
Fuzzy Clustering: eine
Anwendung auf distributionelles

Reinforcement Learning

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Mathematik

eingereicht von

Julien Malle
Matrikelnummer 11832435

an der Fakultät für Mathematik und Geoinformation

der Technischen Universität Wien

Betreuung: Prof. Dr.techn. Dipl.-Ing. Clemens Heitzinger

Wien, 27. Jänner 2021
Julien Malle Clemens Heitzinger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Fuzzy Clustering: an Application
to Distributional Reinforcement

Learning

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Technical Mathematics

by

Julien Malle
Registration Number 11832435

to the Faculty of Mathematics and Geoinformation

at the TU Wien

Advisor: Prof. Dr.techn. Dipl.-Ing. Clemens Heitzinger

Vienna, 27th January, 2021
Julien Malle Clemens Heitzinger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Julien Malle

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 27. Jänner 2021
Julien Malle

v

Kurzfassung

Die meisten Reinforcement Learning-Algorithmen werden mit der Einschränkung eines
diskreten (endlichen) Zustandsraums untersucht. Kompliziertere Zustandsräume werden
normalerweise durch Funktionsnäherung behandelt, für die nur wenige theoretische
Ergebnisse verfügbar sind. In dieser Arbeit wird eine clusterbasierte Näherung für
kontinuierliche Zustandsräume untersucht. Die stückweise konstante Näherung, die durch
(klassisches) hartes Clustering erhalten wird, wird empirisch unter Verwendung von
Fuzzy-Menge und Zugehörigkeitsfunktionen verbessert. Wir untersuchen auch, wie das
Clustering selbst mithilfe von Zugehörigkeitsfunktionen automatisiert werden kann, die
auf das bekannte MNIST-Problem angewendet werden.

vii

Abstract

Most Reinforcement Learning algorithms are studied with the restriction of a discrete
(finite) state space. More complicated state spaces are usually handled through function
approximation, for which few theoretical results are available. In this paper, a clustering-
based approximation for continuous state spaces is studied. The piecewise constant
approximation obtained by (classical) hard clustering is enhanced empirically using fuzzy
membership functions. We also look at how the clustering itself could be automated,
using membership functions applied to the well-known MNIST digit-recognition problem.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1

2 K-Means and Fuzzy C-Means 3
2.1 K-Means . 3
2.2 Fuzzy sets and the Fuzzy C-Means algorithm 4
2.3 Limits of the FCM algorithm . 5

3 From Clustering to Function Approximation 7
3.1 K-Means and Piecewise Constant Approximation 7
3.2 Fuzzy Approximation . 8
3.3 Experiments . 8
3.4 Choosing the Fuzzifier . 11

4 The Fuzzy Approximation in a RL context 13
4.1 Distributional Reinforcement Learning 13
4.2 From a Discretized State Space to a Fuzzy Approximation 14
4.3 Fuzzy CDRL . 15
4.4 Results . 16

5 Fuzzy Approximation in a Classification Context 23
5.1 The Search for Adequate Representatives 23
5.2 Details on the Backpropagation Algorithm 25

6 Operator View on the Interpolation Function Approximation 29

7 Conclusion 33

Bibliography 35

xi

8 Appendix 39

List of Figures 41

List of Tables 43

List of Algorithms 45

CHAPTER 1
Introduction

Reinforcement Learning (RL) is defined in [21] as “learning what to do—how to map
situations to actions—so as to maximize a numerical reward signal”. “Situations” are
modeled as Markov Decision Processes (MDP), featuring a state space X and an action
space A. The goal is to model an agent that will take actions at given time-steps in
order to maximize some reward function. An agent is characterized by a particular
mapping from states to actions, called a policy and often noted π. For some state-action
pair (x, a) ∈ X×A, π(a|x) represents the probability that action a is taken while in state x.

In practice, RL algorithm have as a goal to estimate value functions, defined with respect
to some policy π:

vπ(x) := Eπ

[∑
k

γkRt+k+1

∣∣∣∣∣Xt = x

]
, x ∈ X , (1.1)

where Rt (resp. Xt) is the reward (resp. state) at time-step t, and γ is the discount
factor. vπ(x) represents the expected sum of (discounted) rewards achieved from x by
following policy π. Alternatively, algorithms such as Q-learning aim to estimate

qπ(x, a) := Eπ

[∑
k

γkRt+k+1

∣∣∣∣∣Xt = x,At = a

]
, (x, a) ∈ X ×A, (1.2)

where At is the action taken at time-step t. vπ is called state-value function and qπ
action-value function.

In Distributional Reinforcement Learning, which the following focuses on, distributions
of value functions are modelled rather than their expected values. This arguably allows
for a better modelling of the process [3] and was shown to produce state-of-the-art results

1

1. Introduction

on the Arcade Learning Environment [2].

Most RL algorithm rely on the assumption that the state-action space X ×A is finite
(this is often referred to as the tabular case; see e.g. [21] Chap. 3.7). In this simplifying
assumption, value function are easily modelled and convergence can be proved for several
algorithm. The handling of more complicated state spaces, e.g. X ⊂ Rd continuous,
can be done through function approximation. However interaction between function
approximation and (distributional) RL, as well as convergence of the resulting algorithms,
is still an open question.

The main goal of this work is to introduce a fuzzy clustering based approach to function
approximation, that we translate to an adapted distributional RL algorithm that explicitly
handles a continuous state space. It is organized in the following way: in Section 2,
we first briefly review clustering solutions that later allow for a discretization of the
state space, and we further translate this to function approximation in Section 3. In
Section 4, we introduce an adapted version of the CDRL algorithm, and we investigate
in Section 5 how the proposed function approximation could be used in an optimized
state representation. Lastly, we introduce in Section 6 a theoretical framework to study
the proposed algorithm and provide proofs for the hard-clustering case.

2

CHAPTER 2
K-Means and Fuzzy C-Means

In this section, we introduce the well-known clustering algorithms K-Means (KM) and
Fuzzy C-Means (FCM), that may serve as discretization schemes. In the case of KM
(subsection 2.1), the discretization is very straight-forward and corresponds to the
clustering produced. Similarly, FCM produces a fuzzy clustering, relying on fuzzy
sets and membership functions, that we may call a fuzzy discretization (subsection 2.2).
Finally, in subsection 2.3, we point to a problem in the initialization of the FCM algorithm
and thus argue for the use of KM for all initializations in this work.

2.1 K-Means
The K-Means (KM) algorithm (see e.g. [15]), aims at producing a set of cluster centers
Z = {z1, ..., zK} that, for a given dataset X ⊂ Rd, minimizes the objective function

Φ =
∑
z∈Z

∑
x∈X (z)

‖x− z‖2 (2.1)

where X (z) = {x ∈ X : z = arg minẑ∈Z ‖x − ẑ‖2}. The algorithm consists, after
initialization, in the repetition of the following two steps:

• update each z ∈ Z to be the centre of X (z):

∀z ∈ Z : z := 1
|X (z)|

∑
x∈X (z)

x, (2.2)

• update each X (z) using their definitions.

The proof of convergence towards a (local) minimum of the objective function relies
on the fact that, for any subset (or cluster) C ⊂ X , the element c ∈ Rd minimizing

3

2. K-Means and Fuzzy C-Means

∑
x∈C ‖x− c‖2 is precisely the center of C. For a uniformly random initialization (that is,

K elements of X are picked as initial cluster centers uniformly at random), there exists
no guarantee with respect to closeness to the actual global optimum of the objective
function ; however when the initialization is not done uniformly at random but using
the K-Means++ initialization [1], then the expected outcome is upper-bounded by
8(lnK + 2)× Φopt, where Φopt is the global minimum of Φ.

2.2 Fuzzy sets and the Fuzzy C-Means algorithm
The Fuzzy C-Means (FCM) algorithm, first introduced in [8] and later improved in [5],
provides a similar procedure than that of KM, applied to fuzzy sets. We choose to look
at these sets through the concept of membership functions. Hard sets correspond to the
usual idea of sets; they can be represented by indicator functions

1A(x) =
{

1 if x ∈ A,
0 if x /∈ A.

Similarly, fuzzy sets are defined through indicator functions, that can however take
(continuous) values in [0, 1]. In this case, the indicator function is often called membership
function.

