists a stationary, deterministic universally
measurable ε-optimal policy.

Theorem 1.3.9. In an MDP with finite state and action spaces there exists a stationary
deterministic optimal policy.

Proof. Choose D = B(S) and notice that all the requirements of Theorem 1.3.5 are
met.

8

1.4 Theoretical Foundations of Q-learning

The results in this section are adaptions of the results in Section 1.3 for the action value
function to serve as a theoretical basis for Q-learning algorithms.

Definition 1.4.1. For q ∈ U(G,R) ∩B(G) the Bellman optimality operator is

Tq(s, a) :=

∫
S
r(s, a, s′) + γ sup

a∈As′
q(s′, a′) p(ds′, s, a)

and for π ∈ Πs the Bellman operator is defined as

Tπq(s, a) :=

∫
S
r(s, a, s′) + γ

∫
As′

q(s′, a′) π(da′, s′)p(ds′, s, a).

Note that the operators carry the same name and symbol as in the last section,
but they operate on different spaces (in the last section value functions and in this
section action value functions). The equation q = Tq with q ∈ B(G) is also referred
to as Bellman optimality equation (for action value functions) as opposed the Bellman
optimality equation for value functions in the last section.

Lemma 1.4.2. The operators Tπ and T are both γ-contractive regarding the supremum
norm ∥.∥ on B(G).

Proof. For Tπ the proof is analogous to Lemma 1.3.2. For T we have

|Tq1(s, a)− Tq2(s, a)| ≤
∫
S
γ| sup

a′∈Γ(s′)
q1(s

′, a′)− sup
a′∈Γ(s′)

q2(s
′, a′)| p(ds′, s, a)

≤
∫
S
γ sup
a′∈Γ(s′)

|q1(s′, a′)− q2(s′, a′)| p(ds′, s, a)

≤ γ sup
(s′,a′)∈G

|q1(s′, a′)− q2(s′, a′)|

and the supremum norm again concludes the proof.

Theorem 1.4.3. Let D ⊆ U(G,R) ∩B(G) be Bellman closed i.e., Tπf ∈ D for π ∈ Πs
and every f ∈ D. Then the value function qπ with respect to policy π ∈ Πs is the unique
function in D that satisfies

qπ = Tπq
π,

notably for every f ∈ D we have qπ = limk→∞ T kπ f .

Proof. Analogous to the proof of Theorem 1.3.4.

Theorem 1.4.4. The Bellman optimality operator for q-functions admits a unique fixed
point q∗ ∈ B(G) with

v∗(s) = sup
a∈As

q∗(s, a)

where v∗ is the optimal value function.

9

Proof. Since B(G) is a complete metric space with the supremum norm, Banach’s fixed
point theorem guarantees the existence of a unique fixed point q∗, with q∗ = Tq∗. Taking
the supremum on both sides of the fixed point equation yields

sup
a∈As

q∗(s, a) = sup
a∈As

∫
S
r(s, a, s′) + γ sup

a∈As′
q∗(s′, a′) p(ds′, s, a).

Now let v(s) := supa∈As
q∗(s, a). Then we get

v(s) = sup
a∈As

∫
S
r(s, a, s′) + γv(s′) p(ds′, s, a),

which is the Bellman optimality equation for v∗, hence v∗(s) = v(s).

Corollary 1.4.5. If an optimal policy π∗ exists, then q∗(s, a) = qπ
∗
(s, a).

Proof. Let π∗ be an optimal policy, from the definition of qπ
∗
we obtain

qπ
∗
(s, a) =

∫
S
r(s, a, s′) + γvπ

∗
(s′) p(ds′, s, a)

and since π∗ is an optimal policy we have vπ
∗
(s) = v∗(s) = supa∈As

q∗(s, a), thus

=

∫
S
r(s, a, s′) + γ sup

a∈As′
q∗(s′, a′) p(ds′, s, a)

= q∗(s, a)

where the last equality is due to Tq∗ = q∗.

1.5 Distributional Operators

The theory of this section is based on [BDR23, Chap. 4, 7], albeit we adapt the formulation
to our MDP definition (which assumes a deterministic reward function that depends on
the next state, which is different from the assumption in [BDR23, p. 15]) and remain in
the continuous state and action space formulation.

Let η(s) be the distribution of G(s) and ν(s, a) the distribution of Z(s, a), i.e., η(s) =
G(s)#Ps and ν(s, a) = Z(s, a)#Ps,a where f#µ denotes the push-forward measure of µ
through a measurable function f .

Then v(s) =
∫
R x η(s)(dx) is the induced value function and q(s, a) =

∫
R x ν(s, a)(dx)

the induced action value function.

Definition 1.5.1. Let P(R)S := {η(s) : η(s) ∈ P(R), s ∈ S} denote the space of return-
distribution functions and similarly P(R)G := {ν(s, a) : η(s, a) ∈ P(R), (s, a) ∈ G}.
Definition 1.5.2. For η ∈ P(R)S and a stationary policy π we define the distributional
Bellman operator

(Tπη)(s)(B) :=

∫
As

∫
S
b#r(s,a,s′),γη(s

′)(B) p(ds′, s, a)π(da, s),

10

where br,γ : R→ R, z 7→ r + γ · z and B ∈ B(R). Similarly, for ν ∈ P(R)G we define

(Tπν)(s, a)(B) :=

∫
S

∫
As′

b#r(s,a,s′),γν(s
′, a′)(B) π(da′, s′)p(ds′, s, a).

Definition 1.5.3. A greedy selection rule is a function P(R)G → Πs, ν 7→ G(ν) with
G(ν)(a, s) > 0⇒ Q(s, a) = sup

a′∈As

Q(s, a′)

for the induced action value function.

Definition 1.5.4. For ν ∈ P(R)G we define the distributional Bellman optimality
operator with greedy selection rule G as

(TGν)(s, a)(B) :=

∫
S

∫
As′

b#r(s,a,s′),γν(s
′, a′)(B) G(ν)(s′)(da′, s′)p(ds′, s, a).

Theorem 1.5.5 (Distributional Bellman equation). Let νπ ∈ P(R)G be the return-
distribution function of a stationary policy π. For any (s, a) ∈ G, the equality

νπ(s, a) = (Tπνπ)(s, a)
holds. An analogous result holds for η ∈ P(R)S with the respective operator.

Proof. For B ∈ B(R) we have

νπ(s, a)(B) = Ps,a(Zπ(s, a) ∈ B)

= Ps,a({ω ∈ Ω | Zπ(s, a)(ω) ∈ B}).
By the property of the product measure Ps,a we have

=

∫
S

∫
As′

Ps′,a′({ω′ ∈ Ω′ | br(s,a,s′),γ ◦ Z(s′, a′)(ω′) ∈ B}) π(da′, s′)p(ds′, s, a)

=

∫
S

∫
As′

Ps′,a′(Z(s′, a′)−1 ◦ b−1
r(s,a,s′),γ(B)) π(da′, s′)p(ds′, s, a)

=

∫
S

∫
As′

ν(s′, a′)(b−1
r(s,a,s′),γ(B)) π(da′, s′)p(ds′, s, a)

=

∫
S

∫
As′

b#r(s,a,s′),γν(s
′, a′)(B) π(da′, s′)p(ds′, s, a) = (Tπνπ)(s, a)(B).

Lemma 1.5.6. Let Z(s, a) ∼ ν(s, a) for all (s, a) ∈ G be a collection of random variables
on Ωs,a. Then the random variable r(s, a,X ′)+γZ(X ′, A′) has the distribution (Tπν)(s, a).
Proof. Let µ be a measure on Ωs,a such that ν(s, a) = Z(s, a)#µ. Since

P(r(s, a,X ′) + Z(X ′, A′) ∈ B)

=

∫
S

∫
As′

µ({ω′ ∈ Ωs,a | r(s, a, s′) + γZ(s′, a′)(ω′) ∈ B}) π(da′, s′)p(ds′, s, a),

we arrive at the desired result by analogous manipulation as in the preceding proof.

11

Definition 1.5.7. The p-Wasserstein distance of ν ∈ P(R) and ν ′ ∈ P(R) is given by

wp(ν, ν
′) :=

(∫ 1

0
|F−1
ν (τ)− F−1

ν′ (τ)|p dτ
) 1

p

for p ∈ [1,∞) and by

w∞(ν, ν ′) = sup
ω∈(0,1)

|F−1
ν (τ)− F−1

ν′ (τ)|

for p = ∞, where F−1
ν (τ) = infz∈R{z : Fν(z) ≥ τ} is the generalized inverse of the

cumulative distribution function Fν of ν.

Definition 1.5.8. Let X = S or X = G. For p ∈ [1,∞] the supremum p-Wasserstein
distance between µ, µ′ ∈ P(R)X is given by

wp(µ, µ
′) = sup

x∈X
wp(µ(x), µ

′(x)).

Lemma 1.5.9. Let p ∈ [1,∞] and X as in the previous definition. Then the supremum
p-Wasserstein distance is a metric on P(R)X .

Definition 1.5.10. A coupling between ν, ν ′ ∈ P(R) is a random vector (Z,Z ′) ∼ v on
R2 such that Z ∼ ν and Z ′ ∼ ν ′. For the set of all couplings we write C(ν, ν ′).

Lemma 1.5.11. Let p ∈ [1,∞). Then the equalities

wp(ν, ν
′) = min

(Z,Z′)∈C(ν,ν′)
E[|Z − Z ′|p]

1
p ,

w∞(ν, ν ′) = min
(Z,Z′)∈C(ν,ν′)

inf{z ∈ R : v(|Z − Z ′| > z) = 0}

hold.

Theorem 1.5.12. The operator Tπ on P(R)G is γ-contractive with regard to wp for
p ∈ [0,∞], the same applies to the operator Tπ on P(R)S.

For the proof we follow [BDR23, p. 93].

Proof. Let p ∈ [0,∞). For each (s, a) ∈ G let Z(s, a) ∼ ν(s, a) and Z ′(s, a) ∼ ν ′(s, a)
with ν ∈ P(R)G and ν ′ ∈ P(R)G. With Lemma 1.5.6 it follows that

(r(s, a,X ′) + γZ(X ′, A′), r(s, a,X ′) + γZ ′(X ′, A′))

is a coupling between (Tπν)(s, a) and (Tπν ′)(s, a). Via Lemma 1.5.11 we have

wpp((Tπν)(s, a), (Tπν ′)(s, a)) = min
(Z,Z′)∈C(ν,ν′)

γpE
[
|Z(X ′, A′)− Z ′(X ′, A′)|p

]
≤
∫
S

∫
As′

γpE
[
|Z(s′, a′)− Z ′(s′, a′)|p

]
π(da′, s′)p(ds′, s, a)

12

≤ γp sup
(s′,a′)∈G

E
[
|Z(s′, a′)− Z ′(s′, a′)|p

]
= γpwpp(ν, ν

′).

Taking the p-th root on both sides and taking the supremum over (s, a) ∈ G gives the
desired contraction property. We omit the proof of the case p =∞.

The distributional Bellman operators Tπ can be shown to be contractive more generally
for probability metrics meeting certain requirements, for a characterization we refer to
[BDR23, Theorem 4.25].

Theorem 1.5.13. Let the reward function of the MDP be bounded and let ν0 ∈ P(R)G
be any initial distribution with bounded support. Then the sequence

νk+1 = Tπ(νk)

converges to νπ with respect to wp for any p ∈ [0,∞].

Proof. By assuming bounded rewards, all return values are bounded as well, thus all
return distributions involved have bounded support which makes all Wasserstein distances
finite. Since the space of return distributions with bounded support P(R)G is closed
under Tπ and νπ is part of that space, we can restrict our attention to that space. By
Theorem 1.5.5 we already know that νπ is fixed point of Tπ and by Theorem 1.5.12 we
know that the operator is a contraction, hence Lemma 1.3.3 does the rest.

Theorem 1.5.14. Let T G be the distributional Bellman optimality operator with a greedy
selection rule G, let the reward function of the MDP be bounded and suppose there exists
a unique optimal policy π∗. Then, for any initial distribution ν0 ∈ P(R)G with bounded
support the sequence

νk+1 = Tπ(νk)
converges to νπ

∗
with respect to wp for any p ∈ [0,∞].

Remark 1.5.15. The distributional Bellman optimality operators are sadly not well-
behaved in cases where multiple optimal policies exist, for counterexamples to convergence
see [BDR23, Example 7.11]. This is due to the fact that in general the distributional
optimality operators are not contractions anymore, see [BDR23, Proposition 7.7].

1.6 Reinforcement Learning Terminology

Reinforcement learning (RL) is the problem of finding (learning) an optimal policy
(w.r.t. to a given optimality criterion suitable for the MDP) without direct access to the
underlying transition kernel and reward function of the MDP.

In the classical online reinforcement learning setting, it is possible to sample transitions
(s, a, r, s′) by following a behavior policy πb in order to be able to learn an optimal policy
(referred to as target policy), while in the offline (also batch) reinforcement learning

13

setting, a fixed dataset (batch) of transitions from an MDP is given without any possibility
to interact with the MDP, i.e., the behavior policy used to collect the batch is not known
(in the ideal case the batch contains transitions recorded from the environment interaction
of an expert). Many state-of-the-art reinforcement learning algorithms are not purely
online, but store past transitions in a batch and additionally to sampling the MDP also
repeatedly sample from that batch, thus they are a middle ground between pure online
and pure offline reinforcement learning, also referred to as the growing batch reinforcement
learning problem (see [LGR12]).

Online algorithms that at each step estimate the (action)-value of the current behavior
policy and improve the behavior policy towards the optimal policy are classified as
on-policy, while algorithms that directly try to estimate the (action)-value of the optimal
policy while following a behavior policy are classified as off-policy algorithms.

When trying to solve a reinforcement learning problem, there are two fundamental
approaches:

1. Model-free reinforcement learning approaches directly try to learn an optimal policy
without building a model of the transition kernel p(s, a, s) or the reward function
r(s, a, s′).

2. Model-based reinforcement learning approaches build a model of the transition
kernel and reward function.

One possible advantage of model-based approaches is the possibility to query the model
in order to plan ahead without querying the environment.

Algorithms that primarily learn an optimal (action)-value function are referred to as
value-based methods, while algorithms that directly learn an optimal policy are referred
to as policy-based methods. Policy-based methods that additionally learn the value
function of the policy are commonly referred to as actor-critic algorithms, actor refers to
the estimated policy and critic to the estimated value function. Algorithms that learn a
return distribution are classified as distributional.

1.7 Multi-Objective RL

In many practical tasks there are multiple, often conflicting objectives the agent should
optimize for simultaneously. Thus, it is natural to extend the MDP definition to the
multi-objective setting by allowing reward vectors r ∈ Rn instead of scalar rewards, where
each vector component ri represents the reward regarding objective i.

In a multi-objective MDP with n objectives the value function of a policy takes values
in Rn. Each objective i is to maximize the value function vπi by criteria as in Section 1.2.

Definition 1.7.1. Let vπi denote the value function with regard to objective i. We define

π >i π
′ :⇔ ∀s ∈ S : vπi (s) ≥ vπ

′
i (s) ∧ ∃s ∈ S : vπi (s) > vπ

′
i (s).

14

Definition 1.7.2. Let >i, i ∈ {1 . . . , n} be as in the above definition. A policy π
Pareto-dominates another policy π′ if

π ≻ π′ :⇔ ∀i : π ≥i π′ ∧ ∃j : π >j π′.

A policy π is called Pareto-optimal if there is no policy that Pareto-dominates π. The
set of all such policies is called Pareto-front.

Thus, unlike in the single objective case, there is no unique optimal value function,
especially not without specifying how to prioritize (weight) between the different objectives.
Furthermore, in the general case the existence of deterministic Pareto-optimal policies
are lost. Multi-objective reinforcement learning is an entire field on its own, especially
since there are applications where the weights of the objectives are not known during
the learning phase, which requires learning the Pareto-front, for an overview of problem
formulations we refer to [Roi+13].

A way to prioritize between the different objectives is by making use of a scalarization
function (also called utility function) fw : Rn → R, where w ∈ Rn is a parameter vector
that weights the individual objectives. If the scalarization function fw is linear, by the
linearity of expectation we have

fw(v
π) = w · vπ = w · E

[∞∑
k=0

γkRk

]
= E

[∞∑
k=0

γkw ·Rk

]
= E

[∞∑
k=0

γkfw(Rk)

]
.

Thus, it is possible to treat the multi-objective MDP the same way as a single objective
MDP with the scalar reward fw(r).

Theorem 1.7.3. Let π∗ be an optimal policy of the single objective MDP via the
scalarization fw(x) = w · x, where wi > 0 for all i ∈ {1, . . . , n}. Then π∗ is Pareto-
optimal in each s ∈ S.

Proof. Let s ∈ S be fixed but arbitrary. Since π∗ is optimal, we have for any π ∈ Π that

n∑
i=1

wi · (vπ
∗
(s)− vπ(s)) ≥ 0.

Assume that π∗ is not Pareto-optimal in s. Then there exists π′ ∈ Π with vπ
′

i (s) ≥ vπ∗
i (s)

for all i ∈ {1, . . . , n} and vπ′
j (s) > vπ

∗
j (s) for some j ∈ {1, . . . , n}. Sine wi > 0 for each i

we obtain
n∑
i=1

wi · (vπ
∗
(s)− vπ′

(s)) < 0,

which is a contradiction.

Thus, regular reinforcement learning methods are sufficient to obtain Pareto-optimal
policies if the reward vectors are linearly scalarized. The question, whether all policies
on the Pareto-front can be obtained via linear scalarization depends on the convexity of
the value function spaces, see [LHY23, Sec. 4.1].

15

2 Algorithms and Implementation

In this chapter we generally denote the space of all stationary policies by Π.

2.1 Q-Learning

Let S and A be finite. Then the action value function can be represented by a table with
|S| rows and |A| columns where each entry represents Q(s, a). The idea of Q-learning
is to iteratively improve a Q-table estimate of Q∗(s, a) by updating the values via the
temporal-difference error δt := T̂Q(s, a)−Q(s, a) where T̂ denotes the empirical Bellman
optimality operator

T̂Q(s, a) := r(s, a, s′) + γ max
a′∈As′

Q(s′, a′),

see Algorithm 2.1.

Algorithm 2.1 Tabular Q-learning

Input: environment interface with specification of spaces S and A.
Output: approximation of optimal action value function Q∗(·, ·)
Parameters: learning rate α, exploration rate ϵ, optional decay schedules for α, ε

1 Initialize Q : S ×A → R arbitrarily
2 Sample initial state s from environment
3 for number of training steps do
4 Optionally update ϵ or α according to decay schedules

5 a←
{
argmaxaQ(s, a) with probability 1− ϵ, breaking ties randomly

random action with probability ϵ

6 Execute action a in environment, observe next state s′ and reward r

7 y ←
{
r if s′ is terminal

r + γmaxa′ Q(s′, a′) otherwise

8 Q(s, a)← Q(s, a) + α(y −Q(s, a))
9 if s′ is terminal or truncation condition is true then

10 Sample new initial state s from environment
11 else s← s′

12 end

The case-handling in line 7 is usually avoided in the literature [SB18, Sec. 6.8], where
instead it is required to initialize the Q-table with the constraint Q(st, a) = 0 whenever

16

st is a terminal state, which is equivalent, but in our opinion an unpractical formulation,
since in practice we usually do not have a list of terminal states available, which practically
means to initialize the table with zeros or do the case handling as in our formulation.
The truncation condition in line 9 is in practice usually a time limit, which is met

when the number of steps since the last initial state exceeds a certain threshold. This
makes especially sense in infinite-horizon problems, where the agent might be possibly
forever stuck in areas of the state space (even under optimal behavior), e.g., in a game
like chess that could possibly go on forever.
In order to be able to precisely formulate the asymptotic convergence guarantees of

the algorithm we need some definitions first. We mostly follow the notations of [RA21],
who give a more formal treatment of the original result and proof from [WD92].

Definition 2.1.1. The learning-trajectory space of an MDP M is the measurable space

(ΩM ,FM) :=

(G× S)N0 ,
⊗
t∈N0

2(G×S)

 .

Let ∆(ΩM ,FM) denote the set of all probability measures P on (ΩM ,FM) satisfying

P(St = s′ | S0, A0, S
′
0, . . . St, At) = p(s′ | St, At)

almost surely for any s′ ∈ S and t ∈ N0, where p(· | ·, ·) is the transition kernel of M .

The environment interaction of the algorithm generates what we refer to as a learning-
trajectory, a sequence of transitions ((Si, Ai, S

′
i))i∈N0 which we identify as

ω = (S0, A0, S
′
0, S1, A1, S

′
1 . . .) ∈ ΩM .

