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Kapitel 1

Kurzfassung

Diese Dissertation untersucht fortschrittliche Ansätze der künstlichen Intelligenz zur Verbesse-
rung der klinischen Entscheidungsfindung in der Intensivmedizin anhand dreier komplementärer
Studien. In der ersten Publikation wurde ein Reinforcement-Learning-(RL)-Algorithmus ent-
wickelt, um die Kortikosteroidtherapie bei septischen Patienten zu optimieren. Anhand von
Daten aus 3.051 Intensivstationsaufenthalten im AmsterdamUMCdb wurden Patienten gemäß
der Konsensdefinition von 2016 identifiziert. Ein auf einem Actor-Critic-Framework basierendes
RL-Modell, das die Intensivstationsmortalität als Belohnungssignal nutzte, wurde mit zeitlich
aufbereiteten Daten zu 277 klinischen Parametern trainiert. Off-Policy-Evaluierungen zeigten,
dass die Behandlungspolitik des RL-Agenten – die durch eine restriktivere Kortikosteroidverord-
nung gekennzeichnet war (in 62 % der Patientenzustände ein Zurückhalten versus 52 % in der
klinischen Praxis) – einen höheren erwarteten Reward und eine damit verbundende geringere
Intensivstationsmortalität in der Evaluierung in einem Test-Datenset erzielte.

Im der zweiten Studie wurde RL angewendet, um die individualisierte Entscheidungsunter-
stützung für die Nierenersatztherapie (RRT) bei kritisch kranken Patient:innen mit akutem
Nierenversagen (AKI) zu verbessern. Hierzu wurden Daten aus der öffentlich zugänglichen
MIMIC-IV-Datenbank sowie einem externen Datensatz der Medizinischen Universität Wien
(MUW) verwendet, wobei Patient:innen mit AKI ab Stadium I einbezogen und solche mit chro-
nischer Nierenerkrankung oder vorangegangener Nierentransplantation ausgeschlossen wurden.
Durch die Extraktion von 88 medizinischer Parametern und den Einsatz eines gewichteten K-
Means-Clustering-Ansatzes zur Definition des Patientenzustands wurde ein 𝑄-Learning-basierter
RL-Ansatz entwickelt. Das Modell erreichte in beiden Kohorten eine Übereinstimmung mit den
klinischen Entscheidungen von bis zu 98% und übertraf diese in beiden Evaluationsmethoden.
Besonders hervorzuheben ist, dass das Modell eine Patientengruppe mit höherer Erkrankungs-
schwere identifizierte, die von einer früheren oder intensiveren RRT profitieren könnte, was
das Potenzial einer KI-gestützten Entscheidungsunterstützung zur Verbesserung der Ergebnisse
unterstreicht.

Die dritte Publikation dieser Dissertation befasst sich mit der Vorhersage intraoperativen
Hypotonie. Hierzu wurde ein Temporal Fusion Transformer (TFT)-Modell eingesetzt, um die
arterielle Blutdruckentwicklung während der Operation bis zu 7 Minuten im Voraus anhand
von niedrig aufgelösten Daten (alle 15 Sekunden) von 73.009 Patient:innen, die sich einer
Allgemeinanästhesie bei nicht-kardiothorakalen Eingriffen unterzogen, zu prognostizieren. Das
TFT-Modell erreichte einen mittleren absoluten Fehler von ca. 4 mmHg im internen Test und 7
mmHg im externen Test. Zudem ermöglichte die binäre Vorhersage einer Hypotonie (mittlerer
arterieller Druck unter 65 mmHg) eine hervorragende Diskriminierung mit AUROC-Werten von
0,933 im internen und 0,919 im externen Testdatensatz.

Insgesamt zeigen diese Studien, dass fortschrittliche KI-Techniken – insbesondere RL und
transformerbasierte Modelle – Verbesserungen in der personalisierten und präzisen Gestaltung
intensivmedizinischer Therapien bewirken könnten. Die Integration robuster Datenvorverarbei-
tung, dynamischer Zustandsraumrepräsentationen und Off-Policy-Evaluationsmethoden bildet
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die Basis für die Generalisierbarkeit dieser Modelle. Letztlich legt diese Arbeit den Grund-
stein für zukünftige klinische Studien und ebnet den Weg zu KI-gestützten, individualisierten
Behandlungsstrategien, die das Potenzial haben, die Patientensicherheit in unterschiedlichen
intensivmedizinischen Settings nachhaltig zu verbessern.



Abstract

This dissertation explores advanced artificial intelligence methodologies to enhance clinical
decision-making in critical care through three complementary studies. The first publication
describes the development of a reinforcement learning (RL) algorithm to optimize corticosteroid
therapy in septic patients. Using data from 3,051 ICU admissions in the AmsterdamUMCdb,
septic patients were identified according to the 2016 consensus definition. An actor-critic RL
model, which utilized ICU mortality as a reward signal, was trained on time-series data comprising
277 clinical parameters. Off-policy evaluations showed that the RL agent’s treatment policy –
characterized by a more restrictive use of corticosteroids (withholding in 62% of patient states
versus 52% in clinician practice) – yielded a higher expected reward and lower ICU mortality
when evaluated with an independent test set.

In the second study, we applied RL to support individualized decision making for renal
replacement therapy (RRT) in critically ill patients with acute kidney injury (AKI). Data from
the publicly available MIMIC-IV database and an external dataset from the Medical University
of Vienna (MUW) were used, focusing on patients with AKI stage I or higher. By extracting 88
features and using weighted K-means clustering to define patient states, a 𝑄-learning based RL
model was developed. The model achieved up to 98% agreement with clinician decisions and
outperformed the average clinician’s treatment strategy in our evaluation methods. Notably,
the model identified a subset of patients with higher disease severity who could benefit from
earlier or more frequent RRT, highlighting the potential of AI-driven decision support to improve
outcomes.

The third publication of this dissertation addresses the challenge of predicting intraoperative hy-
potension. We employed a Temporal Fusion Transformer (TFT) model to forecast intraoperative
arterial blood pressure trajectories up to 7 minutes in advance using low-resolution data (sampled
every 15 seconds) from 73,009 patients undergoing general anesthesia for non-cardiothoracic
surgery. The TFT model achieved a very low mean absolute error of approximately 4 mmHg in
internal testing and 7 mmHg in external testing. Additionally, binary prediction of hypotension
(mean arterial pressure below 65 mmHg) yielded excellent discrimination, with AUROC values
of 0.933 and 0.919 in internal and external test sets, respectively.

Collectively, these studies demonstrate that advanced AI techniques – including RL and
transformer-based models – may lead to significant improvements in the personalization and
precision of critical care therapies. The integration of robust data preprocessing, dynamic
state-space representations, and off-policy evaluation methods supports the generalizability of
these models. Ultimately, the work lays a solid foundation for future clinical trials and paves the
way for AI-driven, individualized treatment strategies that promise to improve patient outcomes
in various critical care settings. ay for AI-driven, individualized treatment strategies that promise
to enhance patient outcomes across diverse critical care settings.
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Chapter 3

Introduction

3.1 Overview
Artificial Intelligence (AI) has rapidly evolved from an emerging technology to a transformative
tool in modern medicine. In particular, its applications in critical care medicine have received
considerable attention in recent years, as evidenced by numerous PubMed-indexed studies and
reviews. These reviews highlight the potential of AI to enhance clinical decision making and risk
prediction [1, 2].

In the intensive care unit (ICU), clinicians are confronted with complex, multidimensional
datasets—ranging from continuous physiological monitoring and laboratory values to imaging
and electronic health records (EHRs). Traditional statistical methods often struggle to capture
the nonlinear interactions inherent in such data. In contrast, machine learning (ML) and deep
learning approaches have shown promise in processing these data streams, providing early warning
signals for adverse events such as sepsis, mortality, and organ failure [3, 2]. Recent studies have
highlighted advanced methodologies, including ensemble models and foundation models (e.g.,
transformers), which can integrate heterogeneous ICU data for improved prediction accuracy [4].

A critical factor in the adoption of AI in clinical practice is interpretability. In high-stakes
environments such as the ICU, clinicians need transparent and explainable models that they
can trust [5]. Several investigations have proposed frameworks for explainable AI that ensure
machine learning models not only provide accurate predictions, but also actionable insights that
are aligned with clinical reasoning [6].

The challenges of generalizability and external validation have also been extensively discussed
in recent literature. The majority of AI models in intensive care have been developed using
data from single centers or limited cohorts, which raises concerns about their applicability
across diverse clinical settings [7, 8]. Efforts to standardize reporting and encourage multicenter
validation are crucial for translating these innovations into routine practice.

Ethical and regulatory considerations further complicate the integration of AI in critical care.
Issues related to bias, accountability, and patient safety have been rigorously debated, leading
to proposals for robust ethical frameworks and regulatory pathways to ensure responsible AI
deployment [9]. Moreover, future directions for research emphasize the need for transparency,
replicability, and clinical integration to truly benefit patient care [10].

3.2 Introduction
The practice of critical care medicine is undergoing a fundamental transformation, driven by
advances in artificial intelligence. Clinicians face time-sensitive decisions amidst dynamic patient
conditions, heterogeneous disease trajectories, and incomplete physiological data in environments
such as the ICU and operating room. Conditions such as sepsis, intraoperative hypotension, and
AKI-each characterized by high morbidity, mortality, and therapeutic uncertainty-exemplify these
challenges. Traditional protocols, often based on population-level evidence, struggle to address
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the inherent complexity of individual patients. This dissertation advances AI-driven methods
to bridge this gap, using reinforcement learning (RL) and transformer-based architectures to
optimize personalized treatment strategies in three critical areas: corticosteroid therapy for sepsis,
initiation of RRT for AKI, and proactive management of intraoperative hypotension-

Sepsis, defined as life-threatening organ dysfunction caused by a dysregulated host response
to infection [11], remains a leading cause of global mortality despite decades of research. Corti-
costeroids, first proposed as adjunctive therapy in the 1950s [12], continue to provoke debate
due to conflicting trial outcomes [13, 14]. This ambiguity reflects the syndrome’s pathophys-
iological heterogeneity, where static treatment protocols fail to account for evolving patient
states. Similarly, intraoperative hypotension (mean arterial pressure [MAP] <65 mmHg) is
strongly associated with postoperative myocardial injury, renal impairment, and delirium [15,
16], yet reactive management remains standard due to the lack of reliable forecasting tools. AKI,
affecting up to 50% of ICU patients [17], presents a parallel dilemma: RRT initiation hinges
on balancing fluid overload, metabolic disturbances, and procedural risks, yet biomarkers and
clinical thresholds offer limited guidance [18].

RL and TFT offer a paradigm shift. RL, which optimizes sequential decisions by maximizing
cumulative rewards through environmental interactions [19], is uniquely suited to critical care’s
dynamic, high-dimensional data. TFTs, combining attention mechanisms with recurrent neural
networks [20], enable precise multi-horizon forecasting even with sparse, low-resolution inputs.
These methodologies address core limitations of traditional approaches: protocol rigidity, delayed
interventions, and one-size-fits-all thresholds.

3.2.1 Publications
This work integrates three complementary studies to advance AI-driven critical care:

1. Development of a Reinforcement Learning Algorithm to Optimize Corticosteroid
Therapy in Critically Ill Patients with Sepsis: An actor-critic RL model was trained
on 3,051 ICU admissions from the AmsterdamUMCdb using 277 clinical parameters and
ICU mortality as a reward signal. Off-policy evaluation showed that the RL policy –
characterized by more restrictive corticosteroid use (withheld in 62% of states vs. 52%
clinician adherence) – achieved a 14% reduction in predicted mortality compared to standard
clinical practice. This demonstrates the value of adaptive dosing strategies that respond to
individual patient trajectories (see chapter 5):
Bologheanu R, Kapral L, Laxar D, Maleczek M, Dibiasi C, Zeiner S, Agibetov A,
Ercole A, Thoral P, Elbers P, Heitzinger C, Kimberger O. Development of a Reinforcement
Learning Algorithm to Optimize Corticosteroid Therapy in Critically Ill Patients with
Sepsis. Journal of Clinical Medicine. 14 Feb. 2023, doi:10.3390/jcm12041513.

2. Optimized Renal Replacement Therapy Decisions in Intensive Care: A Rein-
forcement Learning Approach: Using the MIMIC-IV database and an external cohort
from the Medical University of Vienna, a Q-learning algorithm combined 88 clinical features
to derive RRT initiation guidelines. The model achieved 98% agreement with clinician
decisions while identifying a high-risk subgroup that benefited from earlier intervention.
By framing RRT timing as a Markov decision process, this approach dynamically balances
changes in the patient state (see chapter 6):
Kapral L, Bologheanu R, Azarbeik M, Bilir A, Bartos S, Weiss R, Schaller S, Heitzinger
C, Schaden E, Kimberger O. Optimized Renal Replacement Therapy Decisions in Intensive
Care: A Reinforcement Learning Approach. Under Review in Intensive Care Medicine.
2025, doi.org/10.21203/rs.3.rs-6243566/v1.
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3. Development and External Validation of Temporal Fusion Transformer Models
for Continuous Intraoperative Blood Pressure Forecasting: A TFT model trained
on 73,009 non-cardiothoracic surgeries forecasted MAP trajectories 7 minutes ahead using
low-resolution data (15-second sampling). Internal and external validation yielded mean
absolute errors of 4 mmHg and 7 mmHg, respectively, with AUROCs of 0.933 and 0.919
for hypotension prediction. This precision enables proactive hemodynamic management
without reliance on invasive arterial waveforms (see chapter 7):
Kapral L, Dibiasi C, Jeremic N, Bartos S, Behrens S, Bilir A, Heitzinger C, Kim-
berger O. Development and external validation of temporal fusion transformer models for
continuous intraoperative blood pressure forecasting. EClinicalMedicine. 30 Aug. 2024,
doi:10.1016/j.eclinm.2024.102797.

3.2.2 Contributions
This dissertation is written entirely by the author in terms of its scientific content and conceptual
framework. No generative AI was used to produce the research questions, the results, or the
interpretation of findings. Automated tools such as ChatGPT, DeepL, and Grammarly were
employed solely for language checks, grammar corrections, minor stylistic refinements, and LATEX
formula transformation. Therefore, 0% of the topics, results, and statistics presented originate
from AI generation, while all main arguments and analyses have been developed and executed by
the author. With respect to theoretical derivations, no new mathematical proofs were introduced
in this work, and any existing proofs or derivations relied upon are attributed to the appropriate
literature as cited.

Numerical experiments and the associated software implementation were developed primarily
by the author. Across all three publications and related work, the total code produced amounts
to thousands of lines in Python, incorporating key libraries such as TensorFlow 2.x for neural
network modeling, scikit-learn for machine learning utilities, and pandas for data handling.
Visualization was carried out with matplotlib and seaborn. In instances where external
codebases were adapted for specific functionalities, substantial modifications were performed by
the author to align them with the particular research questions posed in this thesis. In a few
instances, plotting routines were augmented by ChatGPT; however, all core model code and
experimental design were manually scripted.

Regarding study 1, approximately 3,000 lines of code were developed for an actor-critic
reinforcement learning framework including pre-processing and evaluation. All code was written
by the author without AI assistance. The author was responsible for about 60% of the overall
work, which included study design, data analysis, and writing. The code basis was created
entirely for this specific study.

In study 2, around 4,000 lines of code were created, integrating Q-learning algorithms in
Python for outcome analysis. The author contributed roughly 70% of the work, which included
conceptual design, code development, and manuscript writing. Only minor AI help was used
for plotting snippets. The foundations of this code were adapted from an existing repository,
with about 50% rewritten. The code is available at https://github.com/lorenzkap/MAP_TFT,
incorporating adaptations from https://github.com/greatwhiz/tft_tf2.

In study 3, about 4,000 lines of code were written to apply a transformer-based architecture for
intraoperative blood pressure forecasting. The author carried out approximately 70% of the work,
covering model adaptation, data handling, and drafting the text. AI was used only for minimal
support in plotting. The code derives from a publicly accessible source, with approximately
40% modified to optimize the Temporal Fusion Transformer for predicting intraoperative blood

https://github.com/lorenzkap/MAP_TFT
https://github.com/greatwhiz/tft_tf2
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pressure. The code is available at https://github.com/lorenzkap/RL4RRT, adapted from
https://github.com/cmudig/AI-Clinician-MIMICIV/tree/main.

3.2.3 Clinical and Methodological Implications
Together, these studies demonstrate how AI can integrate detailed patient data, real-time clinical
insights, and advanced analytics to personalize critical care. By translating population-level
medical evidence into tailored treatments, AI bridges the gap between generalized guidelines
and individual patient needs. For example, the sepsis and AKI models illustrate how RL can
dynamically adjust treatment targets—such as medication dosing or fluid thresholds—in response
to a patient’s changing condition. Similarly, the high predictive accuracy of the TFT highlights
how transformer-based AI models can decode complex physiological patterns, such as unstable
blood pressure during surgery, to guide clinical decisions. Methodologically, this work strengthens
the reliability of AI in healthcare through testing across diverse patient datasets, transparent
model explanations, and validation in real-world critical care settings.

The following chapters outline the medical and technical foundations of this research. Chapter 4
provides essential background on sepsis, AKI, and intraoperative hypotension, as well as the
core principles of reinforcement learning and transformer architectures. Chapters 5–7 present
the three central studies, each combining technical innovation with clinical relevance. Study 1
(Chapter 5) focuses on RL-driven treatment optimization for sepsis, study 2 (Chapter 6) explores
AKI risk prediction using dynamic AI models, and study 3 (Chapter 7) details the TFT’s ability
to forecast perioperative complications. Collectively, this dissertation lays the groundwork for
AI-driven critical care systems that are adaptive, precise, and proactive—ultimately aiming to
improve outcomes for the most vulnerable patients.

https://github.com/lorenzkap/RL4RRT
https://github.com/cmudig/AI-Clinician-MIMICIV/tree/main


Chapter 4

Fundamentals

4.1 Medical Background
4.1.1 Sepsis
Sepsis is a heterogeneous clinical syndrome defined as a life-threatening organ dysfunction caused
by a dysregulated host response to infection [11, 21]. This definition underscores that sepsis,
rather than being a single disease, is fundamentally driven less by the invading pathogen than
by the host’s maladaptive response, which, when uncontrolled, can lead to widespread tissue
damage, organ failure, and ultimately death. Recent estimates indicate that sepsis is responsible
for approximately 11 million deaths annually on a global scale [22], highlighting its enormous
impact on public health. The heterogeneity of sepsis arises from the variable nature of the
host’s immune response, the diversity of infectious triggers, and the range of clinical phenotypes
observed, which together pose significant challenges to both diagnosis and management [21, 23].

The pathophysiology of sepsis involves a complex interplay between pro-inflammatory and
anti-inflammatory mechanisms. Initially, the infection triggers an exaggerated immune response
characterized by the release of inflammatory cytokines, activation of complement pathways, and
coagulation cascades. This early hyperinflammatory state can lead to endothelial dysfunction,
capillary leak, and microvascular thrombosis, all of which contribute to tissue hypoperfusion
and organ dysfunction. Paradoxically, many patients subsequently enter a phase of immune
suppression, rendering them more vulnerable to secondary infections and complicating the clinical
course [24, 25]. The interplay between these phases and the ensuing dysregulation underscores
the complexity of developing targeted therapies for sepsis.

Current standard treatment for sepsis emphasizes early recognition and rapid intervention.
The cornerstone of management care bundles developed in consensus by medical experts from
existing evidence, include prompt initiation of broad-spectrum antibiotics, rigorous source control
of the underlying infection, and supportive care measures aimed at maintaining adequate tissue
perfusion through fluid resuscitation and vasopressor support when necessary [26, 27]. Despite
these efforts, sepsis remains a leading cause of morbidity and mortality, and there is a pressing
need for adjunctive therapies that can modulate the host response and improve clinical outcomes.

Corticosteroids have been investigated as one such adjunctive therapy for nearly seven decades,
ever since early studies by Cook and colleagues first suggested their potential benefit in sepsis [12].
These agents are known for their potent anti-inflammatory and immunomodulatory properties,
and their use in sepsis was further bolstered by observations of adrenal insufficiency in critically
ill patients [28]. The rationale for corticosteroid therapy in sepsis is based on the concept that,
in some patients, the endogenous stress response is insufficient to counteract the overwhelming
inflammatory cascade, and that exogenous corticosteroids might help restore hemodynamic
stability and modulate the dysregulated immune response.

Clinical investigations have demonstrated that corticosteroid treatment may hasten the resolu-
tion of septic shock, particularly by reducing the duration of vasopressor dependency [29, 30,
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31]. However, these benefits have not consistently translated into a clear survival advantage,
and the overall impact on mortality remains a subject of debate. The variability in outcomes
observed across different studies may, in part, be attributable to differences in patient populations,
the timing of intervention, dosage, and duration of corticosteroid administration [30]. Current
guidelines suggest the use of corticosteroids in septic patients who remain hemodynamically
unstable despite adequate fluid resuscitation and vasopressor support, yet they also acknowledge
the uncertainty surrounding the optimal therapeutic regimen and the potential for adverse effects
such as hyperglycemia, immunosuppression, and muscle weakness [26].

In recent years, the goal of refining corticosteroid therapy in sepsis has increasingly focused on
identifying patient subgroups most likely to benefit from such treatment. Given the heterogeneity
of the syndrome, a one-size-fits-all approach is unlikely to be effective, and there is growing
interest in personalizing therapy using advanced tools such as transcriptomics and machine
learning [32, 21]. In particular, RL, a branch of ML dedicated to sequential decision making in
dynamic environments, has emerged as a promising method for analyzing high-resolution clinical
data and optimizing treatment strategies in the intensive care unit [33, 34]. By exploiting the
differences in individual patient trajectories and clinician treatment patterns, these algorithms
aim to construct decision support tools that can recommend an optimal corticosteroid regimen
tailored to the patient’s evolving condition. This approach has the potential to overcome the
limitations of traditional clinical trials, which are often challenged by the extreme variability of
sepsis phenotypes, and may ultimately lead to more effective and personalized interventions.

4.1.2 Acute Kidney Injury and Renal Replacement Therapy
AKI is a complex and multifaceted syndrome characterized by a sudden decline in renal function,
often developing over a period of hours to days. The kidneys, which are responsible for maintaining
homeostasis through the regulation of fluid balance, electrolyte composition, and the removal of
metabolic waste, can be severely compromised by insults such as ischemia, nephrotoxicity, or
sepsis [35, 36]. In the ICU, AKI is a common complication, with studies indicating that up to
50% of critically ill patients experience some degree of renal dysfunction during their stay [17,
37]. The presence of AKI not only predisposes patients to immediate metabolic derangements,
such as hyperkalaemia, acidosis, and fluid overload, but also increases the risk of multiorgan
failure and death, with mortality rates exceeding 50% in severe cases [38, 39].

The management of AKI in critically ill patients frequently necessitates the use of RRT, a
group of extracorporeal techniques designed to mimic the filtration functions of healthy kidneys.
RRT modalities, which include intermittent hemodialysis, continuous renal replacement therapy
(CRRT), and peritoneal dialysis, serve to remove toxins, regulate electrolyte imbalances, and
correct acid-base disturbances [40]. However, it is important to recognize that while RRT can
mitigate the biochemical consequences of AKI, it does not promote the recovery of injured renal
tissue; rather, it functions as a supportive therapy until renal recovery occurs or until the patient
is bridged to a more definitive therapy [36, 35]. This supportive nature of RRT underscores the
critical challenge clinicians face: balancing the risks and costs inherent to the procedure against
the potential harms of delayed intervention in the face of rapidly evolving renal dysfunction.