The FCM algorithm, given C ∈ N, m ∈ R,m > 1 and a given dataset X ⊂ Rd, aims
at producing a set of centers, or representatives Z = {z1, ..., zC} and corresponding
membership functions µ1, ...µC that minimize the objective function

Ψ(µ1, . . . , µC , z1, . . . , zC) =
∑
x∈X

C∑
j=1

µj(x)m‖x− zj‖2 (2.3)

under the condition that ∑j µj = 1. Using a Lagrange multiplier with this condition, it
is found (e.g. in [5]) that the repetition of the following redefinition of the representatives
and memberships provides as outcome a local minimum of Ψ:

• update each zj , j ∈ {1, . . . , C} to be the µj-weighted center of X :

∀j ∈ {1, ..., C} : zj :=
∑
x∈X µj(x)mx∑
x∈X µj(x)m (2.4)

• update each µj , j ∈ {1, . . . , C} with the following expression:

µj(x) :=

 C∑
k=1

(‖x− zj‖
‖x− zk‖

) 2
m−1

−1

. (2.5)

The hyper-parameter m is often called fuzzifier, in the sense that it controls “how fuzzy”
the clustering will be; especially we have the following asymptotic results:

4

2.3. Limits of the FCM algorithm

• For m −→∞, all µj are equal and the representatives coincide at the centre of X .

• For m −→ 1, the FCM algorithm degenerates into KM [5].

On the second point, given that all representatives are distinct, note that when m −→ 1,
the expressions for the membership functions give

µj(x) =
{

1 if zj is the representative closest to x,
0 else.

(2.6)

2.3 Limits of the FCM algorithm
A major limitation of the FCM algorithm stems from the fact that representatives can
coincide with one another; it is often the case that the algorithm outputs C times
the centre of the data with all-equal memberships, especially when considering high
dimensional space for the dataset [23] or high number of representatives.
We find a possible explanation for the latter issue in the details of implementations (see
[7, 12] for example), and especially in the initialization: the algorithm in [5] initializes
“uniformly” the memberships and obtains the representatives using (2.4). However, a
uniform initialization of the membership functions is not so trivial; in [7, 12], it is
initialized as

µj = νj∑
k νk

, where νk ∼ U(0, 1) i.i.d. (2.7)

Although this is quite intuitive to satisfy the ∑j µj = 1 condition, the resulting distribu-
tion for µj is far from uniform. Its density function fµj can be written as

fµj (u) = 1
(1− u)2

∫ 1−u
u

0
vfν̂j (v)dv, u ∈ (0, 1), (2.8)

where ν̂j = ∑
k 6=j νk and fν̂j is the density of the Irwin-Hall distribution of parameter C−1

[11, 10]. This density consists in a piecewise polynomial function, but its full expression
holds little or no insight; it is however represented together with fµj in Fig 2.1a and 2.1b.

Fig 2.1c and 2.1d are generated using a 2 dimensional dataset of n = 5000 samples gener-
ated by a uniform distribution in (0, 1)2. We apply FCM and k-means++ initializations
for C = 50. We represent in Fig 2.1c an histogram of the maximal value across the
obtained membership functions for every sample: no one exceeds 5e− 4. The resulting
cluster representatives can be seen in red in Fig 2.1d, where we also plot the result of the
k-means++ initialization in green. This explains why it is usual to obtain C times the
center of the data when running the FCM algorithm (note that this situation is a fixed
point of the algorithm).

Overall, it is impractical to use the FCM algorithm, especially in our context of dis-
cretization where we do not seek actual clusters (that is, “compact and well separated” as
defined by Dunn in [9]). On these grounds, we shall prefer the KM algorithm (together
with the k-means++ initialization) to perform a priori discretization.

5

2. K-Means and Fuzzy C-Means

(a) Irwin-Hall distribution
(b) Distribution for the FCM initializa-
tion

(c) Test results for FCM initialization (d) k-means++ vs FCM initialization

Figure 2.1: Problems in the initialization of FCM

6

CHAPTER 3
From Clustering to Function

Approximation

In this section, we consider a function f : X ⊂ Rd → R and a set of cluster centers Z, that
is associated to a (fuzzy) clustering of X . In subsection 3.1, we find an optimal piece-wise
constant approximation of f with respect to the hard clustering of X associated with Z.
In subsection 3.2, we introduce several ways to perform a fuzzy approximation, based
on a fuzzy clustering of X associated with Z. Finally, we test in subsection 3.3 these
approximations on several classical functions.

3.1 K-Means and Piecewise Constant Approximation
The (hard) clustering provided by the K-Means algorithm can naturally be used to
perform a discretization of the state space X . Let us consider f : X ⊂ Rd → R a function
to be approximated, together with a set of cluster centers Z = {z1, . . . , zK} which
naturally gives a Voronoï partition X = ⋃

z∈Z X (z). Considering that X is bounded, then
each X (z), z ∈ Z, is bounded aswell. We seek the optimal (constant) value t0 ∈ R for
the constant approximation of f over X (z), for any z ∈ Z; for this we consider a scalar
product for function defined on X (z) 〈., .〉X (z) together with its associated norm ‖.‖X (z),
and for any t ∈ R use the same letter to denote the scalar constant and the function
which value is constant equal to t. We have classically that

‖f − t‖2X (z) = ‖f − t0‖2X (z) + 2〈f − t0, t0 − t〉X (z) + ‖t0 − t‖2X (z). (3.1)

Since 〈f − t0, t0 − t〉X (z) = (t0 − t)
(
〈f, 1〉X (z) − t0〈1, 1〉X (z)

)
, we find the optimal value

t0 (with respect to the chosen scalar product) as

t0 =
〈f, 1〉X (z)
〈1, 1〉X (z)

. (3.2)

7

3. From Clustering to Function Approximation

Choosing the euclidean scalar product yields an optimal value equal to the mean of f
over X (z):

t0 = 1
λ(X (z))

∫
X (z)

fdλ. (3.3)

3.2 Fuzzy Approximation
We now consider our function f : X ⊂ Rd → R to be approximated together with a
set of cluster representatives Z = {z1, . . . , zK}, and membership functions µ1, . . . , µK
corresponding to a fuzzifier m > 1 with expressions defined in (2.5). We note that this
expression relates to Shepard’s Inverse Distance Weighting [19], and use the interpolation

f̃(x) =
C∑
j=1

µj(x)αj (3.4)

accordingly, where αj ∈ R, forallj ∈ {1, . . . , C}. It should be noted that, contrary to the
previous section, a (weighted) mean of f does not yield an “optimal” value for α1, . . . , αC
in general. The Inverse Distance Weighting was originally developed to interpolate values
out of observation at irregularly scattered points; in that setting, αj is set to the value
observed at point zj . This is supported by the fact that, given (3.4), f̃(zj) = αj for all j.
In the rest of this paper, we may use αj or f(zj) indistinctly. In our setting, observations
do not coincide with cluster representatives: we shall intuitively project values observed
at points x ∈ X to f̃(zj) = αj at a rate proportional to µj(x).
As (3.4) is precisely the Inverse Distance Weighted interpolation described in [19], we
can also recover improvement to this formula suggested in the same paper: specifically,
the expression of the membership functions implies that the interpolated function f̃ has
zero-gradient at each representative zj , which is quite clearly an undesired condition. We
define the alternative interpolation

f̃(x) :=
∑
j

µj(x) [f(zj) + ∆f(zj , x)] , where



lim
x→zj

∆f(zj , x) = 0,

lim
x→zj

∇x(∆f(zj , x)) = ∇f(zj),

lim
‖x−zj‖→∞

∆f(zj , x) = 0,

(3.5)

where ∇f(zj) is the desired gradient at zj defined by Shepard as

∇f(zj) :=
∑
k 6=j

νj(zk)
f(zk)− f(zj)
‖zk − zj‖2

(zk − zj), with νj(zk) =

∑
l 6=k

(
‖zk − zj‖
‖zl − zj‖

) 2
m−1

−1

.

(3.6)

3.3 Experiments
In this subsection, we show results of the three approximation methods presented above
(piece-wise constant approximation, fuzzy approximation with and without gradients).