Definition 2.1.2. We denote the occurrences of state-action pair (s, a) ∈ G along a
learning-trajectory ω ∈ ΩM by

O(s,a)(ω) := {t ∈ N0 : (St, At)(ω) = (s, a).}
Definition 2.1.3. The Q-learning iterates on a finite MDP M with discount rate γ, a
learning rate sequence α = (αt)t∈N0 in [0, 1] and a learning-trajectory ω ∈ ΩM form the
sequence (Qαt (ω))t∈N0 in ℓ∞(G) defined recursively by Qα0 (ω) = 0 and

Qαt+1(ω)(s, a) :=

Qαt (ω)(s, a), if t /∈ O(s,a)(ω)

Qαt (ω)(s, a) + αt(r(s, a, S
′
t(ω))

+ γmax
a∈As

Q(ω)(S′
t(ω), a))

, otherwise

Theorem 2.1.4. Let P ∈ ∆(ΩM ,FM) and (αt)t∈N0 in [0, 1] be such that the Robbins-
Monroe conditions are satisfied, i.e., for all (s, a) ∈ G and P-almost all ω ∈ ΩM∑

t∈O(s,a)(ω)

αt =∞ and
∑

t∈O(s,a)(ω)

α2
t <∞. (2.1)

Then the Q-learning iterates (Qαt (ω))t∈N0 converge uniformly to the optimal action value
function Q∗

M for P-almost all ω ∈ ΩM .

17

The condition
∑

t∈O(s,a)(ω)
αt = ∞ implicitly requires O(s,a)(ω) to be infinite for all

state-action pairs (s, a), which means that the algorithm needs to interact with the
environment in a way (which induces the measure P) to visit every state-action pair
infinitely many times, which is the reason for the requirement of the random action case in
line 5 of Algorithm 2.1. In practice, to get a good convergence rate to the approximately
optimal Q-function it is essential to find a good balance between exploring random
actions (to potentially learn something new) and exploiting the best known actions, thus
the exploration rate is usually set to a constant between 0.01 and 0.05 or annealed to
such a constant starting from an initially higher exploration rate.
Since state-action pairs (st, a) where st is a terminal state are never updated and

already have their correct Q-value initialized with zero, the Robbins-Monroe conditions
for such pairs are irrelevant for the asymptotic convergence guarantee.
Note, that it is not required that S′

i(ω) = Si+1(ω), thus the truncation condition in
the algorithm does not affect convergence as long as it does not make states inaccessible.

2.2 Q-Learning with Function Approximation

Tabular Q-learning is practically only feasible for MDPs with a few states. One solution
to deal with big discrete or even continuous state spaces is to approximate Q∗ in some
parametrized function space F(θ) ⊆ RS×A, where θ ⊆ Rn denotes the parameter vector
that parametrizes the functions in F . Such a function space could in case of non-linear
function approximation be the space of all functions realized by a neural network with
weights w or in case of linear function approximation a linear space{

Q ∈ RS×A : Q(s, a, θ) =

n∑
i=1

θiϕi(s, a)

}
,

where ϕ : S ×A→ Rn is a function that assigns each state-action pair a feature vector.

2.2.1 Semi-Gradient method

In order to realize Q-learning as in the tabular case, the parameters of the action value
function Q(s, a, θ) are gradually updated to minimize the loss

L(θ) =
1

2
(T Q(s, a)−Q(s, a, θ))2

≈ 1

2

(
T̂Q(s, a)−Q(s, a, θ)

)2
.

Note that we omitted the dependency on θ of T̂Q(s, a, θ), thus when minimizing the loss
via stochastic gradient descent we calculate a semi-gradient

θt+1 = θt − α∇L(θt)
= θt + α

(
E
[
T̂Q(s, a, θt)

]
−Q(s, a, θt)

)
∇Q(s, a, θt)

18

≈ θt + α
(
T̂Q(s, a, θt)−Q(s, a, θt)

)
∇Q(s, a, θt)

by ignoring this dependency. In the linear function approximation case ∇Q(s, a, θt) =
ϕ(s, a). If we set ϕ : S×A→ RS×A such that ϕi(s, a) := 1(s,a)(i) is the indicator function
of index pair (s, a), i.e., Q(s, a, θ) = θ(s,a) the update reduces to the regular tabular
Q-learning update

Qt+1(s, a) = Qt(s, a) + α(T̂Qt(s, a)−Qt(s, a)).

Unfortunately, in general even with linear function approximation there are circumstances
where Q-learning has been shown to diverge, this is typically referred to in the literature
as deadly-triad as experience showed that instability and divergence issues arise as soon as
one tries to combine off-policy learning with bootstrapping target estimates and function
approximation, see [SB18, Sec. 11.2, 11.3]. This can be mostly attributed to the fact
that one update to the parameters changes the Q-values for multiple states, which can
have the advantage of generalization if it improves the values for multiple other states as
well, but can also be responsible for regressions in multiple other states and an overall
unstable or even divergent training process. With neural networks in particular it has
been empirically observed that the training process is often unstable and very sample
inefficient, see [Rie05]. That changed with the publication of DQN in [Mni+15] described
in Section 2.3.

2.2.2 Residual Method

Instead of calculating the semi-gradient of the temporal difference error, one could try to
work with the true gradient as well to find

θt+1 = θt − α∇L(θt)
= θt + α

(
E
[
T̂Q(s, a, θt)

]
−Q(s, a, θt)

)
(
∇Q(s, a, θt)− γE

[
∇ max
a′∈As′

Q(s′, a′, θt)

])
.

This leads to a double-sampling issue, since we can not use one single sample (s, a, s′, r) to
get an unbiased estimate of the product if we would take the same sample for estimating
both expectations. In the literature various algorithms have been proposed that are
often referred to as residual-gradient or full-gradient methods, but despite convergence
guarantees those have not been successful in practice due to slower convergence and
convergence to bad action value functions according to [SB18, p. 273] and [WU22, p. 3].

2.2.3 Notes on Function Approximation

Using function approximation introduces a number of theoretical challenges:

1. In a function class parametrizing value functions that does not contain the optimal
value function, there is no general notion of the best representable value function due

19

to the fact that the standard notion of optimality induces a partial order. This issue
does not apply for the weaker notion of optimality we defined in Definition 1.2.7,
however. For a deeper discussion of this issue we refer to [Nai+19]. The Q-iteration
may still converge to a fixed point in that function space, however theoretical results
in the function approximation setting are sparse.

2. Consider a linear value function approximation

V (s) = V (ϕ(s), θ),

where ϕ : S → Φ ⊆ Re maps states to features and θ ⊆ Rp denotes a vector
of adaptable parameters. If ϕ is not injective, the resulting feature space MDP
becomes partially observable, see [Has12, Sec. 7.2.1.2], thus leading to a loss of most
theoretical convergence guarantees. This especially affects the most straightforward
function approximation techniques such as state aggregation.

2.3 Deep Q-Learning

Compared to semi-gradient Q-learning, DQN introduces the following changes:

1. A second Q network initialized with the same parameters referred to as target
network is used to calculate the empirical Bellman operator. The target network is
a copy of the primary network that is updated every C steps, thus the loss function
remains constant for C steps instead of changing every step, which stabilizes
training.

2. Instead of a mean squared error loss, a Huber loss

ℓκ(x) :=

{
1
2x

2, for |x| ≤ κ,
κ · (|x| − 1

2κ), otherwise

with κ = 1 is used. This has been ambiguously described in the paragraph before
algorithm 1 in [Mni+15] where it is supposedly talked about clipping the gradient
of the squared loss to [−1, 1] which we would like to point out is not equivalent to
the Huber loss with κ = 1 since the absolute value of the multiplied factor ∇Q
could be greater than one, subsequent publications of affiliated authors mention
the Huber loss explicitly, see [Dab+18a, Footnote 4] or [CC21, Sec. 5.4].

3. Experience replay: Instead of learning purely online, samples (s, a, s′, r) are stored
in an experience replay buffer and every update is formed by uniformly sampling
a batch of transitions from that experience replay buffer. This brings a couple of
advantages:

• Multiple samples are used for each parameter update, which improves the
gradient calculation

• Most optimization algorithms assume that samples are independently and
identically distributed which would not be given with sequential data

20

• Higher data-efficiency by reusing samples multiple times for updates

• Breaking correlation between the samples, as learning from batches of con-
secutive samples is inefficient, e.g., a change of certain maximization actions
might shift the agent to produce samples mostly from a certain subset of the
state space and overfit on that data.

See Algorithm 2.2 for the pseudocode of DQN.

Algorithm 2.2 DQN

Input: environment interface with specification of spaces S and A.
Output: approximation Qθ(·, ·) of optimal action value function Q∗(·, ·)
Parameters: learning rate α, exploration rate ε, target update parameters C and τ ,
batch size n, optional decay schedules for ε or α, replay buffer capacity, neural network
architecture

1 Initialize Qθ : S → R|A| with random weights θ, let Qθ(s, a) := Qθ(s)[a]

2 Initialize Qθ− : S → R|A| with weights θ− = θ
3 Initialize replay-buffer D of given capacity
4 Initialize stochastic gradient optimizer opt
5 Sample initial state s from environment
6 for number of training steps do
7 Optionally update ϵ or α according to decay schedules

8 a←
{
argmaxaQθ(s, a) with probability 1− ϵ
random action with probability ϵ

9 Execute action a in environment, observe next state s′ and reward r
10 Store (s, a, r, s′) in D
11 Sample random mini-batch of transitions (si, ai, ri, s

′
i)i≤n from D

12 yi ←
{
ri if s′i is terminal

ri + γmaxa′ Qθ−(s
′
i, a

′) otherwise
for i ∈ {1, . . . , n}

13 L(θ)← 1
n

∑n
i=1 ℓ1(yi −Qθ(si, ai))

14 θ ← θ − opt. step(α,∇L(θ))
15 Every C steps θ− ← τθ + (1− τ)θ−
16 if s′ is terminal or truncation condition is true then
17 Sample new initial state s from environment.
18 else s← s′.
19 end

In this algorithm and all those that follow we denote the change to parameters θ done by
one step of a stochastic gradient descent algorithm with regard to an objective function f
and step size η as opt. step(η,∇f(θ)). The most naive form of stochastic gradient descent
would mean opt. step(η,∇f(θ)) = η ·∇f(θ), but state-of-the-art algorithms such as Adam
introduced in [KB15] keep track of additional variables across different steps such as

21

moment vectors, hence we symbolically initialize such an optimization algorithm in the
beginning of the pseudocode and repeatedly call the step method. This is also motivated
by practice: For example in PyTorch the gradient is calculated via f.backward() and
the parameters are update via optimizer.step().
Compared to the original proposal of DQN in [Mni+15] we include an additional

soft-update parameter 0 ≤ τ ≤ 1 which allows for a soft update of the target network
parameters in line 15 originally proposed in [Lil+16, p. 4]. The original DQN algorithm
is a special case with τ = 1 which corresponds to a hard copy of the parameters. Usually
in practice either C > 1 and τ = 1 or C = 1 and τ > 1.

Despite the great empirical success of DQN, its theoretical properties are still a subject
of ongoing research. [CCM23] showed for a purely online version of DQN for linear
function approximation that the introduction of a target network together with truncation
warrants convergence to the optimal action value function, where truncation refers to
the truncation effect the Huber loss has implicitly on the temporal difference. In their
adaptation they suggest instead to truncate the target via

ri + γmax
a′
⌈Q(s′, a′, θ−)⌉,

where ⌈x⌉ = x if |x| ≤ r, ⌈x⌉ = −r if x < −r and ⌈x⌉ = r if x > r, where r = 1
1−γ . In a

similar spirit [CMS20] show the convergence of a two-timescale algorithm inspired by
DQN where the slower timescale can be seen as a modified target network.
Convergence guarantees for tabular Q-learning with experience replay have been

established in [SS21].

2.4 Double DQN

In [Has10] it was pointed out that the maximum operation in the Q-learning target
maxa′ Qt(s

′, a′) is an unbiased estimate for E [maxa′ Qt(s
′, a′)] but a biased estimate for

maxa′ E [Qt(s
′, a′)], which we seek to approximate in the first place ((Qt(s

′, a′))a′∈As′
is

treated as a collection of random variables here and the expectation should be thought over
all possible runs of the same experiment) which leads to overestimation. In the tabular
case the author proposed double Q-learning which does not have unbiased estimates
either, but overestimation is eliminated and underestimation may occur. This method
learns two independent action value estimates Qa and Qb but when calculating the target
for Qa it takes the maximum over Qb and vice versa. A minimal adaption for DQN was
proposed in [HGS16] by replacing line 12 in Algorithm 2.2 with

yi ←
{
ri, if s′i is terminal ,

ri + γQθ−(s
′
i, argmaxaQθ(s, a)), otherwise,

which does not make DQN more computationally demanding and has been empirically
shown to retain advantages from double Q-learning. Later approaches in the continuous
domain however did not find that minimal change to be sufficient and use two action
value estimates, see Section 2.7.

22

2.5 Deep Deterministic Policy Gradient

If action spaces are not discrete then Q-learning cannot be directly used in practice, since
the maximization operation maxa∈AQ(s, a) is not tractable with neural networks as the
function approximation class.

Starting from here, whenever we refer to a continuous action space, we always assume
the action set to be a real interval A = [Amin, Amax].
One popular way to deal with this issue is the introduction of a deterministic policy

parametrization
µϕ : S → A, s 7→ µϕ(s),

that jointly serves as an approximation to the optimal policy (by Theorem 1.3.7 an
optimal deterministic policy exists) as well as a maximizer for Qθ(s, ·) via

max
a∈A

Qθ(s, a) = Qθ(s, µϕ(s)).

This allows us to define an objective function

J(ϕ) := Es∼D [Qθ(s, µϕ(s))] (2.2)

which we seek to maximize.
Building upon DQN by replacing the empirical Bellman optimality operator with the

Bellman operator of policy µ and also parametrizing a deterministic policy µ with a
neural network which is used for calculating the empirical Bellman target one arrives at
the Deep Deterministic Policy Gradient algorithm (DDPG) as proposed in [Lil+16], see
Algorithm 2.3.

Albeit the authors of DDPG used another theoretical background (deterministic policy
gradient theorem, see Theorem 2.6.1) for motivating their algorithm design, we choose to
view DDPG as a Q-iteration algorithm instead for reasons we discuss in Section 2.6.

While ε-greedy exploration would work as well in theory by sampling a random
action from [Amin, Amax], the authors who proposed Deep Deterministic Policy Gradient
(DDPG) choose to rather implement exploration by adding an action noise modelled
as Ornstein-Uhlenbeck process to the greedy action µϕ(s). Subsequent work however
showed no benefit of the Ornstein-Uhlenbeck process, see [FHM18, Sec. 6.1], thus we
follow [FHM18] by making the behavior policy follow

clipA(µϕ(s) + ε), ε ∼ N (0, σ), clipA(x) := max(min(x,Amax), Amin).

Compared to ε-greedy exploration this might have the benefit of more targeted exploration
during later stages of training when the current greedy action is already near the optimal
action, with the disadvantage of biasing exploration to a neighborhood of an action that
has an inaccurately high value estimate in the beginning of training.

To give an idealized theoretical motivation (leaving all function approximation issues
aside) for the algorithm we can view the algorithm as a successive sequence of policy
evaluation

Qθk+1
= T µQθk

23

Algorithm 2.3 DDPG

Input: environment interface with specification of spaces S and A.
Output: deterministic µϕ(·) approximating optimal deterministic policy µ∗(·)
Parameters: learning rates ηc, ηa, action noise σ, target update parameters C and
τ , batch size n, optional decay schedules for learning rates, replay buffer capacity, neural
network architectures

1 Initialize µϕ : S → A with random weights ϕ
2 Initialize µϕ− : S → A with weights ϕ− = ϕ
3 Initialize Qθ : S ×A → R with random weights θ
4 Initialize Qθ− : S ×A → R with weights θ− = θ
5 Initialize replay-buffer D of given capacity
6 Initialize stochastic gradient descent optimizers optθ, optϕ
7 Sample initial state s from environment
8 for number of training steps do
9 Optionally update ηc, ηa or σ according to decay schedules

10 Choose action a = clipA(µϕ(s) + ε) with ε ∼ N (0, σ)
11 Execute action a in environment, observe next state s′ and reward r
12 Store (s, a, r, s′) in D
13 Sample random mini-batch of transitions (si, ai, ri, s

′
i)i≤n from D

14 yi ←
{
ri if s′i is terminal

ri + γQθ−(s
′
i, µϕ−(s

′
i)) otherwise

for i ∈ {1, . . . , n}

15 L(θ)← 1
n

∑n
i=1(yi −Qθ(si, ai))2

16 J(ϕ)← 1
n

∑n
i=1Qθ(si, µϕ(si))

17 θ ← θ − optθ . step(ηc,∇L(θ))
18 ϕ← ϕ+ optϕ . step(ηa,∇J(ϕ))
19 Every C steps θ− ← τθ + (1− τ)θ−
20 Every C steps ϕ− ← τϕ+ (1− τ)ϕ−
21 if s′ is terminal or truncation condition is true then
22 Sample new initial state s from environment
23 else s← s′

24 end

and policy improvement. This viewpoint has been inspired by the convergence arguments
the authors of Soft Actor Critic made in [Haa+18], which we discuss in Section 2.8.

Lemma 2.5.1 (Policy Improvement). Let µ′ be such, that Qµ(s, µ′(s)) ≥ Qµ(s, µ(s)) for
all s ∈ S. Then Qµ

′
(s, a) ≥ Qµ(s, a) for all (s, a) ∈ G.

Proof. By the Bellmen equation for the deterministic policy µ we have

Qµ(s, a) =

∫
S
r(s, a, s′) + γQµ(s′, µ(s′)) p(ds′, s, a)

24

≤
∫
S
r(s, a, s′) + γQµ(s′, µ′(s′)) p(ds′, s, a) = T µ′(Qµ).

Repeated application of the Bellman evaluation operator on the right-hand side yields
the desired result by Theorem 1.4.3.

Theorem 2.5.2 (Policy Iteration). Let M be an MDP with bounded rewards and compact
state and action spaces. Let Q0 be any function and µ0 be any deterministic policy.
Iterative application of policy evaluation (Qk+1 = T µkQk) and policy improvement (µk+1

such that Qk(s, µk+1(s)) ≥ Qk(s, µk(s)) for all (s, a) ∈ G) leads to convergence µk → µ∗

and Qk → Qµ∗ as k →∞.

Proof. By the previous lemma the sequence of Q-iterates is monotonically increasing and
bounded from above since the rewards are bounded. Thus, the sequence of Q-iterates is
converging point wise to a limit function Qµ

′
. Since Qµ

′
(s, µ′(s)) ≥ Qµ′(s, µ(s)) for any

policy µ the same iterative argument as in the last lemma yields Qµ
′
(s, a) ≥ Qµ(s, a) for

all (s, a) ∈ G and thus µ′ = µ∗.

2.6 Issues of Policy Gradient Methods

In the treatment so far we have focused on solving reinforcement learning problems
via Q-iteration. Another approach to solve reinforcement learning problems are policy
gradient methods, where the idea is to parametrize a policy πϕ(a, s) and directly search
for the optimal policy by maximizing an objective such as

Jρ0(ϕ) = Es∼ρ0 [v
πϕ
γ (s)].

There are various policy gradient theorems in the literature such as the following for
deterministic policies from [Sil+14].

Theorem 2.6.1. Let M be an MDP such that the density function p(s | s, a) of the
Markov kernel exists and is continuous and continuously differentiable w.r.t to a and
assume the same for the reward function r. Let µϕ be a deterministic policy parametrized
in ϕ such that µϕ(s) is continuously differentiable w.r.t. to ϕ. Then

∇ϕJρ0(ϕ) =
∫
S
dµϕ(s)∇ϕµϕ(s)

∂

∂a
Qµ(s, a) |a=µϕ(s) ds (2.3)

= Es∼dµϕ
[
∇ϕµϕ(s)

∂

∂a
Qµ(s, a) |a=µϕ(s)

]
, (2.4)

where dµϕ denotes the density of the discounted state distribution given as

dµϕ(s) =

∫
S

∞∑
t=0

γtρ0(s)p
µϕ(s→ s′, t, µ0)ds

′,

where p(s→ s′, t, µ0) is defined recursively as

p(s→ s, 0, µϕ) = 1,

25

p(s→ s′, 1, µϕ) = p(s′ | s, µϕ(s)),
...

p(s→ s′, t+ 1, µϕ) =

∫
S
p(s→ x, t, µϕ)p(x→ s′, 1, µϕ) dx.

Usually policy gradient theorems give the gradient as an expectation as in Eq. (2.4)
which in theory makes it possible to estimate the policy gradient via Monte Carlo
sampling. As pointed out in [NT20] usually state-of-the-art algorithms implement the
policy gradient incorrectly since those methods fail to sample from the discounted state
distribution, since it is practically not directly accessible. This is acknowledged by the
original authors of DDPG, arguing that this is commonly done in practice in policy
gradient implementations, see [Lil+16, Footnote 2]. In the case of DDPG the policy
gradient is approximated as

1

n

n∑
i=1

∂

∂a
Q(si, a) |a=µ(si),∇ϕµϕ(si) si ∼ D, i ∈ {1, . . . , n}

where the samples come from the replay buffer and the authors cite Theorem 2.6.1 as
their theoretical justification. We would like to point out, that this exactly estimates the
gradient of the objective we defined in Eq. (2.2) with a different theoretical motivation.

