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Abstract—Federated Learning (FL) decouples model train-
ing from the need for direct access to the data and allows
organizations to collaborate with industry partners to reach
a satisfying level of performance without sharing vulnerable
business information. The performance of a machine learning
algorithm is highly sensitive to the choice of its hyperparameters.
In an FL setting, hyperparameter optimization poses new
challenges. In this work, we investigated the impact of different
hyperparameter optimization approaches in an FL system. In an
effort to reduce communication costs, a critical bottleneck in FL,
we investigated a local hyperparameter optimization approach
that – in contrast to a global hyperparameter optimization
approach – allows every client to have its own hyperparameter
configuration. We implemented these approaches based on grid
search and Bayesian optimization and evaluated the algorithms
on the MNIST data set using an i.i.d. partition and on an Internet
of Things (IoT) sensor based industrial data set using a non-i.i.d.
partition.

Index Terms—Industrial federated learning, Optimization
approaches, Hyperparameter optimization

I. INTRODUCTION

The performance of a machine learning algorithm is highly
sensitive to the choice of its hyperparameters. Therefore,
hyperparameter selection is a crucial task in the optimization
of knowledge-aggregation algorithms. Federated Learning
(FL) is a recent machine learning approach which aggregates
machine learning model parameters between devices (hence-
forth clients) without sharing their data. The aggregation is
coordinated by a server. Industrial Federated Learning (IFL)
is a modified approach of FL in an industrial context [1]. In an
FL setting, hyperparameter optimization poses new challenges
and is a major open research area [2]. In this work, we
investigate the impact of different hyperparameter optimiza-
tion approaches in an IFL system. We believe that the data
distribution influences the choice of the best hyperparameter
configuration and suggest that the best hyperparameter con-
figuration for a client might differ from another client based
on individual data properties. Therefore, we investigate a local
hyperparameter optimization approach that – in contrast to a
global hyperparameter optimization approach – allows every
client to have its own hyperparameter configuration. The local

approach allows us to optimize hyperparameters prior to the
federation process reducing communication costs.

Communication is considered a critical bottleneck in FL
[3]. Clients are usually limited in terms of communication
bandwidth enhancing the importance of reducing the num-
ber of communication rounds or using compressed com-
munication schemes for the model updates to the central
server [3]. Dai et al. [4] introduced Federated Bayesian
Optimization (FBO) extending Bayesian optimization to the
FL setting. However, until now, there is no research on the
impact of global and local hyperparameter optimization in FL.
Therefore, we compare a local hyperparameter optimization
approach to a global hyperparameter optimization approach,
optimizing hyperparameters in the federation process.

The aim of this work is to i) analyze challenges and formal
requirements in FL, and in particular in IFL, ii) to evaluate
the performance of an Internet of Things (IoT) sensor based
classification task in an IFL system, iii) to investigate a com-
munication efficient hyperparameter optimization approach,
and iv) to compare different hyperparameter optimization
algorithms. Therefore, we want to answer the following
questions.
Q1: Does FL work for an IoT sensor based anomaly clas-

sification task on industrial assets with non-identically
distributed data in an IFL system with a cohort strategy?

Q2: Can we assume that the global and local hyperparameter
optimization approach deliver the same hyperparameter
configuration in an i.i.d. FL setting?

Q3: Can we reduce communication costs in the hyperpa-
rameter optimization of a non-i.i.d. classification task in
context of FL by optimizing a hyperparameter locally
prior to the federation process?

Q4: Does Bayesian optimization outperform grid search, both
in a global and local approach of a non-i.i.d. IoT sensor
based classification task?