8

3.3. Experiments

The function to approximate is f(x) = e−‖x‖
2 (represented in Fig 3.1a), where ‖.‖ is

the euclidean norm and x ∈ [−2, 2]2. The process is as follows:

• We create a dataset X consisting of 4000 points drawn uniformly in [−2, 2]2;

• we perform an a priori discretization of [−2, 2]2 by running the K-Means algorithm
on this dataset (K = 50, see Fig 3.1b);

• for each cluster representative obtained, we approximate the cluster representative’s
value (this depends on the approximation method);

• we compute the approximated function f̃ and measure the error E by the following
approximation:

E(f, f̃) =
√∫

[−2,2]2
(f − f̃)2dλ ≈

√√√√ 1
|I|

1
|J |

∑
i∈I,j∈J

(f(xi, yj)− f̃(xi, yj))2, (3.7)

where {(xi, yj)}(i,j)∈I×J are evenly spaced across [−2, 2]2.

(a) f(x) = e−‖x‖
2 in 2 dimensions (b) Discretization from K-Means

Figure 3.1: A test case for cluster-based function approximation

For the piece-wise constant approximation (see Fig 3.2), we assign as value for each
cluster the mean of all samples that fall into said cluster (it is optimal with respect to
the considered error, see section 3.1). There is no surprise for the obtained result, which
has the highest error among the three methods.

For the fuzzy approximation (without additional gradients), we choose a fuzzifier m = 1.5
and assign as value for each fuzzy cluster the membership-weighted mean of the observed
values

αj :=
∑
x∈X µj(x)f(x)∑
x∈X µj(x) . (3.8)

The resulting interpolated function is shown in Fig 3.3 and achieves a lower error than
the piece-wise constant approximation: it is essentially a smoothed version of it.

We also show in Fig 3.4 the interpolated function for more value of the fuzzifier. It is
interesting to see that, as mentioned in section 2.2, the behavior of the fuzzy approximation

9

3. From Clustering to Function Approximation

Figure 3.2: Piece-wise constant approximation (E ≈ 0.072)

Figure 3.3: Fuzzy approximation (E ≈ 0.053)

tends to be that of the piece-wise constant approximation as the fuzzifier tends to 1.
Additionally, when the fuzzifier is too high, the interpolation becomes noisy as values
from points further away are given important weight.

Figure 3.4: Fuzzy approximation for different values of the fuzzifier (from left to right:
1.2, 1.5, 1.8, 2)

For the fuzzy approximation with gradients, we remain in the same setting as for the one
without gradients, and use the following expression for ∆f , which satisfies all prerequisites
of (3.5):

∆f(zj , x) := e−‖x−zj‖2(∇f(zj) · (x− zj)). (3.9)
This method yields the lowest error among all three approximation schemes and its shape
and the shape of f look more alike; it is however more expansive to compute.

10

3.4. Choosing the Fuzzifier

Figure 3.5: Fuzzy approximation with gradients (E ≈ 0.037)

We also provide in Table 3.1 a comparison of errors when approximating other functions
with the above 3 schemes (piece-wise constant approximation, fuzzy approximation, fuzzy
approximation with gradients). For all considered functions to approximate, the fuzzy
approximation with gradients provided the best results.

Table 3.1: Comparison of approximation errors for multiple functions.

Piece-wise constant Fuzzy Fuzzy with gradients
x 7→ e−‖x‖

2 0.072 0.053 0.037
x 7→ tanh ‖x‖2 0.076 0.054 0.036
x 7→ 1

1+‖x‖2 0.056 0.038 0.024
x 7→ sin ‖x‖2 0.36 0.32 0.28
x 7→ ‖x‖2 0.54 0.41 0.28

3.4 Choosing the Fuzzifier
Choosing a correct value for the fuzzifier is an ongoing research problem (see e.g. [13] and
[23]). In Fig 3.6, we represent the approximation error as a function of the data samples’
dimension (the function to approximate remains x 7→ e−‖x‖

2) and of the fuzzifier. The
errors are scaled by their optimal value for each dimension.

We can see that as dimensions go higher, the optimal value for the fuzzifier decreases.
We can fit here m = 1 + 1

d as a rule of thumb for the choice of the fuzzifier, which is
similar to the one found in [23]. However, perhaps especially for these small dimensions,
the optimal value of the fuzzifier is quite sensitive to the function to be approximated.

11

3. From Clustering to Function Approximation

Figure 3.6: Approximation error as a function of dimension and of the fuzzifier

12

CHAPTER 4
The Fuzzy Approximation in a

RL context

4.1 Distributional Reinforcement Learning

In Distributional Reinforcement Learning, distributions of the value functions are esti-
mated, rather than their expected values. In the CDRL mixture update algorithm ([17],
see Algorithm 1), the action-value function’s distribution is estimated at iteration t by a
categorical distribution

η
(x,a)
t =

N∑
i=1

p
(x,a)
t,i δci (4.1)

for fixed atoms c1, . . . , cN . The next iteration is obtained using a stochastic distributional
Bellman operator. The convergence of ηt, with respect to the Cramér distance, is proved
in [17].

13

4. The Fuzzy Approximation in a RL context

Algorithm 1 CDRL mixture update [17]
Require: η(x,a)

t = ∑N
i=1 p

(x,a)
t,i δci for fixed atoms c1, . . . , cN

1: Sample transition (xt, at, rt, xt+1)
2: if Categorical policy evaluation then
3: a∗ ∼ π(·|xt+1)
4: else if Categorical Q-learning then
5: a∗ ← arg maxa ER∼η(xt+1,a)

t

[R]
6: end if
7: η̂(xt,at)

∗ ← (frt,γ)#η
(xt+1,a∗)
t . Distributional Bellman target

8: η̂(xt,at)
t ← ΠC η̂(xt,at)

∗ . Projection onto the support
9: η(xt,at)

t+1 ← (1− αt(xt, at))η(xt,at)
t + αt(xt, at)η̂(xt,at)

t . Mixture update
10: return ηt+1

4.2 From a Discretized State Space to a Fuzzy
Approximation

As the CDRL algorithm from the previous section, RL algorithms often rely on the
assumption that the state space of the considered problem is discrete. When it is not
the case, one has to rely on function approximation. The piece-wise constant function
approximation from subsection 3.1 allows a direct use of RL algorithms, since states are
assimilated to finitely many clusters; neural networks, that can model more complicated
functions, have also drawn a lot of interest in the recent years, with for example Deep
Q-Learning [16]. Function approximation is also used when the state space in discrete
but has too many states for tabular methods to be practical.

We propose to aim for the middle and, using a fuzzy approximation, provide

• a general approach to be adapt tabular methods with a (hopefully) better approxi-
mation than the piece-wise constant one;

• an example of this approach adapting the CDRL algorithm (Algorithm 1) in the
following subsections.

The general approach is an intuitive one, mimicking the ideas behind tabular methods,
in which values are stored independently for each state-actions pairs. It consists of two
steps, which we shall respectively call interpolation and projection:

1. the access to the value of a given (continuous) state x ∈ X is through the fuzzy
interpolation (3.4);

2. values computed at an observed state x ∈ X , where X is continuous, are projected
on the value of every representatives zj , j ∈ {1, . . . , C}, proportionally to the

14

4.3. Fuzzy CDRL

membership functions µj , j ∈ {1, . . . , C} (examples for such updates rules are given
in the next subsection).

It is worth mentioning that this approach can be viewed as some generalization of
tabular methods, in the sense that, as mentioned in section 2.2, when m −→ 1 in the
expression of the membership functions (2.5), this degenerates to the piece-wise constant
approximation described in section 3.1.

The rest of this section is dedicated to the application of this approach to the CDRL
algorithm, featuring some modified algorithms in subsection 4.3 and their performance
on a test case, described in subsection 4.4.

4.3 Fuzzy CDRL

The change in the CDRL is straightforward to obtain the Fuzzy CDRL (F-CDRL)
algorithm, and can be found in details in the appendix (Section 8). We detail the two
changes below, keeping the notations from Algorithm 1. The first change consist, as
presented in the previous subsection, in the expression of the distributions for some
state-action pair (x, a) ∈ X ×A:

η
(x,a)
t =

∑
j

µj(x)η(zj ,a)
t . (4.2)

Note that there is no abuse of notation here, as we do have η(x,a)
t ∈ PC for all (x, a) ∈ X×A.