As a result of that theory-practice gap there exists an active line of research that tries
to address this issue, see [CVM23, Sec. 3]. On the other hand, in [Wu+22] the authors
show that by using an experience replay buffer for the biased policy gradient estimate,
this biased estimate is an unbiased estimator of ∇Jρ′0(θ) where ρ

′
0 is different from ρ0

and that a maximizer of Jρ′0(θ) is also a maximizer of Jρ0(θ). The authors argue that
this explains the strong empirical performance of off-policy policy gradient methods.

In [TTM19, Sec. 3] it is pointed out, that when pure policy gradient methods are used
it can not be ensured that the optimal policy is reached by policy gradient methods
even when an optimal policy is parametrized by the function approximation class, due to
gradient descent being prone to converge to local maxima instead of global ones.
Even if a global optimizer πθ for Jρ0(θ) is found, it is not necessarily a uniformly

optimal policy in the sense of Definition 1.2.5 due to the weighting by ρ0, even though a
uniformly optimal policy is clearly an optimizer of Jρ0(θ) due to

∀π ∀s : vπ∗(s) ≥ vπ(s)⇒ ∀π :

∫
S
ρ0(s)vπ∗(s) ds ≥

∫
S
ρ0(s)vπ(s) ds.

Many of the modern deep reinforcement learning actor-critic algorithms often portrayed
in the literature as policy-gradient methods can actually more accurately be interpreted
as Q-iteration algorithms, see [GSP19, Sec. 4.1, 5.1].

2.7 Twin Delayed DDPG

Twin Delayed DDPG (TD3) was introduced in [FHM18] and directly improves upon
DDPG by introducing three changes that help to reduce the error induced by function
approximation:

26

1. In order to address overestimation bias that is caused by updating the policy
parameters with the objective of maximizing an approximate action value function,
the authors propose clipped double Q-learning. The idea is to parametrize two
Q-functions (initialized with different initial weights) with separate target networks
each and update each Q-function by clipping the Q-value in the target in the loss
by the minimum over both value functions

r + γ min
j∈{1,2}

Qθj (s, a).

This adopts the idea of double Q-learning, convergence of that update in the tabular
case is shown in [FHM18, Appendix A].

2. Alternating between policy evaluation and policy improvement steps generates a
constantly moving optimization target for the policy. Since the value estimates
of the current policy may not be good enough after one step of policy evaluation,
the variance of value estimates is high, leading to poor policy updates. To counter
that, the authors propose to delay policy improvement steps, i.e., to only perform a
policy improvement step every d steps, where d is a new hyperparameter. Similarly,
the target networks are also only updated softly every d steps.

3. Deterministic policies are prone to overfit on narrow peaks in the value estimate,
hence the authors propose a regularization strategy they call target policy smoothing.
Under the assumption that similar actions should have similar values, they propose
fitting the value to a small area around the target action

r + γEϵ∼clip[−c,c](N (0,σ))

[
Qθ−(s

′, µϕ(s
′) + ϵ)

]
.

The full pseudocode is given in Algorithm 2.4.

2.8 Soft Actor Critic

Soft actor critic (SAC) was originally proposed in [Haa+18] and later refined in [Haa+19].
In the following we will describe the latter algorithm design.

2.8.1 Theory

Soft actor critic tries to solve a maximum entropy reinforcement learning problem,
where the objective is to find a maximum entropy stochastic policy with maximal value.
Intuitively such methods try to perform as good as possible while at the same time as
randomly as possible, which should greatly improve the exploration during learning.

Definition 2.8.1. The entropy of a random variable X with probability density function
f is defined as H(X) = E[− log(f(X))].

27

Algorithm 2.4 TD3

Input: environment interface with specification of spaces S and A.
Output: deterministic µϕ(·) approximating optimal deterministic policy µ∗(·)
Parameters: learning rates ηc, ηa, action noise σ, policy noise σt, policy noise clip c,
policy delay d, target update parameters C and τ , batch size n, optional decay schedules
for learning rates, replay buffer capacity, neural network architectures

1 Initialize µϕ : S → A with random weights ϕ
2 Initialize µϕ− : S → A with weights ϕ− = ϕ
3 Initialize Qθ1 , Qθ2 : S ×A → R with random weights θ1 and θ2
4 Initialize Qθ−1

, Qθ−2
: S ×A → R with weights θ−1 = θ1 and θ−2 = θ2

5 Initialize replay-buffer D of given capacity
6 Initialize stochastic gradient descent optimizers optθ1 , optθ2 , optϕ
7 Sample initial state s from environment
8 for number of training steps do
9 Optionally update ηc, ηa, ηα according to decay schedules

10 Choose action a = clipA(µϕ(s) + ε) with ε ∼ N (0, σ)
11 Execute action a in environment, observe next state s′ and reward r
12 Store (s, a, r, s′) in D
13 Sample random mini-batch of transitions (si, ai, ri, s

′
i)i≤n from D

14 a′i ← clipA(µϕ−(s
′) + clip[−c,c](ε)) with ε ∼ N (0, σ) for i ∈ {1, . . . , n}

15 yi ←
{
ri if s′i is terminal

ri + γminj∈{1,2}Qθ−j
(s′i, a

′
i) otherwise

for i ∈ {1, . . . , n}

16 L(θj)← 1
n

∑n
i=1(yi −Qθj (si, ai))2 for j ∈ {1, 2}

17 L(ϕ)← − 1
n

∑n
i=1Qθ1(si, µϕ(si))

18 θj ← θj − optθj . step(ηc,∇L(θj)) for j ∈ {1, 2}
19 Every d steps do
20 ϕ← ϕ− optϕ . step(ηa,∇L(ϕ))
21 Every C steps θ−j ← τθj + (1− τ)θ−j for j ∈ {1, 2}
22 Every C steps ϕ− ← τϕ+ (1− τ)ϕ−
23 if s′ is terminal or truncation condition is true then
24 Sample new initial state s from environment
25 else s← s′

26 end

Maximum entropy learning augments the reward function with an entropy term

r̃(S,A, S′) := r(S,A, S′) + αH(π(·, S′)),

where α ∈ [0, 1] is a temperature parameter that determines the relative importance of
the entropy term. In the limit α → 0 the classical reinforcement learning objective is
recovered.

28

The action value function q̃ with regard to the entropy augmented reward is referred
to as soft action value function. We can thus derive the Soft Bellman Operator via

T̃π q̃(s, a) :=

∫
S
r̃(s, a, s′) + γ

∫
As′

q̃(s′, a′) π(da′, s′)p(ds′, s, a) (2.5)

=

∫
S
r(s, a, s′) + γ

∫
As′

q̃(s′, a′)− α

γ
log(fπ(a

′, s′)) π(da′, s′)p(ds′, s, a), (2.6)

where fπ denotes the probability density function of the policy π.

Corollary 2.8.2 (Soft Policy Evaluation). If both the reward function and the entropy
of π are bounded, then for any mapping Q0 : S ×A → R the sequence

Qk+1 = T̃πQk

converges to the soft action value function Q̃π(s, a) of policy π.

Proof. Direct consequence of Eq. (2.5) and Theorem 1.4.3.

In order to give an objective for policy improvement we need a definition first.

Definition 2.8.3. For distributions P and Q with probability density functions p and q
the Kullback-Leibler divergence is defined as

DKL(P ∥ Q) =

∫ ∞

−∞
p(x) log

(
p(x)

q(x)

)
dx.

In the following we will also write DKL(p ∥ q) for the same expression.

The Kullback-Leibler divergence is a metric for the similarity of distributions. For
policy improvement the idea is to make the policy similar to a distribution induced by
the Q-function, giving higher probabilities around actions of higher value. Let π(·|s)
denote the density of the policy denoted with the same symbol, then the objective for an
improved policy π′ given a policy π for each s ∈ S is

π′(·|s) = argminπ′∈ΠDKL

(
π′(·|s)

∣∣∣∣∣∣∣∣ exp(α′Qπ(s, ·))
Zπ(s)

)
, α′ :=

γ

α
. (2.7)

The choice to fit the policy to the probability density function of the softmax policy

smα′(Q)(a, s) := exp(α′Q(s,a))∫
A exp(α′Q(s,a))da

was not motivated in the original paper, however

[SPC19] showed the following theorem (that is not formulated in the maximum entropy
setting).

Theorem 2.8.4. Let TsoftQ(s, a) := Tsmτ (Q)Q(s, a) be the softmax Bellman operator

and let T kQ0 and T ksoftQ0 denote the k-th iteration of the respective operator over some
initial Q0. Then Tsoft converges to T exponentially fast in terms of τ , i.e., the upper
bound of T kQ0 − T ksoftQ0 decays exponentially fast as a function of τ .

29

A neat side effect of the softmax policy density is that it helps to calculate the logarithm
in the KL divergence as can be seen in the proof of the following lemma.

Lemma 2.8.5 (Soft Policy Improvement). Let π be any policy and π′ as in Eq. (2.7).
Then Qπ

′
(s, a) ≥ Qπ(s, a) for all (s, a) ∈ G.

Proof. By definition of the Kullback-Leibler divergence and logarithm calculus we get

π′(·|s) = argminπ′∈Π Ea∼π′
[
log(π′(a|s))− α′Qπ(s, a) + log(Zπ(s))

]
. (2.8)

Since π ∈ Π as well, we obtain

Ea∼π′
[
log(π′(a|s))− α′Qπ(s, a) + log(Zπ(s))

]
≤ Ea∼π

[
log(π(a|s))− α′Qπ(s, a) + log(Zπ(s))

]
.

Multiplication by − 1
α′ and subtraction of the Zπ(s) term on both sides yields

Ea∼π
[
Qπ(s, a)− α

γ
log(π(a|s))

]
≤ Ea∼π′

[
Qπ(s, a)− α

γ
log(π′(a|s))

]
.

With the Bellman equation we obtain

Qπ(s, a) = Es′∼p(·|s,a)
[
r(s, a, s′) + γEa∼π

[
Qπ(s, a)− α

γ
log(π(a|s))

]]
≤ Es′∼p(·|s,a)

[
r(s, a, s′) + γEa∼π′

[
Qπ(s, a)− α

γ
log(π′(a|s))

]]
= T̃π′(Qπ(s, a)).

Recursive application of the soft Bellman operator on the right-hand side yields Qπ(s, a) ≤
Qπ

′
(s, a) by Corollary 2.8.2.

Theorem 2.8.6 (Policy Iteration). Let M be an MDP with bounded rewards, compact
state space and action spaces and let Π be a function class of stationary policies that
admits a uniform bound on entropy term. Let Q0 be any function and π0 ∈ Π be any
policy. Iterative application of soft policy evaluation (Qk+1 = T̃ πkQk) and soft policy
improvement (πk+1 is the minimizer as in Eq. (2.7) for all s ∈ S) leads to convergence
πk → π∗ and Qk → Qπ∗.

Proof. Analogous to Theorem 2.5.2.

For meeting the requirement of bounded entropy we state the following theorem.

Theorem 2.8.7. For a continuous random variable Z with density f supported on
B := [ani , bni]

|n| the entropy is bounded |H(Z)| ≤ | log(vol(B))|.
Proof. Since x 7→ | log(x)| is concave, we can apply Jensen’s inequality to find

|H(Z)| =
∣∣∣∣∫
B
− log(f(x))dF (x)

∣∣∣∣ = ∣∣∣∣∫
B
log

(
1

f(x)

)
dF (x)

∣∣∣∣ ≤ ∫
B

∣∣∣∣log(1

f(x)

)∣∣∣∣ dF (x)
≤
∣∣∣∣log(∫

B

1

f(x)
dF (x)

)∣∣∣∣ = ∣∣∣∣log(∫
B

1

f(x)
f(x)dx

)∣∣∣∣ = | log(vol(B))|.

30

2.8.2 Implementation

In the following we assume, that the action space is given by [ani , bni]
|n|. In practice

s 7→ πϕ(·, s) is realized as a neural network that predicts mean µ ∈ Rn and variance
Σ ∈ Rn of a multivariate Gaussian distribution, the policy then samples an action from
that distribution and applies a squash function such as s : xi 7→ bi−ai

2 tanh(xi) + ai + 1
which ensures the action bounds, see [Haa+18, Appendix C] for details.

The soft Q-evaluation objective is analogously defined as for DDPG via

L(θ) := E(s,a)∼D

[
1

2
(T̃ πQθ−(s, a)−Qθ(s, a))2

]
,

where the empirical soft Bellman evaluation operator T̃ π given a transition (s, a, r, s′)
and a sample a′ ∼ π(·|s′) is defined as

T̃ πQ(s, a) :=

{
r, if s′ is terminal,

r + γ
(
Q(s′, a′)− α

γ log π(a
′|s′)

)
, otherwise.

Since the Zπ(s) term in Eq. (2.8) does not depend on the parameters of the new policy
π nor on a the term can be ignored for the optimization, thus a theoretical loss function
for policy improvement could be given as

L(ϕ) := Es∼D,a∼π′
ϕ

[
α

γ
log(π′ϕ(a|s))−Qπ(s, a)

]
,

where the multiplication of both terms with the constant γ
α does not alter the objective

either. In order to be able to estimate the gradient of that objective the authors of SAC
propose to apply a reparametrization trick: Instead of sampling a ∼ N (µ(s),Σ(s)), the
action is obtained via (“·” denotes element-wise multiplication)

a = f(s, ϵ) := µ(s) + ϵ · Σ(s), ϵ ∼ N (0, 1),

which is also distributed according to N (µ,Σ). Thus, the objective can be expressed as

L(ϕ) = Es∼D,ϵ∼N (0,1)

[
α

γ
log(π′ϕ(fϕ(s, ϵ)|s))−Qπ(s, fϕ(s, ϵ))

]
.

Remark 2.8.8. Modern deep learning frameworks such as PyTorch do not require
to manually implement the reparametrization trick, in PyTorch for example many
distributions provide a method rsample() that implicitly tracks gradients.

So far we have described everything needed to implement SAC with a constant
temperature α. In Algorithm 2.5 we generally write α instead of α

γ without loss of
generality. In the refined version of SAC as given in Algorithm 2.5 the authors further
incorporate clipped double Q-learning as in TD3 to reduce overestimation bias and
additionally propose a way to automatically tune the entropy temperature.

31

Algorithm 2.5 SAC

Input: environment interface with specification of spaces S and A.
Output: stochastic πϕ(· | ·) approximating optimal policy π∗(· | ·)
Parameters: learning rates ηc, ηa, ηα, entropy temperature α, target entropy H,
target update parameters C and τ , batch size n, optional decay schedules for learning
rates, replay buffer capacity, neural network architectures

1 Initialize πϕ : S → P(A) with random weights ϕ
2 Initialize Qθ1 , Qθ2 : S ×A → R with random weights θ1 and θ2
3 Initialize Qθ−1

, Qθ−2
: S ×A → R with weights θ−1 = θ1 and θ−2 = θ2

4 Initialize replay-buffer D of given capacity
5 Initialize stochastic gradient descent optimizers optθ1 , optθ2 , optϕ, optα
6 Sample initial state s from environment
7 for number of training steps do
8 Optionally update ηc, ηa according to decay schedules
9 Sample a ∼ πϕ(s)

10 Execute action a in environment, observe next state s′ and reward r
11 Store (s, a, r, s′) in D
12 Sample random mini-batch of transitions (si, ai, ri, s

′
i)i≤n from D

13 Sample actions a′i ∼ πϕ(s′i) with densities πϕ(a
′
i|s′i) for i ∈ {1, . . . , n}

14 yi ←
{
ri if s′i is terminal , otherwise

ri + γ
(
minj∈{1,2}Qθ−j

(s′i, a
′
i)− α log πϕ(a

′
i|s′i)

) for i ∈ {1, . . . , n}

15 L(θj)← 1
n

∑n
i=1(yi −Qθj (si, ai))2 for j ∈ {1, 2}

16 Sample actions ãi ∼ πϕ(si) with densities πϕ(ãi|si) for i ∈ {1, . . . , n}
17 L(ϕ)← 1

n

∑n
i=1

(
α log πϕ(ãi|si)−minj∈{1,2}Qθj (si, ãi)

)
18 L(α)← − 1

n

∑n
i=1 α(πϕ(ãi|si) +H)

19 θj ← θj − optθj . step(ηc,∇L(θj)) for j ∈ {1, 2}
20 ϕ← ϕ− optϕ . step(ηa,∇L(ϕ))
21 α← α− optα . step(ηα,∇L(α))
22 Every C steps θ−j ← τθj + (1− τ)θ−j for j ∈ {1, 2}
23 if s′ is terminal or truncation condition is true then
24 Sample new initial state s from environment.
25 else s← s′.
26 end

For automatic entropy tuning the authors introduce, given a minimum average target
entropy H, an additional constraint on the reinforcement learning problem essentially
demanding that the average entropy of the policy is bigger than H. Since their definition
is only well posed for finite horizon problems, we are not giving details here and refer to
[Haa+19, Sec. 5]. The loss function they optimize for can be stated as

L(α) := Es∼D,a∼π(·,s)
[
α(− log(π(a|s))−H)

]
,

32

which we see as a heuristic that works well empirically. To give a motivation, the objective
is equivalent to α(Es∼D [H(π(·, s))] − H), which means if the average entropy of the
current policy is bigger than the target entropy the objective is to make α smaller and
vice versa, always giving more weight to the entropy when it is too low thus encouraging
more exploration. To make that process fit in the theoretical picture of soft Q-iteration,
the step of modifying the temperature could be seen as third component after soft
policy evaluation and soft policy improvement, although we note that the influence on
convergence even in an idealized theoretical setting from that viewpoint remains open
since the proof of Lemma 2.8.5 is broken by varying α.

2.9 Quantile Regression DQN

Distributional reinforcement learning via quantile regression was introduced in [Dab+18a]
and showed stronger empirical performance than the preceding approach to approximate
the return distribution via categorical distributions as introduced in [BDM17] that started
the field of distributional reinforcement learning. Approximating the quantile function of
the return distribution Z(s, a) at m discrete points has the advantage that the support of
the function is always [0, 1] compared to a direct approximation of the return distribution
at m points which depending on the pre-specified support boundaries [Vmin, Vmax] might
not always allow for efficient approximation, especially since the actual domain of the
return distribution could greatly vary between different state-action pairs. The results of
this section are from [Row+23], [BDR23, Chap. 5] and the original paper [Dab+18a].

2.9.1 Quantile Dynamic Programming

Let θi : S × A → R parametrize the τi quantile of the return distribution Z(s, a), for
i ∈ {0, . . . ,m} such that τi are equally spaced in [0, 1]. Then the return distribution can
be approximated via

Zθ(s, a) :=

m∑
i=1

1

m
δθi(s,a),

where δz denotes the Dirac measure and the action value function is approximated via

Qθ(s, a) =
1

m

m∑
i=1

θi(s, a).

Definition 2.9.1. Let m ∈ N. The m-quantile representation is defined as

FQ,m =

{
1

m

m∑
i=1

δθi : θi ∈ R

}
.

Clearly FQ,m ⊆ P(R)G, however this space is not closed under the application of
distributional Bellman operators, hence an additional projection step is needed.

33

Definition 2.9.2. For ν ∈ P(R) and λ ∈ [0, 1] a projection operator is a mapping
ΠλQ : P(R)→ FQ,m such that the 1-Wasserstein distance w1(Π

λ
Q(ν), ν) is minimal.

Lemma 2.9.3. Let ν ∈ P(R) and λ ∈ [0, 1]. Then a projection operator is given by
ΠQ(ν) =

1
m

∑m
i=1 θi with

θi = (1− λ)F−1
ν

(
2i− 1

2m

)
+ λF

−1
ν

(
2i− 1

2m

)
i = 1, . . . ,m,

where F−1
ν (τ) = inf{y : Fν(y) ≥ τ} denotes the generalized inverse and F

−1
ν (τ) := inf{y :

Fν(y) > τ}.

Proof. We refer to the proof of [BDR23, Proposition 5.15], which can be adapted to
match the generalized projection formulation in [Row+23, Formula (12)].

The choice of the parameter λ only matters in cases where F−1
ν (x) ̸= F

−1
ν (x), i.e., in

cases where the quantile does not have a unique preimage, thus τ interpolates between
the left and the right end of the constant interval.

Theorem 2.9.4. Let λ ∈ [0, 1]G×m, let τi :=
2i−1
2m as in the previous lemma and let

Πλν(s, a) :=
1

m

m∑
i=1

δ
(1−λ(s,a,i))F−1

ν(s,a)
(τi)+λ(s,a,i)F

−1
ν(s,a)(τi)

.

Then ΠλT π : (FQ,m)G → (FQ,m)G is a γ-contraction with respect to w∞. Thus, ΠλT π has
a unique fixed point νπλ in FGQ,m and for any initial ν0 ∈ FGQ,m the sequence νk+1 = ΠλT πνk
converges to the fixed point w∞(νk, ν

π
λ)→ 0 as k →∞.

Proof. Since T π is a contraction in w∞ by Theorem 1.5.12 it suffices to show that Πλ is
a non expansion in w∞. For the calculation we refer to [Row+23, Appendix A.1]. The
rest follows in the usual way from Banach’s fixed point theorem.