II. ALGORITHMIC CHALLENGES AND FORMAL
REQUIREMENTS FOR INDUSTRIAL ASSETS

In FL, new algorithmic challenges arise that differentiate
the corresponding optimization problem from a distributed
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optimization problem. In distributed learning settings, major
assumptions regarding the training data are made which
usually fail to hold in an FL setting [5]. Moreover, non-
i.i.d. data, limited communication, and limited and unreliable
client availability pose further challenges for optimization
problems in FL [2]. Kairouz et al. [2] considered the need
for addressing these challenges as a major difference to
distributed optimization problems. The optimization problem
in FL is therefore referred to as federated optimization em-
phasizing the difference to distributed optimization [5]. In an
IFL setting, additional challenges regarding industrial aspects
arise [1]. In this section, we want to formulate the federated
optimization problem and discuss the algorithmic challenges
of FL in general, and in particular of IFL.

A. Problem Formulation
We consider a supervised learning task with features x in a

sample space X and labels y in a label space Y . We assume
that we have K available clients, K ∈ N≥2, with

Dk := DX ,k ×DY,k ⊆ X × Y

denoting the data set of client k and nk := |Dk| denoting
the cardinality of the client’s data set. Let Q denote the
distribution over all clients, and let Pk denote the data
distribution of client k. We can then access a specific data
point by first sampling a client k ∼ Q and then sampling a
data point (x, y) ∼ Pk [2]. Then, the local objective function
is

Fk(w) := E
(x,y)∼Pk

[f(x, y, w)], (1)

where w ∈ Rd represents the parameters of the machine
learning model and f(x, y, w) represents the loss of the
prediction on sample (x, y) for the given parameters w.
Typically, we wish to minimize

F (w) :=
1

K

K∑

k=1

Fk(w). (2)

B. Federated Learning
One of the major challenges concerns data heterogeneity.

In general, we cannot assume that the data is identically
distributed over the clients, that is Pk = Pl for all k and l.
Therefore, Fk might be an arbitrarily bad approximation of F
[5].

In the following, we want to analyze different non-
identically distributed settings as demonstrated by Hsieh et al.
[6] assuming that we have an IoT sensor based anomaly clas-
sification task in an industrial context. Given the distribution
Pk, let P k

X ,Y denote the bivariate probability function, let P k
X

and P k
Y denote the marginal probability function respectively.

Using the conditional probability function P k
Y|X and P k

X|Y ,
we can now rewrite the bivariate probability function as

P k
X ,Y(x, y) = P k

Y|X (y|x)P k
X (x) = P k

X|Y(x|y)P k
Y(y) (3)

for (x, y) ∈ X × Y . This allows us to characterize different
settings of non-identically distributed data:

Feature distribution skew: We assume that P k
Y|X = P l

Y|X
for all k, l, but P k

X %= P l
X for some k, l. Clients that have

the same anomaly classes might still have differences in the
measurements due to variations in sensor and machine type.

Label distribution skew: We assume that P k
X|Y = P l

X|Y for
all k, l, but P k

Y %= P l
Y for some k, l. The distribution of labels

might vary across clients as clients might experience different
anomaly classes.

Same label, different features: We assume that P k
Y = P l

Y
for all k, l, but P k

X|Y %= P l
X|Y for some k, l. The same

anomaly class can have significantly different features for dif-
ferent clients due to variations in machine type, operational-
and environmental conditions.

Same features, different label: We assume that P k
X = P l

X
for all k and l, but P k

Y|X %= P l
Y|X for some k, l. The

same features can have different labels due to operational-
and environmental conditions, variation in manufacturing,
maintenance et cetera.

Quantity skew:We cannot assume that different clients hold
the same amount of data, that is nk = nl for all k, l. Some
clients will generate more data than others.

In real-world problems, we expect to find a mixture of
these non-identically distributed settings. In FL, heterogeneity
does not exclusively refer to a non-identical data distribution,
but also addresses violations of independence assumptions
on the distribution Q [2]. Due to limited, slow and unreliable
communication on a client, the availability of a client is not
guaranteed for all communication rounds. Communication is
considered a critical bottleneck in FL [3]. In each communi-
cation round, the participating clients send a full model update
w back to the central server for aggregation. In a typical FL
setting, however, the clients are usually limited in terms of
communication bandwidth [3]. Consequently, it is crucial to
minimize the communication costs.