An important area of ongoing debate within critical care nephrology concerns the optimal
timing of RRT initiation in patients with AKI. Early initiation of RRT refers to the start of
therapy at a stage when renal impairment is recognized but before the full development of
life-threatening complications. The rationale for this approach lies in the hypothesis that early
intervention may prevent the accumulation of uremic toxins and stabilize metabolic imbalances,
thereby forestalling further organ dysfunction [41, 42]. In contrast, a strategy of late initiation
delays RRT until more definitive clinical or biochemical indications are present. While early
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RRT might intuitively seem beneficial, several high-quality randomized controlled trials have
failed to demonstrate a clear survival benefit with early intervention; in some cases, premature
initiation has been associated with increased risks such as hemodynamic instability, infection,
and the unnecessary use of resources [43, 42]. Conversely, delaying RRT until later stages may
allow for spontaneous renal recovery in some patients, yet this delay can also expose patients to
the detrimental effects of severe metabolic disturbances, including fluid overload and electrolyte
imbalances, which themselves are associated with higher mortality rates [41]. Thus, the decision
regarding the timing of RRT initiation remains a delicate balance, closely linked to the severity
of the underlying pathology and the patient’s overall clinical trajectory.

Despite the availability of various biomarkers and the assessment of urine output as tools to
estimate renal function, their ability to accurately predict which patients will progress to severe,
clinically significant AKI is limited. This diagnostic uncertainty complicates the determination
of when to initiate RRT, as the conventional criteria based solely on kidney function markers
may not capture the dynamic and heterogeneous progression of the injury. Additionally, the
subsequent decision of when to discontinue RRT, once initiated, further contributes to the
complexity of AKI management. In recent years, the application of ML, particularly RL, has
emerged as a promising avenue for addressing these clinical challenges. Unlike traditional
supervised learning methods, RL algorithms are adept at handling sequential decision-making
problems by continuously learning and adapting policies based on the long-term outcomes of
therapeutic interventions [33]. By framing the initiation and discontinuation of RRT as a series
of interconnected decisions within a Markov decision process, RL techniques such as 𝑄-learning
and policy gradients have the potential to optimize individualized treatment strategies [44, 45].
Early studies have demonstrated that these approaches can lead to improved patient outcomes
in related critical care scenarios, such as sepsis management and dialysis scheduling [33, 46].

The overarching hypothesis guiding current research is that the progression of the underlying
pathological process in AKI, rather than isolated biomarkers or intermittent measures of urine
output, is the key determinant of a patient’s trajectory and subsequent need for RRT. In order
to develop an optimal, individualized strategy for initiating RRT, a more refined understanding
of the temporal evolution of AKI and its associated complications is essential.

4.1.3 Blood Pressure Management
Blood pressure is a fundamental physiological parameter that represents the force exerted by
circulating blood on the surface of the walls of blood vessels. It is determined by two major
components: cardiac output, which is the volume of blood ejected by the heart per unit time, and
systemic vascular resistance, which reflects the degree of constriction of the peripheral vasculature
[47]. The interaction between these components is determined by complex neurohumoral and
renal mechanisms, which are continuously adjusted to meet the metabolic demands of the body.
Under normal conditions, blood pressure is tightly regulated to ensure adequate tissue perfusion
and oxygen delivery, but deviations from the norm can be the precursor to a range of clinical
outcomes. Both hypotension (abnormally low blood pressure) and hypertension (abnormally
high blood pressure) are associated with adverse outcomes; hypotension can lead to inadequate
perfusion and organ ischemia, while hypertension is a major risk factor for cardiovascular events
such as myocardial infarction and stroke.

The hemodynamic framework underlying blood pressure regulation involves the study of
blood flow dynamics and the forces acting on the circulatory system. Hemodynamics is critical
to understanding how variations in heart rate, myocardial contractility, blood volume, and
vascular tone contribute to changes in blood pressure. For example, during surgery, particularly
under general anesthesia, the administration of hypnotics and opioid analgesics can depress
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cardiac contractility and reduce systemic vascular resistance, predisposing patients to hypotensive
episodes [16]. These effects are often amplified by additional intraoperative stressors such as blood
loss, hypovolemia, and patient positioning. Inadequate blood pressure during critical periods
has been associated with adverse outcomes including myocardial injury, acute kidney injury,
and neurological disorders such as delirium [48]. Therefore, understanding the hemodynamic
responses during surgery is essential to reduce the risk of end-organ damage.

Pharmacological interventions play a central role in the management of blood pressure disorders,
both chronic and perioperative. Blood pressure medications include a wide variety of agents
with different mechanisms of action. For example, vasopressors – commonly used during
episodes of intraoperative hypotension – work by inducing vasoconstriction and thereby increasing
systemic vascular resistance to restore adequate perfusion pressure. Conversely, short-acting
antihypertensives such as urapidil (an 𝛼1-receptor antagonist) and esmolol (a 𝛽1-adrenergic
blocker) can be used intraoperatively to control acute increases in blood pressure by modulating
vascular tone and heart rate. Meanwhile, other agents-such as 𝛽-adrenergic blockers, calcium
channel blockers, and angiotensin-converting enzyme inhibitors-are often used in the long-
term management of chronic hypertension to help prevent the harmful effects of persistently
elevated blood pressure. The selection of these drugs requires a detailed understanding of their
pharmacodynamics and pharmacokinetics, particularly in situations where rapid hemodynamic
changes occur, such as during anesthesia-induced stress.

Moreover, patient-specific factors such as age, comorbidities, and inherent variations in vascular
reactivity add layers of complexity to blood pressure management. Elderly individuals or patients
with pre-existing cardiovascular diseases may exhibit impaired baroreceptor sensitivity and
altered vascular compliance, rendering them more susceptible to rapid fluctuations in blood
pressure during perioperative periods [49]. Recent advances in predictive modeling have sought to
address these challenges by employing machine learning algorithms to hypotension based on both
static and dynamic clinical data [20]. These innovative approaches, such as the temporal fusion
transformer (TFT) algorithm, are designed to integrate heterogeneous data sources—ranging from
demographic information to real-time hemodynamic measurements—to provide early warnings
of impending hypotension. The ability to predict such episodes holds promise for transforming
intraoperative management from a reactive to a proactive paradigm, thereby potentially reducing
the incidence of hypotension-related complications [16].

A detailed understanding of blood pressure regulation, the hemodynamic principles underlying
circulatory function, and the pharmacological strategies available to modulate blood pressure
are essential for improving clinical outcomes, especially in high-risk scenarios such as surgery
under general anesthesia. The integration of traditional physiological knowledge with modern
predictive analytics offers a promising path towards individualized, timely interventions aimed at
minimizing the risks associated with hemodynamic instability.

4.2 Basic Concepts of Reinforcement Learning
Reinforcement learning (RL) is a method of ML. Together with supervised learning and unsuper-
vised learning, RL constitutes one of the fundamental approaches in machine learning. Unlike
other methods, RL does not require a data set composed of analyzed example data. Instead, an
agent interacts with an environment and autonomously learns a strategy to maximize the reward
generated by the environment. The agent does not receive any information or instructions about
which strategy is optimal; it only receives the reward.

Before looking at specific algorithms, it is important to define some basic concepts. The
following definitions of RL basics are based on the discussion in reference [19].
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4.2.1 Policy
The policy defines the agent’s behavior at a given time. Specific actions are associated with the
states of the environment that have been reached. The complexity of the policy heavily depends
on the environment. In the simplest cases, it can be merely a table of all possible states, but
it is usually of a stochastic nature. For complex applications, it can also demand substantial
computational resources.

The policy can be considered the core of RL, as it alone suffices to determine the agent’s
behavior in specific situations.

In the literature, the policy is often denoted as 𝜋(𝑎, 𝑠) to indicate its dependence on the state
𝑠 and the action 𝑎.

4.2.2 Reward Signal
The reward signal defines the ultimate goal of the RL problem. After each time step, the
environment sends a real number, the reward, to the agent. The agent’s sole objective is to
maximize this reward over time. The reward sent is dependent on the current state of the
environment and the agent’s current action. The agent can influence the reward signal only by
selecting specific actions.

Therefore, the reward signal represents the primary basis for modifying the policy. If a selected
action leads to a low reward, the policy is adjusted so that, in the same initial situation in the
future, a different action is more likely to be chosen.

4.2.3 Value Function
The value function indicates what is most beneficial in the long run. Essentially, the value of a
state is equal to the total reward that an agent expects to accumulate starting from that state in
the future. In other words, the reward defines the intrinsic and immediate desirability of a state.
In contrast, the value describes the desirability in the long term, as it accounts for the rewards
that will be obtained in subsequent states.

Values are therefore predictions of rewards and are given greater consideration in action
selection than the rewards themselves. The agent seeks an action with the maximum value, not
with the maximum reward. However, estimating the value is significantly more challenging than
estimating the reward. Rewards can be directly obtained from the environment, whereas values
must be estimated from observation sequences. The method of accurately estimating the value
of a state is considered the most crucial component of Reinforcement Learning.

In the literature, the value of an action is typically denoted as 𝑄(𝑠, 𝑎), which is also the
namesake of 𝑄-Learning. The value of a state is denoted as 𝑉 (𝑠).

4.2.4 The Model
Some RL systems use models of the environment. The model’s task is to mimic the environment’s
behavior so that this behavior can be predicted. For example, using the model, it should be
possible to determine the next value 𝑉 (𝑠𝑡+1) based on a pair consisting of the current state and
the chosen action. This allows for the planning of future actions. Methods that utilize models are
referred to as model-based methods. Without using models, learning must occur solely through
trial and error.
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Fig. 4.1: The interaction between the agent and the environment [19]

4.2.5 Exploration and Exploitation
RL requires a mechanism to explore the environment. During the learning process, the agent
must balance exploration and exploitation. Exploration involves investigating the environment
and gaining information that can inform future decisions. In contrast, exploitation refers to
selecting the best decision based on the currently available information, specifically choosing the
action with the highest 𝑄-value [50].

This balance has been extensively studied, particularly in the context of the multi-armed bandit
problem, where simple exploration methods have proven to be practical. [51]

To manage this balance, a parameter 𝜖, where 0 < 𝜖 < 1, is commonly used. The parameter 𝜖
represents the probability with which the agent chooses to explore. When exploration occurs,
a random action is taken, allowing the agent to gather information about actions that might
potentially lead to losses. Conversely, with a probability of 1−𝜖, the agent engages in exploitation,
selecting the action with the highest long-term value based on the current information.

In practical applications, 𝜖 is typically set to a high value at the beginning to enable the agent
to gather as much information about the environment as possible. Depending on the system’s
complexity, 𝜖 is then gradually decreased after several training iterations, usually by dividing it
by a constant greater than zero. This process is repeated until 𝜖 approaches zero.

4.3 Finite Markov Decision Process
The foundation of RL is based on the Markov Decision Process (MDP). An MDP represents a
strategy for decision-making in a system that is partially stochastic and partially controllable
[52].

After each time step, a state 𝑠 is reached. The decision-maker, who in the context of RL is the
agent, must choose an action 𝑎 that is permissible in state 𝑠. This action transitions the process
to state 𝑠′ and the agent receives a reward 𝑟𝑎(𝑠, 𝑠′) . The probability of transitioning to state
𝑠′ depends on the action taken. If 𝑠 and 𝑎 are independent of previous states and actions, the
Markov property is satisfied, allowing the application of rules to solve the Markov problem (see
Figure 4.1).

The MDP is an extension of the Markov chain, as adding multiple actions introduces a
decision-making capability.

RL closely resembles the MDP: stochastic rules determine the information the agent receives
after each time step. In most cases, the agent is provided with a scalar directly associated with
the previously chosen action. At each time step 𝑡, the agent receives an observation 𝑜𝑡, which
typically includes the reward 𝑟𝑡. Based on this observation, the agent selects an action 𝑎𝑡 from
the set of possible actions in state 𝑠𝑡. This decision depends on the agent’s policy 𝜋(𝑎, 𝑠); the
agent maps the state 𝑠 to selection probabilities for each possible action 𝑎. Subsequently, the



4.4 Return 19

environment transitions to a new state 𝑠𝑡+1. The reward 𝑟𝑡+1 associated with the transition
(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) is also determined. The agent’s goal is to maximize the sum of all received rewards.
This is achieved by continuously adjusting the policy 𝜋(𝑎, 𝑠) based on the agent’s experiences.
Therefore, RL is also suitable for problems where a trade-off between short-term and long-term
reward optimization is necessary.

4.4 Return
The agent aims to maximize the cumulative reward in the long term; the sequence of rewards
after 𝑡 time steps can be written as 𝑟𝑡+1, 𝑟𝑡+2, 𝑟𝑡+3, . . . . The return 𝐺𝑡 can be defined in the
simplest case as

𝐺𝑡 = 𝑟𝑡+1 + 𝑟𝑡+2 + 𝑟𝑡+3 + · · ·+ 𝑟𝑇 , (4.1)

where 𝑇 represents the final time step. Since problems can consist of many time steps, the
discount rate 𝛾 is introduced. Using 𝛾, the discounted return 𝐺𝑡 is defined as

𝐺𝑡 = 𝑟𝑡+1 + 𝛾 𝑟𝑡+2 + 𝛾2𝑟𝑡+3 + · · · =
∞∑︁

𝑘=0
𝛾𝑘𝑟𝑡+𝑘+1, (4.2)

where 𝛾 is a parameter such that 0 ≤ 𝛾 ≤ 1.
To capture the long-term performance of a policy, we often consider the expected cumulative

reward, denoted by 𝐽 . Formally, we can write

𝐽 = 𝔼[𝐺0] = 𝔼
[︃ ∞∑︁

𝑘=0
𝛾𝑘 𝑟𝑘+1

]︃
, (4.3)

where 𝐺0 is the (discounted) return starting at time 𝑡 = 0, and the expectation is taken with
respect to the stochastic process induced by the policy and the environment. The goal of many
reinforcement learning algorithms is to find a policy 𝜋 that maximizes this expected return 𝐽 .

4.5 Markov Decision Process
RL satisfies the Markov property and is thus modeled as a MDP.

A finite MDP is defined by a set of states 𝑠, actions 𝑎, and the probability of transitioning to
any possible next state 𝑠′ from a state-action pair (𝑠, 𝑎). This transition is associated with a
reward 𝑟. Formally, this can be expressed as

𝑝(𝑠′, 𝑟|𝑠, 𝑎) = Pr(𝑠𝑡+1 = 𝑠′, 𝑟𝑡+1 = 𝑟|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎), (4.4)

where Pr denotes probability. From Equation 4.4, the expected reward of a state-action pair can
be formulated as:

𝑟(𝑠, 𝑎) = 𝔼[𝑟𝑡+1|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] =
∑︁

𝑟

𝑟
∑︁
𝑠′

𝑝(𝑠′, 𝑟|𝑠, 𝑎), (4.5)

with the state transition probabilities

𝑝(𝑠′|𝑠, 𝑎) = Pr(𝑠𝑡+1 = 𝑠′|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) =
∑︁

𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎), (4.6)
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where 𝔼[.] denotes the expectation value. The expected rewards are described by the value
function, which is defined with respect to a particular policy. To recall: the policy 𝜋 assigns a
probability 𝜋(𝑎|𝑠) to selecting a possible action 𝑎 in state 𝑠. The expected reward obtained by
following policy 𝜋 in state 𝑠 is called the value of state 𝑠 under policy 𝜋 and is denoted as 𝑉𝜋(𝑠).
For MDPs, this value function can be formally written as

𝑉𝜋(𝑠) = 𝔼𝜋[𝐺𝑡|𝑠𝑡 = 𝑠] = 𝔼𝜋

[︃ ∞∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠

]︃
. (4.7)

Similarly, the value of an action 𝑎 in state 𝑠 under policy 𝜋 can be defined as 𝑄𝜋(𝑠, 𝑎). This
function corresponds to the expected reward resulting from choosing action 𝑎 in state 𝑠 and
subsequently following policy 𝜋:

𝑄𝜋(𝑠, 𝑎) = 𝔼𝜋[𝐺𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] = 𝔼𝜋

[︃ ∞∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

]︃
. (4.8)

This function is known as the Action-Value Function of policy 𝜋 and plays a central role in
RL methods.

𝑉𝜋 and 𝑄𝜋 are estimated from the agent’s experience. If these functions are approximated by
computing individual average values for each observed state 𝑠, the approach is referred to as
Monte Carlo methods. Through numerous repetitions, the optimal values of these functions are
gradually approximated.

A fundamental property of these value functions, which is utilized in RL and Dynamic
Programming, is their recursive relationship. For any policy 𝜋 and any state 𝑠, the following
consistency condition holds:

𝑉𝜋(𝑠) = 𝔼𝜋[𝐺𝑡|𝑠𝑡 = 𝑠]

= 𝔼𝜋

[︃ ∞∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1

⃒⃒⃒⃒
⃒ 𝑠𝑡 = 𝑠

]︃

= 𝔼𝜋

[︃
𝑟𝑡+1 + 𝛾

∞∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+2

⃒⃒⃒⃒
⃒ 𝑠𝑡 = 𝑠

]︃

=
∑︁

𝑎

𝜋(𝑎|𝑠)
∑︁
𝑠′

∑︁
𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎)
(︃

𝑟 + 𝛾𝔼𝜋

[︃ ∞∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1

⃒⃒⃒⃒
⃒ 𝑠𝑡 = 𝑠′

]︃)︃
=
∑︁

𝑎

𝜋(𝑎|𝑠)
∑︁
𝑠′,𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎)
(︀
𝑟 + 𝛾 𝑉𝜋(𝑠′)

)︀
.

(4.9)

Equation 4.9 is known as the Bellman Equation and expresses the relationship between the
value 𝑉𝜋 of a state and its possible subsequent states 𝑠′ [53]. The Bellman Equation is a sum over
the three variables 𝑎, 𝑠′, and 𝑟. For each triplet, the probability 𝜋(𝑎|𝑠)𝑝(𝑠′, 𝑟|𝑠, 𝑎) is calculated
and then summed, where 𝜋(𝑎|𝑠) represents the policy.

4.6 Dynamic Programming
The fundamental idea of Dynamic Programming (DP) and is the use of value functions to
structure the search for an optimal policy [53, 54].
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4.6.1 Policy Evaluation
The process of computing the state-value function 𝑉𝜋, as described by Equation 4.9, for a given
policy 𝜋 is known as Policy Evaluation. The Bellman Equation can be rewritten as a successive
approximation for the next state-value function:

𝑉𝑘+1(𝑠) = 𝔼𝜋 [𝑟𝑡+1 + 𝛾 𝑉𝑘(𝑠𝑡+1) | 𝑠𝑡 = 𝑠]
=
∑︁

𝑎

𝜋(𝑎 | 𝑠)
∑︁
𝑠′,𝑟

𝑝(𝑠′, 𝑟 | 𝑠, 𝑎)
(︀
𝑟 + 𝛾 𝑉𝑘(𝑠′)

)︀
, (4.10)

where 𝑉𝑘 = 𝑉𝜋 is a fixed point for this update rule. Starting from an initial state 𝑉0, 𝑉𝜋 can be
iteratively approximated.

This algorithm allows for the determination of 𝑉𝜋 for a given policy 𝜋. However, it remains
unclear whether modifying this policy would be advantageous. One way to determine when
a policy change is beneficial is by observing the Action-Value Function 𝑄𝜋. 𝑄𝜋 provides the
value of a state 𝑠 after selecting an action 𝑎. Consequently, Equation 4.8 can be rewritten using
Equation 4.9:

𝑄𝜋(𝑠, 𝑎) = 𝔼𝜋 [𝑟𝑡+1 + 𝛾 𝑉𝜋(𝑠𝑡+1) | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]
=
∑︁
𝑠′,𝑟

𝑝(𝑠′, 𝑟 | 𝑠, 𝑎)
(︀
𝑟 + 𝛾 𝑉𝜋(𝑠′)

)︀
. (4.11)

The criterion for policy improvement is whether 𝑄𝜋 is greater than or less than 𝑉𝜋. If 𝑄𝜋 is
greater than 𝑉𝜋, it is better to choose action 𝑎 in state 𝑠 and then follow policy 𝜋 rather than
always following policy 𝜋. In such cases, the policy should be updated.

By selecting the best action 𝑎 in all states 𝑠 based on 𝑄𝜋(𝑠, 𝑎), the Greedy Policy 𝜋′ can be
introduced:

𝜋′(𝑠) = arg max
𝑎

𝑄𝜋(𝑠, 𝑎)

= arg max
𝑎

𝔼𝜋 [𝑟𝑡+1 + 𝛾 𝑉𝜋(𝑠𝑡+1) | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

= arg max
𝑎

∑︁
𝑠′,𝑟

𝑝(𝑠′, 𝑟 | 𝑠, 𝑎)
(︀
𝑟 + 𝛾 𝑉𝜋(𝑠′)

)︀
,

(4.12)

where arg max𝑎 denotes the value of 𝑎 that maximizes the expression. The process of improving
policy 𝜋 by selecting the action with the highest value based on the original policy’s value
function 𝜋′ is called Policy Improvement.

From Equation 4.12, an iterative algorithm can be constructed to improve the policy, as
illustrated in Algorithm 1.

However, this algorithm has the drawback that each iteration step includes a policy evaluation,
which is itself an iterative process. The next consideration for improving the algorithm is based on
reducing the number of iterations. An important special case is known as Value Iteration, which
is equivalent to terminating after the first iteration step. With this improvement, Algorithm 1
can be written more concisely as:

𝑉𝑘+1(𝑠) = max
𝑎

𝔼𝜋 [𝑟𝑡+1 + 𝛾 𝑉𝑘(𝑠𝑡+1) | 𝑠𝑡 = 𝑠]

= max
𝑎

∑︁
𝑠′,𝑟

𝑝(𝑠′, 𝑟 | 𝑠, 𝑎)
(︀
𝑟 + 𝛾 𝑉𝑘(𝑠′)

)︀
. (4.13)

The major disadvantage of the methods presented so far is that these operations iterate over
all existing states of the MDP. In complex environments, this becomes computationally infeasible
due to the enormous number of possible states.
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Algorithm 1 This algorithm presents a pseudocode for policy improvement from [19] p. 97. Before
the policy 𝜋 can be improved, it must be evaluated according to Equation 4.10. Subsequently,
the policy can be improved using Equation 4.12 until the policy stabilizes. It is important to note
that the process loops back to step 2 repeatedly, meaning that the policy must be re-evaluated
continuously.

1. Initialization:
𝑉 (𝑠) ∈ ℝ and 𝜋(𝑠) ∈ 𝒜(𝑠) arbitrarily for all 𝑠 ∈ 𝒮.
2. Policy Evaluation:
repeat

Δ← 0
for each 𝑠 ∈ 𝒮 do

𝑣 ← 𝑉 (𝑠)
𝑉 (𝑠)←∑︀

𝑠′,𝑟 𝑝(𝑠′, 𝑟 | 𝑠, 𝜋(𝑠)) (𝑟 + 𝛾 𝑉 (𝑠′))
Δ← max(Δ, |𝑣 − 𝑉 (𝑠)|)

end for
until Δ < 𝜃 (a small positive number)
3. Policy Improvement:
policy-stable ← true
for each 𝑠 ∈ 𝒮 do

𝑎← 𝜋(𝑠)
𝜋(𝑠)← arg max𝑎

∑︀
𝑠′,𝑟 𝑝(𝑠′, 𝑟 | 𝑠, 𝑎) (𝑟 + 𝛾 𝑉 (𝑠′))

if 𝑎 ̸= 𝜋(𝑠) then
policy-stable ← false

end if
end for
if policy-stable then

Stop and return 𝑉 and 𝜋
else

Go to step 2.
end if
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Algorithm 2 This algorithm related to Value Iteration is sourced from reference [19] p.101
and demonstrates an improvement over the algorithm in Algorithm 1. Instead of repeatedly
evaluating the policy, only a single iteration step is performed to update 𝑉 according to Equation
4.13. This algorithm is referred to as Value Iteration.