2.9.2 Quantile Q-learning

In order to learn unbiased estimates of quantiles, quantile regression may be used. Let
ν ∈ P(R), τ ∈ (0, 1) be a quantile value and θ ∈ R the associated quantile i.e., F (q) ≥ τ
for the cumulative distribution F . Then θ is the minimizer of the loss

L(v) = EZ∼ν
[
(τ1{Z−v>0} + (1− τ)1{Z−v<0})|Z − v|

]
.

With ρτ (u) := u(τ − 1{u<0}) the loss can be compactly rewritten as EZ∼ν [ρτ (Z − v)].
Now let Z(s, a) =

∑∞
t=0 γ

tRt ∼ ν and let θi(s, a) denote the respective τi-quantile with
τi =

2i−1
2m for i ∈ {1, . . . ,m}. Then with Lemma 1.5.6 the loss can be written as

L(θi(s, a)) = EZ∼ν [ρτi (Z(s, a)− θi(s, a))]
= EZ∼ν

[
ρτi
(
r(s, a, S′) + γZ(S′, A′)− θi(s, a)

)]
, A′ ∼ π(S′), S′ ∼ p(·, s, a)

34

≈ 1

m

m∑
j=1

ρτi
(
r(s, a, S′) + γθj(S

′, A′)− θi(s, a)
)
.

In case of a distributional optimality operator A′ ∼ π(S′) is exchanged for A′ ∼ G(ν) for
a greedy selection rule G. Now everything is in place to state the quantile regression
adaption of DQN, as in the next section, but before we want to shortly derive the tabular
version of quantile Q-learning: Taking the negative gradient in the last line yields

1

m

m∑
j=1

(
τi − 1{r(s,a,S′)+γθj(S′,A′)−θi(s,a)>0}

)
and thus motivating a tabular update rule of the form

θk+1
i (s, a) = θki (s, a) +

α

m

m∑
j=1

(
τi − 1{r(s,a,S′)+γθkj (S

′,A′)−θki (s,a)>0}

)
for all i ∈ {1, . . . ,m} and with learning rate α. In the case of quantile temporal difference
learning (which is interested in estimating the value-distribution compared to the action
value distribution setting we formulated here), the convergence in the tabular setting
has been established in [Row+23] (the operators for the value function case are defined
analogously):

Theorem 2.9.5. Let θ0 ∈ RS×m be arbitrary and (θk)∞k=0 be the sequence defined by

θi(s)
k+1 = θi(s)

k +
αk
m

m∑
j=1

(
τi − 1{r(s,a,S′)+γθkj (S

′)−θki (s)>0}

)
,

with non-negative step sizes satisfying the condition

∞∑
k=0

αk =∞, αk = o(1/ log(k)).

Then (θk)∞k=0 converges almost surely to the fixed points of the projected distributional
Bellman operators {ΠλT π : λ ∈ [0, 1]S×m}, i.e.,

inf
λ∈[0,1]S×m

|θk − θ̂πλ |∞ → 0

with probability 1, where θ̂πλ denotes the fixed point of ΠλT π.

The above theorem only establishes convergence of quantile temporal difference learning,
i.e., policy evaluation. In the control case, even with the assumption that a unique optimal
policy exists, no proof is known at the time of this thesis, but for categorical Q-learning
convergence has been shown, by using the mean-preserving nature of the categorical
Bellman operator, see [BDR23, Table 5.1, p. 217, Corollary 7.10] and [Row+18, Theorem
2].

35

2.9.3 QR-DQN

QR-DQN builds upon DQN, by making the following changes:

1. Change the net architecture to approximate the quantile-function via a neural net
θ : S ×A→ Rm with weights ϕ instead of the action value function.

2. The Huber loss is replaced by a quantile Huber loss

ρκτ (u) := |τ − 1{u<0}|Lκ(u),

where Lκ(u) is the Huber loss. For κ = 0 this is the quantile regression loss as
before. The authors of QR-DQN empirically determined that τ = 1 works best and
argue for the modification of the quantile regression loss with the Huber loss for
the continuity around 0. The overall loss for a single sample transition (s, a, s′, r)
with a greedy action a′ in s′ becomes

L(ϕ) =

m∑
i=1

m∑
j=1

1

m
ρκτi
(
r(s, a, s′) + γθj(s

′, a′)− θi(s, a, ϕ)
)
.

3. The action selection works analogously to DQN by recovering the action value
function Q(s, a, ϕ) = 1

m

∑m
i=1 θi(s, a, ϕ).

The full pseudocode is given in Algorithm 2.6.
Empirically, QR-DQN shows strong performance, however there are two theoretical

issues we wish to highlight:

1. The distributional Bellman optimality operators do not necessarily converge to
the action value distribution of an optimal policy, not even in an idealized tabular
setting as mentioned in Remark 1.5.15.

2. There is no constraint in the neural network architecture that enforces the mono-
tonicity of the quantiles. To address this, there exist multiple approaches in
follow-up work, see the works referenced in [Row+23, Sec. 7, Paragraph Quantiles
in reinforcement learning].

2.10 Implicit Quantile Networks

While QR-DQN only learns a fixed number of quantiles, in [Dab+18b] an extension of
QR-DQN was proposed that aims to learn the whole return distribution. In order to do
so, the neural network architecture is changed to learn a quantile function

θ : S ×A× [0, 1]→ R,

such that θ(s, a, τ) is the τ -quantile of the return distribution of (s, a), where τ is any
quantile fraction of [0, 1]. The loss function is identical to the QR-DQN loss, but instead
of the fixed τ -fractions, for the target m′ quantile-fractions τ ′ ∼ U([0, 1]) are sampled

36

Algorithm 2.6 QR-DQN

Input: environment interface with specification of spaces S and A.
Output: approximation θϕ(·, ·) of action value distribution νπ

∗
(·, ·)

Parameters: number of quantiles m, learning rate α, exploration rate ε, target
update parameters C and τ , batch size n, optional decay schedules for ε or α, replay
buffer capacity, neural network architecture

1 Initialize θϕ : S → R|A|·m with random weights ϕ, let θkϕ(s, a) := θϕ(s)[a][k]

2 Initialize θϕ− : S → R|A|·m with weights ϕ− = ϕ
3 Initialize replay-buffer D of given capacity
4 Initialize stochastic gradient descent optimizer opt
5 Sample initial state s from environment
6 for number of training steps do
7 Optionally update ϵ or α according to decay schedules

8 a←
{
argmaxa

1
m

∑m
i=1 θ

i
ϕ(s, a) with probability 1− ϵ

random action with probability ϵ

9 Execute action a in environment, observe next state s′ and reward r
10 Store (s, a, r, s′) in D
11 Sample random mini-batch of transitions (si, ai, ri, s

′
i)i≤n from D

12 a′i ← argmaxa′
1
m

∑m
i=1 θ

i
ϕ(si, a

′) for i ∈ {1, . . . , n}

13 yik ←
{
ri if s′i is terminal

ri + γθkϕ−(s
′
i, a

′
i) otherwise

for i ∈ {1, . . . , n}

14 L(ϕ)← 1
n

∑n
i=1

∑m
j=1

1
m

∑m
k=1 ρ

κ
τj

(
yik − θjϕ(s, a)

)
15 ϕ← ϕ− opt . step(α,∇L(ϕ))
16 Every C steps ϕ− ← τϕ+ (1− τ)ϕ−
17 if s′ is terminal or truncation condition is true then
18 Sample new initial state s from environment
19 else s← s′

20 end

while for the current quantiles m quantiles τ ∼ U([0, 1]) are sampled, where m and m′

are hyperparameters. The full loss for a single sample transition (s, a, s′, r) with a greedy
action a′ in s′ is given by

L(ϕ) =
m∑
i=1

m′∑
j=1

1

m′ ρ
κ
τi

(
r(s, a, s′) + γθ(s′, a′, τ ′j)− θ(s, a, τi, ϕ)

)
.

37

For the greedy action selection, yet another batch of m̃ quantile fractions τ̃ ∼ U([0, 1]) is
sampled in order to recover the action value function via

Q(s, a) =
1

m̃

m̃∑
i=1

θ(s, a, τ̃).

The full pseudocode is given in Algorithm 2.7.

Algorithm 2.7 IQN

Input: environment interface with specification of spaces S and A.
Output: approximation θϕ(·, ·) of action value distribution νπ

∗
(·, ·)

Parameters: number of quantile samples m, m′, m̃, learning rate α, exploration rate
ε, target update parameters C and τ , batch size n, optional decay schedules for ε or α,
replay buffer capacity, neural network architecture

1 Initialize θϕ : S × [0, 1]→ R|A| with random weights ϕ, let θϕ(s, a, τi) := θϕ(s, τi)[a]

2 Initialize θϕ− : S × [0, 1]→ R|A| with weights ϕ− = ϕ
3 Initialize replay-buffer D of given capacity
4 Initialize gradient descent optimizer opt
5 Sample initial state s from environment
6 for number of training steps do
7 Optionally update ϵ or α according to decay schedules
8 Sample τi ∼ U([0, 1]) for i ∈ {1, . . . , m̃}

9 a←
{
argmaxa

1
m̃

∑m̃
i=1 θϕ(s, a, τi) with probability 1− ϵ

random action with probability ϵ

10 Execute action a in environment, observe next state s′ and reward r
11 Store (s, a, r, s′) in D
12 Sample random mini-batch of transitions (si, ai, ri, s

′
i)i≤n from D

13 a′i ← argmaxa′
1
m̃

∑m̃
i=1 θ

i
ϕ(si, a

′) for i ∈ {1, . . . , n}
14 Sample τ ′j ∼ U([0, 1]) for j ∈ {1, . . . ,m′} and τj ∼ U([0, 1]) for j ∈ {1, . . . ,m}

15 yik ←
{
ri if s′i is terminal

ri + γθϕ−(s
′
i, a

′
i, τ

′
k) otherwise

for i ∈ {1, . . . , n}

16 L(ϕ)← 1
n

∑n
i=1

∑m
j=1

1
m′
∑m′

k=1 ρ
κ
τj (yik − θϕ(s, a, τj))

17 ϕ← opt . step(α,∇L(ϕ))
18 Every C steps ϕ− ← τϕ+ (1− τ)ϕ−
19 if s′ is terminal or truncation condition is true then
20 Sample new initial state s from environment
21 else s← s′

22 end

38

2.11 Truncated Quantile SAC

The pioneering work of distributional reinforcement learning has originally been published
based on modifications of the DQN algorithm, however the distributional adaptions
straight forwardly carry over to actor-critic algorithms such as DDPG and SAC by
replacing the value critic with a distributional critic. In the literature the distributional
adaptions were mostly published in combination with other changes as in [Bar+18] for
DDPG and in [Kuz+20] for SAC. In the following we present a distributional adaption of
SAC as originally proposed in [Kuz+20] together with a distributional method to reduce
overestimation bias proposed in the same paper.

2.11.1 Distributional SAC

The action value network of SAC is replaced by a quantile network. Analogously as for
the action value function, a soft distributional Bellman operator can be defined as

(T̃πν)(s, a)(B) :=

∫
S

∫
As′

b#r(s,a,s′)−α log(π(s′,a′)),γν(s
′, a′)(B) π(da′, s′)p(ds′, s, a).

The contraction properties and the subsequent fixed point theory for the distributional
policy evaluation case carry over for this modified operator. From the quantile regression
perspective this leads to the critic loss

L(ϕ) =
m∑
i=1

m∑
j=1

1

m
ρκτi
(
r(s, a, s′) + γ

(
θj(s

′, a′)− α log(π(a′, s′))
)
− θi(s, a, ϕ)

)
for a single sample transition (s, a, s′, r) with a′ ∼ π(s′). Double Q-learning as used by
SAC to reduce the overestimation bias can be adapted by recovering the action values
and determining the index k(s′, a′) of the quantile network that has the minimum value

k(s′, a′) = argmink
1

m

m∑
i=1

θi
ψ−
k

(s′, a′).

The policy improvement step works identically as before by recovering the action value
function Q(s, a) from the quantiles.

2.11.2 TQC

In [Kuz+20] an alternative approach to clipped double Q-learning was introduced for
reducing the overestimation bias by making use of the action value distribution. In an
ensemble of n distributional critics that approximate the quantile function at m locations
as in QR-DQN, the quantiles as predicted by the target networks with parameters ψ−

l

are pooled in a set

Z(s′, a′) := {θj
ψ−
l

(s′, a′) : j ∈ {1, . . . ,m}, l ∈ {1, . . . , n}}.

39

Let zj(s
′, a′) for j ∈ {1, . . . , kn} be the kn smallest entries of Z in ascending order, where

k := (m − d) and d is a hyperparameter that controls how many quantiles from each
network are dropped. Then the targets are calculated via

yj(s, a) := r(s, a, s′) + γ(zj(s
′, a′)− α log π(a′|s′)),

resulting in critic losses

L(ψl) =

m∑
i=1

kn∑
j=1

1

kn
ρκτi
(
yj − θiψl

(s, a)
)
, l ∈ {1, . . . , n}.

On the actor side the authors propose to average over the Q-networks as opposed to SAC
which takes the minimum over all Q-networks. The full pseudocode of TQC is given in
Algorithm 2.8.

2.12 Neural Network Architecture

In this section we give a detailed description of how the neural networks are realized we
use for our experiments in the last chapter.

2.12.1 Critic-only Networks

When the elements of the state space are low dimensional vectors, the action value
function is parametrized by a fully connected neural network f : S → R|A| via

Q(s, a) = f(s)a.

In the case of high dimensional observations such as images, a convolutional neural
network (CNN) Ψ : S → Rd is used to implicitly learn an embedding into a d-dimensional
feature space Rd. In that case the action value function is parametrized via

Q(s, a) = f(Ψ(s))a,

with a fully connected f : Rd → RdimA. If furthermore observations are a mix between
images s1 and low dimensional vectors s2, i.e., s = (s1, s2), s1 ∈ S1, s2 ∈ S2 we
concatenate the image embedding and the vector and apply f on top

Q(s, a) = f(Ψ(s1), s2)
a,

with f : Rd × S2 → RdimA adapted accordingly. Since the feature embedding network
is integrated in the action value parametrization, learning a good embedding works
implicitly via backpropagation to the convolutional layers as part of Q-learning.
For QR-DQN the neural network architecture works analogously, in case of IQN the

authors propose to adapt the architecture for the quantile input as

θ(s, a, τ) = f((Ψ(s1), s2)⊙ Φ(τ))a,

40

Algorithm 2.8 TQC

Input: environment interface with specification of spaces S and A.
Output: stochastic πϕ(· | ·) approximating optimal policy π∗(· | ·)
Parameters: number of quantiles m, number of critics n, number of quantiles to
drop d, learning rates ηc, ηa, ηα, entropy temperature α, target entropy H, target update
parameters C and τ , batch size b, optional decay schedules for learning rates, replay
buffer capacity, neural network architectures

1 Initialize πϕ : S → P(A) with random weights ϕ
2 Initialize θψ1 , . . . , θψn : S ×A → Rm with random weights ψ1, . . . , ψn
3 Initialize θψ−

1
, . . . , θψ−

n
: S ×A → Rm with weights ψ−

1 = ψ1, . . . , ψ
−
n = ψn

4 Initialize replay-buffer D of given capacity
5 Initialize stochastic gradient descent optimizers optψ1

, optψ2
, optϕ, optα

6 Sample initial state s from environment
7 for number of training steps do
8 Optionally update ηc, ηa according to decay schedules
9 Sample a ∼ πϕ(s)

10 Execute action a in environment, observe next state s′ and reward r
11 Store (s, a, r, s′) in D
12 Sample random mini-batch of transitions (si, ai, ri, s

′
i)i≤b from D

13 Sample actions a′i ∼ πϕ(s′i) with densities πϕ(a
′
i|s′i) for i ∈ {1, . . . , b}

14 Enumerate zk ∈ Z(s′i, a′i) := {θkψ−
l

(s′i, a
′
i) : k ∈ {1, . . . ,m}, l ∈ {1, . . . , n}} in

ascending order for i ∈ {1, . . . , b}

15 yik ←
{
ri if s′i is terminal , otherwise

ri + γ (zk − α log πϕ(a
′
i|s′i))

for i ∈ {1, . . . , b}

16 L(ψl) =
1
b

∑b
i=1

∑m
j=1

∑dn
k=1

1
dnρ

κ
τi

(
yik − θjψl

(s, a)
)
for l ∈ {1, . . . , n}

17 Sample actions ãi ∼ πϕ(si) with densities πϕ(ãi|si) for i ∈ {1, . . . , b}
18 L(ϕ)← 1

b

∑b
i=1

(
α log πϕ(ãi|si)− 1

mn

∑m,n
k,l=1 θ

k
ψl
(si, ãi)

)
19 L(α)← −1

b

∑b
i=1 α(πϕ(ãi|si) +H)

20 ψl ← ψl − optψl
. step(ηc,∇L(ψl)) for l ∈ {1, . . . , n}

21 ϕ← ϕ− optϕ . step(ηa,∇L(ϕ))
22 α← α− optα . step(ηα,∇L(α))
23 Every C steps ψ−

l ← τψl + (1− τ)ψ−
l for l ∈ {1, . . . , n}

24 if s′ is terminal or truncation condition is true then
25 Sample new initial state s from environment
26 else s← s′

27 end

where ⊙ denotes the element-wise product of vectors and Φ : [0, 1] → Rd′ with d′ :=

41

d+ dimS2 is given by

Φ(τ)j := ReLU

(
d′−1∑
i=0

cos(πiτ)wij + bj

)
,

where wij denotes the weights and bj the bias of a linear layer.

2.12.2 Actor-Critic Networks

In the vector case policies (actor networks) are parametrized by fully connected feed
forward networks f : S → Θ where Θ is a set of parameters generating the policy, e.g.,
in the deterministic policy case Θ = A, i.e., fµ : S → A or in the case of parametrizing
normal distributions fπ : S → Θ = {(µ̂, σ̂) : µ̂, σ̂ ∈ RdimA}, thus for these two examples
the policies are obtained via

µ(s) = fµ(s), π(·|s) = N (fπ(s)).

The critics are parametrized with fully connected networks fQ : S ×A → R

Q(s, a) = fQ(s, a).

In the case of high dimensional observations (let s = (s1, s2), s1 ∈ S1, s2 ∈ S2 be again
a mixture between image states s1 and vector states s2) a convolutional feature extractor
Ψ : S1 → Rd as in the previous section is used for both the actor and the critic, thus for
actors as above we obtain

µ(s) = fµ(Ψ(s1), s2), π(·|s) = N (fπ(Ψ(s1), s2)),

with fµ, fπ : Rd × S2 → Θ and similarly for the critic

Q(s, a) = fQ(Ψ(s1), s2, a),

with fQ : Rd × S2 ×A → R. To save computation time, the feature extractor layers can
be shared between the actor and critic networks by disabling backpropagation of the
gradients to the feature extractor layers when updating the actor network.

2.12.3 Concrete Architecture

We realize a fully connected network f : Rn → Rm with a number of hidden linear layers
d with a number of hidden nodes w each followed by a nonlinear activation function
σ : Rw → Rw as

f(x) = fd+1 ◦ σ ◦ fd ◦ · · · ◦ σ ◦ f1 ◦ σ ◦ f0(x),

where f0 : Rn → Rw, x 7→ A0x+ b0, with a weight matrix A0 ∈ Rw×n and a bias weight
vector b0 ∈ Rw and analogously fi : Rw → Rw for i ∈ {1, . . . , d} and fd+1 : Rw → Rm.

42

For the feature extractor we follow the architecture of [Mni+15] for the convolutional
layers design choices

Ψ(x) = fe ◦ ℓ ◦ σ ◦Ψd ◦ · · · ◦ σ ◦Ψ1 ◦ σ ◦Ψ0(x).

Each convolution layer (in the following the drop the layer index for readability) is
determined by the number of output channels o ∈ N, the kernel size k = (k1, k2) ∈ N2

and the stride s = (s1, s2) ∈ N2: For a stack of input images I ∈ Rc×h×w and i ≤ o,
j ≤ (h− k1)/s1 + 1, k ≤ (w − k2)/s2 + 1 the [i, j, k] component of the output is given by

Ψo,k,s(I)[i, j, k] = bi +
c−1∑
l=0

h/s1∑
m=0

w/s2∑
n=0

Kil[j, k]I[l, j +m+ s1, k + n+ s2],

where Kil ∈ Rk1×k2 is the convolutional kernel for output channel i and input channel
l and bi a bias weight for output channel i. Finally, ℓ : Rc×h×w → Rchw flattens the
stacked images into a vector and fe : Rchw → Re is a linear layer as above.
It is now possible to describe the actual realization of the architecture by giving the

relevant hyperparameters:

• For the fully connected network, given input and output dimension the architecture
above is uniquely determined by d and w.

• The feature extractor above, given the input dimensions is uniquely determined
by the output dimension e and for each convolutional layer the specification of
the parameters c, k and s. We always specify k and s by a single integer per
convolutional layer that is used for both components and separate the value of each
parameter for each convolutional layer by a comma, see Table 4.1.

We generally always use σ = ReLU for the activation function.

43

3 Environment for Autonomous Driving

The design and implementation of the autonomous driving tasks described in this chapter
has been partly done in collaboration with Tobias Kietreiber [Kie23].