Indeed, using the expression of η(zj ,a)
t from (1.2), we get

η
(x,a)
t =

∑
i

∑
j

µj(x)p(zj ,a)
t,i


︸ ︷︷ ︸

=:p(x,a)
t,i

δci , (4.3)

where ∑i p
(x,a)
t,i = 1 follows from ∑

i p
(zj ,a)
t,i = 1 (∀j) and ∑j µj(x) = 1.

The second change consists of a projection step: values are stored at representatives,
that is we update values for each representatives during the mixture update step, with a
learning rate proportional to membership functions. This new update rule reads

∀j : η
(zj ,at)
t+1 ← (1− αt(zj , a)µj(xt))η

(zj ,at)
t + αt(zj , a)µj(xt)η̂(xt,at)

t , (4.4)

where αt(zj , a) = 0 if a 6= at. This can again be seen as some generalization of the
mixture update of Algorithm 1. However, if we look at the updated value at the sampled

15

4. The Fuzzy Approximation in a RL context

state-action pair,

η
(xt,at)
t+1

(4.2)=
∑
j

µj(xt)η
(zj ,at)
t+1

(4.4)= η
(xt,at)
t +αt


∑

j

µj(xt)2


︸ ︷︷ ︸

≤1

η̂
(xt,at)
t −

∑
j

µj(xt)2η
(zj ,at)
t

 ,
(4.5)

we see that the successive projection and interpolation steps decrease the overall amount
updated for the distribution at xt when xt is in between representatives (that is, when∑
j µj(xt)2 is low). Given this, we propose the following modified version of the update

rule
∀j : η

(zj ,at)
t+1 ←

(
1− αt

µj(xt)∑
k µk(xt)2

)
η

(zj ,at)
t + αt

µj(xt)∑
k µk(xt)2 η̂

(xt,at)
t . (4.6)

Lastly, we propose one last idea that mixes (4.2) with (3.5). Using the writing from (4.3),
this version of the algorithm uses the interpolation rule

p
(x,a)
t,i :=

∑
j

µj(x)
(
p

(zj ,a)
t,i + ∆pt,i(zj , x)

)
(4.7)

Note that for this to be well-defined (that is, the resulting η(x,a)
t is a categorical distribu-

tion), we need that ∑i

∑
j µj(x)∆pt,i(zj , x) = 0. It so happens that the implementation

of section 3 (see (3.9)) verifies this condition :

(∇pt,i)j =
∑
k 6=j

νj(zk)
p

(zk,a)
t,i − p(zj ,a)

t,i

‖zk − zj‖2
(zk − zj) (4.8)

(thus ∑i (∇pt,i)j = 0 is immediate from ∑
i p

(zk,a)
t,i = ∑

i p
(zj ,a)
t,i = 1). This leaves us with

3 different algorithms: F-CDRL (Alg 2), Gradients FCDRL (GF-CDRL, Alg 3), and
F-CDRL with the “fast update rule” (Fast F-CDRL, Alg 4). Performances of these
algorithms are compared with each other and with the CDRL algorithm used with state
discretization (i.e. piece-wise constant approximation) in the next subsection.

4.4 Results
To test the algorithm described in section 4.3, we build a test environment, in which
the agent monitors an object moving on a (fixed) surface with obstacles, and must find
a way from a starting position to a goal area. We adopt a simplified physical model
where the object lies on the surface at all time and is subject to the weight force together
with fluid friction. Fig 4.1 gives a representation of the chosen environment. Note that
it is impossible to get out of the center hole, so the main task of the agent will be to
avoid falling into it. A reward of +100 is gotten when reaching the goal area, while each
timestep gives a reward of −1 (up to −200).

16

4.4. Results

Figure 4.1: The test environment (left: the surface on which the object evolves; right:
heatmap representation)

To test the differences between piece-wise constant approximation and the fuzzy ap-
proximation, position and velocity of the object are described by continuous features.
The agent acts on the environment through 9 possible actions (including a “no-action”
one), by which it adds a force to the physical ones, at a constant intensity and in 8
possible directions (at angles θ ∈ {k π4 , k ∈ {0, . . . , 7}}). Since the object lies on a surface
(by hypothesis), we only need to considered 2D-projected position and velocity for the
problem to be a MDP.

Note that this environment is purely deterministic; however, we include two sources of
uncertainty in our modeling:

• we choose to make only the position available to the agent, for both reduced
run-time and improved readability of the results;

• the chosen models can only represent a restricted class of functions that may not
render the exact situation of the environment (consider for instance the piece-wise
constant approximation, where state-aliasing can happen in the neighborhood of
obstacles).

Agents are trained according to 5 different processes : the CDRL algorithm with dis-
cretized states, with a piece-wise constant approximation through binning (Bins PC) or
K-Means (K-Means PC), F-CDRL, GF-CDRL, Fast F-CDRL. Data from the training of
the “Bins PC” agent is collected to compute representatives for the 4 other processes
using the K-Means algorithm (following the remarks of section 2.3, we do not use FCM
for the fuzzy representatives; also this provides a fair comparison between the different
processes). The training is done over 15 000 trajectories, each computed according to

17

4. The Fuzzy Approximation in a RL context

an ε-greedy policy (ε = 0.05) based on the latest update of the agent. We compare
results obtained using two different learning rates (α = 0.1 and α = 0.01). For all fuzzy
algorithms, we use a fuzzifier m = 1.5 based on Fig 3.6, since the dimension observed
by the agent is 2 (Note that it is perhaps sub-optimal). We collect rewards from the
last 10 000 trajectories and an overview of results is shown in Tables 4.1 and 4.2. Fuzzy
versions of CDRL achieve the best scores, whereas the K-Means discretized tabular CDRL
generates steadier policies (the lower standard deviation is here correlated with fewer
“lost games”, i.e. the agent falls in the central hole fewer times).

Table 4.1: Performance comparison of the different algorithms (α = 0.1).

Bins PC K-Means PC F-CDRL GF-CDRL Fast F-CDRL
Mean reward 47.73 52.21 64.30 60.83 57.27

Standard deviation 50.26 26.04 39.95 44.19 46.37
Max reward 78 74 83 84 84

Ratio of lost games 3.3% 0.6% 2.1% 2.6% 2.8%

Table 4.2: Performance comparison of the different algorithms (α = 0.01).

Bins PC K-Means PC F-CDRL GF-CDRL Fast F-CDRL
Mean reward 55.98 61.83 67.60 66.09 62.43

Standard deviation 24.12 18.95 19.10 20.47 50.57
Max reward 73 75 84 84 83

Ratio of lost games 4.9‰ 2.2‰ 2.3‰ 4.2‰ 3.33%

To complete this section, we propose a finer analysis based on the training with α = 0.01,
that provided the best results. We note that Fast F-CDRL provided poorer results
than F-CDRL, and will not be part of the latter figures; the fast update is perhaps
unsuitable for the considered discretization and would probably provide better result
with a finer grid of representatives. Rewards (averaged over 300 trajectories) are shown in
Fig 4.2. Note that the amount of runs needed to find a wining policy is (at least partially)
chance-based, since we only implement the ε-greedy scheme to encourage exploration.
Fig 4.3 shows, for the 4 considered algorithms, the maximal expected values of the learned
action-value distributions across the state space, that is, the expected value for the greedy
action taken at each position of the state space. We can note that tabular algorithms
explored only the bottom part of the state space while fuzzy algorithms explored the
top part of it, but it is irrelevant and relies only on chance and on the first winning
trajectories found during the early steps of learning. The main and awaited difference
between tabular and fuzzy algorithm relies on that fact that the latter are of continuous
nature, and thus represent the present continuous problem in a neater way. This is
reflected by the better performance of the fuzzy algorithms at this task.
We finally take a look at action-value distributions at the initial state for each algorithm,
which are represented in Fig 4.4. As expected from Fig 4.3, the action with highest

18

4.4. Results

Figure 4.2: Evolution of rewards obtained through training for 4 algorithms (results are
averaged over 300 runs)

expected reward for tabular algorithms (resp. fuzzy algorithms) is “down-right” (resp.
“up”). We do not expect to see a huge difference between actions for the initial state,
given the significant fluid friction set; we hypothesize that the difference here is mainly
due to some over-fitting to the learned policy, whereas other actions were not much
undertaken and thus had their values less updated.