Initialize array 𝑉 arbitrarily (e.g., 𝑉 (𝑠) = 0 for all 𝑠 ∈ 𝒮+).
repeat

Δ← 0
for each 𝑠 ∈ 𝒮 do

𝑣 ← 𝑉 (𝑠)
𝑉 (𝑠)← max𝑎

∑︀
𝑠′,𝑟 𝑝(𝑠′, 𝑟 | 𝑠, 𝑎) (𝑟 + 𝛾 𝑉 (𝑠′))

Δ← max(Δ, |𝑣 − 𝑉 (𝑠)|)
end for

until Δ < 𝜃 (a small positive number)
Output a deterministic policy 𝜋, such that

𝜋(𝑠) = arg max
𝑎

∑︁
𝑠′,𝑟

𝑝(𝑠′, 𝑟 | 𝑠, 𝑎)
(︀
𝑟 + 𝛾 𝑉 (𝑠′)

)︀

4.7 Monte-Carlo Methods
In the previous chapters, comprehensive knowledge of the entire system was assumed. However,
Monte-Carlo (MC) methods rely solely on experience—sequences of states, actions, and rewards
generated from interactions with the environment—for the learning process [55]. MC methods
provide approaches to solve problems by creating average values from the accumulated experiences.

To estimate the state-value function 𝑉𝜋(𝑠), an average of the returns obtained after visiting
state 𝑠𝑡 is calculated. This average approximates the expected value with a high number of
repetitions. Consequently, the individual estimates for each state are independent of one another.

In the absence of a model, it is preferable to use estimated action-values (𝑄-values) over
state-values (𝑉 -values). The estimation of action-values follows a similar procedure to that of
state-values; however, instead of visiting states, state-action pairs (𝑠, 𝑎) are observed. After each
visit, the MC method estimates a value for the state-action pair as the average of the returns
resulting from selecting that specific action in the given state.

However, this approach encounters the problem that some state-action pairs may never be
visited.

4.8 Temporal-Difference Learning
Temporal-Difference (TD) Learning plays a central role in the understanding of RL. It is a hybrid
approach that combines elements of DP and MC methods. On one hand, TD methods can learn
directly from experience, similar to MC methods [56]. On the other hand, they create estimates
based on other estimates, akin to DP.
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4.8.1 TD Estimation
Like MC methods, TD uses experience to approximate 𝑉𝜋. MC methods wait until the return of
a state visit is known and then use this return as the target for updating 𝑉 (𝑠𝑡). This can be
mathematically expressed as:

𝑉 (𝑠𝑡)← 𝑉 (𝑠𝑡) + 𝛼 (𝐺𝑡 − 𝑉 (𝑠𝑡)) , (4.14)

where 𝐺𝑡 represents the actual return at time 𝑡, and 𝛼 denotes the step size. The MC method
would need to wait until the end of the episode to compute Equation 4.14 and determine 𝐺𝑡.

The advantage of TD methods is that only the next time step is required: at time 𝑡 + 1, the
observed reward 𝑟𝑡+1 and an estimate of 𝑉 (𝑠𝑡+1) are used to compute a useful update. Based on
this insight, the simplest TD method can be formulated as:

𝑉 (𝑠𝑡)← 𝑉 (𝑠𝑡) + 𝛼 (𝑟𝑡+1 + 𝛾 𝑉 (𝑠𝑡+1)− 𝑉 (𝑠𝑡)) . (4.15)

The value that the approximation aims to reach is referred to as the target. In the case of
the MC method, the target is 𝐺𝑡, whereas for the TD method, the target is 𝑟𝑡+1 + 𝛾 𝑉 (𝑠𝑡+1).
Compared to Equation 4.9, the target for the MC method corresponds to the first line, and the
target for DP corresponds to the last line of this equation.

TD methods that generate updates based on existing estimates are known as bootstrapping
methods [57].

The target in TD represents an estimated value: on one hand, it accumulates expected values
as in MC methods; on the other hand, it uses 𝑉 (𝑠𝑡+1) instead of the actual 𝑉𝜋. For this reason,
TD combines the accumulation of expected values from MC methods with the bootstrapping
characteristic of DP.

4.8.2 SARSA: On-Policy TD
To address the exploration-exploitation dilemma discussed in Chapter 4.2.5, there are two different
approaches: On-Policy learning algorithms evaluate and improve the same policy that is used to
select actions. In short, the target policy is simultaneously the policy that determines the agent’s
behavior. In contrast, Off-Policy algorithms evaluate and improve a policy that is different
from the policy used to select actions. Thus, in this case, the target policy is different from the
behavior-determining policy [50]. The SARSA method is an example of an On-Policy method
[58].

Unlike the methods discussed above, the SARSA method uses the action-value function 𝑄𝜋

instead of the state-value function 𝑉𝜋. This can be achieved using the theory already discussed,
as an episode consists of an alternating sequence of states 𝑠𝑡 and state-action pairs (𝑎𝑡, 𝑟𝑡+1),
which include all the necessary components for the SARSA algorithm.

The fundamental algorithm for iteratively calculating the action-values can be formulated as
follows:

𝑄(𝑠𝑡, 𝑎𝑡)← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼 (𝑟𝑡+1 + 𝛾 𝑄(𝑠𝑡+1, 𝑎𝑡+1)−𝑄(𝑠𝑡, 𝑎𝑡)) . (4.16)

This update (Equation 4.16) is performed after each transition starting from a non-terminal
state 𝑠𝑡. If 𝑠𝑡+1 is a terminal state, 𝑄(𝑠𝑡+1, 𝑎𝑡+1) is defined as 0. This rule uses each element of
the following sequence of events (𝑠𝑡, 𝑎𝑡, 𝑟𝑡+1, 𝑠𝑡+1, 𝑎𝑡+1). This sequence of events includes all the
necessary components for transitioning from one state-action pair to the next, which is why the
algorithm is named SARSA.
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To create a complete algorithm, as with all On-Policy methods, a 𝑄𝜋 is continuously estimated
based on the behavior of policy 𝜋. Simultaneously, 𝜋 is also modified, as 𝜋 can be derived from 𝑄.
From this, a general form of the SARSA algorithm can be obtained; it is presented as pseudocode
in Algorithm 3.

Algorithm 3 The SARSA algorithm from [19] p.155. After all 𝑄-values are initialized, an action
is chosen in state 𝑠 according to the current policy. The environment then returns the values
𝑟 and 𝑠′. Subsequently, an action 𝑎′ is chosen according to the same policy as before. Using
Equation 4.16, 𝑄(𝑠, 𝑎) is updated. These steps are repeated until the terminal state is reached.

Initialize 𝑄(𝑠, 𝑎),∀𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜(𝑠) arbitrarily, and 𝑄(terminal-state, ·) = 0.
repeat

Initialize 𝑠
Choose 𝑎 from 𝑠 using policy derived from 𝑄 (e.g., 𝜖-greedy)
repeat

Take action 𝑎, observe 𝑟, 𝑠′

Choose 𝐴′ from 𝑆′ using policy derived from 𝑄 (e.g., 𝜖-greedy)
𝑄(𝑠, 𝑎)← 𝑄(𝑠, 𝑎) + 𝛼 (𝑟 + 𝛾 𝑄(𝑠′, 𝑎′)−𝑄(𝑠, 𝑎))
𝑠← 𝑠′; 𝑎← 𝑎′

until 𝑠 is terminal
until convergence

4.9 𝑄-Learning
The 𝑄-Learning algorithm sit one of the most significant algorithms in RL [59]. The simplest
form, One-Step 𝑄-Learning) and can be defined as follows:

𝑄(𝑠𝑡, 𝑎𝑡)← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼
(︁
𝑟𝑡+1 + 𝛾 max

𝑎
𝑄(𝑠𝑡+1, 𝑎)−𝑄(𝑠𝑡, 𝑎𝑡)

)︁
. (4.17)

In this case, the learned action-value function 𝑄 is directly approximated from 𝑄*, the optimal
action-value function, and is therefore independent of the policy. 𝑄-Learning is an Off-Policy
learning method because the policy used to select actions is different from the target policy.
Instead of following the target policy, the action with the highest 𝑄-value is always selected,
which essentially corresponds to a greedy 𝜖-policy with 𝜖 approaching 0. However, the target
policy still has an effect because it determines which state-action pairs are visited and updated.

4.9.1 Bellman Optimality Equation
The objective is to find the optimal action-value function 𝑄* that satisfies the Bellman optimality
equation

𝑄*(𝑠, 𝑎) = 𝔼
[︀
𝑟𝑡+1 + 𝛾 max

𝑏∈𝒜
𝑄*(𝑠𝑡+1, 𝑏)

]︀
for all (𝑠, 𝑎),

with the expectation taken over the random next state 𝑠𝑡+1 and reward 𝑟𝑡+1 given current state
𝑠 and action 𝑎. This 𝑄* is the unique fixed point of the Bellman optimality operator 𝑇 , which
acts componentwise:

(𝑇 𝑄)(𝑠, 𝑎) = 𝔼
[︀
𝑟𝑡+1 + 𝛾 max

𝑏
𝑄(𝑠𝑡+1, 𝑏)

]︀
. (4.18)
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4.9.2 Key Assumptions for Convergence
We consider a MDP with finite state set 𝒮, finite action set 𝒜, discount factor 0 ≤ 𝛾 < 1, transition
kernel 𝑇 (· | 𝑠, 𝑎), and reward function 𝑟(𝑠, 𝑎) (bounded). We state standard assumptions ensuring
almost-sure convergence of 𝑄-Learning to 𝑄* [59, 60]:

(A1) Sufficient Exploration. Every state-action pair (𝑠, 𝑎) is updated infinitely often. Formally,
∞∑︁

𝑡=0
1{(𝑠𝑡, 𝑎𝑡) = (𝑠, 𝑎)} = ∞ with probability 1.

(A2) Bounded Rewards. There is a constant 𝑅max <∞ such that |𝑟𝑡+1| ≤ 𝑅max.

(A3) Step Sizes (Robbins–Monro). The learning rates {𝛼𝑡} satisfy
∞∑︁

𝑡=0
𝛼𝑡 = ∞,

∞∑︁
𝑡=0

𝛼2
𝑡 < ∞,

as introduced in [61].

The infinite-visitations condition (A1) ensures that each pair (𝑠, 𝑎) receives infinitely many
updates. Bounded rewards (A2) help keep 𝑄 iterates bounded. The step-size conditions (A3)
ensure stable yet persistent updates in the sense of classical stochastic approximation.

4.9.3 Convergence Proof
We present a convergence proof that merges standard boundedness with a four-stage convergence
framework: (i) Bellman-operator contraction, (ii) update decomposition, (iii) martingale noise
analysis, and (iv) a final stochastic-approximation argument [60, 62, 63].

4.9.3.1 Boundedness of 𝑄-Learning Iterates

Lemma 1 (Boundedness). Under assumption (A2), the sequence {𝑄𝑡} generated by (4.17)
remains uniformly bounded almost surely. Specifically, if |𝑟𝑡+1| ≤ 𝑅max and |𝑄0(𝑠, 𝑎)| ≤ 𝐶0 for
all (𝑠, 𝑎), then letting

𝐶 = max
{︁

𝐶0, 𝑅max
1−𝛾

}︁
,

we have |𝑄𝑡(𝑠, 𝑎)| ≤ 𝐶 for all 𝑡 and (𝑠, 𝑎) almost surely.

Proof. We argue by induction. The base case |𝑄0(𝑠, 𝑎)| ≤ 𝐶 holds by definition. Assume
|𝑄𝑡(𝑠, 𝑎)| ≤ 𝐶 for all (𝑠, 𝑎). Only (𝑠𝑡, 𝑎𝑡) is updated at time 𝑡. Then

𝑄𝑡+1(𝑠𝑡, 𝑎𝑡) = (1− 𝛼𝑡) 𝑄𝑡(𝑠𝑡, 𝑎𝑡) + 𝛼𝑡
(︀
𝑟𝑡+1 + 𝛾 max

𝑏
𝑄𝑡(𝑠𝑡+1, 𝑏)

)︀
.

Since |𝑟𝑡+1| ≤ 𝑅max and |max𝑏 𝑄𝑡(𝑠𝑡+1, 𝑏)| ≤ 𝐶 by the induction hypothesis, we have⃒⃒
𝑟𝑡+1 + 𝛾 max

𝑏
𝑄𝑡(𝑠𝑡+1, 𝑏)

⃒⃒
≤ 𝑅max + 𝛾 𝐶 .

Because 𝐶 ≥ 𝑅max
1−𝛾 , it follows that 𝑅max + 𝛾 𝐶 ≤ 𝐶(1− 𝛾) + 𝛾 𝐶 = 𝐶 . Hence⃒⃒

𝑄𝑡+1(𝑠𝑡, 𝑎𝑡)
⃒⃒
≤ (1− 𝛼𝑡) 𝐶 + 𝛼𝑡 𝐶 = 𝐶 .
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For other pairs (𝑠, 𝑎) ̸= (𝑠𝑡, 𝑎𝑡), we have 𝑄𝑡+1(𝑠, 𝑎) = 𝑄𝑡(𝑠, 𝑎), so they remain bounded by 𝐶 by
the induction hypothesis.

4.9.3.2 Stage 1: Bellman Operator Contraction

A key property of the Bellman optimality operator 𝑇 is its sup-norm contraction:

Proposition 1. For any two action-value functions 𝑄1 and 𝑄2,

‖𝑇 𝑄1 − 𝑇 𝑄2‖∞ ≤ 𝛾 ‖𝑄1 −𝑄2‖∞.

Proof. Recall that
(𝑇 𝑄)(𝑠, 𝑎) = 𝔼

[︁
𝑟𝑡+1 + 𝛾 max

𝑏
𝑄
(︀
𝑠𝑡+1, 𝑏

)︀]︁
.

Hence,
(𝑇 𝑄1)(𝑠, 𝑎) − (𝑇 𝑄2)(𝑠, 𝑎) = 𝛾 𝔼

[︁
max

𝑏
𝑄1(𝑠𝑡+1, 𝑏) − max

𝑏
𝑄2(𝑠𝑡+1, 𝑏)

]︁
.

Taking absolute values and noting that
⃒⃒
max𝑏 𝑥𝑏 − max𝑏 𝑦𝑏

⃒⃒
≤ max𝑏 |𝑥𝑏 − 𝑦𝑏|, we get

⃒⃒
(𝑇 𝑄1)(𝑠, 𝑎)− (𝑇 𝑄2)(𝑠, 𝑎)

⃒⃒
≤ 𝛾 𝔼

[︁
max

𝑏
|𝑄1(𝑠𝑡+1, 𝑏)−𝑄2(𝑠𝑡+1, 𝑏)|

]︁
.

Because max(𝑠,𝑎)|𝑄1(𝑠, 𝑎)−𝑄2(𝑠, 𝑎)| = ‖𝑄1−𝑄2‖∞ is a constant with respect to the expectation,⃒⃒
(𝑇 𝑄1)(𝑠, 𝑎)− (𝑇 𝑄2)(𝑠, 𝑎)

⃒⃒
≤ 𝛾 ‖𝑄1 −𝑄2‖∞.

Taking the supremum over all (𝑠, 𝑎) then yields ‖𝑇 𝑄1−𝑇 𝑄2‖∞ ≤ 𝛾 ‖𝑄1−𝑄2‖∞, as required.

4.9.3.3 Stage 2: Update Decomposition

Starting from the one-step 𝑄-Learning update:

𝑄𝑡+1(𝑠, 𝑎) = 𝑄𝑡(𝑠, 𝑎) + 𝛼𝑡(𝑠, 𝑎)
(︁
𝑟𝑡+1 + 𝛾 max

𝑏
𝑄𝑡(𝑠𝑡+1, 𝑏) − 𝑄𝑡(𝑠, 𝑎)

)︁
,

we rewrite it in a way that cleanly separates the “contraction part” (the shift toward 𝑇 𝑄𝑡) from
a “noise term.” Define

Δ𝑡(𝑠, 𝑎) = 𝑄𝑡(𝑠, 𝑎) − 𝑄*(𝑠, 𝑎),

where 𝑄* is the fixed point of 𝑇 (so 𝑄* = 𝑇 𝑄*). Then

𝑄𝑡+1(𝑠, 𝑎) = 𝑄𝑡(𝑠, 𝑎) + 𝛼𝑡(𝑠, 𝑎)
(︁
(𝑇 𝑄𝑡)(𝑠, 𝑎) − 𝑄𝑡(𝑠, 𝑎)

)︁
+ 𝛼𝑡(𝑠, 𝑎) 𝑤𝑡(𝑠, 𝑎),

where the “noise” is given by

𝑤𝑡(𝑠, 𝑎) =
(︀
𝑟𝑡+1 + 𝛾 max

𝑏
𝑄𝑡(𝑠𝑡+1, 𝑏)

)︀
− (𝑇 𝑄𝑡)(𝑠, 𝑎).

Subtracting 𝑄*(𝑠, 𝑎) on both sides shows how the error Δ𝑡+1 evolves:

Δ𝑡+1(𝑠, 𝑎) = (1− 𝛼𝑡(𝑠, 𝑎)) Δ𝑡(𝑠, 𝑎) + 𝛼𝑡(𝑠, 𝑎)
(︁
(𝑇 𝑄𝑡)(𝑠, 𝑎) − (𝑇 𝑄*)(𝑠, 𝑎)

)︁
+ 𝛼𝑡(𝑠, 𝑎) 𝑤𝑡(𝑠, 𝑎).

(4.19)
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Since 𝑇 𝑄* = 𝑄*, the difference in brackets can be written as (𝑇 𝑄𝑡)(𝑠, 𝑎)− (𝑇 𝑄*)(𝑠, 𝑎). By the
contraction property from Stage 1, we know

‖(𝑇 𝑄𝑡)− (𝑇 𝑄*)‖∞ ≤ 𝛾 ‖𝑄𝑡 −𝑄*‖∞ = 𝛾 ‖Δ𝑡‖∞.

Hence in subsequent stages, we will see that the contraction term pulls 𝑄𝑡 toward 𝑄*, while 𝑤𝑡

is treated as a martingale-difference noise whose impact diminishes as 𝛼𝑡 → 0.

4.9.3.4 Stage 3: Martingale Noise Analysis

Lemma 2 (Martingale Difference). Let ℱ𝑡 = 𝜎
(︀
𝑄0, (𝑠0, 𝑎0, 𝑟1), . . . , (𝑠𝑡, 𝑎𝑡, 𝑟𝑡+1)

)︀
. Then for each

(𝑠, 𝑎),
𝔼[ 𝑤𝑡(𝑠, 𝑎) | ℱ𝑡] = 0, and 𝔼

[︀
𝑤𝑡(𝑠, 𝑎)2 ⃒⃒ℱ𝑡

]︀
≤ 𝜎2

for some finite constant 𝜎2.
Proof. (i) Zero Mean. If (𝑠, 𝑎) ̸= (𝑠𝑡, 𝑎𝑡), then 𝑤𝑡(𝑠, 𝑎) = 0. If (𝑠, 𝑎) = (𝑠𝑡, 𝑎𝑡), then

𝔼
[︀
𝑤𝑡(𝑠, 𝑎)

⃒⃒
ℱ𝑡
]︀

= 𝔼
[︁
𝑟𝑡+1 + 𝛾 max

𝑏
𝑄𝑡(𝑠𝑡+1, 𝑏)

⃒⃒⃒
𝑠𝑡, 𝑎𝑡

]︁
− (𝑇 𝑄𝑡)(𝑠, 𝑎) = 0,

by the definition of (𝑇 𝑄𝑡)(𝑠, 𝑎) (from equation 4.18).

(ii) Bounded Variance. From Lemma 1, the iterates {𝑄𝑡} are almost surely bounded, say

|𝑄𝑡(𝑠, 𝑎)| ≤ 𝐶 .

Then,
|𝑟𝑡+1 + 𝛾 max

𝑏
𝑄𝑡(𝑠𝑡+1, 𝑏)| ≤ 𝑅max + 𝛾 𝐶 .

This inequality implies that the sample term

𝑋𝑡(𝑠, 𝑎) = 𝑟𝑡+1 + 𝛾 max
𝑏

𝑄𝑡(𝑠𝑡+1, 𝑏)

is uniformly bounded. Since (𝑇 𝑄𝑡)(𝑠, 𝑎) is defined as the conditional expectation of 𝑋𝑡(𝑠, 𝑎)
given ℱ𝑡, both 𝑋𝑡(𝑠, 𝑎) and (𝑇 𝑄𝑡)(𝑠, 𝑎) are restricted to lie within a finite range. As a result,
their difference,

𝑤𝑡(𝑠, 𝑎) = 𝑋𝑡(𝑠, 𝑎)− (𝑇 𝑄𝑡)(𝑠, 𝑎),

is also uniformly bounded. Hence, there exists a finite constant 𝜎2 such that

𝔼
[︀
𝑤𝑡(𝑠, 𝑎)2 | ℱ𝑡

]︀
≤ 𝜎2.

This bounded variance is critical because it guarantees that the stochastic fluctuations (noise)
introduced at each update do not dominate the learning process. Consequently, under the
Robbins–Monro conditions with diminishing step sizes, the effect of this noise averages out over
time, ensuring convergence.

4.9.3.5 Stage 4: Stochastic Approximation Argument

Define 𝐷𝑡 = ‖𝑄𝑡 − 𝑄*‖∞. The contraction property plus the noise decomposition imply (see
equation 4.19)

𝐷𝑡+1 ≤ (1− 𝛼𝑡(1− 𝛾)) 𝐷𝑡 + 𝛼𝑡 |𝑤𝑡|,
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where 𝑤𝑡 is bounded and forms a martingale-difference sequence. By standard results in stochastic
approximation (see [64, 65, 63]), if ∑︀𝑡 𝛼𝑡 =∞ and ∑︀𝑡 𝛼2

𝑡 <∞, then 𝐷𝑡 → 0 almost surely.

Theorem 1 (Almost-Sure Convergence of 𝑄-Learning). Under assumptions (A1)–(A3), the
sequence {𝑄𝑡} defined by (4.17) converges almost surely to 𝑄*. Equivalently, ‖𝑄𝑡 −𝑄*‖∞ → 0
with probability 1.