3.1 Problem Formulation and Scope

For our treatment of autonomous driving we define the following control problems:

1. Cruise control : control the brake and throttle of the car in order to reach and
maintain a given target velocity.

2. Adaptive cruise control : same as cruise control but additionally maintain a safe
distance to other vehicles in front of the car.

3. Lane keeping : control the steering angle of the car in order to follow a given lane.

4. Combined control : combination of cruise control and lane keeping, i.e., the agent
controls brake, throttle and steering angle in order to meet the cruise control and
the lane keeping objectives.

5. Adaptive combined control : combination of adaptive cruise control and lane keeping.

6. Obstacle avoidance: control the steering angle of a vehicle at different velocities
(the agent has no control of), in order to follow the current lane and change lane in
case of an obstacle.

7. Navigation: combined control, but the agent has to follow navigation instructions
additionally (left, right, straight, follow lane, change lane left, change lane right),
thus junctions come in as an additional challenge. When reaching the end of a
route the agent is supposed to stop.

8. Adaptive Navigation: same task as navigation, but with other traffic participants.

We do not consider the control of vehicles with a manual gearbox, since we believe
that there is no point in explicitly exposing gear shift control to an autonomous agent,
as automatic gear shift control has long been existent in non-autonomous vehicles.
Furthermore, electric vehicles usually do not expose gear shift control.

Moreover, we do not comply with traffic lights or traffic signs in the scope of this work
for the following reasons:

44

• Traffic lights are a challenge on their own to detect from camera input, requiring a
sufficiently high resolution camera image. While this is no challenge in terms of
the reinforcement learning formulation it is a computational challenge we do not
want to pursue.

• Traffic signs such as stop signs, while easier to detect visually, often are not visible
anymore for the agent at the desired stop point, thus each state of the agent would
have to include a record back to the point in time the agent passed the sign or
alternatively the state would need to be augmented with such information, which
is a challenge in terms of the reinforcement learning formulation of the problem we
consider out of scope.

3.2 Environment Setup

We use the CARLA open-source simulator for autonomous driving research introduced
in [Dos+17] to set up our control problems. From the CARLA carpool we select a Tesla
model 3 as the vehicle to be controlled, but nothing in our setup is tailored to that choice,
so picking any other vehicle for training will work as well.

3.2.1 Time Steps and Synchrony

We choose the time between two environment steps to be 0.1 seconds of simulated time,
to make a trade-off between reaction speed to environmental changes and computational
effort. This also seems reasonable, as it is half the reaction time of a human, for more
technical reasons for this choice see Section 3.5.

The agent environment interaction is synchronous in all of our experiments, i.e., when
the agent sets an action, exactly 0.1 seconds of simulated time pass and no time passes in
the simulator (simulation is frozen) until the agent sets the next action, thus the runtime
performance of the agent does not have any influence on the Markov property of the
environment. If the agent were to learn to control the car in reality it would be essential
to ensure it is performant enough to keep the time between actions as close as possible
to the specified length, or augment the state space with information about the time that
has passed since the last action was taken.

3.2.2 Episode Setup

Cruise control problems are implemented in the CARLA map Town06 as depicted in
Fig. 3.1, as that map features long straight roads. Lane keeping, combined control and
obstacle avoidance problems are all set up on the eight-shaped highway in Town04 as
depicted in Fig. 3.2, as the highway road geometry allows training straight road segments,
left and right curves without the need to handle junctions (there are junctions, but we
always opt to remain on the highway in the same direction). Navigation scenarios are
implemented in Town07, a rural town with many junctions and with roads that partly
lack lane markings, see Fig. 3.3.

45

Cruise Control

At the start of each episode the vehicle is placed on one end of the very long roads, as
the vehicle approaches the other end of the road the target velocity is set to zero. The
maximal episode time (as stated in the next section) is chosen in a way that the agent
will not be able to collide at the other end of the road, even when going with full throttle
all the time.

Figure 3.1: Aerial perspective of Town06 [dev23].

During an episode the target velocities change randomly. For adaptive cruise control
another vehicle is spawned ahead of the vehicle with a random probability in a random
distance at the beginning of each episode with the throttle being randomly changed
during the episode.

Lane Keeping, Combined Control and Obstacle Avoidance

At the start of each episode the vehicle is spawned at one randomly selected position out
of 6 fixed positions that are roughly evenly spread across the highway, all in the same
lane with the vehicle always facing in the same direction. This ensures that the agent
also gets to explore curves early as opposed to at a later point after it learned to drive
straight fist.

Figure 3.2: Partial aerial perspective of Town04 showing part of the eight shaped highway,
the bridge forms the center of the eight [dev23].

46

In case of lane keeping and obstacle avoidance scenarios, the throttle of the car is
changed randomly to challenge the agent to control the steering at different velocities, in
case of the combined control scenarios the target velocity is changed randomly during an
episode.
The adaptive combined scenario similarly as the adaptive cruise control scenario

features a front vehicle that appears and disappears randomly during the episodes in
random distance and is controlled by a CARLA autopilot with velocities that randomly
change. In case of the obstacle avoidance scenario vehicles are spawned randomly in front
of the vehicle that do not move at all. After the car has passed the obstacle, the obstacle
is removed from the road.

Navigation

At the start of each episode the vehicle is placed on a random starting position on the
map, sampling from a list of possible spawn positions happens uniformly.

Figure 3.3: Aerial perspective of Town07 [dev23].

The target velocity for the navigation scenario is set to 50 km/h, upon reaching
the destination of a route, the target velocity is adjusted to 0 km/h. In the adaptive
navigation scenario, traffic is generated on the map by CARLA traffic manager. The agent
is not aware of the route, it only gets the next navigation instruction when approaching
a junction.

3.2.3 Terminal States and Truncation

We consider a state terminal if any of the following conditions apply:

1. the car exceeds a maximal offset om from the center of the current lane, or

2. the car collides with another object (no matter if static or dynamic)

For all scenarios we specify om = 1.62, except for cruise-control where no maximal offset
is specified due to a fixed steering angle and for obstacle avoidance where om = 2 in
order to be able to change lane without termination (the road width is 4 meters).

47

In case of cruise control the episode is truncated after 280 time steps due to the limited
length of the straight road, while all other environments have a default time limit of 3000
steps, to allow making a full round in Town04 within one episode even at lower velocities
(a full round with 50 km/h takes over 2000 time steps).

3.2.4 Action Space Design

The CARLA simulator API accepts throttle action values from the interval At := [0, 1],
likewise brake action values from Ab := [0, 1]. We unify brake and throttle control for
the agent in the sense that negative throttle values encode the corresponding brake value

Ac := [−1, 1]→ At ×Ab, a 7→
{
(a, 0), if a ≥ 0,

(0, a), if a ≤ 0.

When we refer to throttle control below, we thus always refer to the unified action space
Ac. Similarly, the simulator API accepts steering values from the interval As := [−1, 1],
where −1 corresponds to the maximum steering to the left and 1 to the maximum steering
angle to the right.
For algorithms that require a discrete action space we discretize the action spaces.

Doing so uniformly while still allowing fine-grained control would result into many actions,
thus we propose a relative control paradigm, where the action a the agent selects gets
added to the absolute control value c by

c = min(max(c+ a,−1), 1).
This requires the agent to be aware of the absolute control value c, which is not a
limitation in our case, since we provide that anyway in the state space to account for the
Markov property. With relative control approach the agent is able to set control values
that are missing from the discretization at the expense, that the desired value might only
be realized after multiple time steps.

3.3 Reward Design

In the following sections we propose our reward functions for the respective control
problems, where we follow the convention that the range of the reward function should
lie in the interval [−1, 1].

The reward functions for the navigation tasks are identical with the combined control
rewards, thus there is no section dedicated to them.

3.3.1 Cruise Control Reward

For cruise control we define the reward function

rc(v, vt) = 1 +

−1, if v < 0.5 and vt > 0 or terminal,

−max
(
|v−vt|
153 , 0.85

)
, if 0.5 ≤ v < vt + 0.5,

−max
(
|v−vt|
153 , 0.85

)
− 0.15, if vt + 0.5 ≤ v,

48

where v is the current velocity of the car in km/h and vt is a given target velocity. This
is motivated by the following ideas:

1. Standing around is maximally penalized independent of the delta velocity from the
target velocity, reinforcing the agent to start moving.

2. The reward per se is designed to be of penalizing nature, with the idea being that
every velocity apart from the target velocity is bad, the linear feedback should guide
the agent to minimize the velocity difference. The constant in the denominator is
chosen such to enable dense feedback across a range that includes most common
legal speed limits.

3. The additive constant 1 would not matter for the optimal policy if the agent were
not able to enter terminal states. However, by radical throttle changes the agent is
able to make the vehicle spin slightly and since the steering angle is fixed to a zero
angle the car would bump into the roadside shortly after, terminating the episode
and thus obtaining a higher (negative) return.

4. If the agent surpasses the target velocity the same delta velocity gets a lower reward
(−0.15) to indicate that going slower is better than going faster.

3.3.2 Adaptive Cruise Control Reward

For adaptive cruise control we define the reward function

rac(v, vt, d) =

0.15− dm(v)−d
20dm(v) , if d < dm(v) or terminal,

0, if v < 0.5 and vt > 0 and d > 5,

1−max
(
|v−vt|
153 , 0.85

)
, if 0.5 ≤ v < vt + 0.5,

1−max
(
|v−vt|
153 , 0.85

)
− 0.15, if vt + 0.5 ≤ v,

where d is the distance in meters to a front vehicle in the same lane and dm(v) =
max

(
v
2 , 2.5

)
is the minimum safety distance the vehicle should keep at velocity v. This

is motivated by the following ideas:

1. The reward needs to be (at least partly) positive as when the agent has no possibility
to get positive reward, ending an episode by crashing into a front car would get an
attractive option to maximize the return.

2. As long as the agent keeps at least the minimum distance, the usual cruise control
reward applies (with the important exception of case 2).

3. As soon as the distance to a front vehicle is lower than the minimum safe distance,
the cruise control reward gets irrelevant and reward less than the worst cruise
control reward (beneath the target velocity) is given.

49

4. In the second case it is important to make d > c with some threshold c > 2.5
mandatory, otherwise in situations where the agent is stuck behind a vehicle that is
not moving there would be a conflict between the punishment for standing around
and the punishment for getting dangerously near to a front vehicle (as handled by
the first case).

This could also be resolved by giving a negative reward for unsafe distances, however
we design the reward to be in [0, 1] for the easy linear combination with the lane
keeping reward.

3.3.3 Lane Keeping Reward

For lane keeping we define the reward function

rl(o, s, sp) =

0, if o > om or terminal,(
1−

√
|o|
om

)
· (1−min(|s− sp|, 0.9)), if o ≤ om,

where o is the normal offset of the center of the vehicle from the center of the lane in
meters, om is a given maximum offset parameter, s the current steering angle and sp the
previous steering angle. This is motivated by the following ideas:

1. The agent needs to be able to reach positive reward for the same reason as in the
previous section: otherwise it would be attractive to end the episode by entering a
terminal state by driving out of the lane.

2. The maximum offset parameter is a safety parameter, exceeding the specified offset
would for example mean leaving the lane, which would lead to termination of the
training episode, thus the maximum offset allows a normalization of the observed
offset, the objective is to keep the offset at a minimum.

3. Within the maximum offset range, the agent gets the feedback that a lower offset
is better, the square root increases small offset values allowing stronger feedback in
the small offset area where we aim to be.

4. The agent should adjust an appropriate steering angle right away and refrain from
doing large corrections, thus changing the steering angle is always punished relative
to the last steering angle by the additive term

−

1−
√
|o|
om

 · (1−min(|s− sp|, 0.9)).

This enforces continuity and thus smoother control. The reason we scale the
punishment term with the offset term is to introduce a dependency on the offset:
bigger offset scales down the punishment term as bigger steering deviations are
reasonable in such situations.

50

3.3.4 Combined Control Reward

For the agent to control both throttle and steering we propose the reward

rcc(v, vt, o, s, sp) = rc(v, vt)− 1 + rl(o, s, sp)

and analogously the combined reward for adaptive control

racc(v, vt, d, o, s, sp) = rac(v, vt, d)− 1 + rl(o, s, sp),

where all the variables and reward functions are as defined in the previous sections. This
is motivated by the following ideas

1. To end up within a [−1, 1] interval for the combined adaptive reward, we subtract
1 from the cruise control rewards, as in the combined control scenario the agent
has the possibility to get positive reward.

While adding a positive constant to the reward does not alter the objective due
to linearity of expectation and the geometric series, the same can’t be generally
said for a negative constant due to the first point outlined in the previous sections,
however in our case this does not cause problems since the agent at all times has
realistic chances to obtain a positive reward.

To remain within the reward range [−1, 1] it would also be a possibility to just
define rcclk = 1

2racc +
1
2rlk, which would work as well, empirically our proposed

variant worked out better.

2. The individual rewards are within [−1, 0] and [0, 1], thus the sum is within [−1, 1].
Since the case of terminal states is handled in the individual rewards, we always
get a well-defined terminal reward of −1.

3.3.5 Highway Obstacle Avoidance Reward

We give the obstacle avoidance reward by

rlc(v, d, o, s, sp, lc) =
r′ac(v, d, lc) + r′l(o, s, sp, lc)

2
,

where lc is a variable indicating whether a lane change happened and whether it was to
the left or to the right lane and

r′ac(v, d, lc) =

{
0, if lc is left or right,

rac(v, v, d), otherwise,
(3.1)

r′l(o, s, sp, lc) =

−0.5, if lc is left,

−1, if lc is right,

rl(o, s, sp) otherwise,

(3.2)

are modified adaptive cruise control and lane keeping rewards. This is motivated by the
following ideas:

51

1. Lane changes should only happen when necessary, hence all lane changes are
punished, but a change to the left is preferred.

2. Since the agent only has to control the steering in this scenario, we set vt = v in the
combined adaptive reward function with the consequence that the cruise control
reward is always 1 as long as the agent maintains a safe distance.

3. While combination of the cruise control and lane keeping rewards analogous as
for the combined adaptive scenarios would work, empirically the proposed variant
works better, which could be explained by the fact that the agent does not have to
go through multiple negative reward steps in order to change lane.

3.3.6 Combining Multiple Objectives

As outlined in Section 1.7 we implicitly transform the multi objective MDP into a single
objective MDP via linear scalarization by specifying a scalar reward function that is a
linear combination of single objective reward functions. By decomposing the combined
value function

V1+2(s) = E

(∞∑
t=0

γt(w1r1(s) + w2r2(s))

)
= w1V1(s) + w2V2(s)

into a weighted sum of single objective values we can argue, that the above combined
reward indeed encourages the agent to meet our design goals.
Assuming that the agent is not too short-sighted by a low discounting factor in the

objective, it is apparent that a policy that leads into a terminal state is never optimal in
any of the objectives and thus not Pareto optimal.

As a consequence even if the cruise control objective were picked for primary optimiza-
tion it is not optimal for the agent to pursue a target velocity where the vehicle hits a
terminal condition.

This means any Pareto-optimal policy would be a wise trade-off between lane keeping
and cruise control objectives: The agent will sacrifice lane keeping reward to some extent
in order to reach a higher cruise-control objective or vice versa.

Standing around in the center of the lane would maximize the lane keeping objective,
however this will not be a Pareto-optimal policy in any realistic settings (under the
assumption that the cruise control reward is weighted accordingly), since it is always
possible to drive the vehicle with non-zero velocity in such a way to have almost optimal
lane keeping objective.

3.4 State Space Design

Except for the most simple cruise control scenario, all the proposed control problems
per se require complex sensory input, e.g., camera image or Lidar data. This could be
factored out of the reinforcement learning problem, e.g., by feeding the sensory inputs
into a separately trained neural network that calculates a vector representation of the

52

state instead of treating the sensor inputs as the state (which we refer to as end-to-end
learning).

We provide gymnasium environment implementations where the observations are
encoded as vectors (for problems 1 to 5 as in Section 3.1) as well as environment
implementations where observations are a mix of vector and image data (for problems
2–8).

3.4.1 Vectorized Observations

We make the assumption here, that such vector states could be obtained in practice by
concatenating scalar data such as current speed with predictions from a neural net that
extracts information such as offset from lane center out of a camera image.

Cruise Control

The observation space is a linear subspace in R3 with vectors as outlined in the following
table.

Dim Observation Value range

1 Velocity in km/h [0, 200]
2 Throttle [−1, 1]
3 Target velocity in km/h [0, 130]

The throttle of the car is necessary to have the Markov property as the current velocity
of the vehicle would not be sufficient information (for example there is a difference if
we currently go with 30 km/h after deceleration from a higher velocity or if we were
accelerating).

Adaptive Cruise Control

The previous observation space is extended to include information about a potential front
vehicle in the current lane. The distance to a front vehicle could be predicted with the
help of a neural net from a front camera image, or from radar resp. Lidar data.

Dim Observation Value range

1 Velocity in km/h [0, 200]
2 Throttle [−1, 1]
3 Target velocity in km/h [0, 130]
4 Distance to front vehicle in m [0, 100]
5 Relative velocity to front vehicle in km/h [0, 130]

We confine the distance to a front vehicle to 100 meters, if no front vehicle is visible
we treat it as 100 meters as well as if a front vehicle is present but farther away than

53

100 meters. The relative velocity is required for the Markov property as there is an
important difference between approaching another car that is standing still or one that is
only driving slightly slower. Alternatively one could drop that state and instead stack
multiple previous observations, which would likely be the way to go unless one obtains
such information with a radar sensor or the like where the relative velocity is already
encoded in the measurements.

Lane Keeping

The state space is designed to feature sufficient information about the position of the
vehicle in the current lane.

Dim Observation Value range

1 Offset from lane center in m [−1.68, 1.68]
2 Angle between vehicle long axis and lane tangent in deg/90 [−1, 1]
3 Curvature of surrounding road segment [−∞,∞]
4 Steering control value [−1, 1]
5 Velocity in km/h [0, 200]
6 Side acceleration in m/s2 [−50, 50]

We assume that the first 3 dimensions could be obtained from a front camera image,
e.g., with the help of a neural network. The surrounding road segment is defined by
3 points: the nearest midpoint of the current lane, one midpoint 20 meters ahead of
that point and one midpoint 20 meters behind that point. We want to highlight that
the current steering value is important for the Markov property as the current optimal
steering action depends on the last steering position. We found the side acceleration of
the vehicle also gives additional information for optimal control, although it may not be
strictly necessary and could be replaced by a longer history of previous steering values.

Combined Control

Concatenation of the lane keeping and cruise control observation vectors.

Adaptive Combined Control

Concatenation of the lane keeping and adaptive cruise control observation vectors.

3.4.2 Camera Image Observations

A stack of camera images alone would not be sufficient to have the Markov property of
our control problem, as the agent would not have any information of the current throttle
or steering values, hence we handle observations as tuples of camera image and vector
data.

54

Lane Keeping and Obstacle Avoidance

The observations consist of a camera image (camera mounted in front of vehicle with a
field of view of 55 degrees) together with a vector as listed in the table below.

Dim Observation Value range

1 Steering control value [−1, 1]
2 Velocity in km/h [0, 200]
3 Side acceleration in m/s2 [−50, 50]

The camera image is converted to grayscale and scaled down to 84× 84 pixels. While
the agent would have some information about the velocity from a stack of images, we
supply the exact velocity, since that is information any car is able to provide anyway.

Combined Control Problems

Same camera setting as above, the additional vector observations are as in the table
below.

Dim Observation Value range

1 Throttle [−1, 1]
2 Steering control value [−1, 1]
3 Velocity in km/h [0, 200]
4 Target velocity in km/h [0, 130]
5 Side acceleration in m/s2 [−50, 50]

For the adaptive problems one can not expect that one observation contains all the
information necessary (e.g., relative velocity to front vehicle), thus it is important to
stack the last n observations into one observation for the agent, with n = 3 usually.

Navigation Problems

Camera settings are different: bigger field of view and the camera is mounted at the very
front of the car in order to give the agent a broader view at junctions.

Dim Observation Value range

1 Navigation instruction {0, 1, 2, 3, 4}
2 Distance to target in waypoints [0, 20]
3 Throttle [−1, 1]
4 Steering control value [−1, 1]
5 Velocity in km/h [0, 200]
6 Side acceleration in m/s2 [−50, 50]

55

The navigational instructions (left, right, straight, follow lane, change lane left, change
lane right) are encoded as integers in the vector state, as well as the distance to a possible
stop point at the end of a route.

In case of the adaptive scenario stacking of multiple prior observations is necessary.

3.4.3 Preprocessing

In order to make the learning problems with camera input computationally more tractable,
we follow a similar approach as [Mni+15] by down sampling the images to 84 × 84
dimensions and converting the camera to grayscale, which effectively reduces the 3
channels to 1. For stacked observations in the adaptive scenarios with image observations,
we stack the last 3 preprocessed imaged along the channel axis, as well as the last 3
vector observations by concatenating those vectors.

Figure 3.4: Preprocessed samples of camera images. Left sample is from the combined
adaptive scenario, right on is from the navigation scenario.