19

4. The Fuzzy Approximation in a RL context

(a) Tabular CDRL (Bins PC) (b) Tabular CDRL (KMeans PC)

(c) F-CDRL (d) GF-CDRL

Figure 4.3: Maximal expected value of action-value distribution for the different algo-
rithms.

20

4.4. Results

(a) Tabular CDRL (Bins PC) (b) Tabular CDRL (KMeans PC)

(c) F-CDRL (d) GF-CDRL

Figure 4.4: Learned action-value distribution at the initial state for the different algo-
rithms.

21

CHAPTER 5
Fuzzy Approximation in a

Classification Context

In this section, we build upon the infamous MNIST handwritten digits recognition
problem [14] to investigate how representatives can be searched automatically. Note that
the goal is to better understand how representatives are modified when subject to some
optimization, and not to find any state-of-the-art model. In this setting, there was no
optimization of the hyperparameters of the models. Note finally that we stick to the
euclidean distance to compare objects; although there are distances that were developed
to specifically compare images (see e.g. [4, 20]), their complexity makes it impractical to
have membership functions based on them.

5.1 The Search for Adequate Representatives
We use a simple model consisting of what we shall call a memberships layer, that computes
the membership functions (as defined in subsection 2.2, Eq (2.5)) of flattened images with
respect to a set of representatives that are parameters of the model (and thus subject to
optimization). We further process the obtained vector through a basic neural network.
The last layer of the network is then composed with a softmax operation, and trained
against the cross-entropy loss. This is represented in Fig 5.1. The models trained feature
25 representatives followed by 3 layers of 50 neurons each with Rectified Linear Units as
activation functions, and an output layer of 10 neurons with a softmax operation; we use
ADAM as optimizer.
We test this type of network in two setups: in the first, we initialize representatives of the
memberships layer to all-zeros to inspect the results of a blind search for representatives; in
the second, we initialize the representatives using the K-Means++ initialization algorithm
[1], that is with images from the dataset that are roughly spread across the (flattened)
data.

23

5. Fuzzy Approximation in a Classification Context

Figure 5.1: The considered network architecture

Generating representatives

The perhaps most striking result is that, when initializing the representatives uniformly
at 0, the network is able to produce digit-like representatives. Representatives produced
after 1 epoch of training are represented in Fig 5.2a, while their evolution throughout
training is represented in Fig 5.2b.

(a) Representatives pro-
duced (b) Evolution of the representatives while training

Figure 5.2: Representatives produced after 1 epoch of training, when initializing uniformly
at 0.

Some representatives appear to be noisy, but it appears not to be too detrimental for
the network; to better understand what is going on, we perform a fuzzy interpolation
based on the learned representatives Z = {zj , j = 1, . . . , 25}. For some data sample x,
we compute the interpolated image x̂ by

x̂ :=
∑
j

µj(x)zj . (5.1)

In Fig 5.3, we show the results for a few images. We can see that despite the noisiness
of the representatives, the interpolated images are consistent with the original number;
they are even remarkably close to each other (see Fig 5.3a) even if original digit have
dissimilarities.

24

5.2. Details on the Backpropagation Algorithm

(a) Interpolated 3’s (b) Interpolated 5’s

Figure 5.3: Results of the fuzzy interpolation of some images by the learned memberships
layer. For each pair of digit, the left one is the actual data sample and the right one is
the interpolated one.

Updating Representatives

We now investigate what happens when representatives are initialized by real images,
using the K-Means++ initialization scheme. The results from 1 epoch of training are
represented in Fig 5.4. We observe that some digits are noticeably changed during
training: see the fifth column in Fig 5.4b, where a 4 seem to evolve towards a 9.

In Fig 5.5, we represent the same interpolation process as (5.1). Fig 5.5b uses the initial
representatives while Fig 5.5c uses the learned representatives; we use heatmaps instead
of gray images for readability, since the scale of interpolated images is different. We can
see in Fig 5.5c that the original digit is turned into a very prototypical 5.

5.2 Details on the Backpropagation Algorithm

Finally, in order to provide an explanation onto why digit-like representatives can be
found by the model, we investigate further the details of the backpropagation (see e.g.
[18] for explanation of the BP Algorithm) in our network, that is we seek a simplified
expression of the gradient of the loss with respect to representatives. We use the following

25

5. Fuzzy Approximation in a Classification Context

(a) Representatives produced (b) Evolution of the representatives while training

Figure 5.4: Representatives produced after 1 epoch of training, when initializing with
k-means++. (a) Initial representatives (left) compared with learned representatives
(right); (b) some representatives change shapes while training.

(a) The interpolated
image

(b) Interpolation using the initial
representatives

(c) Interpolation using the
learned representatives

Figure 5.5: Fuzzy interpolation of a digit. Interpolated images are representated through
heatmaps for scale and readability.

notation:

• each neuron layer consists in an aggregation function h composed with an activation
function g. In our case, the aggregation function is a scalar product between the
weights of the layer and the values at the entry layer:

• the forward pass from layer l − 1 to layer l is thus defined by

x
(l)
i = g(l)(h(l)

i) = g(l)
(∑

k

w
(l)
ik x

(l−1)
k

)
, (5.2)

where x(l)
i is the i-th neuron of the l-th layer and w(l)

ik is the weight from x
(l−1)
k to

x
(l)
i ;

• errors are backpropagated through dense layers using

e
(l−1)
k = g′(l−1)(h(l−1)

k)
∑
i

w
(l)
ik e

(l)
i , (5.3)

26

5.2. Details on the Backpropagation Algorithm

where e(l)
i is the error backpropagated to x(l)

i , initialized as the cross-entropy loss
between the output layer and the observed value, e(out)

i = g′(out)(h(out)
i) · ∂Ei

∂pi
.

Note that (5.3) is obtained by using successive chain rules; taking the gradient of the
error E with respect to some representative zj of the membership layer, we have for the
last neuron layer (numbered n)

∂E

∂zj
=
∑
i

∂Ei
∂pi

∂pi
∂hi︷ ︸︸ ︷

g′(n)(h(n)
i)

∂hi
∂zj︷ ︸︸ ︷∑

k

w
(n)
ik

∂x
(n−1)
k

∂zj

=
∑
k

∂x
(n−1)
k

∂zj

∑
i

w
(n)
ik e

(n)
i .

(5.4)

Eq (5.3) is then obtained (inductively) by applying the chain rule to ∂x
(n−1)
k
∂zj

. We are
then interested in the error backpropagated to the memberships layer:

∂E

∂zj
=
∑
k

∂µk(x)
∂zj

∑
i

w
(1)
ik e

(1)
i

= 2
m− 1µj(x)

∑
k 6=j

µk(x)
∑
i

(w(1)
ik − w

(1)
ij)e(1)

i

 zj − x
‖zj − x‖2

,

(5.5)

where we use the following expression for ∂µk(x)
∂zj

∂µk(x)
∂zj

=


2

m− 1 · µj(x)µk(x) · zj − x
‖zj − x‖2

if j 6= k,

− 2
m− 1 · µj(x)(1− µj(x)) · zj − x

‖zj − x‖2
if j = k.