C. Industrial Federated Learning
In an industrial setting, FL experiences challenges that

specifically occur in an industrial context. Industrial assets
have access to a wealth of data suitable for machine learning
models, however, the data on an individual asset is typically
limited and private in nature. In addition to sharing the model
within the company, it can also be shared with an external
industry partner [1]. FL leaves possibly critical business
information distributed on the individual client (or within the
company). However, Zhao et al. [7] proved that heterogeneity,
in particular, a highly skewed label distribution, significantly
reduces the accuracy of the aggregated model in FL. In an
industrial context, we expect to find heterogeneous clients
due to varying environmental and operational conditions on
different assets. Therefore, Hiessl et al. [1] introduced a
modified approach of FL in an industrial context and termed
it Industrial Federated Learning (IFL). IFL does not allow
arbitrary knowledge exchange between clients. Instead, the
knowledge exchange only takes place between clients that
have sufficiently similar data. Hiessl et al. [1] refer to this
set of clients as a cohort. We expect the federated learning
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approach in a cohort to approximate the corresponding central
learning approach.

III. HYPERPARAMETER OPTIMIZATION APPROACHES IN
AN IFL SYSTEM

In an FL setting, hyperparameter optimization poses new
challenges and is a major open research area [2]. The perfor-
mance of a machine learning model is linked to the amount
of communication [8]. In an effort to reduce communication
costs, a critical bottleneck in FL [3], we investigated a com-
munication efficient hyperparameter optimization approach,
a local hyperparameter optimization approach that allows us
to optimize hyperparameters prior to the federation process.
Kairouz et al. [2] introduced the idea of a separate optimiza-
tion of hyperparameters and suggest a different hyperparam-
eter choice for dealing with non-i.i.d. data.

Dai et al. [4] investigated a communication efficient lo-
cal hyperparameter optimization approach and introduced
Federated Bayesian Optimization (FBO) extending Bayesian
optimization to the FL setting. In FBO, every client locally
uses Bayesian optimization to find the optimal hyperparam-
eter configuration. Additionally, each client is allowed to
request for information from other clients. Dai et al. [4]
proved a convergence guarantee for this algorithm and its
robustness against heterogeneity. However, until now, there is
no research on the impact of global and local hyperparameter
optimization.

In the LocalHPO algorithm 1, we perform local hyperpa-
rameter optimization. We optimize the hyperparameter con-
figuration λk for each client k. In the GlobalHPO algorithm 2,
we perform global hyperparameter optimization. We optimize
the hyperparameter configuration λ in the federation process.
The LocalOptimization method in the LocalHPO algorithm
1 and the GlobalOptimization method in the GlobalHPO
algorithm 2 can be based on any hyperparameter optimization
algorithm.

Algorithm 1: LocalHPO
Server executes:
initialize w0

for each client k = 1, . . . ,K do
λk := LocalOptimization(k, w0)

end
return (λk)Kk=1

Algorithm 2: GlobalHPO
Server executes:
λ := GlobalOptimization()
return λ

We want to differentiate between a global hyperparameter
λi whose value is constant for all clients and a local hyper-
parameter λk

i whose value depends on a client k. Here, λk
i

denotes the hyperparameter λi on client k. We notice that
this differentiation is only relevant for settings with non-i.i.d.

data. In an i.i.d. setting, we assume that a hyperparameter
configuration that works for one client also works for another
client. In our experiments, we verified this assumption for a
proxy data set.

IV. DATA, ALGORITHMS AND EXPERIMENTS

In the next section, we want to make our benchmark design
explicit and present our experimental setup. We will present
the machine learning tasks including the data partition of the
training data, the machine learning models, the optimization
algorithms and our experiments. We considered an image
classification task on a data set, the MNIST data set of hand-
written digits, and an IoT sensor based anomaly classification
task on industrial assets.