Sketch of Proof. By Lemma 1, 𝑄𝑡 remains almost surely bounded. Lemma 2 shows the “noise”
term 𝑤𝑡 is a martingale difference with bounded variance, which, under the Robbins–Monro
conditions (A3), implies that its impact diminishes over time. Meanwhile, Proposition 1 ensures
𝑇 is a 𝛾-contraction in the sup norm, so the deterministic part of the update pulls 𝑄𝑡 closer
to 𝑄*. Assumption (A1) guarantees each component (𝑠, 𝑎) is updated infinitely often. Putting
these together in the standard stochastic-approximation recursion (from equation 4.17)

𝑄𝑡+1 = 𝑄𝑡 + 𝛼𝑡⏟ ⏞ 
Step-size

(diminishing)

[︁
(𝑇 𝑄𝑡 −𝑄𝑡)⏟  ⏞  

Deterministic component
(contraction term)

+ 𝑤𝑡⏟ ⏞ 
Stochastic noise

(martingale difference)

]︁

yields 𝑄𝑡 → 𝑄* almost surely.

Under the standard assumptions of (A1) infinite visits, (A2) bounded rewards, and (A3)
proper stepsize decay, the iterates {𝑄𝑡} converge almost surely to the unique fixed point 𝑄*

of the Bellman optimality operator [59, 65]. This result underlies why 𝑄-Learning remains a
cornerstone of reinforcement learning.

4.9.3.6 Asynchronous and Parallel Implementations

Assumption (A1) simply requires that each state-action pair (𝑠, 𝑎) is visited infinitely often,
in any order. This setup is sometimes called “asynchronous” 𝑄-Learning [60]. Convergence
is guaranteed because the contraction ‖𝑇 𝑄 − 𝑇 𝑄′‖∞ ≤ 𝛾‖𝑄 − 𝑄′‖∞ applies componentwise,
regardless of the update order or delays.
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4.10 Backpropagation
The error minimization presented in Equation 4.20 illustrates the fundamental concept of
backpropagation, which serves as the algorithm for updating the learning process in neural
networks [66]. In the context of TD learning, the weight update is given by

Δ𝑤 = 𝛼 𝛿𝑡∇𝑤𝑉 (𝑠𝑡), (4.20)

where 𝛼 is the learning rate, 𝑉 (𝑠𝑡) is the network’s current estimate (for example, the value of
state 𝑠𝑡), and the TD error 𝛿𝑡 is defined as

𝛿𝑡 = 𝑟𝑡 + 𝛾 𝑉 (𝑠𝑡+1)− 𝑉 (𝑠𝑡).

This update rule can be derived from the standard TD update for state value functions given in
equation 4.15. Assuming that the state value function is approximated by 𝑉 (𝑠𝑡, 𝑤) parameterized
by 𝑤, we define the TD error as

𝛿𝑡 = 𝑟𝑡+1 + 𝛾 𝑉 (𝑠𝑡+1, 𝑤)− 𝑉 (𝑠𝑡, 𝑤).

To update the weights 𝑤 so as to minimize the squared TD error, we can perform gradient
descent on the loss function [67]

𝐿(𝑤) = 1
2𝛿2

𝑡 .

Taking the gradient with respect to 𝑤 gives

∇𝑤𝐿(𝑤) = 𝛿𝑡∇𝑤𝛿𝑡.

In many TD methods (using a semi-gradient approach), the target 𝑟𝑡+1 + 𝛾 𝑉 (𝑠𝑡+1, 𝑤) is treated
as constant with respect to 𝑤. Thus,

∇𝑤𝛿𝑡 = −∇𝑤𝑉 (𝑠𝑡, 𝑤),

and the gradient descent update becomes

Δ𝑤 = −𝛼∇𝑤𝐿(𝑤) = 𝛼 𝛿𝑡∇𝑤𝑉 (𝑠𝑡, 𝑤),

which is precisely Equation 4.20.
For supervised learning tasks, the error is often quantified using the Root Mean Squared Error

(RMSE), defined as

RMSE =

⎯⎸⎸⎷ 1
𝑁

𝑁∑︁
𝑗=1

(𝑜𝑗 − 𝑡𝑗)2, (4.21)

where 𝑜𝑗 represents the output of the 𝑗th neuron and 𝑡𝑗 the corresponding target value.
A neural network typically is a matrix of weights 𝑤𝑖,𝑗,𝑡 rather than a simple vector 𝑤𝑡. Figure 4.2

shows an example of such a network; note that a practical network may include many more
neurons, layers, and multiple outputs. In Figure 4.2, the connections between the neurons
represent the weights 𝑤𝑖,𝑗,𝑡. Figure 4.2 depicts the mathematical framework of single neuron in
Figure 4.2. The output 𝑜𝑗 of a neuron is calculated as

𝑜𝑗 = 𝜑(net𝑗), (4.22)
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where 𝜑 is a differentiable activation function (commonly a sigmoid or ReLU function [66, 68, 69])
whose derivative is nonzero over most of its domain. This function maps the neuron’s net input
into a manageable range (typically between 0 and 1). The vector 𝑉 = (𝑜1, 𝑜2, . . . , 𝑜𝑛) contains
all the outputs of the neural network. Figure 4.3 illustrates how the output of a single neuron is
formed.

Fig. 4.2: Example of a neural network with input, hidden, and output layers.

Fig. 4.3: Output of a single neuron.

The net input to a neuron, net𝑗 , is calculated as

net𝑗 =
𝑛∑︁

𝑖=1
𝑥𝑖 𝑤𝑖,𝑗 , (4.23)

where 𝑥𝑖 denotes the input signals. This summation is performed for each neuron in the network.
The simplest form of the backpropagation update can be written as

𝑤𝑡+1 = 𝑤𝑡 + Δ𝑤𝑖,𝑗 . (4.24)

The term Δ𝑤𝑖,𝑗 is computed from the derivative of the error function (for instance, the RMSE
in Equation 4.21). By applying the chain rule, we obtain

𝜕RMSE
𝜕 𝑤𝑖,𝑗

= 𝜕RMSE
𝜕 𝑜𝑗

· 𝜕 𝑜𝑗

𝜕net𝑗
· 𝜕net𝑗

𝜕 𝑤𝑖,𝑗
. (4.25)

Due to the interdependence of neurons (since the output of one layer serves as the input to
the next), the derivative in Equation 4.25 is split into parts. If a neuron resides in the output
layer, the weight update can be computed directly; otherwise, it must be determined indirectly.
The weight update is given by
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Δ𝑤𝑖,𝑗 = −𝛼
𝜕RMSE

𝜕 𝑤𝑖,𝑗
= −𝛼 𝛿𝑗 𝑜𝑖, (4.26)

with

𝛿𝑗 =

⎧⎪⎨⎪⎩
𝜑′(net𝑗) (𝑜𝑗 − 𝑡𝑗) if 𝑗 is an output neuron,

𝜑′(net𝑗)
∑︁

𝑘

𝛿𝑘 𝑤𝑗,𝑘 if 𝑗 is not an output neuron. (4.27)

Here, 𝑡𝑗 is the target value for the 𝑗th neuron, and the vector 𝐺𝑡 = (𝑡1, 𝑡2, . . . , 𝑡𝑛) represents
the target outputs. Notice the strong similarity between Equation 4.27 and the TD gradient
update in Equation 4.20.

It should be noted that, depending on the application domain, different error functions may
be used, which in turn alter the weight update Δ𝑤𝑖,𝑗 . Likewise, the choice of activation function
influences the form of Equation 4.27.

In many machine learning libraries, the error function is referred to as the criterion or simply
the loss. The activation function is typically applied in the output layer of the neural network.

4.11 Actor-Critic Methods
Actor-Critic methods are a class of TD algorithms that explicitly separate the representation
of the policy from that of the value function. In these methods, the Actor is responsible for
selecting actions by maintaining a parameterized policy, while the Critic evaluates the actions
taken by estimating the value of states (or state-action pairs). Rather than using action-values
directly for decision making, the policy is adjusted based on feedback from the Critic [70, 71].

The Critic evaluates the current state (or the resulting state after an action) and computes a
TD error—a scalar signal that reflects the discrepancy between the predicted and the observed
outcomes. This TD error is analogous to Equation 4.15 and serves as the central feedback signal
for both components of the algorithm. Specifically, the Critic uses the TD error to update its
value estimates, and the Actor uses the same signal to modify the policy parameters in a direction
that is expected to improve performance.

Typically, the Critic is implemented as a state-value function. After each action, the Critic
evaluates the new state to determine whether the state value has increased or decreased, producing
a TD error that is then used to update both the Actor and the Critic. More recent advancements
have applied Actor-Critic architectures in deep reinforcement learning contexts.

𝛿𝑡 = 𝑟𝑡+1 + 𝛾 𝑉𝑡(𝑠𝑡+1)− 𝑉 (𝑠𝑡), (4.28)

where 𝑉𝑡 is the value function implemented by the Critic at time 𝑡. In many variations of
the Actor-Critic algorithm, instead of the state-value function 𝑉𝑡(𝑠𝑡), the action-value function
𝑄𝑡(𝑠𝑡, 𝑎𝑡) is used to compute 𝛿𝑡. This TD error can be used to evaluate the chosen action 𝑎𝑡 in
state 𝑠. If the TD error is positive, the tendency to choose action 𝑎𝑡 should be strengthened; if
negative, it should be weakened. This can be achieved using the Gibbs Softmax method [19],
which is defined as:

𝜋𝑡(𝑎|𝑠) = Pr{𝑎𝑡 = 𝑎|𝑠𝑡 = 𝑠} = 𝑒𝐻𝑡(𝑠,𝑎)∑︀
𝑏 𝑒𝐻𝑡(𝑠,𝑏) , (4.29)

where 𝐻𝑡(𝑠, 𝑎) represents the modifiable policy parameters of the Actor, indicating the propensity
to select each action 𝑎 in each state 𝑠 at time 𝑡. 𝐻 corresponds to a vector containing all output
values of the Actor’s neural network, determined by the network’s weights 𝜃. By increasing or
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decreasing 𝐻𝑡(𝑠, 𝑎𝑡), the propensity to select an action can be altered. This is typically achieved
by adjusting the weights 𝜃. Equation 4.30 shows how this update is performed:

𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝜃𝑄(𝑠𝑡, 𝑎𝑡)∇𝜃 ln 𝜋𝜃(𝑠𝑡, 𝑎𝑡), (4.30)

where 𝛼𝜃 is a step size parameter. This adjustment is analogous to the backpropagation
described by Equation 4.24.

The policy parameters 𝜃 are initialized randomly, causing the Actor to execute random actions
during the initial phase.

With this information, a pseudocode for the Actor-Critic algorithm (Algorithm 4) can be
constructed.

Algorithm 4 The pseudocode of the Actor-Critic algorithm from [19] p.155. Initially, all
parameters are initialized. At each time step, an action is chosen according to the current policy,
followed by sampling the reward and next state. The policy parameters 𝜃 and action-value
function parameters 𝑤 are updated based on the TD error. These steps are repeated until the
terminal state is reached.

Initialize 𝑠, 𝜃 , 𝑤 at random; sample 𝑎 ∼ 𝜋𝜃(𝑎|𝑠).
for 𝑡 = 1, . . . , 𝑇 do

Sample reward 𝑟𝑡 ∼ 𝑅(𝑠, 𝑎) and next state 𝑠′ ∼ 𝑃 (𝑠′|𝑠, 𝑎);
Then sample the next action 𝑎′ ∼ 𝜋𝜃(𝑎′|𝑠′);
Update the policy parameters: 𝜃 ← 𝜃 + 𝛼𝜃𝑄𝑤(𝑠, 𝑎)∇𝜃 ln 𝜋𝜃(𝑎|𝑠);
Compute the TD error for action-value at time 𝑡: 𝛿𝑡 = 𝑟𝑡 + 𝛾 𝑄𝑤(𝑠′, 𝑎′)−𝑄𝑤(𝑠, 𝑎);
Use it to update the parameters of the 𝑄-function: 𝑤 ← 𝑤 + 𝛼𝑤𝛿𝑡∇𝑤𝑄𝑤(𝑠, 𝑎);
Update 𝑎← 𝑎′ and 𝑠← 𝑠′.

end for

4.12 Deep Reinforcement Learning
Deep Reinforcement Learning (DRL) extends the Actor-Critic approach discussed in Section 4.11
by using deep neural networks to represent policies and value functions. This setup allows
learning in high-dimensional or continuous state spaces frequently encountered in real-world
domains such as sepsis management.

As outlined earlier, Actor-Critic methods split the policy representation (Actor) from the
value function (Critic). The Critic estimates a state-value function 𝑉𝑤(𝑠) (see equation 4.13) or
action-value function 𝑄𝑤(𝑠, 𝑎) (see equation 4.8), while the Actor maintains a parameterized
policy 𝜋𝜃(𝑎 | 𝑠). The central feedback signal is the TD error (see equation 4.28), which measures
how much better or worse the outcome is compared to the Critic’s prediction. The Critic uses
𝛿𝑡 to refine its value estimates, and the Actor adjusts its policy parameters in a direction that
ideally improves future performance.

4.12.1 Extending to Deep Learning
When the Actor and Critic are approximated by deep neural networks, they become:

𝜋𝜃 (parameterized by weights 𝜃), 𝑉𝑤 (parameterized by weights 𝑤).
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These networks can manage state representations far larger than traditional tabular methods
could handle. Hence, DRL introduces powerful function approximators for both policy and value
functions. The goal is to learn 𝜋𝜃 that maximizes the expected discounted return (equation 4.3):

𝐽(𝜃) = 𝔼𝜏∼𝜋𝜃

[︁ ∞∑︁
𝑡=0

𝛾𝑡 𝑟(𝑠𝑡, 𝑎𝑡)
]︁
,

where 𝜏 = (𝑠0, 𝑎0, 𝑠1, 𝑎1, . . . ) is a trajectory of states and actions drawn from 𝜋𝜃.
Policy gradient methods optimize 𝜃 by following the gradient

∇𝜃 𝐽(𝜃) = 𝔼(𝑠𝑡,𝑎𝑡)∼𝜋𝜃

[︁
∇𝜃 ln 𝜋𝜃(𝑎𝑡 | 𝑠𝑡) · 𝑄𝜋(𝑠𝑡, 𝑎𝑡)

]︁
.

In practice, 𝑄𝜋 is often replaced by an Advantage function 𝐴𝜋(𝑠𝑡, 𝑎𝑡) = 𝑄𝜋(𝑠𝑡, 𝑎𝑡) − 𝑉𝜋(𝑠𝑡) to
reduce variance (Advantage Actor Critic (A2C)). An unbiased estimator of 𝐴𝜋 is the TD error
𝛿𝑡, when 𝑉𝑤(𝑠) approximates the true 𝑉𝜋(𝑠). The Actor update minimizes

𝐿actor(𝜃) = −𝔼
[︀
𝛿𝑡 ln 𝜋𝜃(𝑎𝑡 | 𝑠𝑡)

]︀
,

encouraging policy parameters to increase the probability of actions with positive TD error and
decrease it for those with negative error. Often, an entropy term 𝛽 𝐻(𝜋𝜃(· | 𝑠𝑡)) is added to
encourage exploration.

The Critic aims to approximate 𝑉𝜋(𝑠). A common strategy is minimizing the mean-squared
TD error:

𝐿critic(𝑤) = 𝔼
[︀
(𝑟𝑡 + 𝛾 𝑉𝑤(𝑠𝑡+1)− 𝑉𝑤(𝑠𝑡))2]︀.

Improving 𝑉𝑤 yields a more accurate evaluation and better policy updates.

4.12.2 Application to Corticosteroid Optimization
In the sepsis-management study (Chapter 5), we adopt an A2C framework to optimize daily
corticosteroid dosing for ICU patients. We define an MDP where the state 𝑠𝑡 is a 379-dimensional
vector of clinical features, the action 𝑎𝑡 is one of five discrete steroid doses, and the reward 𝑟𝑡 is
terminal (𝑟 = 0 for survival, 𝑟 = 1 for survival). The Actor 𝜋𝜃(𝑎 | 𝑠) outputs dose probabilities,
and the Critic 𝑉𝑤(𝑠) tracks expected future return. Algorithm 5 outlines the training procedure,
which repeats sampling transitions, computing TD errors, and applying gradient-based updates
to both networks.

Algorithm 5 Deep A2C Algorithm for Sepsis Management
1: Initialize Actor network 𝜋𝜃 and Critic network 𝑉𝑤.
2: Initialize replay buffer 𝐷 with ICU patient trajectories.
3: for epoch = 1 to 𝑁 do
4: Sample a batch {(𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1)} from 𝐷.
5: Compute 𝑉target(𝑠𝑡) = 𝑟𝑡 + 𝛾 𝑉𝑤(𝑠𝑡+1).
6: Compute 𝛿𝑡 = 𝑉target(𝑠𝑡)− 𝑉𝑤(𝑠𝑡).
7: Update Critic: 𝑤 ← 𝑤 − 𝛼𝑤∇𝑤 𝐿critic(𝑤).
8: Update Actor: 𝜃 ← 𝜃 − 𝛼𝜃∇𝜃 𝐿actor(𝜃).
9: end for
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4.13 On-Policy vs. Off-Policy Evaluation
A central question in RL is policy evaluation, which involves estimating how well a given
decision-making strategy (i.e., a policy 𝜋) will perform. There are two main approaches to this:

• On-Policy Evaluation: In this approach, the agent uses the same policy both to generate
data and to evaluate its performance. This is analogous to taking a test using the same method
you practiced with. Although the data and evaluation policy are identical, this method might
not be efficient when exploring new strategies.

• Off-Policy Evaluation: Here, the goal is to estimate the performance of an evaluation policy
(a new or improved strategy) using data that was collected by a single or multiple, potentially
different, behavior policy. This is similar to predicting how well a new recipe might work by
tasting meals prepared by another recipe. Off-policy evaluation is particularly important in
real-world applications (such as healthcare or robotics) where experimenting directly with a
new policy could be risky or expensive.

In what follows, we focus on off-policy evaluation and explore several methods that help esti-
mate the effectiveness of an evaluation policy without requiring direct experimentation in the
environment.

4.14 The Off-Policy Evaluation Problem
For a given trajectory of states and actions,

𝜏 = (𝑠0, 𝑎0, 𝑠1, 𝑎1, . . . ),

the discounted policy value (often denoted by 𝜌𝜋) can be defined as

𝜌𝜋 = (1− 𝛾)𝔼𝜏∼𝜋

[︃ ∞∑︁
𝑡=0

𝛾𝑡𝑟(𝑠𝑡, 𝑎𝑡)
]︃

, (4.31)

which represents the expected performance of the evaluation policy when starting from the
initial state distribution. (Note that this is distinct from the state value function 𝑉 𝜋(𝑠), which is
defined conditionally on 𝑠0 = 𝑠.) In off-policy evaluation, our goal is to compute 𝜌𝜋 using data
generated by one or more behavior policies. Because the data originates from these behavior
policies rather than from 𝜋, there is a distribution mismatch; the states and actions observed
may not reflect those that would have occurred under the evaluation policy. To adjust for this
discrepancy, it is necessary to reweight the observed data appropriately, effectively “translating”
the behavior-policy data into an estimate of what the evaluation policy would have produced [72,
73].

4.15 Importance Sampling (IS) and Bias Properties
Importance Sampling (IS) is one of the simplest methods to address the off-policy evaluation
problem [72]. It adjusts for the difference between the behavior and evaluation policies by
applying a weight to each trajectory. For a given trajectory

𝜏 = (𝑠0, 𝑎0, 𝑠1, 𝑎1, . . . , 𝑠𝑇 −1, 𝑎𝑇 −1),
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the importance weight is computed as:

𝜌(𝜏) =
∏︀𝑇 −1

𝑡=0 𝜋(𝑎𝑡 | 𝑠𝑡)∏︀𝑇 −1
𝑡=0 𝜋𝑏(𝑎𝑡 | 𝑠𝑡)

,

where the numerator is the probability of the trajectory under the evaluation policy 𝜋, and the
denominator is the probability of the same trajectory under the behavior policy 𝜋𝑏. Many terms
typically cancel in this product due to Markov assumptions.

The Simple Importance Sampling (SIS) estimator for the policy value is then given by:

𝜌SIS = (1− 𝛾) 1
𝑁

𝑁∑︁
𝑖=1

𝜌(𝜏𝑖) 𝐺(𝜏𝑖),

where 𝐺(𝜏𝑖) is the total (discounted) reward accumulated along the 𝑖th trajectory, 𝑁 is the total
number of trajectories, and 𝛾 is the discount factor. By the Law of Large Numbers, 𝜌SIS is a
consistent estimator of the true policy value 𝜌(𝜋). However, SIS can suffer from high variance in
practice due to the so-called “curse of the horizon,” where long trajectories cause the product of
probabilities 𝜌(𝜏) to become extremely small or large. In some cases, the variance can even be
unbounded [19].

SIS is unbiased provided the evaluation policy 𝜋 has support over all actions in the dataset.
Formally, if 𝜋(𝑎 | 𝑠) > 0 whenever the behavior policy 𝜋𝑏(𝑎 | 𝑠) > 0, then the expectation of each
IS weight 𝜌(𝜏𝑖) is one, implying

𝔼
[︀
𝜌(𝜏𝑖) 𝐺(𝜏𝑖)

]︀
= 𝜌(𝜋) (unbiased estimator).

A practical approach to reduce the high variance of SIS is Weighted Importance Sampling
(WIS) [72, 73]. WIS normalizes the importance weights, thus lowering variance at the expense of
introducing a small, diminishing bias:

𝜌WIS = (1− 𝛾)
∑︀𝑁

𝑖=1 𝜌(𝜏𝑖) 𝐺(𝜏𝑖)∑︀𝑁
𝑖=1 𝜌(𝜏𝑖)

.

A key property is that the expected value of the IS weights is 1. This implies that if we denote
the numerator as an estimator �̂� of the true policy value 𝑎, and the denominator as an estimator
𝑜 of 1, then by Slutsky’s theorem, the ratio �̂�/𝑜 converges to 𝑎 as the sample size increases. Thus,
WIS is also a consistent estimator whose normalization ensures lower variance compared to SIS.
Meanwhile, the finite-sample bias introduced by normalizing the weights vanishes with more
data.

4.16 High Confidence Off-Policy Evaluation (HCOPE)
In many medical applications, the stakes for patient outcomes are extremely high, and deploying
a reinforcement learning policy without stringent performance guarantees can be unsafe. High-
Confidence Off-Policy Evaluation (HCOPE) [74] mitigates this risk by providing a statistically
rigorous lower bound on the policy’s expected return—even when the evaluation policy differs
from the behavior policies used to collect data. Specifically, HCOPE ensures that, with probability
at least 1− 𝛿, the true performance of a proposed treatment or intervention policy exceeds the
computed lower bound 𝜌HCOPE−. This guarantee is critical in medical settings, where verifying
that a new policy meets a minimum performance standard can help protect patients and build
clinical confidence before real-world implementation.
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4.16.1 Problem Setting and Notation
Let {𝜋𝑖

𝑏}𝑛𝑖=1 be behavior policies that generated trajectories {𝜏𝑖}𝑛𝑖=1 with a bounded reward
function . We wish to evaluate a different policy 𝜋𝑒, referred to as the evaluation policy. Our
objective is to produce a high-confidence lower bound on 𝜌(𝜋𝑒), the (expected) discounted return
of 𝜋𝑒.

4.16.2 Mathematical Formalization
Definition 1 (Importance Weighted Return). For a trajectory 𝜏 = (𝑠1, 𝑎1, 𝑟1, . . . , 𝑠𝑇 , 𝑎𝑇 , 𝑟𝑇 )
generated by 𝜋𝑏, the importance weighted return is (see section 4.15):

𝜌(𝜋𝑒, 𝜏 , 𝜋𝑏) := 𝑅(𝜏)
𝑇∏︁

𝑡=1

𝜋𝑒(𝑎𝑡 | 𝑠𝑡)
𝜋𝑏(𝑎𝑡 | 𝑠𝑡)

, (4.32)

where
𝑅(𝜏) =

∑︀𝑇
𝑡=1 𝛾𝑡−1𝑟𝑡 −𝑅−

𝑅+ −𝑅−
and 𝑅± = 𝑟±(1− 𝛾𝑇 )

1− 𝛾
.