(5.6)

We now wish to compare this with the principle of the FCM algorithm. For this we
introduce a modified version of the objective function defined in Eq (2.3), focusing on
the influence of some data point x ∈ X :

Ψ(x) :=
∑
k

µk(x)m‖zk − x‖2. (5.7)

Taking the gradient of (5.7) with respect to some representative zj , we ultimately find

∂Ψ(x)
∂zj

= 2µj(x)m(zj − x). (5.8)

27

5. Fuzzy Approximation in a Classification Context

Note that (5.5) and (5.8) are both in the same direction (zj − x), which is of most
importance in a gradient descent scheme (where scaling is impacted by the learning rate
anyway). We can also rewrite (5.5) to make (5.8) and additional scaling factors appear:

∂E

∂zj
=
(1
m− 1Sm(x)m−1

)
︸ ︷︷ ︸

position term

·

∑
k 6=j

µk(x)
∑
i

(w(1)
ik − w

(1)
ij)e(1)

i


︸ ︷︷ ︸

backpropagation term

· ∂Ψ(x)
∂zj︸ ︷︷ ︸
FCM

, (5.9)

where we write Sm(x) =
(∑

k

(
1

‖zk−x‖

) 2
m−1

)−1
for the scaling term of membership

functions. We put together the representative search and this factoring in the following
way:

• Representatives are “searched” by the algorithm in a way similar to the one of
FCM: gradient updates have the same direction for the backpropagation through
the network and for the FCM (partial) objective function;

• the “backpropagation term” links the update of the representatives to the rest of
the network, and thus provides some kind of “objective based fuzzy clustering”;

• the “position term” is a scaling term depending on the sample’s position with
respect to all representatives, and is high when the sample is far away (in term of
the euclidean distance) from all representatives. The gradient is scaled up, and
thus the representatives moved towards the sample, when the clustering cannot
represent the sample accurately.

28

CHAPTER 6
Operator View on the
Interpolation Function

Approximation

For a policy π, the distributional Bellman operator T π : P(R)X×A −→ P(R)X×A is
defined by

(T πη)(x,a) :=
∫
R

∫
X

∑
a′∈A

(fr,γ)# η
(x′,a′)π(a′|x′)p(dr, dx′|x, a). (6.1)

Note that here, contrary to [17], we do not consider X to be finite. However, this does not
change contraction properties for T π with respect to the Wasserstein metric (see [3]) and
for ΠCT π with respect to the Cramér metric (see [17]). Note that since X is not finite,
P(R)X×A associated with a supremum metric (namely the supremum p-Wasserstein
metric dp [3] or the supremum Cramér metric l2 [17]) need not be complete and we must
restrict ourselves explicitly to the study of bounded value distribution functions. In this
setting, the Banach fixed point theorem gives the existence of a unique value distribution
function ηπ ∈ P(R)X×A satisfying ηπ = T πηπ.

We also define operators I : P(R)Z×A −→ P(R)X×A and ΠZ : P(R)X×A −→ P(R)Z×A,
for the interpolation and projection steps respectively. For example,

(Iη)(x,a) =
∑
j

1Xj (x)η(zj ,a), (6.2)

(
ΠZη

)(zj ,a)
= 1
|Xj |

∫
Xj

η(x,a)dx (6.3)

29

6. Operator View on the Interpolation Function Approximation

correspond the hard-clustering case described in Section 3.1, where X = ⋃
j Xj and

Z = {z1, . . . , zC} with zj associated with Xj for all j.

In particular, these operator are non-expansions with respect to the supremum Cramér
metric, on P(R)X×A for I and on P(R)Z×A for ΠZ .

Theorem 1. Let two interpolation and projection operators I : P(R)Z×A → P(R)X×A
and ΠZ : P(R)X×A → P(R)Z×A be non-expansions with respect to the supremum-Cramér
metric, that commute with the categorical projection ΠC. Then the operator ΠZΠCT πI is
a √γ-contraction in the supremum-Cramér metric l2. Furthermore, there exists a unique
fix-point η∗ ∈ P(R)Z×A of ΠZΠCT πI found as the l2 limit of

{(
ΠZΠCT πI

)m
η0
}
m∈N

for any initial distribution η0. We obtain the following inequality between η∗ and ηπ:

(1−√γ)l2(Iη∗, ηπ) ≤ l2(ΠCIΠZηπ, IΠZηπ) + l2(IΠZηπ, ηπ). (6.4)

Proof. The contraction property for T π does not rely in any way on X being discrete (see
[17]). Since all other operators involved are non-expansions with respect to l2, ΠZΠCT πI
is indeed a √γ-contraction. We can then use Banach’s fixed-point theorem to find the
desired fix-point η∗. To prove the inequality (6.4), we first use the triangle inequality for
l2 to find

l2(Iη∗, ηπ) ≤ l2(Iη∗, IΠZηπ) + l2(IΠZηπ, ηπ). (6.5)

Furthermore, we use the pythagorean like theorem proved in [17] and proceed using the
fixed-point properties for ηπ, η∗ to obtain

l
2
2(Iη∗, IΠZηπ) ≤ l22(Iη∗,ΠCIΠZηπ) +l22(ΠCIΠZηπ, IΠZηπ)

= l
2
2(IΠZΠCT πIη∗, IΠZΠCT πηπ) +l22(ΠCIΠZηπ, IΠZηπ)

≤ γl22(Iη∗, ηπ) +l22(ΠCIΠZηπ, IΠZηπ).

(6.6)

We get the desired inequality by combining (6.5) and (6.6) and using
√
a+ b ≤

√
a +√

b.

Note that we can interpret the two terms of the right-hand side of inequality (6.4) as
the modelling power of categorical distributions, l2(ΠCη, η), and the modelling power of
piece-wise constant distribution functions, l2(IΠZη, η). It is proved in [17] that there
exists an upper-bound independent of η for l2(ΠCη, η):

l
2
2(ΠCη, η) ≤ max

1≤i≤K−1
(ci+1 − ci). (6.7)

We now restrict ourselves to the hard-clustering case. In particular for the operators
defined in (6.2) and (6.3), we have the following result:

Theorem 2. We consider the metric spaces (X , d2), where d2 is the euclidean metric,
and (P(R)X×A, l2), where l2 is the supremum-Cramér metric. Let η ∈ P(R)X×A.

30

• if x 7→ η(x,a) is uniformly continuous for all a ∈ A, then we can choose Z in order
for l2(IΠZη, η) to be arbitrarily small;

• if we (additionally) have that, for all a ∈ A, there exists some constant M(a) ∈ R+,
such that

l2(η(x,a), η(y,a)) ≤M(a)d2(x, y) ∀x, y ∈ X , (6.8)

then we have the explicit upperbound

l2(IΠZη, η) ≤M · δ, (6.9)

where M := supa∈AM(a) and δ := supj{d2(x, y) : x, y ∈ Xj}. In particular δ can
be arbitrarily small, depending on the representatives Z.

Finally, we can also follow the very same steps as in [17] to prove the convergence of the
policy evaluation algorithm that uses the stochastic operator

(
P̂η
)(zj ,a)

=

(fr,γ)# (Iη)(x′,a′) if x ∈ Xj ,
η(zj ,a) if x /∈ Xj ,

(6.10)

where P̂ is the stochastic counterpart of the operator P = ΠZT πI, together with the
mixture update

η
(zj ,a)
t+1 = (1− αt(zj , a))η(zj ,a)

t + αt(zj , a)
(
ΠCP̂ηt

)(zj ,a)

= (1− αt(zj , a))η(zj ,a)
t + αt(zj , a)ΠC(frt,γ)# (Iη)(xt+1,a∗) ,

(6.11)

where the second equality holds since xt /∈ X| =⇒ αt(zj , a) = 0. We further detail only
the main difference with [17]. A major point of the proof relies in the decomposition

η
(zj ,a)
t+1 = η

(zj ,a)
t + αt(zj , a)

[
(ΠCPηt)(zj ,a) − η(zj ,a)

t

]
+ αt(zj , a)

[
ΠC(frt,γ)# (Iηt)(x′,a′) − (ΠCPηt)(zj ,a)

]
,

(6.12)

where the last term is a random signed measure. As in [17] and [22] we want that

E
[
ΠC(frt,γ)# (Iηt)(x′,a′) − (ΠCPηt)(zj ,a)

]
((−∞, y]) = 0 ∀y ∈ R. (6.13)

The only notable change is that, since X is no longer finite but partitioned into finitely
many Xj , 1 ≤ j ≤ C, we have to take a distribution for x′ into account. The given
distribution in (6.3) matches that of a uniform distribution for states x′ in Xj . This is
however not a requirement on the model, for we can use any distribution for x′ ∈ Xj , given
that the true operators ΠZ , T π are never actually computed and that this distribution is
only implicit in the stochastic operator P̂.

31

6. Operator View on the Interpolation Function Approximation

Finally, we further restrict the policy π to only depend on the clusters corresponding to
states, i.e.