A. Data
In order to test the IFL system on the MNIST data set,

we still need to specify on how to distribute the data over
artificially designed clients. To systematically evaluate the
effectiveness of the IFL system, we simulated an i.i.d. data
distribution. This refers to shuffling the data and partitioning
the data into 10 clients, each receiving 6 000 examples.
Following the approach of McMahan et al. [5], we applied
a convolutional neural network with the following settings:
2 convolutional layers with 32 and 64 filters of size 5×5 and
a ReLu activation function, each followed by a max pooling
layer of size 2×2, a dense layer with 512 neurons and a
ReLu activation function, a dense layer with 10 neurons and
a softmax activation function.

The industrial task concerns IoT sensor based anomaly
classification on industrial assets. The data was acquired
with the SITRANS multi sensor, specifically developed for
industrial applications and its requirements [9]. We considered
multiple centrifugal pumps with sensors placed at different
positions, in different directions to record three axis vibra-
tional data in a frequency of 6644Hz. Per minute, 512 sam-
ples were collected. We operated the pumps under 6 varying
conditions, including 3 healthy states and 3 anomalous states.
A client is either assigned data of an asset in a measurement,
or data of several assets in a measurement ensuring that
each client sees all operating conditions. However, since
in the process of measurement, the assets were completely
dismantled and rebuilt, we consider the data to be non-i.i.d.
regarding its feature distribution. We applied an artificial
neural network with the following settings: a dense layer with
64 neurons and a ReLu activation function, a dropout layer
with a dropout rate of 0.4, a dense layer with 6 neurons and a
ReLu activation function, a dropout layer with a dropout rate
of 0.4, and a softmax activation function. We remapped the
features using the Kabsch algorithm [10], applied a sliding
window, extracted the Melfrequency cepstral coefficients,
applied the synthetic minority oversampling technique [10],
and normalized the resulting features.

B. Algorithms
Our evaluations include the Federated Averaging (Fe-

dAvg) algorithm according to McMahan et al. [5], and the
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hyperparameter optimization approaches LocalHPO 1 and
GlobalHPO 2. We implemented these approaches based on
grid search and Bayesian optimization. In this section, we
give their pseudocode. We searched for the learning rate
η with fixed fraction of participating clients C, number of
communication rounds R, number of local epochs E, and
mini-batch size B.

In algorithm 3, we give the pseudocode of the LocalOp-
timization method in LocalHPO 1 based on the grid search
algorithm with a fixed grid G. We iterate through the grid G,
train the model on the training data of client k based on the
ClientUpdate method used in the FedAvg algorithm [5] with
the learning rate η as an additional argument, and validate the
performance of the model wη on the validation data Dk

valid
of client k. Finally, the learning rate that yields the highest
accuracy Aη on the validation data is selected. Here, wη

denotes the resulting model trained on the training data with
learning rate η and A(Dk

valid, wη) denotes the accuracy of the
model tested on the validation data Dk

valid of client k.

Algorithm 3: Local Grid Search
LocalOptimization(k, w0):
for each learning rate η ∈ G do

wη := ClientUpdate(k, w0, η)
Aη := A(Dk

valid, wη)
end
η∗
k := argmax

η∈G
Aη

return η∗
k

Algorithm 4: Global Grid Search
GlobalOptimization():
for each learning rate η ∈ G do

wη := FederatedAveraging(η)
for each client k = 1, . . . ,K do

Ak
η := A(Dk

valid, wη)
end
Aη := 1

K

∑K
k=1 A

k
η

end
η∗ := argmax

η∈G
Aη

return η∗

In algorithm 4, we give the pseudocode of the GlobalOp-
timization method in GlobalHPO 2 based on the grid search
algorithm with a fixed grid G. We iterate through the grid,
perform the FedAvg algorithm [5] with the learning rate η as
an additional argument, validate the performance of the model
wη on the validation data Dk

valid for all clients k and compute
the average accuracy of all clients. Finally, the learning rate
that yields the highest average accuracy Aη is selected.