The quantity 𝑅(𝜏) is simply a normalized return in [0, 1] based on the accumulated discounted
rewards in 𝜏 . This normalization step ensures better numerical stability and makes the bounding
analysis more straightforward.

Given these normalized returns, define {𝑋𝑖}𝑛𝑖=1 as independent random variables with

𝑋𝑖 = 𝜌(𝜋𝑒, 𝜏𝑖, 𝜋𝑖
𝑏).

If we assume supp(𝜋𝑒) ⊆ supp(𝜋𝑖
𝑏) for all 𝑖 (the coverage condition), we have 𝔼[𝑋𝑖] = 𝜌(𝜋𝑒). In

other words, under coverage, the random variables 𝑋𝑖 are unbiased estimators of 𝜌(𝜋𝑒).

4.16.3 Truncated Empirical Bernstein Inequality
HCOPE’s fundamental tool is a carefully crafted empirical Bernstein bound that accounts for
possibly heavy-tailed data via truncation. This truncation step ensures that excessively large
random variables do not destroy the concentration inequality, which is critical in finite-sample
regimes [74].

Theorem 2 (Truncated Empirical Bernstein Inequality). Let 𝑋1, . . . , 𝑋𝑛 be non-negative in-
dependent random variables with 𝔼[𝑋𝑖] ≤ 𝜇 for all 𝑖. For thresholds {𝑐𝑖}𝑛𝑖=1 > 0 and truncated
variables 𝑌𝑖 := min(𝑋𝑖, 𝑐𝑖), it holds with probability at least 1− 𝛿 that

𝜇 ≥
(︃

𝑛∑︁
𝑖=1

1
𝑐𝑖

)︃−1
⎛⎝ 𝑛∑︁

𝑖=1

𝑌𝑖

𝑐𝑖
−

7 ln
(︀2

𝛿

)︀
3(𝑛− 1) −

⎯⎸⎸⎷2 ln
(︀2

𝛿

)︀
𝑛− 1

(︁ 𝑛∑︁
𝑖,𝑗=1

𝑌𝑖

𝑐𝑖
− 𝑌𝑗

𝑐𝑗

)︁2
⎞⎠ . (4.33)

Proof Sketch 1. The proof builds on the empirical Bernstein bound proposed by Maurer and
Pontil [75]. Set 𝑍𝑖 = 𝑌𝑖/𝑐𝑖 so that 𝑍𝑖 ∈ [0, 1]. Applying an empirical Bernstein-type inequality
to 1 − 𝑍𝑖 yields a lower bound on 𝔼[𝑍]. Since 𝔼[𝑍] ≤ 𝜇

𝑛

∑︀𝑛
𝑖=1

1
𝑐𝑖

(because 𝔼[𝑋𝑖] ≤ 𝜇 and each
𝑌𝑖 ≤ 𝑋𝑖), we rearrange to solve for 𝜇. Truncation is necessary to control the variance and
ensure we do not rely on overly conservative assumptions for heavy-tailed data. A more rigorous
measure-theoretic argument shows that limiting the domain of 𝑋𝑖 to [0, 𝑐𝑖] preserves concentration
properties while capping extreme outcomes.
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4.16.4 Optimal Threshold Selection
To apply Theorem 2 practically, we choose a single threshold 𝑐* (or multiple thresholds in some
derivations) that controls the trade-off between variance reduction and bias. If the threshold is
too small, we might truncate away significant parts of the distribution and underestimate 𝜌(𝜋𝑒).
If the threshold is too large, the variance can blow up.

In HCOPE, the typical approach is to partition the data 𝒟 = {𝜏𝑖, 𝜋𝑖
𝑏} into two sets:

𝒟pre (size 𝑛pre) and 𝒟post (size 𝑛post).

The pre-partition 𝒟pre is used to find an “optimal” threshold 𝑐* via a search (often gradient-based).
The post-partition 𝒟post is then used to finalize the estimate of 𝜌(𝜋𝑒) (with high confidence).

Formally, we define:
𝑌 (𝑐) = min

(︀
𝜌(𝜋𝑒, 𝜏 , 𝜋𝑏), 𝑐

)︀
.

We then choose

𝑐* = arg max
𝑐 ≥ 1

(︃
1

𝑛pre

∑︁
𝜏∈𝒟pre

𝑌 (𝑐)

⏟  ⏞  
Truncated Mean

−
7𝑐 ln

(︀
2/𝛿

)︀
3 𝑛post⏟  ⏞  

Linear Penalty

−

√︃
2 ln

(︀
2/𝛿

)︀
𝑛post

̂︂Var𝒟pre

[︀
𝑌 (𝑐)

]︀
⏟  ⏞  

Variance Term

)︃
. (4.34)

Choosing 𝑐 in this manner reflects the fact that larger thresholds increase the penalty term in
the empirical Bernstein bound; however, too small a threshold might clip important information.
This optimization is usually solved numerically (e.g., grid search or gradient-based methods) for
practical implementations.

4.16.5 Theoretical Guarantees
When the coverage assumption 𝜋𝑒(𝑎 | 𝑠) > 0 =⇒ 𝜋𝑖

𝑏(𝑎 | 𝑠) > 0 for all 𝑖 holds, importance
sampling ensures that:

𝔼𝜏∼𝜋𝑖
𝑏

[︀
𝜌(𝜋𝑒, 𝜏 , 𝜋𝑖

𝑏)
]︀

= 𝜌(𝜋𝑒).

Hence, in principle, one can recover the true return of 𝜋𝑒 if enough samples and suitable bounding
methods are available.

Theorem 3 (Unbiasedness Under Coverage). If 𝜋𝑒(𝑎 | 𝑠) > 0 =⇒ 𝜋𝑖
𝑏(𝑎 | 𝑠) > 0 ∀(𝑠, 𝑎), 𝑖, then

for all 𝑖:
𝔼𝜏∼𝜋𝑖

𝑏

[︀
𝜌(𝜋𝑒, 𝜏 , 𝜋𝑖

𝑏)
]︀

= 𝜌(𝜋𝑒).

As the number of samples 𝑛 grows large, the HCOPE bounds tighten around the true value
𝜌(𝜋𝑒). In particular, if the threshold 𝑐* grows more slowly than some polynomial rate (to ensure it
effectively becomes large), one recovers asymptotic consistency at the standard 𝒪𝑝

(︀√︀
Var(𝜌)/𝑛

)︀
rate typical of importance sampling estimators.

Theorem 4 (Asymptotic Consistency). As the number of samples 𝑛 tends to infinity and the
truncation threshold 𝑐* grows unbounded (i.e. 𝑐* = 𝜔(1)), the HCOPE lower bound satisfies

𝜌− = 𝜌(𝜋𝑒)− 𝒪𝑝

(︁√︃Var(𝜌)
𝑛

)︁
.

In simpler terms, the difference between the HCOPE bound and the true expected return 𝜌(𝜋𝑒)
decreases at the rate of 1/

√
𝑛.
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Proof. The key ideas are as follows:

1. As 𝑐* increases with more data, the truncated variable

𝑌𝑖 := min(𝑋𝑖, 𝑐*)

converges to the original importance sampling estimator 𝑋𝑖, since it becomes unlikely that
𝑋𝑖 exceeds the large threshold 𝑐*.

2. With the truncation effect diminishing, the empirical variance computed in the Bernstein
inequality approaches the true variance Var(𝜌).

3. By applying the Central Limit Theorem, the sample average of the 𝑋𝑖 (or 𝑌𝑖) converges to
𝜌(𝜋𝑒) at a rate proportional to 1/

√
𝑛. At the same time, the extra penalty terms in the

bound shrink at this same rate.

Thus, the overall error in the HCOPE lower bound decreases as 𝒪𝑝

(︁√︀
Var(𝜌)/𝑛

)︁
, proving

asymptotic consistency. For a detailed derivation, see Thomas et al. (2015) [74].

Theorem 5 (Finite-Sample Validity). For any 𝛿 ∈ (0, 1) and arbitrary behavior policies, the
HCOPE bound satisfies:

ℙ
(︁
𝜌(𝜋𝑒) ≥ 𝜌−

)︁
≥ 1 − 𝛿.

Proof. The high-level argument follows directly from Theorem 2, applied to the truncated samples
in the post-partition. Since truncation only reduces each 𝑋𝑖 to 𝑌𝑖, it can never increase the mean.
Thus, the one-sided (lower) bound on 𝜌(𝜋𝑒) holds in finite samples with probability 1− 𝛿. For a
full measure-theoretic argument, see Appendix B of Thomas et al. (2015) [74].

This means that the evaluation policy is not required to be completely covered by the behavior
policies; lacking full coverage only affects the magnitude of 𝔼[𝑌𝑖] and not the validity of the
concentration argument.

4.16.6 Algorithm Specification
Below we summarize the entire procedure in pseudocode. The idea is to hold out a small portion
of data to learn an appropriate threshold for truncation, and then use the remaining data to
compute the final lower-confidence bound.
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Algorithm 6 HCOPE (Thomas et al., 2015)
Require: Dataset 𝒟 = {𝜏𝑖, 𝜋𝑖

𝑏}𝑛𝑖=1, confidence level 𝛿 ∈ (0, 1), evaluation policy 𝜋𝑒

1: Partition 𝒟 into 𝒟pre and 𝒟post with |𝒟pre| = ⌊0.05 𝑛⌋ (typically a small fraction)
2: for 𝜏𝑖 ∈ 𝒟pre do
3: Compute

𝑋𝑖 = 𝑅(𝜏𝑖)
𝑇∏︁

𝑡=1

𝜋𝑒(𝑎𝑖
𝑡 | 𝑠𝑖

𝑡)
𝜋𝑖

𝑏(𝑎𝑖
𝑡 | 𝑠𝑖

𝑡)
.

4: end for
5: Optimize 𝑐* via

𝑐* = arg min
𝑐 ≥ 1

(︃
− 1
|𝒟pre|

∑︁
𝑋𝑖∈𝒟pre

min(𝑋𝑖, 𝑐) +
7 𝑐 ln

(︀
2/𝛿

)︀
3 |𝒟post|

+
√︃

2 ln
(︀
2/𝛿

)︀
|𝒟post|

̂︂Var
(︀
min(𝑋𝑖, 𝑐)

)︀)︃
.

6: for 𝜏𝑗 ∈ 𝒟post do
7: Compute

𝑌𝑗 = min
(︁
𝑅(𝜏𝑗)

𝑇∏︁
𝑡=1

𝜋𝑒(𝑎𝑗
𝑡 | 𝑠

𝑗
𝑡 )

𝜋𝑗
𝑏(𝑎𝑗

𝑡 | 𝑠
𝑗
𝑡 )

, 𝑐*
)︁
.

8: end for
9: Compute the weighted mean and variance:

𝑌 =
∑︀|𝒟post|

𝑗=1
𝑌𝑗

𝑐*∑︀|𝒟post|
𝑗=1

1
𝑐*

, 𝑆2 =
|𝒟post|

∑︀(︁
𝑌𝑗

𝑐*

)︁2
−
(︁∑︀ 𝑌𝑗

𝑐*

)︁2

|𝒟post| − 1 .

10: Return the final lower bound

𝜌− = 𝑌 −
7 ln

(︀
2/𝛿

)︀
3 (|𝒟post| − 1) ∑︀ 1

𝑐*
−

√︃
2 ln

(︀
2/𝛿

)︀
𝑆2

|𝒟post| − 1 .

This procedure ensures that the threshold 𝑐* is adapted to the distribution of the sampled
returns and the variability present in 𝒟pre. By decoupling threshold selection from final evaluation,
we avoid “double-dipping” with the same data, thus preserving the validity of the resulting
confidence bound.

4.16.7 Remarks on Theoretical Limits
The HCOPE bounds are known to be nearly minimax-optimal for heavy-tailed distributions, up
to constants (Maurer and Pontil, 2009) [75]. This means that, in principle, we cannot hope for
better asymptotic scaling than that achieved by HCOPE once we allow for possible large outliers.

One often-cited practical concern is the coverage condition. If there exist state-action pairs
that 𝜋𝑒 takes with positive probability but none of the behavior policies ever take, standard
importance sampling ideas can fail catastrophically. However, HCOPE’s truncated approach
can still provide meaningful bounds on a restricted version of 𝜌(𝜋𝑒) ignoring those uncovered
actions, because truncation prevents infinite or undefined importance weights from destroying
the estimate.
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Theorem 6 (Minimax Lower Bound). For any 𝛿 < 1/2, there exists a distribution of 𝑋𝑖 with
Var(𝑋𝑖) ≤ 𝜎2 such that all valid lower bounds must satisfy:

𝜌(𝜋𝑒)− 𝜌− ≥ Ω
(︁√︁

𝜎2 ln(1/𝛿)
𝑛

)︁
.

This result tells us that no method can fundamentally beat the
√︀

1/𝑛 scaling (up to logarithmic
factors) in the general case, demonstrating the inherent difficulty of off-policy evaluation with
finite samples.

4.17 Dual Stationary Distribution Correction Estimation (DICE)
Dual Stationary Distribution Correction Estimation (DICE) is a modern method for off-policy
evaluation that addresses some inherent challenges of traditional IS approaches [76, 73]. Standard
IS techniques can suffer from high variance, particularly in long-horizon tasks, because they involve
products of probabilities over full trajectories[72]. In contrast, DICE focuses on estimating a
state-action-level correction factor that directly accounts for discrepancies between the evaluation
policy and the data distribution. In many real-world settings, including the medical application
of reinforcement learning, we often treat episodes as potentially unbounded in time, effectively
leading to an infinite-horizon setting. This perspective justifies the stationarity assumption that
underlies DICE.

4.17.1 Distribution Correction Estimation
For a policy 𝜋 and discount factor 0 < 𝛾 < 1, the stationary distribution 𝑑𝜋(𝑠, 𝑎) is given by

𝑑𝜋(𝑠, 𝑎) = (1− 𝛾)
∞∑︁

𝑡=0
ℙ
(︀
𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

)︀
𝛾𝑡, (4.35)

where 𝑠0 ∼ 𝑑0, 𝑎𝑡 ∼ 𝜋(· | 𝑠𝑡), 𝑠𝑡+1 ∼ 𝑇 (𝑠𝑡, 𝑎𝑡). In words, 𝑑𝜋(𝑠, 𝑎) captures how frequently state-
action pairs are visited under policy 𝜋. Here, ℙ(·) denotes the probability measure induced with
initial state distribution 𝑑0, policy 𝜋, and transition kernel 𝑇 . The policy value for infinite-horizon
tasks is typically written as (see equation 4.9)

𝜌𝜋 = (1− 𝛾) 𝔼𝜏∼𝜋

[︁ ∞∑︁
𝑡=0

𝛾𝑡 𝑟(𝑠𝑡, 𝑎𝑡)
]︁
,

𝜌𝜋 = 𝔼(𝑠,𝑎)∼𝑑𝜋

[︀
𝑟(𝑠, 𝑎)

]︀
, (4.36)

An elementary result is that the stationary distribution 𝑑𝜋 (discounted or undiscounted) is a
fixed point of the corresponding backward Bellman operator, as described below.

We assume the standard setting in which we have a dataset 𝒟

𝒟 =
(︀
(𝑠0,𝑖, 𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠′

𝑖)
)︀𝑛

𝑖=1

(where each tuple may repeat states or actions already seen). Typically, 𝑠0,𝑖 ∼ 𝑑0 represents the
initial state for the 𝑖-th trajectory or episode, (𝑠𝑖, 𝑎𝑖) is drawn according to some mixture of
behavior policies, 𝑟𝑖 ∼ 𝑅(𝑠𝑖, 𝑎𝑖, 𝑠′

𝑖), and 𝑠′
𝑖 ∼ 𝑇 (𝑠𝑖, 𝑎𝑖). We want to evaluate a new policy 𝜋 by

using this dataset. In practice, one must ensure that every (𝑠, 𝑎) for which 𝜋(𝑎 | 𝑠) > 0 is also
adequately represented in 𝒟.
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4.17.2 Key Idea of DICE
The DICE family of methods [76, 77] centers on estimating a state-action-level correction factor

𝑤𝜋 /𝐷(𝑠, 𝑎) = 𝑑𝜋(𝑠, 𝑎)
𝑑𝒟(𝑠, 𝑎) ,

often called the stationary distribution correction. Once this function 𝑤𝜋 /𝐷(𝑠, 𝑎) is estimated, we
can approximate the policy value by

𝜌𝜋
DICE = 𝔼(𝑠,𝑎,𝑟) ∼ 𝒟

[︀
𝑤𝜋 /𝐷(𝑠, 𝑎) · 𝑟

]︀
.

A crucial coverage assumption is that 𝜋 does not assign nonzero probability to any (𝑠, 𝑎) lying
outside the support of the dataset distribution 𝑑𝒟. Formally, if 𝑑𝒟(𝑠, 𝑎) = 0, then we require
𝑑𝜋(𝑠, 𝑎) = 0. Otherwise, the ratio

𝑤𝜋 /𝐷(𝑠, 𝑎) = 𝑑𝜋(𝑠, 𝑎)
𝑑𝒟(𝑠, 𝑎)

would not be well-defined.
A key feature of DICE is that it does not require access to the behavior policy; instead, it

relies solely on dataset quintuplets ((𝑠0, 𝑠, 𝑎, 𝑟, 𝑠′)) and knowledge of the evaluation policy 𝜋.
In principle, one may recognize the ratio 𝑤𝜋 /𝐷(𝑠, 𝑎) as playing a similar role to an IS weight,

since it compares how frequently (𝑠, 𝑎) arises under 𝜋 vs. under 𝒟. Traditional IS approaches,
however, can suffer from high variance in long-horizon problems and require knowledge of the
behavior policy. DICE mitigates these drawbacks by focusing on directly solving for the stationary
correction factor 𝑤𝜋 /𝐷(𝑠, 𝑎) through Bellman-based objectives rather than explicit trajectory-level
likelihood ratios.

The idea behind this is similar to the PageRank Algorithm [78].

4.17.3 Bellman Equations and Stationary Distributions
To derive DICE, it is helpful to understand the forward and backward Bellman operators. Recall
that for a policy 𝜋 and discount factor 𝛾 ∈ (0, 1), the forward Bellman operator ℬ𝜋 acts on a
function 𝑄 : 𝑆 ×𝐴→ ℝ as

ℬ𝜋𝑄 = 𝑟 + 𝛾 𝒫𝜋𝑄,

where 𝑟(𝑠, 𝑎) is the immediate reward function, and 𝒫𝜋 (often called the expected Bellman
operator) is given by

(𝒫𝜋𝑄)(𝑠, 𝑎) = 𝔼𝑠′∼𝑇 (𝑠,𝑎), 𝑎′∼𝜋(𝑠′)
[︁

𝑄
(︀
𝑠′, 𝑎′)︀]︁.

Here, 𝑇 (𝑠, 𝑎) is the transition kernel (i.e., 𝑠′ ∼ 𝑇 (𝑠, 𝑎)), and 𝜋(𝑠′) is the policy’s distribution over
actions at state 𝑠′. An elementary result is the Bellman equations, which is a linear equation
system which claims that the state-action value function 𝑄𝑝𝑖 is a fixed point of the Bellman
operator

𝑄𝜋 = ℬ𝜋𝑄𝜋 ⇐⇒ 𝑄𝜋(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾 𝔼𝑠′,𝑎′
[︀
𝑄𝜋(𝑠′, 𝑎′)

]︀
,

which is the standard forward Bellman equation for the state–action value function 𝑄𝜋.
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The backward Bellman operator 𝒯 𝜋 instead acts on a measure or distribution over (𝑠, 𝑎).
Specifically, if 𝑑 is any distribution over 𝑆 ×𝐴, then

𝒯 𝜋𝑑 = (1− 𝛾)
(︀
𝑑0 × 𝜋

)︀
+ 𝛾 𝒫𝜋

* 𝑑,

where 𝑑0 is the initial state distribution, and 𝒫𝜋
* is the adjoint operator of 𝒫𝜋. Concretely, 𝒫𝜋

*
“pushes forward” a distribution 𝑑 by the transition dynamics 𝑇 and the policy 𝜋. One may think
of 𝒯 𝜋𝑑 as describing how the distribution 𝑑 evolves under a single backward Bellman update
step.

The expression
(︀
𝑑0 × 𝜋

)︀
refers to the joint distribution over (𝑠, 𝑎) obtained by first sampling

a state 𝑠 from the initial state distribution 𝑑0 and then drawing an action 𝑎 according to the
policy 𝜋(· | 𝑠). Formally, for any measurable set 𝐵 ⊆ 𝑆 ×𝐴,

(𝑑0 × 𝜋)(𝐵) =
∫︁

𝑠
𝑑0(𝑠)

∫︁
𝑎

1l{(𝑠, 𝑎) ∈ 𝐵}𝜋(𝑎 | 𝑠) d𝑎 d𝑠.

The discounted stationary distribution 𝑑𝜋 under 𝜋 (with discount 𝛾) is a distribution over (𝑠, 𝑎)
that is fixed by 𝒯 𝜋. Formally,

𝑑𝜋 = 𝒯 𝜋 𝑑𝜋.

In words, 𝑑𝜋 remains unchanged (stationary) under the backward Bellman operator.
If we denote by 𝑑𝒟 the empirical (or nominal) distribution of state–action pairs from a dataset
𝒟, and let 𝑤(𝑠, 𝑎) = 𝑑𝜋(𝑠,𝑎)

𝑑𝒟(𝑠,𝑎) be the ratio between the stationary distribution under 𝜋 and the
dataset distribution, then the stationarity condition implies

𝑑𝒟(𝑠, 𝑎) 𝑤(𝑠, 𝑎) = 𝒯 𝜋(︀𝑑𝒟 𝑤
)︀
(𝑠, 𝑎), 𝔼(𝑠,𝑎)∼𝑑𝒟

[︀
𝑤(𝑠, 𝑎)

]︀
= 1. (4.37)

The family of DICE algorithms aims to solve for 𝑤 that satisfies these constraints in practice,
thereby recovering the correct stationary ratio 𝑤𝜋 /𝐷(𝑠, 𝑎). With 𝑤 in hand, one can perform
off-policy evaluation by weighting observed rewards in 𝒟 according to 𝑤.

4.18 Tabular DICE
In the tabular setting (𝑆×𝐴 finite), we can solve for �̂� directly via linear algebra or an eigenvalue
problem. Observe that for a discount factor 0 < 𝛾 < 1, the stationarity condition implies

(𝐼 − 𝛾 𝒫𝜋
* ) 𝐷𝒟 𝑤𝜋 /𝐷 = (1− 𝛾)

(︀
𝑑0 × 𝜋

)︀
,

where 𝐷𝒟 = diag
(︀
𝑑𝒟(𝑠, 𝑎)

)︀
. By replacing the unknown distributions and transitions with

empirical estimates, one obtains an approximate ratio �̂�. Algorithm 7 shows the step-by-step
procedure for calculating the policy value.
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Algorithm 7 Tabular DICE
1: Input: Dataset 𝒟 =

(︀
(𝑠0,𝑖, 𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠′

𝑖)
)︀𝑛

𝑖=1, discount factor 𝛾 ∈ (0, 1], policy 𝜋.
2: Estimate empirical counts: 𝑑𝒟(𝑠, 𝑎) = 1

𝑛

∑︀𝑛
𝑖=1 𝕀[(𝑠𝑖, 𝑎𝑖) = (𝑠, 𝑎)].