3.5 Implementation Details

The CARLA simulator consists of a client server architecture: the server itself is based
on the computer game engine Unreal Engine and runs the simulation while the client is
responsible for setting up and controlling actors in the simulation as well as controlling
the simulated world conditions. Interaction between the server and clients happens
through network sockets.

CARLA offers an extensive Python API for the implementation of clients, which we
make use of to implement gymnasium environments (see Section 3.5.2) for our proposed
control problems.

3.5.1 Simulation Setup

Since CARLA is based on the gaming engine Unreal Engine the default simulation mode
has a variable time step, meaning that the simulated time that passes between two
simulation steps corresponds to the time it took to compute the simulation step, while

56

the simulator does as many simulation steps as it is able to compute in a given real time
frame, independently of client inputs.

We configure the simulator to have a fixed time step of 0.1 seconds, i.e., the simulated
time that passes between simulation steps is always 0.1 seconds and set the simulator to
synchronous mode, i.e., the simulator only does on simulation step when it is told to do
so by the client and remains frozen otherwise.

This not only has the advantage of making the implementation of exactly evenly spaced
time steps possible but also has additional technical advantages:

• Depending on the computational power it is possible to make the simulation faster
than real time, e.g., if 100 steps of 0.1 seconds length can be computed within 1
second, then the simulation is 10 times faster than real time.

• All observation data can be obtained from the exact same moment in the simulation.

• Physics becomes deterministic making it possible to reach the exact same state
with the same sequence of actions, given the same starting position.

In case of the vectorized observation environments we could greatly speed up the
simulation (up to 30 times faster than real time) by turning off the rendering of the
simulator (settings.no_rendering=True) as the state representation does not require
rendering of the scene, while for the environments that depend on a camera sensor the
simulation can be sped up with a lower graphics setting (-quality-level=Low) of the
simulator at the expense of less detailed renderings (up to 6 times faster than real time
compared to 3 times faster than real time with the highest graphic detail).

3.5.2 Gymnasium Interface

We provide all control problems as gymnasium environments, that means our control
problems follow an API as proposed in [Tow+23]:

• env = gymnasium.make(<NAME>): create the environment env with name <NAME>.

• obs = env.reset(seed): obtain initial state obs of the environment, use the
optional seed argument to seed the random number generators.
In this method all actors including the vehicle the agent controls are destroyed (if
they exist) and spawned at their initial positions (which are uniformly randomly
sampled), new target velocities, navigation instructions etc. are sampled depending
on the control problem.

• obs, rew, terminated, truncated, info = env.step(action): perform one
time step in the environment with action, return observation obs, a float re-
ward rew, boolean terminated that classifies the observation as terminal, boolean
truncated that is true when truncation conditions are met such as the maximum
number of time steps for one episode and a dictionary info that provides additional
info about the current step.

57

In this method the throttle and steering control value of the vehicle is applied, one
simulation step is executed and all the observation data are collected.

As soon as a terminal state is encountered or a truncated signal is obtained, the reset()
method is called.

Gymnasium provides dedicated data structures for action and observation spaces of
which we make use of the following:

• Box: represents the Cartesian product of n closed intervals in Rn, which we use for
the action spaces of the continuous control variants of the environments, as well as
the observation spaces of all vectorized observation environments. RGB images are
also represented in box spaces (interval [0, 255] and shape (3, x, y) where x and y
are the dimensions of the image in pixels).

• Discrete: represents a finite set of integers, we use it for discrete action spaces.

• Dict: composite space that is a Python dictionary of other spaces, which we use for
the observation spaces of our environments that have pairs of images and vectors
as observations.

3.5.3 Data Retrieval

Velocity and acceleration as well as location coordinate and direction vector information
of the vehicle are directly retrievable as properties of the vehicle via the Python API.

The offset of the vehicle from the lane center is calculated with the help of waypoints
that can be queried via the Python API: waypoints are a pair of 3-tuples, the first 3-tuple
encodes coordinates of a point and the second pair encodes a normed direction vector
attached to the coordinate point. The nearest lane center waypoint at each location
is retrievable via the API, allowing the calculation of the offset as the normal distance
between the location coordinates of the vehicle mass center and the waypoint coordinates.
Likewise, the angle between the direction vector of the vehicle and the direction vector
of the waypoint can be obtained, and the curvature can be calculated by using front and
back waypoints to the nearest waypoint.

To calculate the distance between vehicles, we attach an obstacle detector sensor to
the front of the car, that allows to read out the distance between the vehicle and another
traffic participant if there is any within reach of the sensor.

In order to terminate episodes as soon as collisions happen there is a collision sensor
available via the Python API that can be attached to the vehicle that registers collisions.

For camera image observations an RGB camera sensor is attached to the front of the
vehicle that reports one camera image at each time step of the simulation. In order not
to miss any camera images we wait until the camera image has been received by the
client before making the next simulation step.

For the adaptive combined control and the adaptive navigation scenarios we make
use of CARLA’s traffic manager module, that allows the simulation of other traffic
participants which are moved around by the traffic manager module.

58

For the navigation instructions of the navigation scenarios we make use of CARLA’s
route planner: we randomly sample a target location on the map and invoke the route
planner which returns a list of pairs (waypoint, topological instruction) describing the
shortest path from the current location to the target location. Using the waypoints we
calculate the lane center offset of the car relative to the route and the current topological
instruction is added to the state space.

3.5.4 Determinism

The physics of the simulator are deterministic in synchronous mode with fixed time
steps. RGB camera output is not exactly deterministic with some slight noise differences
even in the same exact physical state of the simulation. Likewise, sensors such as the
collision sensor sometimes report a collision only one step later than it occurred, that
might however be a race condition between the client and the server (the collision sensor
does not report information at every simulation step, thus it does not make sense to wait
for the sensor’s report after every time step, which could lead to the situation that the
sensor report only arrives after the next simulation step already has been initiated by
the client).
The traffic manager module also allows setting a seed to make traffic situations

reproducible, however traffic situations are only perfectly reproducible when the map is
freshly loaded which is too runtime expensive to practically make use of, as reloading a
map can take up to 2 minutes.

3.5.5 Error Recovery

Since the CARLA simulator and all of its components are a complex piece of software,
crashes of the simulator, the python API or lockups where the client indefinitely hangs
on a function call occur occasionally. In order to deal with this, we wrote a wrapper
around the environment that runs our whole CARLA environment python code in an
isolated sub-process. Timeouts are imposed for each call to the sub-process and if the
sub-process encounters an error (e.g., the CARLA server crashed), gets killed or locks up,
we close the sub-process including the simulator process, create a new sub-process, start
the episode with exactly the same random seed and re-apply all the same actions that
have been taken so far in the current episode in order to obtain the same environment
state. To the agent none of this is noticeable. The physics determinism of the simulator
thus makes silent error recovery possible, except for the adaptive navigation scenario.

59

4 Numerical Results

4.1 Methods

4.1.1 Data Generation

Since all of our problems are infinite-horizon problems, the agent-environment interaction
is always truncated after an environment-specific number of steps, unless the agent
encountered a terminal state before. In the following we refer to a trajectory that is
ended by truncation or termination during training as a training episode, although in
the first case it is not an episode by definition. Analogously, we use the term evaluation
episode. To collect data for algorithm evaluation, we use the following protocol:

1. Training: number of r independent training runs with fixed number of training
steps with different random seeds (for both environment and agent), each agent is
saved periodically for evaluation (every i environment steps), the sum of rewards
of each training episode is logged, as well as length of the training episode, whether
the training episode was terminated or truncated and the computation time needed.

2. Evaluation: For each run we evaluate each saved agent by generating n evaluation-
episodes with fixed environment seeds {s1, . . . , sn} by following the deterministic
policy of the saved agent. We log the same data for each evaluation-episode as with
training episodes, except for the computation time of the evaluation-episode.

In order to analyze performance of the algorithms we provide plots with regard to some
metric over training with regard to either step or time units. This provides the following
additional insights compared to tables of peak or final performances:

1. Stability of training: of particular interest is, whether the agent regresses in-between
or almost monotonically improves performance over the course of training.

2. Sample efficiency: environment interaction is often expensive in terms of time, hence
reaching higher performance with fewer samples is desirable. More sample efficient
algorithms are often more computationally expensive however, so depending on
how expensive the environment is to sample from an additional runtime comparison
may draw a different picture.

In earlier literature it was common to use the number of episodes on the x-axis instead
of the number of steps, but the latter is better for comparison as the number of episodes
an agent has experienced is generally not a good indicator of how much experience it
gathered (if the initial policy leads to long training episodes the agent will gather a lot
more experience compared to an initial policy that will lead to immediate termination).

60

4.1.2 Performance Metrics

We consider the following performance metrics:

1. Cumulative reward : sum of all rewards of a training- or evaluation-episode. This
is a common metric in the literature, despite the possible discrepancy with the
discounted return the agent optimizes for.

2. Average reward per step: sum of rewards divided by the length of the training- or
evaluation-episode.

3. Termination rate: number of times the agent encountered a terminal state divided
by the number of evaluation trails. Depending on the problem termination can
mean success or failure, in our domains it means failure.

One way to get an impression of the agent performance during training is to plot the
respective performance metric of training episodes directly, which we refer to as training
curve. As opposed to a learning curve, where we plot metrics with regard to evaluation-
episodes, the training curve shows the impact of exploration during training, thus it is
to be expected that the training curve is less stable and the obtained performance is
lower than what the agent is capable of with the same experience when purely exploiting
the learned policy. Another aspect to take into consideration is the fact, that in some
environments the situations encountered in different training episodes are vastly different
in terms of what performance the agent is able to reach even if following an optimal
policy, thus momentary regression in the training curve does not necessarily equate to
regression of the policy. Performance during training (averaged over the last k training
episodes) as primary performance metric in reinforcement learning research papers has
been proposed in [Mac+18, Sec. 4.2] for reducing the computational burden of doing
evaluations in computationally expensive environments.

In the case of plotting the learning curve we usually do multiple evaluation-episodes
per saved agent, thus we plot the mean over the performances obtained with regard to
the above performance metrics.

4.1.3 Statistical Significance

In order to add statistical significance to the algorithm evaluation, multiple independent
training runs are performed. We try to follow the recommendations given in [CSO19]
and in [Aga+21].

In case of the training curve calculating statistics over multiple runs is usually not
possible at the same point of training experience of the agent, since the experience
the agent has at the start of a training episode depends on the length of all previous
episodes, which usually varies between runs. Therefore, we treat the training curve
of each individual run as a piece wise constant function over the number of steps and
average over the runs at each step.

61

4.2 Algorithm Comparison across Environments

All algorithms use the stable-baselines3 codebase [Raf+21], that already contained peer
reviewed implementations of all algorithms in this thesis except for IQN. We implemented
the latter on top of the stable-baselines3 codebase, as well as diverse adaptions for the
existing algorithms such as double DQN.

For hyperparameter tuning initially Optuna [Aki+19] was used, but in the end we
manually came up with a selection of hyperparameters that work across all our domains,
mostly with adaptions for sensitive and algorithm specific parameters, see Section 4.5.

The computational results presented were obtained using the CLIP cluster1 and the
VSC-5 cluster2.

4.2.1 Cruise Control

The first challenge for the agent to overcome in this domain is picking up speed since it
requires multiple successive positive throttle values for the vehicle to actually gain speed,
which can be hard to explore in the beginning when the policy behaves mostly randomly.
This is especially a noticeable problem for DDPG and TD3, see Fig. 4.1.

We would a priori not have expected the agent to be able to hit terminal states by going
off the road, since the steering angle is held fixed, but it turned out that this happens
when rapid acceleration changes happen (e.g., the agent suddenly applies maximum
throttle). In the real physical world such situations might occur as well when the vehicle
is sufficiently powerful. Applying steering corrections in our cruise-control experiment
is out of scope, so avoiding this situation poses an additional challenge for the agent to
overcome, since per the reward signal the incentive of the agent is to reach the target
velocity as fast as possible, which stands in conflict to avoiding rapid acceleration changes.

The distributional algorithm variants except IQN are significantly more sample efficient
in this domain as can be seen from SAC vs TQC and DQN vs QRDQN, the effect
on final performance is minimal, however. While both QRDQN is more expensive in
computational time than DQN, QRDQN manages to stay more performant overall. This
computational time aspect does not carry over to TQC vs SAC.

4.2.2 Adaptive Cruise Control

Intuitively, the additional challenge of keeping a safe distance to a front vehicle would
seem to be a more complex task that is more sample expensive to learn compared to the
previous task. However, the learning curves reveal that this is not the case, see Fig. 4.2.
In case of TD3 and DDPG, the additional challenge even leads to better convergence
properties. Another side effect of the secondary task is, that the agents seems to be more
gentle with acceleration, as terminal conditions are rarely encountered after convergence.
Otherwise, the relative performance between algorithms remained approximately the
same.

1https://clip.science
2https://vsc.ac.at//systems/vsc-5/

62

https://clip.science
https://vsc.ac.at//systems/vsc-5/

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
environment steps

0

50

100

150

200

250

cu
m

ul
at

ive
re

wa
rd

(1
0

ev
al

se
ed

s)

gym_carla/CruiseControl-v1 (evaluation every 1000 steps)

IQN
QRDQN
DQN
TQC
SAC
TD3
DDPG

1

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
environment steps

−0.050

−0.025

0.000

0.025

0.050

0.075

0.100

0.125

te
rm

in
at

io
n

ra
te

(1
0

ev
al

se
ed

s)

gym_carla/CruiseControl-v1 (evaluation every 1000 steps)

IQN
QRDQN
DQN
TQC
SAC
TD3
DDPG

1

0 250 500 750 1000 1250 1500 1750
training time (seconds)

0

50

100

150

200

250

cu
m

ul
at

ive
re

wa
rd

(1
0

ev
al

se
ed

s)

gym_carla/CruiseControl-v1 (evaluation every 1000 steps)

IQN
QRDQN
DQN
TQC
SAC
TD3
DDPG

1

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
environment steps

0

50

100

150

200

250
cu

m
ul

at
ive

re
wa

rd

gym_carla/CruiseControl-v1 (no evaluations)

IQN
QRDQN
DQN
TQC
SAC
TD3
DDPG

1
Figure 4.1: Cruise control learning and training curves.

4.2.3 Lane Keeping

For lane-keeping, policies that remain within the lane are comparatively easy to explore,
since the velocity is not controlled by the agent and bad actions soon lead to termination
by driving out of the lane. The main challenge for the agents is to learn the different
curves at different velocities. Interestingly, the neural networks seem to generalize well,
as can be seen on the sudden very steep ascent of the learning curves in Fig. 4.3, which
means the agent does not slowly learn the curves one after another, but figures out a
policy that works for all curves within a very short time.
All algorithms manage to learn good policies, as a finial performance around 2500

corresponds to smooth control keeping the offset to the lane center minimal. The
termination rate plot, however uncovers the weakness of DQN, QRDQN and IQN to
learn a safe policy, i.e., the agent should not hit a terminal conditions by driving out of
the lane, while the actor critic methods manage to learn safe policies.

In this problem, IQN is clearly outperforming QRDQN while the latter is performing
almost identically as DQN, which is exactly opposed to the observed performance in the
Cruise control domain. It can be seen that the relative performance between algorithms
using different means of exploration by the training curve is indeed inconclusive, as the

63

0 15000 30000 45000 60000 75000 90000 105000 120000 135000 150000
environment steps

0

50

100

150

200

250

cu
m

ul
at

ive
re

wa
rd

(1
0

ev
al

se
ed

s)

gym_carla/CruiseControlAdaptive-v1 (evaluation every 1000 steps)

IQN
QRDQN
DQN
TQC
SAC
TD3
DDPG

1

0 15000 30000 45000 60000 75000 90000 105000 120000 135000 150000
environment steps

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

te
rm

in
at

io
n

ra
te

(1
0

ev
al

se
ed

s)

gym_carla/CruiseControlAdaptive-v1 (evaluation every 1000 steps)

IQN
QRDQN
DQN
TQC
SAC
TD3
DDPG

1

0 500 1000 1500 2000 2500 3000
training time (seconds)

0

50

100

150

200

250

cu
m

ul
at

ive
re

wa
rd

(1
0

ev
al

se
ed

s)

gym_carla/CruiseControlAdaptive-v1 (evaluation every 1000 steps)

IQN
QRDQN
DQN
TQC
SAC
TD3
DDPG

1

0 15000 30000 45000 60000 75000 90000 105000 120000 135000 150000
environment steps

−50

0

50

100

150

200

250

cu
m

ul
at

ive
re

wa
rd

(m
av

g:
20

)

gym_carla/CruiseControlAdaptive-v1 (no evaluations)

IQN
QRDQN
DQN
TQC
SAC
TD3
DDPG

1
Figure 4.2: Adaptive Cruise control learning and training curves.

relative performance in the learning curve differs significantly from the one obtained in
the learning curve. While this is to be expected for DDPG and TD3 which do not anneal
the exploration rate, it can be seen that for maximum-entropy methods a higher level of
stochasticity remains compared to the final exploration rate of ε-greedy exploration.

4.2.4 Lane Keeping from Pixels

With image based observations, the results look similar as for the vector representations,
with the difference that reaching the same performance level takes more training steps
which is to be attributed to the fact, that the agent implicitly needs to learn to extract
the relevant features from the camera images in the CNN part of the neural network
architecture. The final performance of each agent as can bee seen in Fig. 4.4 is similar to
the performance without learning from pixels as in Fig. 4.3.

The IQN agent is considerably faster in learning to avoid terminal conditions in
comparison to DQN and QRDQN, which struggle more with the pixel based observations
in this regard, as is especially visible in the training curve, where IQN is able to consistently
reach a high return despite exploration while QRDQN and DQN regularly fail keep the

64

0 15000 30000 45000 60000 75000 90000 105000 120000 135000 150000
environment steps

0

500

1000

1500

2000

2500

cu
m

ul
at

ive
re

wa
rd

(1
0

ev
al

se
ed

s)

gym_carla/LaneKeeping-v0 (evaluation every 1000 steps)

IQN
QRDQN
DQN
TQC
SAC
TD3
DDPG

1

0 15000 30000 45000 60000 75000 90000 105000 120000 135000 150000
environment steps

0.0

0.2

0.4

0.6

0.8

1.0

te
rm

in
at

io
n

ra
te

(1
0

ev
al

se
ed

s)

gym_carla/LaneKeeping-v0 (evaluation every 1000 steps)

IQN
QRDQN
DQN
TQC
SAC
TD3
DDPG

1

0 500 1000 1500 2000 2500 3000
training time (seconds)

0

500

1000

1500

2000

2500

cu
m

ul
at

ive
re

wa
rd

(1
0

ev
al

se
ed

s)

gym_carla/LaneKeeping-v0 (evaluation every 1000 steps)

IQN
TQC
SAC
TD3
DDPG

1

0 15000 30000 45000 60000 75000 90000 105000 120000 135000 150000
environment steps

−500

0

500

1000

1500

2000

2500

3000

cu
m

ul
at

ive
re

wa
rd

gym_carla/LaneKeeping-v0 (no evaluations)

IQN
QRDQN
DQN
TQC
SAC
TD3
DDPG

1
Figure 4.3: Lane keeping learning and training curves.

lane.

4.2.5 Combined Control

As expected, combined control is a lot more expensive to learn compared to the single
objective tasks but at the advantage of being able to avoid terminal situations that
would become unavoidable when just stacking individually trained agents. This becomes
especially apparent in situations where the target velocity of the vehicle is too high to
make a curve, which challenges the agent to slow down in advance.

A look at the plot of the termination rate plot uncovers a variety in the learning process
between the different algorithms, see Fig. 4.5. While DQN, QRDN and IQN have high
failure rates in the beginning and slowly learn to decrease their risk of failure, SAC and
TQC quickly learn to avoid terminal situations by keeping the lane early. This changes
throughout the training process, as the agent not only needs to keep the lane, but also
needs to get as near as possible to a specified target velocity and with higher velocities
comes higher risk of failure. TQC manages to minimize the risk of failure compared to
SAC in the end, but both learn very smooth control policies that meet the objectives of
both tasks well.

65

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000
environment steps

0

500

1000

1500

2000

2500

cu
m

ul
at

ive
re

wa
rd

(1
0

ev
al

se
ed

s)

gym_carla/LaneKeeping-pix-v0 (evaluation every 5000 steps)

IQN
QRDQN
DQN
TQC
SAC
TD3
DDPG

1

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000
environment steps

0.0

0.2

0.4

0.6

0.8

1.0

te
rm

in
at

io
n

ra
te

(1
0

ev
al

se
ed

s)

gym_carla/LaneKeeping-pix-v0 (evaluation every 5000 steps)

IQN
QRDQN
DQN
TQC
SAC
TD3
DDPG

1

0 5000 10000 15000 20000 25000 30000
training time (seconds)

0

500

1000

1500

2000

2500

cu
m

ul
at

ive
re

wa
rd

(1
0

ev
al

se
ed

s)

gym_carla/LaneKeeping-pix-v0 (evaluation every 5000 steps)

IQN
QRDQN
DQN
TQC
SAC
TD3
DDPG

1

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000
environment steps

0

500

1000

1500

2000

2500

3000

cu
m

ul
at

ive
re

wa
rd

gym_carla/LaneKeeping-pix-v0 (no evaluations)

IQN
QRDQN
DQN
TQC
SAC
TD3
DDPG

1
Figure 4.4: Lane-keeping from pixels learning and training curves.

The other algorithms do not reach the same level as SAC and TQC: the policies of
IQN and QRDQN perform well overall but fail to stay within the lane eventually in some
evaluation runs.