In algorithm 5, we give the pseudocode of the LocalOp-
timization method in LocalHPO 1 based on Bayesian opti-
mization. The objective function f takes the learning rate
η as an argument, trains the model on the training data
of client k based on the ClientUpdate method used in the
FedAvg algorithm [5] with the learning rate η as an additional

argument, validates the performance of the model w on the
validation data Dk

valid of client k, and returns the resulting ac-
curacy. We initialize a Gaussian process GP for the objective
function f with ninit sample points. Then, we find the next
sample point ηninit+i by maximizing the acquisition function,
evaluate f(ηninit+i), and update the Gaussian process GP .
Finally, we select the learning rate η∗ that yields the highest
accuracy. We repeat this for niter iterations.

In algorithm 6, we give the pseudocode of the Glob-
alOptimization method in GlobalHPO 2 based on Bayesian
optimization. The objective function f takes the learning
rate η as an argument, performs the FedAvg algorithm [5]
with the learning rate η as an additional argument, validates
the performance of the model w on the validation data
Dk

valid for all clients k, computes the average accuracy of
all clients and returns the resulting accuracy. We initialize a
Gaussian process GP for the objective function f with ninit

sample points. Then, we find the next sample point ηninit+i

by maximizing the acquisition function, evaluate f(ηninit+i),
and update the Gaussian process GP . Finally, we select the
learning rate η∗ that yields the highest average accuracy. We
repeat this for niter iterations.

Algorithm 5: Local Bayesian Optimization
LocalOptimization(k, w0):
initialize a Gaussian process GP for f
evaluate f at ninit initial points
for i = 1, . . . , niter do

find sample point ηninit+i that maximizes acquisition
function

evaluate objective function f at ηninit+i

update the Gaussian process GP
end
η∗ := argmax

i=1,...,ninit+niter

f(ηi)

return η∗

objective function:
f(η):
w := ClientUpdate(k, w0, η)
A := A(Dk

valid, w)
return A

C. Experiments
In order to systematically investigate the impact of global

and local hyperparameter optimization, we compared the
global and local hyperparameter optimization approach in an
i.i.d. setting, the MNIST machine learning task, as well as
in a non-i.i.d. setting, the industrial task. Therefore, we im-
plemented the global and local optimization approach based
on grid search with a grid G := [0.0001, 0.001, 0.01, 0.1],
and based on Bayesian optimization with the widely used
squared exponential kernel and the upper confidence bound
acquisition function. We searched for the learning rate η with
fixed R, C, E and B.

In order to evaluate the global and local optimization
approaches in a direct comparison, we chose the number
of epochs E in the local optimization approach as E =
EglobalR, where Eglobal is the number of epochs in the global

Algorithm 6: Global Bayesian Optimization
GlobalOptimization():
initialize a Gaussian process GP for f
evaluate f at ninit initial points
for i = 1, . . . , niter do

find sample point ηninit+i that maximizes acquisition
function

evaluate objective function f at ηninit+i

update the Gaussian process GP
end
η∗ := argmax

i=1,...,ninit+niter

f(ηi)

return η∗

objective function:
f(η):
w := FederatedAveraging(η)
for each client k = 1, . . . ,K do

Ak := A(Dk
valid, w)

end
A := 1

K

∑K
k=1 A

k

return A

optimization approach and R is the number of communication
rounds. In the global optimization task, we set R := 10,
C := 1, E := 1 and B := 128 for the MNIST data, and
R := 10, C := 1, E := 5 and B := 128 for the industrial
data. In the local optimization task, we set E := 10 and
B := 128 for the MNIST data, and E := 50 and B := 128
for the industrial data. For the evaluation of the global hyper-
parameter optimization approach, we optimized the learning
rate using the global approach, trained the federated model
with a global learning rate, and tested the resulting federated
model on the cohort test data. Then, we optimized the learning
rate using the local approach, trained the federated model with
local individual learning rates for each client in the cohort,
and tested the resulting federated model on the cohort test
data.

V. EXPERIMENTAL RESULTS

Following the approach of Hiessl et al. [1], we demon-
strated the effectiveness of the IFL System for the industrial
task and showed that the IFL approach performs better
than the individual learning approach and approximates the
central learning approach. Fig. 1 shows the test accuracy on
the central cohort test data for each client, for i) a model
trained on the individual training data of the client (individual
learning), ii) a central model trained on the collected training
data of all clients in the cohort (central learning), and iii) the
federated model trained in the cohort.