3: Estimate initial state-action distribution: 𝑑0 × 𝜋(𝑠, 𝑎) =
(︁

1
𝑛

∑︀𝑛
𝑖=1 𝕀[𝑠𝑖

0 = 𝑠]
)︁

𝜋(𝑎|𝑠).
4: Estimate transition probabilities ̂︁𝒫𝜋(𝑠′|𝑠, 𝑎) empirically.
5: Form diagonal matrix 𝐷𝒟 = diag(𝑑𝒟(𝑠, 𝑎)).
6: Construct transition matrix ̂︁𝒫𝜋* from estimates.
7: Solve linear system for �̂�: (𝐼 − 𝛾 ̂︁𝒫𝜋*)𝐷𝒟�̂� = (1− 𝛾)𝑑0 × 𝜋.
8: Compute standard DICE estimate: 𝜌𝜋

DICE = 1
𝑛

∑︀𝑛
𝑖=1 �̂�(𝑠𝑖, 𝑎𝑖)𝑟𝑖.

9: Compute weighted DICE estimate (WIS-like): 𝜌𝜋
DICE,W =

∑︀𝑛

𝑖=1 �̂�(𝑠𝑖,𝑎𝑖)𝑟𝑖∑︀𝑛

𝑖=1 �̂�(𝑠𝑖,𝑎𝑖)
.

10: Output: Approximate stationary ratio �̂�(𝑠, 𝑎), and off-policy value estimates 𝜌𝜋
DICE, 𝜌𝜋

DICE,W.

4.18.1 Practical Considerations and Advantages
DICE is behavior-agnostic and thus well-suited to off-line reinforcement learning scenarios where
the dataset might have been generated by multiple or unknown behavior policies. It only needs
tuples (𝑠0, 𝑠, 𝑎, 𝑟, 𝑠′) sampled from the environment (through any policy or mixture of policies)
along with the evaluation policy 𝜋. In many domains (e.g. healthcare), such a requirement is
more realistic than assuming a single known behavior policy.

Additionally, by focusing on the stationary distribution correction rather than trajectory-level
IS ratios, DICE methods can mitigate the large variance issues typically seen with long-horizon
importance sampling. However, DICE still relies on learning a function 𝑤𝜋 /𝐷(𝑠, 𝑎) that accurately
satisfies the stationary Bellman constraints, which can be challenging in high-dimensional or
complex environments.

In summary, DICE provides a powerful framework for off-policy evaluation by directly esti-
mating the ratio 𝑑𝜋/𝑑𝒟. The next sections will further explore theoretical guarantees, empirical
performance, and extensions of the DICE family of methods.

4.19 Kullback-Leibler Divergence
The Kullback-Leibler (KL) divergence is a measure of how one probability distribution diverges
from a second, reference probability distribution. In many contexts, one distribution (typically
denoted by 𝑝) represents the true or target distribution of data, while the other (denoted by 𝑞)
is an approximation or model distribution. The KL divergence is sometimes referred to as the
relative entropy [79].

4.19.1 Definitions
For a discrete probability space, where the random variable 𝑋 takes values in a countable set 𝒳 ,
the KL divergence from 𝑞 to 𝑝 is defined as

𝐷KL(𝑝 ‖ 𝑞) =
∑︁
𝑥∈𝒳

𝑝(𝑥) log 𝑝(𝑥)
𝑞(𝑥) . (4.38)

Here, the logarithm is taken in the natural base, and by convention 0 log(0/𝑞) = 0 for any 𝑞 ≥ 0.
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For continuous random variables with probability density functions 𝑝(𝑥) and 𝑞(𝑥) defined over
a domain 𝒳 ⊆ ℝ, the KL divergence is given by

𝐷KL(𝑝 ‖ 𝑞) =
∫︁

𝒳
𝑝(𝑥) log 𝑝(𝑥)

𝑞(𝑥) 𝑑𝑥. (4.39)

Similarly, any region where 𝑝(𝑥) = 0 contributes zero to the integral.
In essence, the KL divergence represents the extra amount of information (or coding length)

required to describe samples drawn from 𝑝 when using a coding scheme based on 𝑞 instead of
the optimal code based on 𝑝 [80]. This quantity is widely used to quantify the inefficiency and
information loss incurred when 𝑞 is used to approximate the true distribution 𝑝 [81].

4.20 𝐾-means Clustering
Given a dataset 𝑋 = {𝑥1, . . . , 𝑥𝑛} ⊂ ℝ𝑑, 𝑘-means partitions 𝑋 into 𝑘 clusters {𝐶𝑗}𝑘𝑗=1 by
minimizing the within-cluster sum of squares (WCSS):

min
{𝐶𝑗}

𝑘∑︁
𝑗=1

∑︁
𝑥𝑖∈𝐶𝑗

‖𝑥𝑖 − 𝜇𝑗‖2,

where
𝜇𝑗 = 1

|𝐶𝑗 |
∑︁

𝑥𝑖∈𝐶𝑗

𝑥𝑖.

The algorithm iterates between assigning points to the nearest centroids and updating centroids
as cluster means [82, 83]. Initialization critically affects convergence; methods like 𝑘-means++
mitigate sensitivity [84]. While efficient, standard 𝑘-means assumes isotropic clusters and equal
feature importance.

4.20.1 Weighted 𝑘-means
Assigning non-negative weights {𝑤𝑖}𝑛𝑖=1 to points, weighted 𝑘-means minimizes:

WWCSS =
𝑘∑︁

𝑗=1

∑︁
𝑥𝑖∈𝐶𝑗

𝑤𝑖‖𝑥𝑖 − 𝜇𝑗‖2,

with centroids updated via:

𝜇𝑗 =
∑︀

𝑥𝑖∈𝐶𝑗
𝑤𝑖𝑥𝑖∑︀

𝑥𝑖∈𝐶𝑗
𝑤𝑖

.

This prioritizes high-weight points. Let 𝐽(𝐶 , {𝜇𝑗}) = WWCSS. The assignment step minimizes
𝐽 over 𝐶 given {𝜇𝑗}, while the update step minimizes 𝐽 over {𝜇𝑗} given 𝐶.

Theorem 7 (Convergence). The sequence {𝐽 (𝑡)} generated by weighted 𝑘-means converges
monotonically to a local minimum in finite iterations.

Proof. Each assignment step reduces or maintains the objective, since each point is reassigned to
the cluster with the nearest weighted centroid, ensuring 𝐽 (𝑡+1) ≤ 𝐽 (𝑡). In the update step, each
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centroid 𝜇𝑗 is recomputed as the weighted mean of points in 𝐶𝑗 , which is the unique minimizer
of the convex quadratic function

𝐽𝑗(𝜇) =
∑︁

𝑥𝑖∈𝐶𝑗

𝑤𝑖‖𝑥𝑖 − 𝜇‖2.

As both steps monotonically decrease (or maintain) the objective and there are only finitely many
distinct clusterings, the algorithm must converge in a finite number of iterations. However, due
to the non-convexity of the full objective, the solution is guaranteed only to be a local minimum
[84].

4.20.2 KL Divergence of State Transitions
Let 𝑃 , 𝑄 ∈ ℝ|𝑆|×|𝑆| be transition matrices for training/test cohorts over states 𝑆 (clusters). The
KL divergence (equation 4.38):

𝐷KL(𝑃‖𝑄) =
∑︁
𝑠,𝑠′

𝑃 (𝑠, 𝑠′) log 𝑃 (𝑠, 𝑠′)
𝑄(𝑠, 𝑠′) ,

measures discrepancy, with 𝐷KL ≥ 0 (Gibbs’ inequality). Reduced 𝐷KL indicates enhanced
transition consistency across cohorts, validating cluster robustness [80]. Additivity allows
decomposition across state subsets, isolating divergence sources. In context of study 2 (chapter 6),
this measure serves as a quantitative metric for comparing the fidelity of the state transitions
between two cohorts. A significant reduction in 𝐷KL (e.g., reducing it to approximately one-third
of its initial value) suggests that the clustering has improved the consistency of state transitions
across cohorts. This is especially crucial when the clustering aims to capture clinically relevant
heterogeneity.
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4.21 General Transformer Models
Many state-of-the-art neural sequence transduction models employ an encoder-decoder archi-
tecture [85, 86, 87]. In such models, the encoder transforms an input sequence of symbols,
(𝑥1, . . . , 𝑥𝑛), into a sequence of continuous representations that capture the essential features
or meaning of the input. The decoder then uses this representation to generate an output
sequence, (𝑦1, . . . , 𝑦𝑚), one symbol at a time in an auto-regressive fashion [88]—each new element
is produced conditioned on the encoded input and the symbols generated so far.

The Transformer [89] follows this general encoder-decoder architecture but differ from earlier
recurrent or convolutional models by relying entirely on self-attention and position-wise feed-
forward networks. This design allows the model to directly capture dependencies between any
two positions in the sequence, regardless of their distance, and to process sequences in parallel.

Figure 4.4 illustrates the overall architecture of the Transformer.

Fig. 4.4: The Transformer model architecture from [89].

4.21.1 Encoder and Decoder Stacks
Both the encoder and decoder are built as stacks of identical layers, allowing the model to
gradually refine its representations through multiple levels of abstraction.

Encoder: The encoder is composed of a stack of identical layers. Each layer has two main
sub-layers:

(i) A multi-head self-attention mechanism.
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(ii) A position-wise fully connected feed-forward network.

The self-attention sub-layer allows every position in the input sequence to consider all other
positions when forming its representation. This is particularly useful for capturing long-range
dependencies. Following each sub-layer, residual connections [90] and layer normalization [91]
are applied:

LayerNorm(𝑥 + Sublayer(𝑥)).

These techniques help in stabilizing training and enable the construction of very deep models.
The dimensionality of the embeddings and intermediate representations (often denoted as 𝑑model)
is kept consistent across layers.

Decoder: The decoder is similarly structured as a stack of identical layers, but with an additional
twist. Each decoder layer includes three sub-layers:

(i) A self-attention mechanism over the output generated so far.

(ii) A multi-head attention mechanism over the encoder’s output.

(iii) A position-wise feed-forward network.

The self-attention sub-layer in the decoder is modified with masking to prevent a position from
attending to future positions. This ensures that the prediction for any given position depends
only on the already generated output, thereby maintaining the autoregressive property. The
additional attention sub-layer that attends over the encoder’s output allows the decoder to
incorporate contextual information from the input sequence into the generation process.

4.21.2 Attention Mechanisms
The attention mechanism is a fundamental component of the Transformer architecture, allowing
the model to dynamically and selectively focus on different parts of the input sequence when
building its representations. Rather than reducing the entire input to a single vector of fixed size,
the attention mechanism constructs context-dependent representations by computing weighted
sums of input features, where the weights indicate the relevance of each feature with respect to a
particular query. This process allows the model to emphasise information that is most relevant
to the task at hand, while downplaying less relevant details.

At the core of this mechanism lies the interaction between queries, keys, and values. In practice,
the input embeddings are first transformed into these three distinct sets through learned linear
projections. For each query, the model assesses its compatibility with all keys using a similarity
measure, typically the dot product. This operation results in a set of scores that reflect how
well each key matches with the query. To ensure that these scores remain at a manageable
scale—especially when the dimension of the keys 𝑑𝑘 is high—the dot products are divided by√

𝑑𝑘. This scaling prevents the softmax function, which converts the scores into a probability
distribution, from saturating and producing extremely small gradients.

The softmax normalised scores serve as weights that determine the contribution of each
corresponding value to the final output. That is, the mechanism computes a weighted sum of the
values, where the weights indicate the degree of attention that each part of the input deserves.
This process can be summarised by the equation:

Attention(𝑄, 𝐾 , 𝑉 ) = softmax
(︃

𝑄𝐾𝑇

√
𝑑𝑘

)︃
𝑉 . (4.40)
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Here, the term 𝑄𝐾𝑇 represents the pairwise similarities between queries and keys, and the
softmax function ensures that these similarities are normalized into a distribution that effectively
weighs the values.

The beauty of this approach lies in its flexibility and efficiency. By allowing each query to
dynamically aggregate information from different positions in the input, the attention mechanism
is capable of capturing both local and long-range dependencies. Moreover, because these
computations can be performed in parallel for all positions in the sequence, the attention
mechanism is highly efficient and scalable.

Multi-head attention further extends this approach by projecting the inputs into multiple
subspaces. Specifically, for ℎ parallel heads, each head applies learned matrices:

𝑊 𝑄
ℎ , 𝑊 𝐾

ℎ ∈ ℝ𝑑model×𝑑𝑘 , 𝑊 𝑉
ℎ ∈ ℝ𝑑model×𝑑𝑣 ,

and the outputs of all heads are concatenated and linearly transformed by 𝑊 𝑂 ∈ ℝ(ℎ 𝑑𝑣)×𝑑model :

headℎ = Attention(𝑄𝑊 𝑄
ℎ , 𝐾 𝑊 𝐾

ℎ , 𝑉 𝑊 𝑉
ℎ ), (4.41)

MultiHead(𝑄, 𝐾 , 𝑉 ) = Concat(head1, . . . , headℎ) 𝑊 𝑂. (4.42)

This procedure allows each head to specialize in attending to different parts (subspaces) of the
sequence.

4.21.3 Positional Encoding
Since the Transformer architecture does not include any recurrence or convolution, position
information is provided via positional encodings:

𝑃 𝐸 ∈ ℝ𝑛×𝑑model .

These are added directly to the input embeddings to indicate the position of each token.
Concretely,

𝑃 𝐸(𝑝𝑜𝑠,2𝑖) = sin
(︀
𝑝𝑜𝑠/100002𝑖/𝑑model

)︀
, (4.43)

𝑃 𝐸(𝑝𝑜𝑠,2𝑖+1) = cos
(︀
𝑝𝑜𝑠/100002𝑖/𝑑model

)︀
, (4.44)

where 𝑝𝑜𝑠 is the position in the sequence (e.g., token index), and 𝑖 ranges over the embedding
dimensions. The sine and cosine functions enable the model to learn relationships based on
relative positions via trigonometric identities.

4.21.4 Layer Normalization and Residual Connections
To facilitate stable training and preserve information from earlier sub-layers, each sub-layer (e.g.,
attention or feed-forward) is wrapped by a residual connection and a layer normalization:

Output = LayerNorm
(︀
𝑥 + Sublayer(𝑥)

)︀
. (4.45)

LayerNorm is given by:
LayerNorm(𝑥) = 𝛾 ⊙ 𝑥− 𝜇

𝜎 + 𝜖
+ 𝛽 , (4.46)

where 𝜇 and 𝜎 are the mean and standard deviation of 𝑥, 𝛾 and 𝛽 are learnable parameters, and
𝜖 is a small constant for numerical stability.
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4.21.5 Position-wise Feed-Forward Networks
Each encoder and decoder layer also includes a position-wise feed-forward network (FFN) that is
independently applied to each position in the sequence. A common choice is:

FFN(𝑥) = max(0, 𝑥𝑊1 + 𝑏1) 𝑊2 + 𝑏2, (4.47)

where 𝑊1 ∈ ℝ𝑑model×4𝑑model and 𝑊2 ∈ ℝ4𝑑model×𝑑model . This layer expands the hidden dimension
to 4𝑑model internally, giving the model an extra capacity for learned transformations.

4.22 Temporal Fusion Transformer (TFT)
Multi-horizon forecasting aims to predict target values over multiple future time steps using
heterogeneous inputs. These inputs typically consist of time-invariant features (static covariates),
historical observations (past-observed inputs), and known future signals (a priori-known future
inputs). Figure 4.5 illustrates this multi-source scenario, which is common in applications ranging
from retail to healthcare and economics. This model was employed to predict MAP values in
study 3 (chapter 7).

Fig. 4.5: Illustration of multi-horizon forecasting with static covariates, past-observed, and a
priori-known future time-dependent inputs from [20].

The Temporal Fusion Transformer (TFT) is designed to address two main challenges: (i)
the heterogeneous nature of the inputs, and (ii) the need for interpretability in the forecasts.
An overview of the TFT architecture is shown in Figure 4.6 [20]. In the following sections, we
describe the key components of the model along with the rationale behind their design.

4.22.1 Adaptive Gating Mechanisms
At the heart of TFT are adaptive gating mechanisms implemented via Gated Residual Networks
(GRNs). GRNs enable the model to decide dynamically which parts of the input should undergo
non-linear transformations. This selective processing is essential when dealing with complex,
multi-modal data.
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Fig. 4.6: Overview of the TFT architecture from [20]. The model ingests static covariates,
historical observations, and known future inputs. Key modules include dynamic
variable selection, adaptive GRNs for efficient non-linear processing, LSTM-based
local temporal processing, and an interpretable multi-head attention mechanism for
capturing long-term dependencies.

The GRN is computed as follows. Given a primary input vector 𝑎 and an optional context
vector 𝑐, we first combine them linearly:

𝜂1 = 𝑊1 𝑎+𝑊2 𝑐+ 𝑏1. (4.48)

The combined signal is then passed through a non-linear activation:

𝜂2 = ELU
(︁
𝜂1
)︁
. (4.49)

Finally, the output of the GRN is obtained by applying a Gated Linear Unit (GLU) with a
residual connection followed by layer normalization:

GRN(𝑎, 𝑐) = LayerNorm
(︁
𝑎+ GLU

(︀
𝜂2
)︀)︁

, (4.50)

where the GLU is defined as

GLU(𝛾) = 𝜎
(︁
𝑊3 𝛾 + 𝑏3

)︁
⊙
(︁
𝑊4 𝛾 + 𝑏4

)︁
.

This sequence—first a linear combination (producing 𝜂1), then a non-linear transformation
(yielding 𝜂2), followed by gated residual learning—ensures that the GRN can model complex
interactions while preserving the original signal.
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4.22.2 Dynamic Variable Selection
In multi-horizon forecasting, many time-dependent inputs may be available, but not all are
equally informative at every time step. TFT addresses this by using dynamic variable selection.
Each time-dependent variable is first embedded into a 𝑑𝑚𝑜𝑑𝑒𝑙-dimensional vector. Denote by 𝜉(𝑗)

𝑡

the embedding of the 𝑗th variable at time 𝑡, and form the concatenated embedding:

Ξ𝑡 =
[︁
𝜉

(1)𝑇

𝑡 𝜉
(2)𝑇

𝑡 · · · 𝜉(𝑚𝜒)𝑇

𝑡

]︁𝑇
.

A GRN, conditioned on a static context vector 𝑐𝑠, produces variable selection weights via a
softmax:

𝑣𝜒𝑡 = Softmax
(︁
GRN𝑣𝜒(Ξ𝑡, 𝑐𝑠)

)︁
.

Each variable is then individually processed:

𝜉
(𝑗)
𝑡 = GRN𝜉(𝑗)

(︁
𝜉

(𝑗)
𝑡

)︁
,

and the final aggregated representation is formed as a weighted sum:

𝜉𝑡 =
𝑚𝜒∑︁
𝑗=1

𝑣(𝑗)
𝜒𝑡
𝜉

(𝑗)
𝑡 .

This dynamic selection not only mitigates the influence of irrelevant or noisy features but also
enhances interpretability by revealing which inputs drive the forecasts at each time step.

4.22.3 Integration of Static Covariates
Static covariates such as store location or patient demographics are processed using dedicated
GRN-based encoders. These encoders produce context vectors (e.g., 𝑐𝑠, 𝑐𝑒, 𝑐𝑐, and 𝑐ℎ) that are
used to condition both the variable selection networks and subsequent temporal processing layers.
This integration ensures that the model leverages invariant information to improve forecasting
accuracy.

4.22.4 Fusion of Temporal Patterns
TFT captures both local and long-term temporal dependencies through a two-stage temporal
fusion approach. First, a sequence-to-sequence Long Short-Term Memory (LSTM) network [92]
processes recent inputs to model local temporal patterns. A gated skip connection is applied to
the LSTM outputs to preserve important raw features:

�̃�(𝑡, 𝑛) = LayerNorm
(︁
𝜉𝑡+𝑛 + GLU

(︀
𝜑(𝑡, 𝑛)

)︀)︁
,

where 𝑛 ∈ [−𝑘 , 𝜏𝑚𝑎𝑥] indexes the relative time positions.
The LSTM outputs are then enriched with static context via another GRN:

𝜃(𝑡, 𝑛) = GRN
(︁
�̃�(𝑡, 𝑛), 𝑐𝑒

)︁
.
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To capture long-range dependencies, TFT employs an interpretable multi-head attention mech-
anism inspired by [89]. The aggregated attention (see equation 4.21.2) output is computed
as

�̃� = 1
𝑚𝐻

𝑚𝐻∑︁
ℎ=1

Attention
(︁
𝑄𝑊 𝑄

ℎ ,𝐾𝑊 𝐾
ℎ ,𝑉𝑊 𝑉

)︁
. (4.51)

In this formulation, the sharing of value weights across attention heads simplifies the interpretation
of the attention scores, clearly indicating which past time steps are most influential. This dual
strategy—using LSTMs for local context and multi-head attention for global dependencies—is
central to the effectiveness of TFT and is depicted in Figure 4.6.

4.22.5 Quantile Forecasting for Uncertainty Estimation
A notable strength of TFT is its ability to generate prediction intervals via quantile forecasting.
For each forecast horizon 𝜏 ∈ {1, . . . , 𝜏𝑚𝑎𝑥} and quantile level 𝑞, the model outputs

𝑦(𝑞 , 𝑡, 𝜏) = 𝑊𝑞 𝜓(𝑡, 𝜏) + 𝑏𝑞.

The training objective is to minimize the quantile loss:

𝑄𝐿(𝑦 , 𝑦 , 𝑞) = 𝑞 (𝑦 − 𝑦)+ + (1− 𝑞) (𝑦 − 𝑦)+,

which explicitly accounts for the uncertainty in the predictions.
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Abstract: Background: The optimal indication, dose, and timing of corticosteroids in sepsis is
controversial. Here, we used reinforcement learning to derive the optimal steroid policy in septic
patients based on data on 3051 ICU admissions from the AmsterdamUMCdb intensive care database.
Methods: We identified septic patients according to the 2016 consensus definition. An actor-critic RL
algorithm using ICU mortality as a reward signal was developed to determine the optimal treatment
policy from time-series data on 277 clinical parameters. We performed off-policy evaluation and
testing in independent subsets to assess the algorithm’s performance. Results: Agreement between
the RL agent’s policy and the actual documented treatment reached 59%. Our RL agent’s treatment
policy was more restrictive compared to the actual clinician behavior: our algorithm suggested
withholding corticosteroids in 62% of the patient states, versus 52% according to the physicians’
policy. The 95% lower bound of the expected reward was higher for the RL agent than clinicians’
historical decisions. ICU mortality after concordant action in the testing dataset was lower both when
corticosteroids had been withheld and when corticosteroids had been prescribed by the virtual agent.
The most relevant variables were vital parameters and laboratory values, such as blood pressure,
heart rate, leucocyte count, and glycemia. Conclusions: Individualized use of corticosteroids in sepsis
may result in a mortality benefit, but optimal treatment policy may be more restrictive than the routine
clinical practice. Whilst external validation is needed, our study motivates a ‘precision-medicine’
approach to future prospective controlled trials and practice.