IQN is outperforming QRDQN, while DQN fails to learn good policies due to overesti-
mation bias, which DDQN resolves.
Compared to the original publications, we needed to set the stability parameter for

IQN much higher.

4.2.6 Combined Control from Pixels

Contrary to the lane-keeping domain, directly learning from pixels for combined control
is even more sample efficient compared to directly learning from vector representations,
at least in case of SAC and TQC, but also the other algorithms do not experience any
noticeable drop in performance, see Fig. 4.6. In fact DQN is even able to learn good
policies, which was not the case when directly learning from the vector representations
as in Fig. 4.5.
The termination rate throughout training also suggests there is a difference in the

learning dynamics compared to the vectorized environment, since this time around SAC

66

0.00 0.15 0.30 0.45 0.60 0.75 0.90 1.05 1.20 1.35 1.50
environment steps 1e6

−500

0

500

1000

1500

2000

2500

cu
m

ul
at

ive
re

wa
rd

(1
0

ev
al

se
ed

s)

gym_carla/Combined-v1 (evaluation every 10000 steps)

IQN
QRDQN
DQN
TQC
SAC
TD3
DDPG

1

0.00 0.15 0.30 0.45 0.60 0.75 0.90 1.05 1.20 1.35 1.50
environment steps 1e6

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

te
rm

in
at

io
n

ra
te

(1
0

ev
al

se
ed

s)

gym_carla/Combined-v1 (evaluation every 10000 steps)

IQN
QRDQN
DQN
TQC
SAC
TD3
DDPG

1

0 5000 10000 15000 20000 25000 30000
training time (seconds)

−500

0

500

1000

1500

2000

2500

cu
m

ul
at

ive
re

wa
rd

(1
0

ev
al

se
ed

s)

gym_carla/Combined-v1 (evaluation every 10000 steps)

IQN
QRDQN
DQN
TQC
SAC
TD3
DDPG

1

0.00 0.15 0.30 0.45 0.60 0.75 0.90 1.05 1.20 1.35 1.50
environment steps 1e6

−500

0

500

1000

1500

2000

2500

cu
m

ul
at

ive
re

wa
rd

(m
av

g:
25

)

gym_carla/Combined-v1 (no evaluations)

IQN
QRDQN
DQN
TQC
SAC
TD3
DDPG

1
Figure 4.5: Combined control learning and training curves.

and TQC also slowly monotonically decrease their termination rate. This could be
explained by the fact, that it takes longer for the agent to figure out the relevant features
for reliably staying within the lane from the images, which makes the rapid improvement
in terms of termination rate as seen in the vectorized environment impossible.

4.2.7 Adaptive Combined Control

When comparing the obtained returns from the learning curves in this domain with the
ones in the previous section, one has to consider, that in the adaptive scenario an optimal
policy may not be able to reach the same return if a front vehicle is there that makes
reaching the target velocity impossible, in which case the agent is challenged to get as
near as possible to the target velocity while keeping a safe distance at the same time.
Overestimation bias seems to be a considerable challenge in this problem domain, as

DQN diverged regardless of the hyperparameters, while DDQN was able to learn good
policies, see Fig. 4.7. TQC which was proposed primarily to overcome overestimation
bias is also able to outperform SAC by a considerable margin which comes from the fact
that it is able to avoid terminal conditions reliably, which all the other algorithms are
not able to achieve.

67

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
environment steps 1e6

−500

0

500

1000

1500

2000

2500

cu
m

ul
at

ive
re

wa
rd

(1
0

ev
al

se
ed

s)

gym_carla/Combined-pix-v1 (evaluation every 20000 steps)

IQN
QRDQN
DQN
TQC
SAC
TD3
DDPG

1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
environment steps 1e6

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

te
rm

in
at

io
n

ra
te

(1
0

ev
al

se
ed

s)

gym_carla/Combined-pix-v1 (evaluation every 20000 steps)

IQN
QRDQN
DQN
TQC
SAC
TD3
DDPG

1

0 20000 40000 60000 80000 100000
training time (seconds)

−500

0

500

1000

1500

2000

2500

cu
m

ul
at

ive
re

wa
rd

(1
0

ev
al

se
ed

s)

gym_carla/Combined-pix-v1 (evaluation every 20000 steps)

IQN
QRDQN
DQN
TQC
SAC
TD3
DDPG

1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
environment steps 1e6

−1000

−500

0

500

1000

1500

2000

2500

cu
m

ul
at

ive
re

wa
rd

(m
av

g:
25

)

gym_carla/Combined-pix-v1 (no evaluations)

IQN
QRDQN
DQN
TQC
SAC
TD3
DDPG

1
Figure 4.6: Combined control from pixels learning and training curves.

4.2.8 Adaptive Combined Control from Pixels

Except for TQC also in this domain the sample efficiency and overall performance is
higher compared to directly learning from vectorized observations, see Fig. 4.8. TQC was
not able to consistently maintain its advantage over the other algorithms with regard to
avoiding terminal conditions, despite reaching minimal termination rate after around 1.3
million training steps, which per se demonstrates that a perfect result is indeed possible.

While the variance between runs of IQN in the vectorized setting, IQN was consistently
more sample efficient compared to QRDN and DDQN, however the benefit did not
translate in terms of runtime performance.

4.2.9 Obstacle Avoidance

Although the problem setting is very similar to the lane-keeping from pixels problem,
the challenge of changing lane before getting dangerously near a front vehicle makes this
problem considerably harder.

TQC and SAC both outperform all the other algorithms, but still both algorithms
struggle in the end to completely avoid terminal conditions, see Fig. 4.9. Video inspection

68

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
environment steps 1e6

−1000

−500

0

500

1000

1500

2000

2500

cu
m

ul
at

ive
re

wa
rd

(1
0

ev
al

se
ed

s)

gym_carla/CombinedAdaptive-v1 (evaluation every 20000 steps)

IQN
QRDQN
DQN
DDQN
TQC
SAC
TD3

1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
environment steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

te
rm

in
at

io
n

ra
te

(1
0

ev
al

se
ed

s)

gym_carla/CombinedAdaptive-v1 (evaluation every 20000 steps)

IQN
QRDQN
DQN
DDQN
TQC
SAC
TD3

1

0 10000 20000 30000 40000
training time (seconds)

−1000

−500

0

500

1000

1500

2000

2500

cu
m

ul
at

ive
re

wa
rd

(1
0

ev
al

se
ed

s)

gym_carla/CombinedAdaptive-v1 (evaluation every 20000 steps)

IQN
QRDQN
DQN
DDQN
TQC
SAC
TD3

1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
environment steps 1e6

−1500

−1000

−500

0

500

1000

1500

2000

2500

cu
m

ul
at

ive
re

wa
rd

(m
av

g:
25

)

gym_carla/CombinedAdaptive-v1 (no evaluations)

IQN
QRDQN
DQN
DDQN
TQC
SAC
TD3

1
Figure 4.7: Adaptive combined control learning and training curves.

reveals two reasons for that:

1. In some situations, there is some space next to the very left lane that is separated
by a solid line. Sometimes the agent tries to overtake using that space rather than
choosing the lane to the right which leads to immediate termination.

2. During evaluation in some situations the control car has a high velocity while an
obstacle appears suddenly after a curve, in which case the agent is sometimes not
able to avoid the obstacle anymore despite making an attempt to do so.

4.2.10 Navigation

Since the navigation task has a goal-oriented nature, we use a different evaluation protocol:
We run 30 evaluation runs, each time with a different target location for which the agent
gets the route instructions during the episode. When the agent reaches the target point
and manages to stop there within a certain radius, the episode ends with a success, all
other cases are treated as failure. Since the agent learns to reach the target point faster
over the course of training (the agent manages to stay closer to the target velocity even

69

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
environment steps 1e6

0

500

1000

1500

2000

cu
m

ul
at

ive
re

wa
rd

(1
0

ev
al

se
ed

s)

gym_carla/CombinedAdaptive-pix-v1 (evaluation every 20000 steps)

IQN
QRDQN
DDQN
TQC
SAC
TD3

1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
environment steps 1e6

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

te
rm

in
at

io
n

ra
te

(1
0

ev
al

se
ed

s)

gym_carla/CombinedAdaptive-pix-v1 (evaluation every 20000 steps)

IQN
QRDQN
DDQN
TQC
SAC
TD3

1

0 20000 40000 60000 80000
training time (seconds)

0

500

1000

1500

2000

cu
m

ul
at

ive
re

wa
rd

(1
0

ev
al

se
ed

s)

gym_carla/CombinedAdaptive-pix-v1 (evaluation every 20000 steps)

IQN
QRDQN
DDQN
TQC
SAC
TD3

1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
environment steps 1e6

−1000

−500

0

500

1000

1500

2000

2500

cu
m

ul
at

ive
re

wa
rd

(m
av

g:
25

)

gym_carla/CombinedAdaptive-pix-v1 (no evaluations)

IQN
QRDQN
DDQN
TQC
SAC
TD3

1
Figure 4.8: Adaptive combined control from pixels learning and training curves.

in junctions, while earlier in the training it slowed down considerable before junctions),
the cumulative reward is not a good indicator of driving quality, which is why we opt
for the average cumulative reward, besides the success rate. The average cumulative
reward gives us an impression how well the control works with regard to lane keeping
and adaptive cruise-control objectives.

Video inspection of evaluation runs reveals that for the top performing agents all the
terminal conditions are encountered with hard left and right turns in junctions as the
agent missed the opportunity to make the turn early enough, in which case it still tries
to somehow make the curve but ends up in the opposite lane during the attempt and
thus the episode is terminated.

While IQN performed inferior compared to QRDQN in the beginning, after a certain
point of training experience IQN began to significantly outperform QRDQN. While there
is no visible benefit of TQC over SAC in terms of the failure rate, TQC is significantly
more stable and performant in terms of reward per time steps, i.e., in terms of how well
the agent controls throttle and steering.

70

0.00 0.15 0.30 0.45 0.60 0.75 0.90 1.05 1.20 1.35 1.50
environment steps 1e6

0

500

1000

1500

2000

2500

cu
m

ul
at

ive
re

wa
rd

(1
0

ev
al

se
ed

s)

gym_carla/LaneChanging-pix-v1 (evaluation every 10000 steps)

IQN
QRDQN
DQN
TQC
SAC
TD3

1

0.00 0.15 0.30 0.45 0.60 0.75 0.90 1.05 1.20 1.35 1.50
environment steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

te
rm

in
at

io
n

ra
te

(1
0

ev
al

se
ed

s)

gym_carla/LaneChanging-pix-v1 (evaluation every 10000 steps)

IQN
QRDQN
DQN
TQC
SAC
TD3

1

0 20000 40000 60000 80000
training time (seconds)

0

500

1000

1500

2000

2500

cu
m

ul
at

ive
re

wa
rd

(1
0

ev
al

se
ed

s)

gym_carla/LaneChanging-pix-v1 (evaluation every 10000 steps)

IQN
QRDQN
DQN
TQC
SAC
TD3

1

0.00 0.15 0.30 0.45 0.60 0.75 0.90 1.05 1.20 1.35 1.50
environment steps 1e6

0

500

1000

1500

2000

2500
cu

m
ul

at
ive

re
wa

rd
(m

av
g:

10
)

gym_carla/LaneChanging-pix-v1 (no evaluations)

IQN
QRDQN
DQN
TQC
SAC
TD3

1
Figure 4.9: Obstacle avoidance learning and training curves.

4.2.11 Adaptive Navigation

The results as seen in Fig. 4.11 mostly match those of the navigation task Fig. 4.10 as
seen in without traffic in terms of relative performance of the algorithms compared to
each other.

Unfortunately none of the agents was able to learn a safe policy as we still obtain
around 40% failure rate in the evaluations, and it does not appear like if longer training
would help to counter this, as the SAC agent for example is stuck at that performance
level for around 2.5 million steps without any noticeable change. Upon video inspection
of the evaluation runs it turns out that the agents are mostly learning to drive well but
are often unable to resolve traffic situations in junctions:

• Most of the terminations can be attributed to the agent trying to illegally surpass
a front vehicle in junctions.

• Retrying the same traffic situation with the same trained agent multiple times often
leads to different outcomes, since the traffic participants and the images are not

71

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
environment steps 1e6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

av
g

re
wa

rd
pe

rs
te

p
(3

0
ev

al
se

ed
s)

gym_carla/Navigation-pix-v1 (evaluation every 25000 steps)

QRDQN
IQN
SAC
TQC

1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
environment steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

te
rm

in
at

io
n

ra
te

(3
0

ev
al

se
ed

s)

gym_carla/Navigation-pix-v1 (evaluation every 25000 steps)

QRDQN
IQN
SAC
TQC

1

0 25000 50000 75000 100000 125000 150000 175000 200000
training time (seconds)

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

av
g

re
wa

rd
pe

rs
te

p
(3

0
ev

al
se

ed
s)

gym_carla/Navigation-pix-v1 (evaluation every 25000 steps)

QRDQN
IQN
SAC
TQC

1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
environment steps 1e6

−0.2

0.0

0.2

0.4

0.6

0.8

av
g

re
wa

rd
pe

rs
te

p
(m

av
g:

50
)

gym_carla/Navigation-pix-v1 (no evaluations)

QRDQN
IQN
SAC
TQC

1
Figure 4.10: Navigation learning and training curves.

100% deterministic but to the human eye the situations up until shortly before the
agent starts to make a sequence of bad decisions look almost identical.

4.3 Summary

Generally for the problems we designed, the evolution of deep reinforcement learning
algorithms could be well understood and many of the improvements claimed in their
original papers also apply to our problems, albeit not always as drastically as for the
MuJoCo tasks and Atari games used as benchmark in the original publications. In the
easier single objective tasks all algorithms obtained similarly good policies in the end,
although the weakness of DDPG compared to the other algorithms was already apparent
for the cruise control problem and despite significant improvements of TD3 over DDPG,
there was still a very large variance between runs for the former.
Although in theory the problems with discretized action space should be easier to

solve, the actor-critic algorithms for the continuous control problem generally were more
sample efficient and produced better policies in the end, albeit at significantly higher run
time cost due to at least two additional networks to update.

72

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
environment steps 1e6

−0.2

0.0

0.2

0.4

0.6

av
g

re
wa

rd
pe

rs
te

p
(3

0
ev

al
se

ed
s)

gym_carla/NavigationAdaptive-pix-v1 (evaluation every 25000 steps)

QRDQN
IQN
SAC
TQC

1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
environment steps 1e6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

te
rm

in
at

io
n

ra
te

(3
0

ev
al

se
ed

s)

gym_carla/NavigationAdaptive-pix-v1 (evaluation every 25000 steps)

QRDQN
IQN
SAC
TQC

1

0 25000 50000 75000 100000 125000 150000 175000
training time (seconds)

−0.2

0.0

0.2

0.4

0.6

av
g

re
wa

rd
pe

rs
te

p
(3

0
ev

al
se

ed
s)

gym_carla/NavigationAdaptive-pix-v1 (evaluation every 25000 steps)

QRDQN
IQN
SAC
TQC

1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
environment steps 1e6

−0.4

−0.2

0.0

0.2

0.4

0.6
av

g
re

wa
rd

pe
rs

te
p

(m
av

g:
50

)

gym_carla/NavigationAdaptive-pix-v1 (no evaluations)

QRDQN
IQN
SAC
TQC

1
Figure 4.11: Adaptive navigation learning and training curves.

End to end learning from camera inputs was surprisingly not less sample efficient for
the more complicated problems, although the cost of additionally learning the feature
extractor component was very apparent for the easier problems.
The distributional variants of the algorithms were in the first place more sample

efficient and less sensitive to overestimation bias generally leading to better convergence
properties.
Videos of trained agents in action can be found here: https://www.youtube.com/

playlist?list=PLQQfP_m6pmBr8oK-Y0TZkIuFzHni7j-3n.

4.4 Own Publication

Parallel work using parts of the autonomous driving reinforcement learning stack devel-
oped in this thesis form the basis for [Lor+24].

73

https://www.youtube.com/playlist?list=PLQQfP_m6pmBr8oK-Y0TZkIuFzHni7j-3n
https://www.youtube.com/playlist?list=PLQQfP_m6pmBr8oK-Y0TZkIuFzHni7j-3n

4.5 Hyperparameters

Hyperparameters have been chosen such to work across as many environments as possible, thus a conservative choice has often
been made e.g., generally a lower optimizer learning rate, that leads to the same final performance albeit at a little slower
learning speed. Parameters that are brittle however can be seen in rows where many choices are made across environments
and where a common choice did not come without significant disadvantages in the learning speed. All hyperparameters for
each algorithm-environment combination are compactly presented in Table 4.1. Empty entries in each column inherit the
value from the first non-empty entry to the left. Hyperparameters not mentioned for an algorithm are inherited from the top
next row that mentions the parameter. We always make use of the Adam optimizer, see [KB15].

Parameter (Common) CC CCA LK LK-PIX CB CB-PIX CBA CBA-PIX OA NAV NAVA

training length 105 1.5 · 105 105 5 · 105 1.5 · 106 2 · 106 1.5 · 106 5 · 106
discount factor γ 0.95
buffer size 106

extractor dimension e – 256 – 256 – 256 256
extractor channels o – 32, 64, 64 – 32, 64, 64 – 32, 64, 64 32, 64, 64
extractor kernels k – 8, 4, 3 – 8, 4, 3 – 8, 4, 3 8, 4, 3
extractor strides s – 4, 2, 1 – 4, 2, 1 – 4, 2, 1 4, 2, 1
hidden units w of fQ 256 512
hidden layers d of fQ 2
optimizer Adam
optimizer learning rate 10−4

Parameter (DQN)

learning starts 256
mini-batch size 256 32
target network update C 103 3.5 · 103 3 · 104 5 · 105 5 · 103 5 · 105
target network update τ 1
exploration rate ε 0.05
exploration decay fraction 0.2 0.25

Parameter (QR-DQN)

number of quantiles 128

7
4

CC CCA LK LK-PIX CB CB-PIX CBA CBA-PIX OA NAV NAVA

Parameter (IQN)

number of quantiles m 64
number of quantiles m′ 64
number of quantiles m̃ 32

Parameter (SAC)

mini-batch size 256
target network update C 1
target network update τ 0.005
target entropy −dimA
hidden units fπ 256 512
hidden layers fπ 2

Parameter (DDPG)

learning starts 104 2 · 103 3 · 103 1.2 · 104 1.8 · 104 3 · 104
action noise 0.1 0.15

Parameter (TD3)

policy delay 2
target policy noise 0.2
target noise clip 0.5

Parameter (TQC)

number of critics n 2
number of quantiles m 25
quantile to drop d 2

Table 4.1: Hyperparameters.

75

Bibliography

[Aga+21] Rishabh Agarwal et al. “Deep Reinforcement Learning at the Edge of
the Statistical Precipice”. In: Advances in Neural Information Processing
Systems. Ed. by M. Ranzato et al. Vol. 34. Curran Associates, Inc., 2021,
pp. 29304–29320. url: https://proceedings.neurips.cc/paper_files/
paper/2021/file/f514cec81cb148559cf475e7426eed5e-Paper.pdf.

[Aki+19] Takuya Akiba et al. “Optuna: A Next-Generation Hyperparameter Opti-
mization Framework”. In: The 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 2019, pp. 2623–2631.

[Bar+18] Gabriel Barth-Maron et al. “Distributional Policy Gradients”. In: Inter-
national Conference on Learning Representations. 2018. url: https://
openreview.net/forum?id=SyZipzbCb.

[BDM17] Marc G. Bellemare, Will Dabney, and Rémi Munos. “A Distributional
Perspective on Reinforcement Learning”. In: Proceedings of the 34th Inter-
national Conference on Machine Learning. Ed. by Doina Precup and Yee
Whye Teh. Vol. 70. Proceedings of Machine Learning Research. PMLR, 2017,
pp. 449–458. url: https://proceedings.mlr.press/v70/bellemare17a.
html.

[BDR23] Marc G. Bellemare, Will Dabney, and Mark Rowland. Distributional Re-
inforcement Learning. http://www.distributional-rl.org. MIT Press,
2023.

[CC21] Johan Samir Obando Ceron and Pablo Samuel Castro. “Revisiting Rain-
bow: Promoting more insightful and inclusive deep reinforcement learning
research”. In: Proceedings of the 38th International Conference on Machine
Learning. Ed. by Marina Meila and Tong Zhang. Vol. 139. Proceedings
of Machine Learning Research. PMLR, 2021, pp. 1373–1383. url: https:
//proceedings.mlr.press/v139/ceron21a.html.