∀a ∈ A : ∀x ∈ Xj : π(a|x) = π(a|zj). (6.14)

In this setting, we can rewrite the operator P as a Bellman operator in a discrete setting
as (

ΠZT πIη
)(zj ,a)

=
∫
R

∑
k

∑
a′∈A

(fr,γ)#η
(zk,a

′)π(a′|zk)p̃(dr, zk|zj , a), (6.15)

where p̃(dr, zk|zj , a) := 1
|Xj |

∫
x∈Xj

∫
x′∈Xk

p(dr, dx′|x, a)dx. In this setting, all properties of
the discrete setting are hence inherited.

32

CHAPTER 7
Conclusion

In this work, a clear connection was drawn from (fuzzy) clustering to function approxi-
mation and RL using the fuzzy interpolation. Empirical results on a test problem were
found to be encouraging. It was also shown how the fuzzy interpolation could be used
to perform an optimized search for state representatives. An interesting direction for
further work would be to bridge these two approaches to allow for an online searched
for representatives in the reinforcement learning process. Additionally, the empirical
approach can be improved in multiple ways, for example by implementing multiple forms
for the membership functions, for example following the approach in [13]. In [6], although
they follow a different point of view on fuzzy sets and do not consider distributional RL,
a fuzzy interpolation is also applied to the action space.

From the theoretical point of view, we showed that the concept of interpolation and
projection operators is well-suited to the study of this type of function approximation
for RL. In the hard-clustering case, we can follow the same steps as in [17] to prove the
results established for the discrete setting.

33

Bibliography

[1] David Arthur and Sergei Vassilvitskii. “K-means++: the advantages of careful
seeding”. In: In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete
Algorithms. 2007.

[2] M. G. Bellemare et al. “The Arcade Learning Environment: An Evaluation Platform
for General Agents”. In: Journal of Artificial Intelligence Research 47 (June 2013),
pp. 253–279. issn: 1076-9757. doi: 10.1613/jair.3912. url: http://dx.
doi.org/10.1613/jair.3912.

[3] Marc G. Bellemare, Will Dabney, and Rémi Munos. A Distributional Perspective
on Reinforcement Learning. 2017. arXiv: 1707.06887 [cs.LG].

[4] S. Belongie, J. Malik, and J. Puzicha. “Shape matching and object recognition
using shape contexts”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 24.4 (2002), pp. 509–522.

[5] James C. Bezdek. “Pattern Recognition with Fuzzy Objective Function Algorithms”.
In: USA: Kluwer Academic Publishers, 1981. Chap. 3 (S11). isbn: 0306406713.

[6] Andrea Bonarini et al. “Reinforcement distribution in fuzzy Q-learning”. In: Fuzzy
Sets and Systems 160.10 (2009). Special Issue: Fuzzy Sets in Interdisciplinary
Perception and Intelligence, pp. 1420–1443. issn: 0165-0114. doi: https://doi.
org/10.1016/j.fss.2008.11.026. url: http://www.sciencedirect.
com/science/article/pii/S0165011408005319.

[7] Madson Dias. fuzzy-c-means: Python module implementing the Fuzzy C-means
clustering algorithm. Python module v0.0.6. 2019. url: https://pypi.org/
project/fuzzy-c-means/.

[8] J. C. Dunn. “A Fuzzy Relative of the ISODATA Process and Its Use in Detect-
ing Compact Well-Separated Clusters”. In: Journal of Cybernetics 3.3 (1973),
pp. 32–57. doi: 10 . 1080 / 01969727308546046. eprint: https : / / doi .
org/10.1080/01969727308546046. url: https://doi.org/10.1080/
01969727308546046.

35

https://doi.org/10.1613/jair.3912
http://dx.doi.org/10.1613/jair.3912
http://dx.doi.org/10.1613/jair.3912
https://arxiv.org/abs/1707.06887
https://doi.org/https://doi.org/10.1016/j.fss.2008.11.026
https://doi.org/https://doi.org/10.1016/j.fss.2008.11.026
http://www.sciencedirect.com/science/article/pii/S0165011408005319
http://www.sciencedirect.com/science/article/pii/S0165011408005319
https://pypi.org/project/fuzzy-c-means/
https://pypi.org/project/fuzzy-c-means/
https://doi.org/10.1080/01969727308546046
https://doi.org/10.1080/01969727308546046
https://doi.org/10.1080/01969727308546046
https://doi.org/10.1080/01969727308546046
https://doi.org/10.1080/01969727308546046

Bibliography

[9] J. C. Dunn. “A Fuzzy Relative of the ISODATA Process and Its Use in Detect-
ing Compact Well-Separated Clusters”. In: Journal of Cybernetics 3.3 (1973),
pp. 32–57. doi: 10 . 1080 / 01969727308546046. eprint: https : / / doi .
org/10.1080/01969727308546046. url: https://doi.org/10.1080/
01969727308546046.

[10] Philip Hall. “The Distribution of Means for Samples of Size N Drawn from a
Population in which the Variate Takes Values between 0 and 1, all such Values
Being Equally Probable”. In: Biometrika 19.3-4 (Dec. 1927), pp. 240–244. issn: 0006-
3444. doi: 10.1093/biomet/19.3-4.240. eprint: https://academic.oup.
com/biomet/article-pdf/19/3-4/240/742325/19-3-4-240.pdf. url:
https://doi.org/10.1093/biomet/19.3-4.240.

[11] J. O. Irwin. “On the Frequency Distribution of the Means of Samples from a
Population Having any Law of Frequence with Finite Moments, with Special
Reference to Peason’s Type II”. In: Biometrika 19.3-4 (Dec. 1927), pp. 225–239.
issn: 0006-3444. doi: 10.1093/biomet/19.3-4.225. eprint: https://
academic.oup.com/biomet/article-pdf/19/3-4/225/742314/19-3-
4-225.pdf. url: https://doi.org/10.1093/biomet/19.3-4.225.

[12] JuliaStats. Clustering.jl: Methods for data clustering and evaluation of clustering
quality. Julia package v0.14.1. 2020. url: https://github.com/JuliaStats/
Clustering.jl.

[13] Frank Klawonn and Frank Höppner. “What Is Fuzzy about Fuzzy Clustering?
Understanding and Improving the Concept of the Fuzzifier”. In: Aug. 2003, pp. 254–
264. doi: 10.1007/978-3-540-45231-7_24.

[14] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. The MNIST Database
of handwritten digits. http://yann.lecun.com/exdb/mnist/. Oct. 2020.

[15] J. MacQueen. “Some methods for classification and analysis of multivariate observa-
tions”. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, Volume 1: Statistics. Berkeley, Calif.: University of California Press,
1967, pp. 281–297. url: https://projecteuclid.org/euclid.bsmsp/
1200512992.

[16] Volodymyr Mnih, Koray Kavukcuoglu, and et al. Silver David. “Human-level control
through deep reinforcement learning”. In: Nature 518 (Feb. 2015), pp. 529–33. doi:
10.1038/nature14236.

[17] Mark Rowland et al. An Analysis of Categorical Distributional Reinforcement
Learning. 2018. arXiv: 1802.08163 [stat.ML].

[18] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J Williams. “Learning
Internal Representations by Error Propagation”. In: Parallel Distributed Processing:
Explorations in the Microstructure of Cognition. Cambridge: MIT Press, 1986.
Chap. 8.

36

https://doi.org/10.1080/01969727308546046
https://doi.org/10.1080/01969727308546046
https://doi.org/10.1080/01969727308546046
https://doi.org/10.1080/01969727308546046
https://doi.org/10.1080/01969727308546046
https://doi.org/10.1093/biomet/19.3-4.240
https://academic.oup.com/biomet/article-pdf/19/3-4/240/742325/19-3-4-240.pdf
https://academic.oup.com/biomet/article-pdf/19/3-4/240/742325/19-3-4-240.pdf
https://doi.org/10.1093/biomet/19.3-4.240
https://doi.org/10.1093/biomet/19.3-4.225
https://academic.oup.com/biomet/article-pdf/19/3-4/225/742314/19-3-4-225.pdf
https://academic.oup.com/biomet/article-pdf/19/3-4/225/742314/19-3-4-225.pdf
https://academic.oup.com/biomet/article-pdf/19/3-4/225/742314/19-3-4-225.pdf
https://doi.org/10.1093/biomet/19.3-4.225
https://github.com/JuliaStats/Clustering.jl
https://github.com/JuliaStats/Clustering.jl
https://doi.org/10.1007/978-3-540-45231-7_24
http://yann.lecun.com/exdb/mnist/
https://projecteuclid.org/euclid.bsmsp/1200512992
https://projecteuclid.org/euclid.bsmsp/1200512992
https://doi.org/10.1038/nature14236
https://arxiv.org/abs/1802.08163

Bibliography

[19] Donald Shepard. “A Two-Dimensional Interpolation Function for Irregularly-Spaced
Data”. In: Proceedings of the 1968 23rd ACM National Conference. ACM ’68. New
York, NY, USA: Association for Computing Machinery, 1968, pp. 517–524. isbn:
9781450374866. doi: 10.1145/800186.810616. url: https://doi.org/10.
1145/800186.810616.