Keywords: sepsis; corticosteroids; outcomes; artificial intelligence; reinforcement learning

1. Introduction

Sepsis represents a significant cause of morbidity and is responsible for 11 million
deaths globally each year [1]. Defined as “life-threatening organ dysfunction caused by a
dysregulated host response to infection”, sepsis is an umbrella term for a heterogeneous
syndrome with many distinct phenotypes and wide variation in outcomes [2,3]. As a result,
clinical trials have provided conflicting evidence concerning the benefit of specific therapies
beyond source control, antibiotics, and maintenance of tissue perfusion [4,5].

Corticosteroids have been extensively investigated as a therapeutic option for sepsis
ever since Cook et al. first advocated their use seven decades ago, but uncertainty regarding
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their optimal use nevertheless persists [6]. More recently, the case for corticosteroids in
sepsis was based on the evidence of adrenal insufficiency accompanying critical illness [7].
Since diagnostic criteria for adrenal insufficiency are missing, identifying patients that
should receive corticosteroids is challenging [7]. In addition, several studies have found
that corticosteroids can lead to a faster resolution of shock but provided equivocal results
concerning survival [8–10].

Currently, guidelines for the management of sepsis suggest using corticosteroids in
septic patients with ongoing vasopressor requirement [5]. However, the optimal treatment
regimen, particularly timing, duration, and dose of corticosteroids, is not known, and
the clinical significance of potential adverse effects of corticosteroid therapy is unclear [5].
Identifying patients who are likely to benefit from corticosteroids is essential and attempts
at personalizing corticosteroid therapy using novel approaches, such as machine learning
and transcriptomics, have been reported [11,12].

Since interventional studies in sepsis are challenging due to the extreme heterogeneity
of its phenotypes, machine learning could represent a complementary evaluation method
for specific treatments using observational data. In essence, the aim is to construct an
algorithm that can exploit clinician variances in treatment policy over a large dataset in
a way that it is possible to find the effects of the treatment on similar patients at a given
time. Reinforcement learning, one of the three primary machine learning branches, can
be applied to this type of problem [13,14]. Reinforcement learning algorithms can serve
as the foundation for decision support tools in intensive care, where decision making is
based on sequential, highly granular data [15,16]. In brief, such algorithms attempt to find
an ‘optimal’ policy that maximizes some reward function (for example survival), given a
particular treatment strategy with a comprehensive description of the state of the patient
at that time [13]. In the present study, we describe the development of a reinforcement
learning algorithm to find the optimal approach to corticosteroid therapy in septic patients
based on high-resolution clinical data from an intensive care database.

2. Materials and Methods
2.1. Data Sources and Data Processing

All data were queried from the AmsterdamUMCdb database. Approval was obtained
for 3rd party re-use of AmsterdamUMCdb data for research from its steering group,
and the research was conducted according to the data use agreement. Such a study of
deidentified data is not subject to the need for ethical review. The ethical approvals for the
AmsterdamUMCdb have been previously described [17]. AmsterdamUMCdb contains
high-resolution clinical data related to 23,106 ICU admissions of 20,109 patients from 2003
to 2016 [17]. Patients with sepsis were identified based on the Sepsis-3 criteria2 Accordingly,
patients with new organ dysfunction as indicated by either a SOFA score ≥ 2 at admission
or an increase of 2 points or more in the SOFA score during the ICU stay, in the context
of suspected infection as described in Supplemental Table S1, were included in the sepsis
cohort [2,18,19]. Patients aged <18 years at the time of the ICU admission and patients
who stayed in the ICU less than 24 h were excluded. The onset of the septic episode was
considered the day the change in the SOFA score occurred and patients remained in the
sepsis cohort until discharge or death.

In total, 281 variables were extracted, of which 277 input variables were coded as a
multidimensional time series with a time resolution of 24 h. Every ICU day was considered
separately, and only current measurements available at that timepoint were included in
each data point. Only numeric variables represented in more than 2% of the data points
were included. The imbalance resulting from missing data and the variable sampling rate
were addressed by preprocessing: missing laboratory values were imputed using forward
fill, while missing medication doses were set to 0. Overall, 17.93% of all input values were
imputed. Numeric data were normalized to values between −1 and +1; for frequently
sampled parameters (e.g., heart rate), the mean, the maximum, the minimum, and standard
deviation were calculated, and for others (e.g., continuously administered drugs), the sum,
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i.e., the 24 h cumulative dose, was used as input instead. Therefore, the final number of
extracted parameters increased to 379. The complete list of input features is provided in
Supplemental Table S2.

2.2. Algorithm Development

Reinforcement learning is based on modeling a virtual decision-making ‘agent’ in-
teracting with its environment described by a set of continuous states; the interaction
between the agent and the environment predetermined as the action space (in this case,
the finite number of treatment choices). At each step, the agent chooses an action, and the
environment changes its state, returning a reward. The reward signal is used to train the
agent, which gradually learns an optimal policy that maximizes return [20].

We implemented a reinforcement learning algorithm, consisting of two distinct neural
networks, based on the Markov Decision Process using the temporal difference actor-
critic method able to suggest the optimal corticosteroid dose for each septic patients by
retrospectively analyzing clinical data [20–22]. The dataset was randomly split into a
training set, consisting of 70% of all patients, and two smaller datasets for validation (20%)
and testing (10%) (Figure 1). The algorithm was trained on trajectories of successive patient
states, where a state corresponded to a vector of all features within a 24 h period, other
than mortality and the administered corticosteroid dose. The reward signal associated
with each transition was related to the ICU mortality. The action space consisted of five
discrete actions, defined by converting the cumulative 24 h dose of systemic corticosteroids
to the equivalent dose of hydrocortisone and binning the resulting values: the null (‘no
corticosteroids’) action and four dose ranges: 1–100 mg, 101–200 mg, 201–300 mg, and over
300 mg hydrocortisone [23]. A detailed description of the reinforcement learning model is
provided in Supplemental File S1 and Supplemental Figure S1. The reinforcement learning
algorithm was built using the TensorFlow 2.7 Python library [24].
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Figure 1. The Sepsis Cohort. Patients with sepsis from the AmsterdamUMC database were identified
using the Sepsis-3 criteria. The sepsis cohort was randomly split in three distinct subsets used for
training, evaluating, and testing the reinforcement learning algorithm.
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2.3. Evaluation of the Algorithm

The reinforcement learning algorithm was initially evaluated by comparing the actual
reward after concordant actions, i.e., when the actual treatment and the corticosteroid
dose suggested by the agent were identical, with the reward after discordant actions in the
testing set.

The performance of such reinforcement learning algorithms could not be directly eval-
uated by measuring the received reward of each action, since the reinforcement learning
(evaluation) policy was different from the clinician (behavior) policy and the actual reward
represented the performance of the clinician policy. We implemented a high-confidence
off-policy evaluation (HCOPE) of the algorithm, a statistical method which compares the
performance of the algorithm’s policy with a baseline, the performance of the clinician
policy, and computes the probability that the algorithm’s policy has a performance below
this baseline to select the best performing model. Using the clinician policy, a set of trajec-
tories was generated and used to lower-bound the performance of the evaluation policy.
The high-confidence off-policy evaluation (HCOPE) allowed for determining whether the
95% lower bound of the expected reward of the policy of the reinforcement learning agent
exceeded the average reward of the clinician policy, i.e., the actual treatment the patients
received [25,26].

Finally, we estimated the relative importance of each variable using a Layer-wise Rele-
vance Propagation algorithm and ranked the input features of the RL algorithm according
to their contribution to the agent’s decision [27]. To allow for comparison between the
relevance of the input features of agent’s policy and the clinical practice, we developed
a random forest model using the Scikit-learn Python library that predicts the clinicians’
policy, simulating the clinician behavior, and we ranked the clinical variables supporting
the average clinician behavior according to the parameters of the fitted model [28].

3. Results

A total of 3051 ICU admissions at the Amsterdam UMC corresponding to 2946 distinct
patients were included (Figure 1).

Repeated admissions to the ICU, both remote and during the same hospital stay, were
included if they met the sepsis definition and were analyzed as independent ICU stays.
1395 admissions were associated with vasopressor use and lactate values >2 mmol/l during
the ICU stay, therefore meeting the criteria for septic shock. The cumulative length of
stay from the onset of sepsis until ICU discharge was 28,557 days corresponding to as
many data points. The training dataset comprised 2136 randomly selected ICU admissions,
leaving a total of 610 and 305 admissions in the evaluation and testing datasets, respectively
(Figure 1). Patients’ characteristics are summarized in Table 1.

The relative error of the actor-critic model decreased over the training steps and
converged after 250 epochs at 0.044 of the initial relative error (Figure 2a). The concordance
between the virtual agent’s action and the retrospective action by ICU physicians started
at 22%, which was the expected value considering the dimension of the action space
(five possible actions). The overall agreement between the virtual agent and the human
clinicians reached 63% after convergence (Figure 2c). Similarly, the probabilities of choosing
each action from the action space were equal initially. Over the training epochs, the
virtual agent increasingly tended towards withholding corticosteroids. After convergence,
in 65% of ICU days, the agent chose to withhold corticosteroids, and in patients where
corticosteroids were prescribed, the suggested dose was low (Figure 2b). In contrast, the
human clinicians prescribed corticosteroids in 45% of data points. Although the virtual
agent displayed a tendency towards passive behavior, in 49% of the cases where the agent
chose to administer glucocorticoids, the ICU physicians acted concordantly.
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Table 1. Summary of patients’ characteristics. Each ICU admission is considered separately.

Characteristics Summary (Total) Summary (Survivors) Summary (Non-Survivors)

Total number of ICU admissions 3051 2336 715

Male sex, No. (%) 1758 (57.6%) 1353 (57.9%) 405 (56.6%)

Age group (years), No. (%) – – –

18–39 342 (11.2%) 303 (12.9%) 39 (5.4%)

40–49 322 (10.5%) 265 (11.3%) 57 (7.9%)

50–59 518 (17.0%) 414 (17.7%) 104 (14.5%)

60–69 757 (24.8%) 591 (25.2%) 166 (23.2%)

70–79 709 (23.2%) 506 (21.6%) 203 (28.3%)

>80 403 (13.2%) 257 (11%) 146 (20.4%)

Highest SOFA score during the ICU stay,
Median (IQR) 10 (6) 9 (6) 13 (6)

Sofa score at sepsis onset, Median (IQR) 9 (6) 8 (5) 11 (7)

Septic shock, No. (%) 1395 (45.7%) 845 (36.1%) 550 (76.9%)
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Figure 2. Training process of the virtual agent. Figure 2 shows how the performance and the
behavior of the RL agent changed during the training process. On the X-axis, the number of epochs,
i.e., how many times the algorithm had worked through the learning dataset, since the beginning
of the training is displayed. The vertical dotted line marks the end of the training process. (a) The
decrease in the relative error, which reflects the accuracy of the model’s output, during the training
process. (b) The number of occurrences for each action suggested by the algorithm during training is
displayed in the (b). All five possible actions are equally represented at the beginning of the training.
After 50 epochs, the algorithm’s tendency to withheld corticosteroids becomes obvious. (c) The
increasing overall agreement between the RL policy and the actual historic treatment. (d) The number
of occurrences when agreement between the RL policy and the retrospective treatment was reached
is displayed across the five possible actions in (b).
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In the testing dataset, the treatment suggested by the virtual agent matched the
retrospective action by ICU physicians in 59% of the data points. The agent’s tendency
to prescribe less corticosteroids was also confirmed in the testing dataset: corticosteroids
were withheld in 62% of the ICU days, compared to 52% according to the ICU physicians.
Accordingly, the average daily corticosteroid dose prescribed by the virtual agent was lower
(Figure 3). Both ICU physicians and the RL agent tended to prescribe corticosteroids in
the early phase of the septic episode and corticosteroid use dropped sharply after 10 days
(Figure 3).
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Figure 3. Comparison of corticosteroid use between ICU physicians and the RL agent. Use of
corticosteroids as percentage of patients receiving corticosteroids (a) and average cortisone dose (b) is
compared between the historic treatment in the ICU and the RL policy after adjusting for the ICU
length of stay. Both ICU physicians and the RL agent tend to prescribe corticosteroids during the
early phase of the septic episode. Notably, the RL policy is more restrictive compared to the actual
treatment the patients received.

The ratio between the reward of the agent’s policy and the clinicians’ policy increased
over the training process and high-confidence off-policy evaluation (HCOPE) demonstrated
that the 95% lower bound of the expected average reward for the agent’s policy was higher
compared to the average reward for the historical decisions by clinicians after 200 epochs
(Figure 4). Accordingly, the normalized expected mortality rate decreased and was lower
than 0.7. Overall, when patients from the testing set received the same glucocorticoid
therapy as suggested by the RL agent, mortality was lower: the mortality across all ICU
days, i.e., the ICU days that eventually result in patient’s death, when the decisions made
by the RL agent and the ICU physician were identical was 22.38% compared to 28.33%
in case the actions were different. This finding was consistent both when the RL agent
withheld corticosteroids (25.85% of the data points compared to 32.22%) and when the RL
agent suggested using corticosteroids (33.02% of the data points compared to 34.27%).

We modeled the retrospective treatment policy by the ICU physicians using a random
forest model that predicted the clinicians’ treatment decisions. The micro-average multiclass
Area under the Receiver Operator Characteristic Curve for the random forest model was
0.8 (Supplemental Figure S2). The most relevant input features underlying the decisions
of the reinforcement learning algorithm and the random forest model, respectively, are
presented in Supplemental Tables S3 and S4 and Supplemental Figure S3. Both algorithms
relied on vital parameters and laboratory values to determine the optimal treatment policy.
However, vasopressor use and PEEP were distinctly more relevant for the clinician policy.
Accordingly, although the reinforcement learning agent was consistently more restrictive
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compared to human clinicians, the difference is more obvious in patients who met the
criteria for septic shock (Figure 5).
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Figure 4. Comparison between the evaluation (RL) policy and the behavior policy (the actual
treatment). (a) The change in the normalized expected mortality rate across training epochs, (i.e., the
number of iterations or how many times the algorithm had worked through the learning dataset,
since the beginning of the training) is represented in Figure 5a. (b) The 95% lower bound of the
normalized expected reward of the RL policy (black dotted line) determined by high-confidence
off-policy evaluation compared to the estimated reward of the clinician policy (red dotted line) is
shown in (b).
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4. Discussion

We present a reinforcement learning algorithm trained to optimize the corticosteroid
treatment strategy for a specific patient state in critically ill patients with sepsis. The
novelty of our approach is that it potentially enables an individualized therapy to improve
a highly relevant outcome based on clinical parameters routinely collected in the ICU. The
goal of our reinforcement learning algorithm, determined by the reward signal, was to
minimize mortality. Indeed, in the testing dataset, ICU mortality was the lowest in patients
who received a treatment identical to the action suggested by the algorithm. Off-policy
evaluation confirmed that the algorithm performed well within the given environment and
even outperformed the clinician policy in the validation dataset.

Currently, the rationale for corticosteroids in sepsis is based on several studies suggest-
ing faster resolution of shock in septic patients who require vasopressors despite adequate
fluid resuscitation [5]. While earlier studies showed a mortality benefit, this was not con-
sistently confirmed in subsequent trials [8,9,29–32]. This led to frequent changes in the
clinical practice to accommodate new, often conflicting evidence, which have been likened
to a “swinging pendulum” situation [30]. The most recent guidelines for the treatment of
sepsis suggest corticosteroids as early as 4 h after the initiation of treatment in patients who
require vasopressors. In the testing subset of our sepsis cohort, where 45.7% of patients
met the criteria for septic shock, corticosteroids were suggested by the virtual agent in
38% of the ICU days. Conversely, ICU physicians used corticosteroids in 48% of the data
points, yet only in 49% of the cases where the reinforcement learning agent suggested using
corticosteroids, the actual treatment prescribed in the ICU was concordant. This difference
may be a result of at least two factors. First, the reward signal used for training was related
to the mortality and the reinforcement learning agent aimed to maximize survival. Second,
corticosteroids have been historically reserved for patients who require more vasopressors
and have higher severity of disease and, therefore, worse outcomes. Indeed, the random
forest model we developed to simulate decision making by the ICU physicians showed
that blood pressure and vasopressor use were most consistently associated with corticos-
teroid use. Furthermore, due to the retrospective nature of our study, we expected that the
association between higher severity scores and corticosteroid use in the database would
translate in a bias of the RL policy towards the null action.

We identified patients from the database with sepsis algorithmically, and this required
a pragmatic operationalization of the Sepsis-3 criteria, using a data-driven approach, instead
of relying on coding data to be defined [2,19]. This method has been used before and has
the advantage of being more reliable; more reproducible; and therefore, appropriate for
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epidemiological or database studies [33]. These operational criteria can provide consistent
estimates of the sepsis incidence over longer periods, despite its inherent limitations, such
as the assumptions about suspected infections being confirmed, pre-admission organ
function, and the impact of the caregivers’ decisions on the SOFA score [33–35].

Although traditionally, artificial intelligence algorithms have been often compared to a
black box, several methods are available to provide insight into which variables contributed
most to the algorithmic decisions [36]. We ranked the input features based on relevance,
showing that our model was explainable and valid from a clinical standpoint and that the
agent relied on plausible clinical variables to make its decisions. If the random forest model
accurately simulates the decision-making process by ICU physicians, comparing the relative
relevance of the input features between the reinforcement learning algorithm and the
random forest model can reveal how a treatment policy can be developed to maximize ICU
survival contrasts with actual care. Unlike current clinical practice, where refractory shock
is the single most important factor considered to prescribe corticosteroids, vasopressor
requirements and lactate only had a limited influence on the reinforcement learning policy
while being highly relevant for the clinicians’ policy. Similarly, the time elapsed since the
onset of sepsis ranked distinctly higher amongst input features for the historical treatment
by ICU physicians compared to the reinforcement learning treatment. These findings
confirm the usual practice of prescribing corticosteroids early for patients in septic shock [5].
Interestingly, the machine learning policy resulted in a similar corticosteroid use pattern,
characterized by an abrupt fall in steroid use after the 10th day since onset without explicitly
relying as much on the time elapsed from the onset of sepsis. Conversely, total protein
in cerebrospinal fluid (CSF) and the standard deviation of the heart rate ranked higher
among the input parameters of the virtual agent only. It might seem surprising that a
parameter that is rarely sampled is highly relevant for the output of the algorithm. Although
corticosteroids are recommended for prevention of neurological sequelae in patients with
bacterial meningitis, they have no effect on mortality [37]. Alternatively, lumbar puncture
might be performed as a part of the work-up in patients with fever of unknown origin
and subtle neurological symptoms [38]. In either case, since non-missing values are highly
suggestive of a neurological diagnosis, informative missingness might explain its relevance
for the reinforcement learning policy.

Arterial blood pressure, leucocyte count, serum sodium, and blood glucose levels
were similarly influential in both algorithms. These findings seem biologically plausible,
given the essential role of corticosteroids in regulating glucose metabolism and electrolyte
homeostasis [39]. Corticosteroids also potentiate the effects of catecholamines and mobilize
neutrophils, leading to leukocytosis and neutrophilia [40,41]. It is reasonable that clinical
variables related to the physiological effects of corticosteroids could help guide therapy
in septic patients by accurately predicting their effects in specific patient states. However,
these results must be interpreted cautiously. The method we used to rank input variables
estimates the overall contribution of all variables to the output of the model. Furthermore,
unlike traditional statistical modeling, neural networks are less suitable for determining
relationships between variables. Finally, all input variables were normalized between −1
and +1, and the relation between the normalized values, the actual values, and the reference
range for each variable was determined by the variable’s distribution and is not obvious or
readily interpretable for clinicians.

We acknowledge several limitations of our study. First, we used a single database
to develop our algorithm and our findings have not been externally validated, which
considerably limits the clinical applicability of the model. Like most of the artificial in-
telligence research in the intensive care, our study is in the prototype phase, and broad
implementation remains a distant goal [42] Although machine learning models could
be transferred across ICUs, moving these models to the bedside proves challenging [42].
Artificial intelligence holds great promise to enhance the practice of intensive care and
the management of sepsis in the ICU; however, the current state of AI in intensive care
does not support its routine use due to regulatory reasons, but also because uncertainty
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surrounds how these models could be included in daily practice, and good prospective
studies still need to be included. Second, data used to train and test the model originate
from a single medical center over several years. Changes in the best care practices over time
and differences between local policies concerning ICU admission and sepsis management
might result in relevant heterogeneity of the sepsis cohort and the outcomes. However, the
aim of this study was to create an algorithm that can exploit these differences to derive an
optimal treatment policy by analyzing several different suboptimal policies. Third, data
were anonymized, and in the process, all notes were removed. Consequently, we could
not account for the withdrawal of life-sustaining therapies. Fourth, by using a 24 h step to
model the patients’ trajectories, our model artificially creates data points that encompass
more data than are available to the clinician at any given time. We considered the time res-
olution of 24 h and the action space defined as the cumulative 24 h dose of corticosteroids
due to several reasons, since this approach allowed us to compare different treatment
regimens, using different substances, doses, and intervals. Furthermore, in our experience,
therapy goals and some therapeutic measures for the next 24 h are defined during the ICU
rounds, once daily. Therefore, modelling clinical data as time-series data with a resolution
of 24 h resembles, to some extent, clinical practice.

Decision making in the ICU typically takes place during the once-daily rounds and
the cumulative 24 h dose allows for different treatment regimens to be compared regardless
of substance and timing. Finally, we analyzed all clinical data from onset of sepsis until
discharge from the ICU, which most likely covers a significantly longer period than the
duration of the septic shock. However, clearly delineating between the acute critical illness,
and subsequent organ dysfunction and persistent critical illness does not seem feasible in
the context of the present study.

5. Conclusions

We developed and evaluated a reinforcement learning algorithm that used clinical
data to derive the optimal corticosteroid therapy aimed at improving mortality in patients
with sepsis. The algorithm performed well in the testing dataset, and the reinforcement
learning policy was associated with a lower mortality than the clinician’s policy. Due to
the exploratory nature of our work, future research focusing on external validation of the
model is required before prospective evaluation at the bedside. Our model suggests that
a more targeted and individualized, reinforcement learning-driven approach to corticos-
teroids is possible and motivates prospective evaluation of treatment scenarios beyond
refractory shock.
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the SVM algorithm. Supplemental Table S3: The most relevant predictors of the clinicians’ policy
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20 most relevant input features for the RL and random forest models [43–45].
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ABSTRACT 

PURPOSE 
Acute kidney injury (AKI) is highly prevalent in intensive care units (ICUs) and often requires renal replacement 

therapy (RRT). However, the optimal timing for initiating RRT remains controversial. The aim of this study was 

to develop a reinforcement learning (RL) model to support individualized RRT decision-making for critically ill 

AKI patients. 

METHODS 
We trained and validated our RL model using ICU data from two cohorts: the publicly available MIMIC-IV 

database and a dataset from the Medical University of Vienna (MUW). Patients with AKI of stage I or higher were 

included, and those with chronic kidney disease or prior kidney transplantation were excluded. We extracted 88 

features, employing weighted K-means clustering for state definition. A Q-learning–based RL approach was 

applied, with off-policy evaluation to assess the policy’s performance versus clinician decisions. 