[CCM23] Zaiwei Chen, John-Paul Clarke, and Siva Theja Maguluri. “Target Network
and Truncation Overcome the Deadly Triad in Q-Learning”. In: SIAM
Journal on Mathematics of Data Science 5.4 (2023), pp. 1078–1101. eprint:
https://doi.org/10.1137/22M1499261. url: https://arxiv.org/pdf/
2203.02628.pdf.

[CMS20] Diogo Carvalho, Francisco S. Melo, and Pedro Santos. “A new convergent
variant of Q-learning with linear function approximation”. In: Advances
in Neural Information Processing Systems. Ed. by H. Larochelle et al.
Vol. 33. Curran Associates, Inc., 2020, pp. 19412–19421. url: https://

77

https://proceedings.neurips.cc/paper_files/paper/2021/file/f514cec81cb148559cf475e7426eed5e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/f514cec81cb148559cf475e7426eed5e-Paper.pdf
https://openreview.net/forum?id=SyZipzbCb
https://openreview.net/forum?id=SyZipzbCb
https://proceedings.mlr.press/v70/bellemare17a.html
https://proceedings.mlr.press/v70/bellemare17a.html
http://www.distributional-rl.org
https://proceedings.mlr.press/v139/ceron21a.html
https://proceedings.mlr.press/v139/ceron21a.html
https://doi.org/10.1137/22M1499261
https://arxiv.org/pdf/2203.02628.pdf
https://arxiv.org/pdf/2203.02628.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/e1696007be4eefb81b1a1d39ce48681b-Paper.pdf

proceedings.neurips.cc/paper_files/paper/2020/file/e1696007be

4eefb81b1a1d39ce48681b-Paper.pdf.

[CSO19] Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. “A Hitchhiker’s
Guide to Statistical Comparisons of Reinforcement Learning Algorithms”. In:
Reproducibility in Machine Learning, ICLR 2019 Workshop, New Orleans,
Louisiana, United States, May 6, 2019. OpenReview.net, 2019. url: https:
//openreview.net/forum?id=ryx0N3IaIV.

[CVM23] Fengdi Che, Gautham Vasan, and A. Rupam Mahmood. “Correcting
discount-factor mismatch in on-policy policy gradient methods”. In: Pro-
ceedings of the 40th International Conference on Machine Learning. Ed. by
Andreas Krause et al. Vol. 202. Proceedings of Machine Learning Research.
PMLR, 2023, pp. 4218–4240. url: https://proceedings.mlr.press/
v202/che23a.html.

[Dab+18a] Will Dabney et al. “Distributional reinforcement learning with quantile
regression”. In: Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence and Thirtieth Innovative Applications of Artificial
Intelligence Conference and Eighth AAAI Symposium on Educational Ad-
vances in Artificial Intelligence. AAAI’18/IAAI’18/EAAI’18. New Orleans,
Louisiana, USA: AAAI Press, 2018. isbn: 978-1-57735-800-8. url: https:
//aaai.org/papers/11791-distributional-reinforcement-learning-

with-quantile-regression/.

[Dab+18b] Will Dabney et al. “Implicit Quantile Networks for Distributional Rein-
forcement Learning”. In: Proceedings of the 35th International Conference
on Machine Learning. Ed. by Jennifer Dy and Andreas Krause. Vol. 80.
Proceedings of Machine Learning Research. PMLR, 2018, pp. 1096–1105.
url: https://proceedings.mlr.press/v80/dabney18a.html.

[dev23] CARLA developers. CARLA Documentation. 2023. url: https://carla.
readthedocs.io/en/0.9.15 (visited on 02/19/2024).

[Dos+17] Alexey Dosovitskiy et al. “CARLA: An Open Urban Driving Simulator”. In:
Proceedings of the 1st Annual Conference on Robot Learning. 2017, pp. 1–16.

[Fei11] Eugene A. Feinberg. “Total Expected Discounted Reward MDPS: Existence
of Optimal Policies”. In: (2011). eprint: https://onlinelibrary.wil
ey.com/doi/pdf/10.1002/9780470400531.eorms0906. url: https:
//citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=

7862cf86f3fee05fc62b5f01aaee66a48044d623.

[FHM18] Scott Fujimoto, Herke van Hoof, and David Meger. “Addressing Function
Approximation Error in Actor-Critic Methods”. In: Proceedings of the
35th International Conference on Machine Learning. Ed. by Jennifer Dy
and Andreas Krause. Vol. 80. Proceedings of Machine Learning Research.
PMLR, 2018, pp. 1587–1596. url: https://proceedings.mlr.press/
v80/fujimoto18a.html.

78

https://proceedings.neurips.cc/paper_files/paper/2020/file/e1696007be4eefb81b1a1d39ce48681b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/e1696007be4eefb81b1a1d39ce48681b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/e1696007be4eefb81b1a1d39ce48681b-Paper.pdf
https://openreview.net/forum?id=ryx0N3IaIV
https://openreview.net/forum?id=ryx0N3IaIV
https://proceedings.mlr.press/v202/che23a.html
https://proceedings.mlr.press/v202/che23a.html
https://aaai.org/papers/11791-distributional-reinforcement-learning-with-quantile-regression/
https://aaai.org/papers/11791-distributional-reinforcement-learning-with-quantile-regression/
https://aaai.org/papers/11791-distributional-reinforcement-learning-with-quantile-regression/
https://proceedings.mlr.press/v80/dabney18a.html
https://carla.readthedocs.io/en/0.9.15
https://carla.readthedocs.io/en/0.9.15
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470400531.eorms0906
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470400531.eorms0906
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7862cf86f3fee05fc62b5f01aaee66a48044d623
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7862cf86f3fee05fc62b5f01aaee66a48044d623
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7862cf86f3fee05fc62b5f01aaee66a48044d623
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/fujimoto18a.html

[GSP19] Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. “A Theory of Regu-
larized Markov Decision Processes”. In: Proceedings of the 36th International
Conference on Machine Learning. Ed. by Kamalika Chaudhuri and Rus-
lan Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research.
PMLR, 2019, pp. 2160–2169. url: https://proceedings.mlr.press/
v97/geist19a.html.

[Haa+18] Tuomas Haarnoja et al. “Soft Actor-Critic: Off-Policy Maximum Entropy
Deep Reinforcement Learning with a Stochastic Actor”. In: Proceedings of
the 35th International Conference on Machine Learning. Ed. by Jennifer Dy
and Andreas Krause. Vol. 80. Proceedings of Machine Learning Research.
PMLR, 2018, pp. 1861–1870. url: https://proceedings.mlr.press/
v80/haarnoja18b.html.

[Haa+19] Tuomas Haarnoja et al. Soft Actor-Critic Algorithms and Applications. 2019.
arXiv: 1812.05905 [cs.LG].

[Has10] Hado Hasselt. “Double Q-learning”. In: Advances in Neural Information
Processing Systems. Ed. by J. Lafferty et al. Vol. 23. Curran Associates,
Inc., 2010. url: https://proceedings.neurips.cc/paper_files/paper/
2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf.

[Has12] Hado van Hasselt. “Reinforcement Learning in Continuous State and Action
Spaces”. In: Reinforcement Learning: State-of-the-Art. Ed. by Marco Wiering
and Martijn van Otterlo. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 207–251. isbn: 978-3-642-27645-3. url: https://doi.org/10.
1007/978-3-642-27645-3_7.

[HGS16] Hado van Hasselt, Arthur Guez, and David Silver. “Deep reinforcement
learning with double Q-Learning”. In: Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence. AAAI’16. Phoenix, Arizona: AAAI
Press, 2016, pp. 2094–2100. url: https://aaai.org/papers/10295-deep-
reinforcement-learning-with-double-q-learning/.

[KB15] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic
Optimization”. In: 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2015. url:
http://arxiv.org/abs/1412.6980.

[Kie23] Tobias Kietreiber. “Combining maximum entropy reinforcement learning
with distributional Q-value approximation methods: At the example of
autonomous driving”. MA thesis. Technische Universität Wien, 2023. url:
https://repositum.tuwien.at/handle/20.500.12708/177687.

[Kuz+20] Arsenii Kuznetsov et al. “Controlling Overestimation Bias with Truncated
Mixture of Continuous Distributional Quantile Critics”. In: Proceedings of
the 37th International Conference on Machine Learning. Ed. by Hal Daumé
III and Aarti Singh. Vol. 119. Proceedings of Machine Learning Research.

79

https://proceedings.mlr.press/v97/geist19a.html
https://proceedings.mlr.press/v97/geist19a.html
https://proceedings.mlr.press/v80/haarnoja18b.html
https://proceedings.mlr.press/v80/haarnoja18b.html
https://arxiv.org/abs/1812.05905
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://doi.org/10.1007/978-3-642-27645-3_7
https://doi.org/10.1007/978-3-642-27645-3_7
https://aaai.org/papers/10295-deep-reinforcement-learning-with-double-q-learning/
https://aaai.org/papers/10295-deep-reinforcement-learning-with-double-q-learning/
http://arxiv.org/abs/1412.6980
https://repositum.tuwien.at/handle/20.500.12708/177687

PMLR, 2020, pp. 5556–5566. url: https://proceedings.mlr.press/
v119/kuznetsov20a.html.

[LGR12] Sascha Lange, Thomas Gabel, and Martin Riedmiller. “Batch Reinforcement
Learning”. In: Reinforcement Learning: State-of-the-Art. Ed. by Marco Wier-
ing and Martijn van Otterlo. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 45–73. isbn: 978-3-642-27645-3. doi: 10.1007/978-3-642-27645-
3_2. url: https://doi.org/10.1007/978-3-642-27645-3_2.

[LHY23] Haoye Lu, Daniel Herman, and Yaoliang Yu. “Multi-Objective Reinforcement
Learning: Convexity, Stationarity and Pareto Optimality”. In: The Eleventh
International Conference on Learning Representations. 2023. url: https:
//openreview.net/forum?id=TjEzIsyEsQ6.

[Lig24] Bar Light. The Principle of Optimality in Dynamic Programming: A Peda-
gogical Note. 2024. arXiv: 2302.08467 [math.OC].

[Lil+16] Timothy P. Lillicrap et al. “Continuous control with deep reinforcement
learning”. In: 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2016. url: https:
//arxiv.org/abs/1509.02971.

[Lor+24] Pierrick Lorang, Helmut Horvath, Tobias Kietreiber, Patrik Zips, Clemens
Heitzinger, and Matthias Scheutz. “Adapting to the “Open World”: The
Utility of Hybrid Hierarchical Reinforcement Learning and Symbolic Plan-
ning”. In: 2024 IEEE International Conference on Robotics and Automation
(ICRA). 2024, to appear.

[LS20] Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. Cambridge Uni-
versity Press, 2020. url: https://tor-lattimore.com/downloads/book/
book.pdf.

[Mac+18] Marlos C. Machado et al. “Revisiting the arcade learning environment:
evaluation protocols and open problems for general agents”. In: J. Artif.
Int. Res. 61.1 (Jan. 2018), pp. 523–562. issn: 1076-9757. url: https :
//www.jair.org/index.php/jair/article/view/11182/26388.

[Mai68] Ashok Maitra. “Discounted Dynamic Programming on Compact Metric
Spaces”. In: Sankhyā: The Indian Journal of Statistics, Series A (1961-2002)
30.2 (1968), pp. 211–216. url: http://library.isical.ac.in:8080/
jspui/bitstream/10263/742/1/68.02.pdf (visited on 02/25/2024).

[Mni+15] Volodymyr Mnih et al. “Human-level control through deep reinforcement
learning”. In: Nature 518.7540 (Feb. 2015), pp. 529–533. issn: 1476-4687.
doi: 10.1038/nature14236. url: https://storage.googleapis.com/
deepmind-media/dqn/DQNNaturePaper.pdf.

80

https://proceedings.mlr.press/v119/kuznetsov20a.html
https://proceedings.mlr.press/v119/kuznetsov20a.html
https://doi.org/10.1007/978-3-642-27645-3_2
https://doi.org/10.1007/978-3-642-27645-3_2
https://doi.org/10.1007/978-3-642-27645-3_2
https://openreview.net/forum?id=TjEzIsyEsQ6
https://openreview.net/forum?id=TjEzIsyEsQ6
https://arxiv.org/abs/2302.08467
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1509.02971
https://tor-lattimore.com/downloads/book/book.pdf
https://tor-lattimore.com/downloads/book/book.pdf
https://www.jair.org/index.php/jair/article/view/11182/26388
https://www.jair.org/index.php/jair/article/view/11182/26388
http://library.isical.ac.in:8080/jspui/bitstream/10263/742/1/68.02.pdf
http://library.isical.ac.in:8080/jspui/bitstream/10263/742/1/68.02.pdf
https://doi.org/10.1038/nature14236
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf

[Nai+19] Abhishek Naik et al. “Discounted Reinforcement Learning is Not an Opti-
mization Problem”. In: NeurIPS Optimization Foundations for Reinforce-
ment Learning Workshop. 2019. url: https://optrl2019.github.io/
assets/accepted_papers/66.pdf.

[NT20] Chris Nota and Philip S. Thomas. “Is the Policy Gradient a Gradient?” In:
Proceedings of the 19th International Conference on Autonomous Agents and
MultiAgent Systems. AAMAS ’20. Auckland, New Zealand: International
Foundation for Autonomous Agents and Multiagent Systems, 2020, pp. 939–
947. isbn: 9781450375184. url: https://arxiv.org/pdf/1906.07073.
pdf.

[Put05] Martin L Puterman. Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. Wiley series in probability and statistics. Hoboken,
NJ: John Wiley & Sons Inc., 2005.

[RA21] Matthew T. Regehr and Alex Ayoub. An Elementary Proof that Q-learning
Converges Almost Surely. 2021. arXiv: 2108.02827 [cs.LG].

[Raf+21] Antonin Raffin et al. “Stable-Baselines3: Reliable Reinforcement Learning
Implementations”. In: Journal of Machine Learning Research 22.268 (2021),
pp. 1–8. url: http://jmlr.org/papers/v22/20-1364.html.

[Rie05] Martin Riedmiller. “Neural Fitted Q Iteration – First Experiences with
a Data Efficient Neural Reinforcement Learning Method”. In: Machine
Learning: ECML 2005. Ed. by João Gama et al. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 317–328. isbn: 978-3-540-31692-3.

[Roi+13] Diederik M. Roijers et al. “A survey of multi-objective sequential decision-
making”. In: J. Artif. Int. Res. 48.1 (Oct. 2013), pp. 67–113. issn: 1076-9757.
url: https://arxiv.org/ftp/arxiv/papers/1402/1402.0590.pdf.

[Row+18] Mark Rowland et al. “An Analysis of Categorical Distributional Rein-
forcement Learning”. In: Proceedings of the Twenty-First International
Conference on Artificial Intelligence and Statistics. Ed. by Amos Storkey
and Fernando Perez-Cruz. Vol. 84. Proceedings of Machine Learning Re-
search. PMLR, 2018, pp. 29–37. url: https://proceedings.mlr.press/
v84/rowland18a.html.

[Row+23] Mark Rowland et al. An Analysis of Quantile Temporal-Difference Learning.
2023. arXiv: 2301.04462 [cs.LG].

[SB18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An in-
troduction. Second Edition. Cambridge, MA: MIT press, 2018. url: http:
//incompleteideas.net/book/RLbook2020.pdf.

[Sil+14] David Silver et al. “Deterministic Policy Gradient Algorithms”. In: Pro-
ceedings of the 31st International Conference on Machine Learning. Ed. by
Eric P. Xing and Tony Jebara. Vol. 32. Proceedings of Machine Learn-
ing Research 1. Beijing, China: PMLR, 2014, pp. 387–395. url: https:
//proceedings.mlr.press/v32/silver14.html.

81

https://optrl2019.github.io/assets/accepted_papers/66.pdf
https://optrl2019.github.io/assets/accepted_papers/66.pdf
https://arxiv.org/pdf/1906.07073.pdf
https://arxiv.org/pdf/1906.07073.pdf
https://arxiv.org/abs/2108.02827
http://jmlr.org/papers/v22/20-1364.html
https://arxiv.org/ftp/arxiv/papers/1402/1402.0590.pdf
https://proceedings.mlr.press/v84/rowland18a.html
https://proceedings.mlr.press/v84/rowland18a.html
https://arxiv.org/abs/2301.04462
http://incompleteideas.net/book/RLbook2020.pdf
http://incompleteideas.net/book/RLbook2020.pdf
https://proceedings.mlr.press/v32/silver14.html
https://proceedings.mlr.press/v32/silver14.html

[SPC19] Zhao Song, Ron Parr, and Lawrence Carin. “Revisiting the Softmax Bellman
Operator: New Benefits and New Perspective”. In: Proceedings of the 36th
International Conference on Machine Learning. Ed. by Kamalika Chaud-
huri and Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning
Research. PMLR, 2019, pp. 5916–5925. url: https://proceedings.mlr.
press/v97/song19c.html.

[SS21] Liran Szlak and Ohad Shamir. Convergence Results For Q-Learning With
Experience Replay. 2021. arXiv: 2112.04213 [cs.LG].

[Tow+23] Mark Towers et al. Gymnasium. Mar. 2023. doi: 10.5281/zenodo.8127026.
url: https://zenodo.org/record/8127025 (visited on 07/08/2023).

[TTM19] Chen Tessler, Guy Tennenholtz, and Shie Mannor. “Distributional Policy Op-
timization: An Alternative Approach for Continuous Control”. In: Advances
in Neural Information Processing Systems. Ed. by H. Wallach et al. Vol. 32.
Curran Associates, Inc., 2019. url: https://proceedings.neurips.cc/
paper_files/paper/2019/file/72da7fd6d1302c0a159f6436d01e9eb0-

Paper.pdf.

[WD92] Christopher J. C. H. Watkins and Peter Dayan. “Q-learning”. In: Machine
Learning 8.3 (May 1992), pp. 279–292. issn: 1573-0565. url: https://doi.
org/10.1007/BF00992698.

[Wu+22] Shuang Wu et al. “Understanding Policy Gradient Algorithms: A Sensitivity-
Based Approach”. In: Proceedings of the 39th International Conference on
Machine Learning. Ed. by Kamalika Chaudhuri et al. Vol. 162. Proceedings
of Machine Learning Research. PMLR, 2022, pp. 24131–24149. url: https:
//proceedings.mlr.press/v162/wu22i.html.

[WU22] Zhikang T. Wang and Masahito Ueda. “Convergent and Efficient Deep Q
Learning Algorithm”. In: International Conference on Learning Representa-
tions. 2022. url: https://openreview.net/forum?id=OJm3HZuj4r7.

82

https://proceedings.mlr.press/v97/song19c.html
https://proceedings.mlr.press/v97/song19c.html
https://arxiv.org/abs/2112.04213
https://doi.org/10.5281/zenodo.8127026
https://zenodo.org/record/8127025
https://proceedings.neurips.cc/paper_files/paper/2019/file/72da7fd6d1302c0a159f6436d01e9eb0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/72da7fd6d1302c0a159f6436d01e9eb0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/72da7fd6d1302c0a159f6436d01e9eb0-Paper.pdf
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://proceedings.mlr.press/v162/wu22i.html
https://proceedings.mlr.press/v162/wu22i.html
https://openreview.net/forum?id=OJm3HZuj4r7

	Introduction
	Theoretical Framework
	Markov Decision Process
	Optimality Criteria
	Existence of Optimal Policies
	Theoretical Foundations of Q-learning
	Distributional Operators
	Reinforcement Learning Terminology
	Multi-Objective RL

	Algorithms and Implementation
	Q-Learning
	Q-Learning with Function Approximation
	Semi-Gradient method
	Residual Method
	Notes on Function Approximation

	Deep Q-Learning
	Double DQN
	Deep Deterministic Policy Gradient
	Issues of Policy Gradient Methods
	Twin Delayed DDPG
	Soft Actor Critic
	Theory
	Implementation

	Quantile Regression DQN
	Quantile Dynamic Programming
	Quantile Q-learning
	QR-DQN

	Implicit Quantile Networks
	Truncated Quantile SAC
	Distributional SAC
	TQC

	Neural Network Architecture
	Critic-only Networks
	Actor-Critic Networks
	Concrete Architecture

	Environment for Autonomous Driving
	Problem Formulation and Scope
	Environment Setup
	Time Steps and Synchrony
	Episode Setup
	Terminal States and Truncation
	Action Space Design

	Reward Design
	Cruise Control Reward
	Adaptive Cruise Control Reward
	Lane Keeping Reward
	Combined Control Reward
	Highway Obstacle Avoidance Reward
	Combining Multiple Objectives

	State Space Design
	Vectorized Observations
	Camera Image Observations
	Preprocessing

	Implementation Details
	Simulation Setup
	Gymnasium Interface
	Data Retrieval
	Determinism
	Error Recovery

	Numerical Results
	Methods
	Data Generation
	Performance Metrics
	Statistical Significance

	Algorithm Comparison across Environments
	Cruise Control
	Adaptive Cruise Control
	Lane Keeping
	Lane Keeping from Pixels
	Combined Control
	Combined Control from Pixels
	Adaptive Combined Control
	Adaptive Combined Control from Pixels
	Obstacle Avoidance
	Navigation
	Adaptive Navigation

	Summary
	Own Publication
	Hyperparameters

	Bibliography