[20] P. Y. Simard et al. “Transformation Invariance in Pattern Recognition – Tangent
Distance and Tangent Propagation”. In: International Journal of Imaging Systems
and Technology 11.3 (2001).

[21] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
Second. The MIT Press, 2018. url: http://incompleteideas.net/book/
the-book-2nd.html.

[22] John N. Tsitsiklis. “Asynchronous Stochastic Approximation and Q-Learning”. In:
Mach. Learn. 16.3 (Sept. 1994), pp. 185–202. issn: 0885-6125. doi: 10.1023/A:
1022689125041. url: https://doi.org/10.1023/A:1022689125041.

[23] Roland Winkler, Frank Klawonn, and Rudolf Kruse. “Problems of Fuzzy c-Means
Clustering and Similar Algorithms with High Dimensional Data Sets”. In: July
2010. doi: 10.1007/978-3-642-24466-7-9.

37

https://doi.org/10.1145/800186.810616
https://doi.org/10.1145/800186.810616
https://doi.org/10.1145/800186.810616
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://doi.org/10.1023/A:1022689125041
https://doi.org/10.1023/A:1022689125041
https://doi.org/10.1023/A:1022689125041
https://doi.org/10.1007/978-3-642-24466-7-9

CHAPTER 8
Appendix

We detail below the proposed algorithms. Changes from the CDRL algorithm (Alg 1)
are highlighted in red.

Algorithm 2 F-CDRL mixture update
Require: η(zj ,a)

t = ∑
j p

(zj ,a)
t,i δci for fixed atoms c1, . . . cN and representatives z1, . . . zC

1: η(x,a)
t ←

∑
j µj(x)η(zj ,a)

t . Interpolation
2: Sample transition (xt, at, rt, xt+1)
3: if Categorical policy evaluation then
4: a∗ ∼ π(·|xt+1)
5: else if Categorical Q-learning then
6: a∗ ← arg maxa ER∼η(xt+1,a)

t

[R]
7: end if
8: η̂(xt,at)

∗ ← (frt,γ)#η
(xt+1,a∗)
t . Distributional Bellman target

9: η̂(xt,at)
t ← ΠC η̂(xt,at)

∗ . Projection onto the support
10: η(zj ,at)

t+1 ← (1− αt(zj , at)µj(xt))η
(zj ,at)
t + αt(zj , at)µj(xt)η̂(xt,at)

t . Mixture update,
projection on representatives

11: return ηt+1

39

8. Appendix

Algorithm 3 GF-CDRL mixture update
Require: η(zj ,a)

t = ∑
j p

(zj ,a)
t,i δci for fixed atoms c1, . . . cN and representatives z1, . . . zC

1: η(x,a)
t ←

∑
j µj(x)

(
η

(zj ,a)
t + ∆η(zj ,a)

t

)
. Interpolation with gradients

2: Sample transition (xt, at, rt, xt+1)
3: if Categorical policy evaluation then
4: a∗ ∼ π(·|xt+1)
5: else if Categorical Q-learning then
6: a∗ ← arg maxa ER∼η(xt+1,a)

t

[R]
7: end if
8: η̂(xt,at)

∗ ← (frt,γ)#η
(xt+1,a∗)
t . Distributional Bellman target

9: η̂(xt,at)
t ← ΠC η̂(xt,at)

∗ . Projection onto the support
10: η(zj ,at)

t+1 ← (1− αt(zj , at)µj(xt))η
(zj ,at)
t + αt(zj , at)µj(xt)η̂(xt,at)

t . Mixture update,
projection on representatives

11: return ηt+1

Algorithm 4 Fast F-CDRL mixture update
Require: η(zj ,a)

t = ∑
j p

(zj ,a)
t,i δci for fixed atoms c1, . . . cN and representatives z1, . . . zC

1: η(x,a)
t ←

∑
j µj(x)η(zj ,a)

t . Interpolation
2: Sample transition (xt, at, rt, xt+1)
3: if Categorical policy evaluation then
4: a∗ ∼ π(·|xt+1)
5: else if Categorical Q-learning then
6: a∗ ← arg maxa ER∼η(xt+1,a)

t

[R]
7: end if
8: η̂(xt,at)

∗ ← (frt,γ)#η
(xt+1,a∗)
t . Distributional Bellman target

9: η̂(xt,at)
t ← ΠC η̂(xt,at)

∗ . Projection onto the support
10: η(zj ,at)

t+1 ← (1− αt(zj , at) µj(xt)∑
k
µk(xt)2)η(zj ,at)

t + αt(zj , at) µj(xt)∑
k
µk(xt)2 η̂

(xt,at)
t . Fast

mixture update, projection on representatives
11: return ηt+1

40

List of Figures

2.1 Problems in the initialization of FCM . 6

3.1 A test case for cluster-based function approximation 9
3.2 Piece-wise constant approximation (E ≈ 0.072) 10
3.3 Fuzzy approximation (E ≈ 0.053) . 10
3.4 Fuzzy approximation for different values of the fuzzifier (from left to right:

1.2, 1.5, 1.8, 2) . 10
3.5 Fuzzy approximation with gradients (E ≈ 0.037) 11
3.6 Approximation error as a function of dimension and of the fuzzifier 12

4.1 The test environment (left: the surface on which the object evolves; right:
heatmap representation) . 17

4.2 Evolution of rewards obtained through training for 4 algorithms (results are
averaged over 300 runs) . 19

4.3 Maximal expected value of action-value distribution for the different algo-
rithms. 20

4.4 Learned action-value distribution at the initial state for the different algo-
rithms. 21

5.1 The considered network architecture . 24
5.2 Representatives produced after 1 epoch of training, when initializing uniformly

at 0. 24
5.3 Results of the fuzzy interpolation of some images by the learned memberships

layer. For each pair of digit, the left one is the actual data sample and the
right one is the interpolated one. 25

5.4 Representatives produced after 1 epoch of training, when initializing with
k-means++. (a) Initial representatives (left) compared with learned represen-
tatives (right); (b) some representatives change shapes while training. . . 26

5.5 Fuzzy interpolation of a digit. Interpolated images are representated through
heatmaps for scale and readability. 26

41

List of Tables

3.1 Comparison of approximation errors for multiple functions. 11

4.1 Performance comparison of the different algorithms (α = 0.1). 18
4.2 Performance comparison of the different algorithms (α = 0.01). 18

43

List of Algorithms

1 CDRL mixture update [17] . 14
2 F-CDRL mixture update . 39
3 GF-CDRL mixture update . 40
4 Fast F-CDRL mixture update . 40

45

	Kurzfassung
	Abstract
	Contents
	Introduction
	K-Means and Fuzzy C-Means
	K-Means
	Fuzzy sets and the Fuzzy C-Means algorithm
	Limits of the FCM algorithm

	From Clustering to Function Approximation
	K-Means and Piecewise Constant Approximation
	Fuzzy Approximation
	Experiments
	Choosing the Fuzzifier

	The Fuzzy Approximation in a RL context
	Distributional Reinforcement Learning
	From a Discretized State Space to a Fuzzy Approximation
	Fuzzy CDRL
	Results

	Fuzzy Approximation in a Classification Context
	The Search for Adequate Representatives
	Details on the Backpropagation Algorithm

	Operator View on the Interpolation Function Approximation
	Conclusion
	Bibliography
	Appendix
	List of Figures
	List of Tables
	List of Algorithms