Fig. 2 a) shows the results for the MNIST data. The opti-
mization approaches are based on the grid search algorithm.
For the training posterior to the optimization, we set R := 10,
C := 1, E := 1, and B := 128 in the IFL system. The color
indicates the optimized learning rate on the corresponding
client. Since the MNIST data is i.i.d., there is only one
cohort and all clients have the same federated model and
thus the same test accuracy. Our results show that the grid
search algorithm selected 10−3 in the local optimization of
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Fig. 1. Comparison of individual learning, central learning, and federated
learning on the industrial data set for all clients (Task ID).
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Fig. 2. Comparison of the optimization approaches based on a) grid search
for the MNIST task, b) grid search for the industrial task, and c) Bayesian
optimization for the industrial task for all clients (Task ID).

the learning rate on each client. According to our expectation,
the global optimization approach yielded the same learning
rate.

For the industrial task, we evaluated the global and local
optimization approach based on grid search and Bayesian
optimization. For the training posterior to the optimization,
we set R := 20, C := 1, E := 5, and B := 128 in the
IFL system. Fig. 2 b) shows the results for the industrial data
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Algorithm 6: Global Bayesian Optimization
GlobalOptimization():
initialize a Gaussian process GP for f
evaluate f at ninit initial points
for i = 1, . . . , niter do

find sample point ηninit+i that maximizes acquisition
function

evaluate objective function f at ηninit+i

update the Gaussian process GP
end
η∗ := argmax

i=1,...,ninit+niter

f(ηi)

return η∗

objective function:
f(η):
w := FederatedAveraging(η)
for each client k = 1, . . . ,K do

Ak := A(Dk
valid, w)

end
A := 1

K

∑K
k=1 A

k

return A

optimization approach and R is the number of communication
rounds. In the global optimization task, we set R := 10,
C := 1, E := 1 and B := 128 for the MNIST data, and
R := 10, C := 1, E := 5 and B := 128 for the industrial
data. In the local optimization task, we set E := 10 and
B := 128 for the MNIST data, and E := 50 and B := 128
for the industrial data. For the evaluation of the global hyper-
parameter optimization approach, we optimized the learning
rate using the global approach, trained the federated model
with a global learning rate, and tested the resulting federated
model on the cohort test data. Then, we optimized the learning
rate using the local approach, trained the federated model with
local individual learning rates for each client in the cohort,
and tested the resulting federated model on the cohort test
data.

V. EXPERIMENTAL RESULTS

Following the approach of Hiessl et al. [1], we demon-
strated the effectiveness of the IFL System for the industrial
task and showed that the IFL approach performs better
than the individual learning approach and approximates the
central learning approach. Fig. 1 shows the test accuracy on
the central cohort test data for each client, for i) a model
trained on the individual training data of the client (individual
learning), ii) a central model trained on the collected training
data of all clients in the cohort (central learning), and iii) the
federated model trained in the cohort.

Fig. 2 a) shows the results for the MNIST data. The opti-
mization approaches are based on the grid search algorithm.
For the training posterior to the optimization, we set R := 10,
C := 1, E := 1, and B := 128 in the IFL system. The color
indicates the optimized learning rate on the corresponding
client. Since the MNIST data is i.i.d., there is only one
cohort and all clients have the same federated model and
thus the same test accuracy. Our results show that the grid
search algorithm selected 10−3 in the local optimization of
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Fig. 1. Comparison of individual learning, central learning, and federated
learning on the industrial data set for all clients (Task ID).
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Fig. 2. Comparison of the optimization approaches based on a) grid search
for the MNIST task, b) grid search for the industrial task, and c) Bayesian
optimization for the industrial task for all clients (Task ID).

the learning rate on each client. According to our expectation,
the global optimization approach yielded the same learning
rate.

For the industrial task, we evaluated the global and local
optimization approach based on grid search and Bayesian
optimization. For the training posterior to the optimization,
we set R := 20, C := 1, E := 5, and B := 128 in the
IFL system. Fig. 2 b) shows the results for the industrial data
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with the optimization approaches based on the grid search
algorithm. The results show that, in all cohorts, the global
approach yielded an equal or larger accuracy than the local
approach.

Fig. 2 c) shows the results for the industrial data with
the optimization approaches based on the Bayesian algo-
rithm. Note that the search space of the learning rate was
[10−4, 10−1] in the optimization while the scale in the plot
starts from 10−3. The results show that the global approach
yielded a larger accuracy than the local approach in cohort 0
and cohort 1.

The local Bayesian approach yielded different learning
rates, see Fig. 2 c), on clients with no difference in data, that
is, the same number of samples, the same class distribution,
and the same measurement protocol. However, the local grid
search approach yielded the same learning rate as the global
grid search approach, see Fig. 2 b). Therefore, we suggest
that the reason lies in the implementation of the Bayesian
optimization approach and a not sufficiently large number of
iterations to guarantee convergence.

In order to compare the optimization approaches for the
industrial task, we performed a paired t-test regarding the
test accuracy to determine the statistical significance, see
table I. We observe that the global optimization approach
is significantly better than the local approach, both for the
grid search approach (p = 0.028) and for the Bayesian
approach (p = 0.012). Furthermore, the results show that the
grid search approach is significantly better than the Bayesian
approach, both for the global approach (p = 0.004) and for
the local approach (p = 0.008). Note that we considered
cohort 2 an outlier and excluded this cohort from our cal-
culations. Cohort 2 only consists of client 8, a client whose
data was not generated according to the standard measurement
protocol. Without outlier removal, the global grid search
approach is still significantly better than the local grid search
approach (p = 0.032), and the local grid search approach is
significantly better than the local Bayesian approach (p =
0.010). However, there is no significant difference in the
global Bayesian approach vs. the local Bayesian approach
(p = 0.755) and in the global grid search approach vs. the
global Bayesian approach (p = 0.230).

VI. CONCLUSION AND FUTURE WORK

The results show that the federated learning approach
approximates the central learning approach, while outper-
forming individual learning of the clients. In this work,
we investigated the impact of global and local optimization
approaches in an IFL System based on a proxy data set and a
real-world problem. In our experiments on the industrial data,
local optimization yielded different learning rates on different
clients in a cohort. However, the results show that a globally
optimized learning rate, and thus, a global learning rate for all
clients in a cohort improves the performance of the resulting
federated model. Therefore, we conclude that the global
optimization approach outperforms the local optimization
approach resulting in a communication-performance trade-off

TABLE I
TEST ACCURACY OF FEDERATED MODEL ON CENTRAL COHORT TEST

DATA OF INDUSTRIAL TASK POSTERIOR TO CORRESPONDING
OPTIMIZATION APPROACH AND TRAINING

client global grid local grid global Bayesian local Bayesian
1 0.7756 0.7720 0.7659 0.6897
2 0.7756 0.7720 0.7659 0.6897
3 0.7756 0.7720 0.7659 0.6897
4 0.7756 0.7720 0.7659 0.6897
5 0.8230 0.7921 0.7882 0.7889
6 0.8230 0.7921 0.7882 0.7889
7 0.8230 0.7921 0.7882 0.7889
8 0.9740 0.9749 0.3867 0.9736
9 0.7756 0.7720 0.7659 0.6897

in the hyperparameter optimization in FL. In our experiments
on the proxy data set, however, the local approach achieved
the same performance as the global approach.

A limitation of our study is that we only considered one
hyperparameter in our optimization task. Hence it would
be interesting to explore whether we can confirm these
observations for a hyperparameter configuration of more
hyperparameters. The results show that the grid search ap-
proaches outperform the Bayesian approaches, both globally
and locally. However, we suggest a convergence analysis for
the Bayesian approach.
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