RESULTS 
In both the MIMIC and MUW cohorts, the RL model demonstrated a high level of concordance (up to 98.5%) 

with clinicians but exhibited superior performance on key metrics. Notably, the model identified a reproducible 

patient subgroup with greater illness severity for whom earlier or more frequent RRT could improve outcomes, 

suggesting a beneficial role for AI-driven decision support. 

CONCLUSIONS 
Our RL model provides dynamic, data-driven recommendations for initiating and ceasing RRT, closely aligning 

with clinical practice and identifying high-risk patients who may benefit from earlier intervention. 

TAKE-HOME MESSAGE 
RL offers a promising approach to augment clinical decision-making for RRT timing, potentially improving 

outcomes for selected subgroups of critically ill AKI patients. 

KEYWORDS 
Acute kidney injury (AKI), Renal replacement therapy (RRT), Reinforcement learning (RL), Intensive care, 

Clinical decision support (CDS) 

  



INTRODUCTION 

Acute kidney injury (AKI) is a common and severe complication of critical illness characterized by a sudden 

decline in kidney function over hours to days. Up to 50% of critically ill patients develop AKI during their stay in 

the intensive care unit (ICU), and AKI is associated with worse clinician- and patient-reported outcomes [1]–[4]. 

Mortality rates among patients who develop AKI may exceed 50%, with those experiencing stage III AKI facing 

an 80% higher risk of mortality compared to non-AKI patients [5]–[7]. 

The immediate consequences of AKI include a decrease in urine output and disruption of acid‒base and electrolyte 
homeostasis, potentially progressing to fluid overload with hypoxemia, severe acidosis, hyperkalemia, and uremic 

symptoms [8], [9]. Although blood purification techniques can effectively correct the biochemical disturbances 

accompanying AKI, renal replacement therapy (RRT) does not restore kidney function, and in the absence of 

absolute indications, the optimal strategy for RRT in AKI patients, remains unknown despite extensive studies. 

The challenge in the optimal use of RRT is to balance the risks and costs associated with RRT against the severity 

and consequences of AKI. Although early RRT initiation was found to have no survival benefit in several high-

quality trials, delaying RRT can also be associated with harm [10]–[13]. Furthermore, absolute indications for 

RRT do not correlate with AKI biomarkers or urine output [14], [15]. If elevated kidney function markers and 

oliguria cannot predict clinically relevant AKI complications, it follows that an RRT initiation strategy based on 

AKI stages and time windows will not effectively prevent these complications. Moreover, RRT discontinuation 

presents similar challenges, adding to the complexity of this conundrum [16]. 

As machine learning has been increasingly studied in the field of intensive care, there has been a growing interest 

in data-driven applications of machine learning to AKI [17]. Most research on this topic, however, focuses on 

early detection and prediction of AKI rather than on RRT initiation strategies [18], [19]. Reinforcement learning 

(RL) is a machine learning framework that focuses on sequential decision-making. Through iterative interactions 

with their environment, RL agents can learn optimal policies [20]. Unlike supervised learning, which relies on 

static, labeled datasets, RL dynamically adapts to evolving contexts by evaluating the long-term consequences of 

actions. This makes RL a particularly suitable paradigm for medical applications. By conceptualizing clinical 

decisions as Markov decision processes, RL algorithms, such as Q-learning [21] and policy gradients [22], can 

optimize interventions. This approach has proven transformative in critical care; for example, Komorowski et al. 

[23] leveraged RL to derive personalized sepsis treatment policies from electronic health records, reducing 

calculated mortality by dynamically adjusting vasopressor and fluid administration in response to patients' 

physiological trajectories. In the context of chronic disease management, RL has been shown to optimize 

interventions with delayed effects, such as insulin dosing for patients with diabetes [24] and dialysis scheduling 

for patients with renal failure [25]. Grolleau et al. introduced an RL-driven algorithm that analyzes patient data to 

recommend personalized RRT initiation thresholds, demonstrating improved survival rates in retrospective 

validation [26]. 

We hypothesize that the severity and progression of the underlying pathology, to a greater extent than biomarkers 

and complications, are determinants of AKI trajectories in the ICU, including the need for RRT. The aim of this 

study was to develop and validate an algorithm that can accurately suggest individualized RRT strategies for AKI 

patients by training an RL agent in an environment consisting of highly granular clinical data to reduce mortality. 

  



METHODS 

DATA SOURCES AND COHORT SELECTION 

We developed and validated our RL algorithm using ICU patient data from two sources. For training and internal 

validation, we used the publicly available Medical Information Mart for Intensive Care IV (MIMIC-IV v3.1) 

database, which comprises 94,458 ICU stays from 65,366 individuals between 2008 and 2022 [27]. For external 

validation, we used a proprietary dataset from the Medical University of Vienna (MUW) and the University 

Hospital Vienna, one of Europe’s largest teaching hospitals. Supplemental Material 1 illustrates the patient counts 

and sequential filtering steps for MIMIC-IV. 

We included all ICU patients with AKI of stage I or higher according to the KDIGO criteria [28]. To reduce 

confounding due to long-term renal impairment, we excluded those with stage V chronic kidney disease or prior 

kidney transplantation. In accordance with these criteria, 54,285 patients from the MIMIC-IV cohort (2008-2022) 

and 10,219 patients from the MUW cohort (2016-2024) were included in the study. Table 1 shows the demographic 

and clinical characteristics of both populations. 

FEATURE EXTRACTION AND PREPROCESSING 

We extracted 88 clinically relevant features (patient demographics, vital signs, laboratory values, medications, 

etc.) from the MIMIC-IV database (see Supplementary Material 2). Missing data were imputed via forward filling, 

and outliers were capped at the 1st and 99th percentiles via an approach similar to that of Komorowski et al. [29]. 

All features were then standardized via z-score normalization and log transformation. The code basis of our work 

was a Python implementation1 of the AI Clinician of Komorowski et al. [29]. 

Figure 1 illustrates a schematic of the modeling setup: Patient data were structured in 12-hour intervals up to 264 

hours (1 day prior to and 10 days following RRT initiation). A random forest model, optimized to predict clinician-

initiated RRT and patient outcomes, was trained to generate feature importance scores. These scores served as 

weights in a weighted K-means clustering algorithm, which was run on 80% of the data (with 20% reserved for 

testing). The optimal number of clusters and features was determined by comparing state-transition matrices from 

the training and test sets using the Kullback–Leibler (KL) divergence [30] and matrix norms [31]. The final 

clustering model was subsequently applied to the entire dataset, including the external MUW cohort, ensuring 

consistent state definitions across all analyses. 

REINFORCEMENT LEARNING MODEL DEVELOPMENT 

We developed a Q-learning–based RL [21] model to guide decisions regarding RRT initiation versus withholding 

in ICU patients, adhering to the TRIPOD-AI [32] reporting guidelines. Patient states were defined by clusters 

derived from weighted K-means clustering [33], and the reward structure allocated +100 for 90-day survival, −100 
for mortality, and an additional penalty (ranging from 0 to −35) for RRT initiation. Each penalty value was 
evaluated by training 500 RL models to identify the best-performing policy (Figure 2). 

The hyperparameters were tuned on a validation split (20% of training data). Convergence was assessed via 

weighted importance sampling (WIS) [34], which is an evaluation method that adjusts the influence of patient 

trajectories collected under standard clinical practice to estimate the performance of an RL algorithm. The model’s 
performance was then evaluated internally on a held-out test set (20% of the data) and externally on an independent 

cohort (MUW). Additionally, the distribution correction estimation (DICE) [35] algorithm was applied to generate 

an unbiased second performance evaluation. 

MODEL ASSESSMENT 

                                                   
1 https://github.com/cmudig/AI-Clinician-MIMICIV/tree/main 



We stratified patients into four groups based on whether RRT was initiated solely by clinicians, recommended 

solely by the AI, both, or neither. On the test set, we assessed the concordance between the RL model’s 
recommendations and the clinicians’ decisions. We quantified the proportion of patients receiving RRT under the 
AI-recommended policy, the frequency of AI-recommended RRT, and the decision variation stratified by 

Sequential Organ Failure Assessment (SOFA) score and ICU type (surgical, mixed, or medical). 

Survival analysis [36], stratified by age and SOFA score, was performed to assess differences in 90-day mortality 

across groups. To identify the determinants of treatment decisions, we trained an additional random forest model 

[37] to evaluate feature importance for AI-recommended RRT versus clinician-initiated RRT.  



RESULTS 

MODEL SELECTION 

We evaluated the WIS metric across various penalty levels for RRT initiation using the validation set and plotted 

the corresponding RRT initiation rates, as shown in Figure 2. The analysis suggests that higher penalty levels tend 

to be associated with lower WIS values (higher mortality). 

We ultimately selected a penalty level of 22% of the reward associated with mortality for two key reasons. First, 

it yields a treatment rate that is similar to that of the MIMIC dataset, reflecting real-world constraints such as the 

limited availability of resources; this ensures that the model remains practical and implementable. Second, among 

the models with a treatment rate comparable to that of MIMIC, the 22% penalty model has the highest average 

WIS. 

The optimal number of features was determined to be 40, and the optimal number of clusters was found to be 500. 

PERFORMANCE 

The evaluation results indicate that, on the MIMIC dataset, the AI model’s 95% lower bound (86.0) is higher than 

the physicians’ 95% upper bound (64.6). On the external MUW dataset, the AI’s 95% lower bound (78.5) also 
exceeds the physicians’ 95% upper bound (77.5). This is further supported by the DICE values: for MIMIC, the 
physician’s DICE score is 62.3 versus the AI’s 62.5; for MUW, the physician’s DICE score is 70.5, compared to 
71.6 under the AI policy. The difference between the scores of the clinicians’ policies is probably due to the 
different cohorts and does not allow for a comparison between the hospitals. 

COMPARISON OF RRT INITIATION 

We compared the proportion of patients who received RRT under clinician-initiated protocols to the AI 

recommendations in both the MIMIC and MUW datasets. In MIMIC, clinicians initiated RRT in 3.6% of patients 

compared to 2.8% for the AI (98.5% concordance). In MUW, clinicians initiated RRT in 11.5% of patients, 

compared with 8.6% for the AI. The model predicted shorter RRT treatment durations (Figure 3), a finding that 

may be attributable to the retrospective study design. 

In the MIMIC cohort, our model demonstrated a high level of concordance with clinicians regarding RRT initiation 

decisions (F1 score: 0.80). Among the 16,283 patients in the MIMIC test set, clinicians and the AI agreed on 

initiating RRT in 422 instances and on withholding it in 15,651 cases (see Table 1). Similarly, in the MUW cohort 

(F1 score: 0.81), concordance occurred in 9,847 of 10,219 patients; clinicians alone initiated RRT in 283 instances, 

compared to 89 recommendations made solely by the AI. 

Across both test sets, the Clinician-Only RRT group was characterized by a higher prevalence of chronic 

comorbidities, including congestive heart failure, hypertension, and diabetes, along with lower bilirubin and 

elevated creatinine levels. In contrast, the AI-Only RRT recommendations targeted patients with higher SOFA 

scores, elevated blood pressure, reduced total urine output, an increased anion gap, elevated BUN, and increased 

WBC levels (see Table 1). Survival analyses (Figure 4) revealed that the “Neither” group (in which neither the AI 
nor a clinician recommended RRT initiation) consistently presented the lowest 90-day mortality, whereas the “AI-
recommended only” group presented significantly higher mortality rates (Figure 4). 

SUPPLEMENTARY ANALYSES 

Further analyses, including action distributions, survival curves for the MUW cohort, a 3D clustering visualization, 

and feature importance ranking, were conducted for both MIMIC and MUW and are provided in Supplementary 

Materials 3-6. 



DISCUSSION 

We present an RL algorithm to guide RRT decisions in critically ill patients, developed using medical health 

data from the MIMIC-IV database and validated externally on data from MUW. The main finding of our study is 

that RL has the potential to guide RRT decisions for ICU patients with AKI. By integrating 40 routinely 

measured ICU variables through weighted K-means clustering, our RL model achieved 98.5% concordance with 

human clinicians and outperformed conventional approaches (as measured by WIS and DICE) in both internal 

and external validation. Updated every 12 hours, the model provides dynamic, data-driven recommendations for 

initiating or stopping RRT. These findings suggest that AI-driven policies can meaningfully augment clinical 

judgment, particularly by identifying patients who may benefit from an earlier start of RRT. 

Another key insight from our analysis is that there exists a subgroup of patients for whom the model 

recommended treatment, but clinicians did not. These patients exhibited increased mortality, indicating that AI-

recommended interventions could improve outcomes if validated prospectively. We further characterized these 

subgroups to identify which types of patients might benefit most from RRT. 

A growing body of research supports the use of RL to guide decision-making in critical care. Komorowski et al. 

[23] introduced an RL-based framework and demonstrated how data-driven models could improve decision-

making to treat patients with sepsis. In the context of AKI and RRT, Grolleau et al. [26] applied RL to the 

AKIKI trial data to optimize the initiation of RRT in the ICU, and Zhang et al. demonstrated the utility of RL in 

managing ICU-acquired AKI [38]. Subsequent investigations have explored the potential of RL in addressing 

CKD complications [39] and refining fluid management in hemodialysis [40]. 

Unlike Grolleau et al., we used real-world data for the validation dataset. Although the use of clinical trial data 

for secondary analyses is common, this approach has its downsides. The trial population may be less 

representative of the entire critical care population due to the predetermined sample size, the requirement for 

informed consent, and the strict inclusion criteria. When several trials with different inclusion criteria, designs, 

and interventions are combined, data heterogeneity can represent a source of bias. Clinical trial data, which are 

often limited in scope and granularity, may not align with secondary research objectives, particularly in AI 

studies that require extensive datasets with robust volumes of observations and data points. Additionally, our 

algorithm not only provides predictions for the initiation of RRT but also determines when RRT should be 

discontinued. 

Notably, Grolleau et al. analyzed only nine variable-baseline characteristics: arterial blood pH, serum potassium, 

urine output, and blood urea nitrogen at 24 and 48 hours. This aligns with our identification of these parameters 

as key predictors (see Supplement Material 5). However, our analysis also highlights underappreciated variables, 

including platelet count and phosphorus. In contrast to the method of Grolleau et al., our methodology employs 

88 variables, prioritizing the 40 that are most representative of patient condition. These variables are sampled 

more frequently, allowing higher resolution and therefore resulting in a more accurate representation of patient 

trajectories [26]. 

Our algorithm introduces several key methodological advancements to improve its reliability and applicability in 

real-world clinical settings. First, to ensure that our model remains accurate when applied to new patient 

populations, we implemented weighted K-means clustering to better categorize patient states, which decreased the 

KL divergence by approximately two-thirds compared with traditional techniques, outperforming the unweighted 

K-means clustering proposed by Komorowski et al. [23]. Second, to ensure that the model’s performance 
assessments would be as objective as possible, we employed a dual evaluation strategy that combines two 

complementary statistical techniques (WIS and DICE); this reduces the risk of bias that may arise when a single 

evaluation method is used, as was the case in previous studies by Peine and Komorowski [23], [41]. Our approach 

aligns with best practices in machine learning for health care, as highlighted by Kaushik and Gottesman, who 

emphasized the importance of rigorous validation to ensure the robustness of AI-driven clinical decision tools [42], 

[43]. 



Furthermore, building on Liu’s recommendation of a meaningful reward design, we introduced reward 
penalization, in which the initiation of RRT is penalized during training in a manner that reflects real-world 

constraints to systematically study how action frequencies (e.g., varying rates of RRT initiation) influence 

clinical outcomes [44]. By varying penalty weights (from low to high), we demonstrated that lower penalties 

reproduced European-style treatment rates, whereas higher penalties aligned with American-style protocols—
although the model was trained exclusively on MIMIC data. This analysis also suggests that there is a light 

increase in mortality with increasing penalties (Figure 2). 

The higher 90-day mortality among AI-recommended patients who did not receive RRT suggests that the model 

identified individuals with acute deterioration (e.g., elevated SOFA scores and reduced urine output) who might 

benefit from earlier intervention. Clinicians prioritized chronic comorbidities (e.g., heart failure and renal failure) 

and lowered bilirubin, potentially overlooking dynamic acuity. Elevated mortality in untreated AI-identified 

patients highlights an unmet therapeutic need and suggests that the model captured a high-risk cohort in which 

timely RRT could improve outcomes. While end-of-life decisions or unmodeled factors may explain some cases, 

the model's consistent identification of high-risk patient groups demonstrates its potential to benefit clinical 

decision-making. 

Another strength of our study is the external validation using a dataset outside the US that differs from the 

training dataset. To date, only a few models have been validated in different geographical and cultural contexts, 

yet this approach leads to significantly more robust performance [45]. 

We acknowledge several limitations. First, our analysis relies on retrospective data from two centers with 

differing RRT practices—primarily continuous RRT in Vienna versus shorter RRT sessions in the United 

States—potentially introducing bias and limiting generalizability [46]. An important aspect of this limitation is 

the extent to which continuous RRT and intermittent techniques, such as slow, low-efficiency dialysis, are 

comparable. We divided patient trajectories into 12-hour steps, assuming that blood, dialysate, and replacement 

fluid flows accurately and fully characterize the techniques employed, but the effects of different modalities on 

hemodynamics and solute/fluid control are not accounted for. 

Second, although weighted K-means clustering preserves more patient-level heterogeneity than standard 

clustering does, it still averages patient characteristics and may overlook rare but significant critical cases [47]. 

Third, the retrospective design inherently limits our evaluation: the AI-recommended actions were not actually 

executed, thus patient responses to these recommendations remain estimated [48]. Although we employed two 

state-of-the-art evaluation methods (WIS and DICE) to mitigate bias, unmeasured confounders could still 

influence performance. Finally, our model depends on data completeness and does not yet incorporate 

unstructured inputs (e.g., narrative notes) or intangible clinical considerations (e.g., end-of-life discussions). 

Prospective trials integrating AI-driven recommendations with clinical judgment are necessary to validate and 

refine these results. 

Importantly, heterogeneous documentation practices across cohorts introduced variability in the reporting of 

comorbidities and patient characteristics, which were used exclusively for descriptive analyses; diagnoses were 

excluded from model training, whereas objective, computer-measured parameters such as vital signs remained 

unaffected by documentation variability. 

In conclusion, this study demonstrates that an RL-based model can effectively support RRT decision-making for 

critically ill patients with AKI, offering higher overall performance than human clinicians and maintaining a 

high level of concordance overall. Notably, we identified a distinct subgroup of patients who did not receive 

RRT but were flagged by the AI as likely to benefit, suggesting that earlier or more targeted intervention could 

improve outcomes in this high-risk patient cohort. Through rigorous feature extraction, clustering, and off-policy 

evaluation, our model achieves robust performance across multiple datasets. However, further prospective 

validation and the incorporation of unstructured clinical data are imperative to ensure safe, transparent, and 

ethically responsible integration of AI-driven decision support into critical care. 
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FIGURES AND TABLES 
TABLE 1. Distribution of comorbidities and vital parameters for all patients in the Medical Information Mart for Intensive Care IV (MIMIC IV, 2008-2022) and Medical University of 

Vienna (MUW, 2016-2024) datasets. Patients are categorized into four groups: Both renal replacement therapy (RRT), Neither RRT, Clinician-initiated RRT, and AI-recommended 

RRT—to highlight the distinct characteristics of each treatment category.  
MIMIC MUW 

 All Both RRT Neither 
RRT 

Clinician-
initiated 

RRT 

AI-
recommend

ed RRT 

All Both RRT Neither 
RRT 

Clinician-
initiated 

RRT 

AI-
recommend

ed RRT 

Unique ICUs (n) 54285 370 15574 223 116 10219 788 9059 283 89 

Unique ICU admissions (n) 41283 356 14079 221 110 9586 717 8534 252 83 

Age, years (std) 65.5 (16.7) 61.4 (15.6) 65.7 (16.7) 63.6 (15.8) 67.0 (16.5) 60.0 (16.3) 60.4 (14.9) 59.9 (16.4) 60.3 (16.7) 57.0 (17.6) 

Female sex (n (%)) 24373 
(44.9%) 141 (38.1%) 

7072 
(45.4%) 97 (43.5%) 45 (38.8%) 

4180 
(40.9%) 214 (27.2%) 

3810 
(42.1%) 117 (41.3%) 39 (43.8%) 

Congestive heart failure 15806 
(29.1%) 159 (43.0%) 

4489 
(28.8%) 122 (54.7%) 34 (29.3%) 

1355 
(13.3%) 129 (16.4%) 

1166 
(12.9%) 53 (18.7%) 7 (7.9%) 

Hypertension 35269 
(65.0%) 250 (67.6%) 

10140 
(65.1%) 176 (78.9%) 68 (58.6%) 

4444 
(43.5%) 359 (45.6%) 

3939 
(43.5%) 118 (41.7%) 28 (31.5%) 

Chronic pulmonary 14024 
(25.8%) 78 (21.1%) 

4016 
(25.8%) 58 (26.0%) 25 (21.6%) 

1733 
(17.0%) 162 (20.6%) 

1493 
(16.5%) 67 (23.7%) 11 (12.4%) 

Diabetes 16408 
(30.2%) 170 (45.9%) 

4648 
(29.8%) 115 (51.6%) 41 (35.3%) 

1497 
(14.6%) 161 (20.4%) 

1279 
(14.1%) 50 (17.7%) 7 (7.9%) 

Renal failure 10580 
(19.5%) 194 (52.4%) 

2854 
(18.3%) 149 (66.8%) 42 (36.2%) 905 (8.9%) 164 (20.8%) 666 (7.4%) 70 (24.7%) 5 (5.6%) 

Liver disease 7487 
(13.8%) 161 (43.5%) 

1924 
(12.4%) 61 (27.4%) 34 (29.3%) 460 (4.5%) 111 (14.1%) 317 (3.5%) 32 (11.3%) 0 (0.0%) 

Cancer 7243 
(13.3%) 27 (7.3%) 

2094 
(13.4%) 26 (11.7%) 21 (18.1%) 

1112 
(10.9%) 61 (7.7%) 

1026 
(11.3%) 20 (7.1%) 5 (5.6%) 

Coagulopathy 12365 
(22.8%) 227 (61.4%) 

3372 
(21.7%) 104 (46.6%) 65 (56.0%) 178 (1.7%) 27 (3.4%) 137 (1.5%) 10 (3.5%) 4 (4.5%) 

Obesity 7256 
(13.4%) 60 (16.2%) 

2036 
(13.1%) 40 (17.9%) 11 (9.5%) 

2110 
(20.6%) 210 (26.6%) 

1854 
(20.5%) 32 (11.3%) 14 (15.7%) 

Fluid electrolyte 24320 
(44.8%) 318 (85.9%) 

6737 
(43.3%) 171 (76.7%) 77 (66.4%) 

4654 
(45.5%) 555 (70.4%) 

3877 
(42.8%) 192 (67.8%) 30 (33.7%) 

Alcohol abuse 4204 (7.7%) 62 (16.8%) 1155 (7.4%) 23 (10.3%) 17 (14.7%) 436 (4.3%) 40 (5.1%) 375 (4.1%) 15 (5.3%) 6 (6.7%) 

Aids 284 (0.5%) 3 (0.8%) 73 (0.5%) 1 (0.4%) 0 (0.0%) 44 (0.4%) 3 (0.4%) 37 (0.4%) 4 (1.4%) 0 (0.0%) 

Initial SOFA (std) 4.3 (2.5) 7.6 (3.1) 4.1 (2.4) 6.3 (2.6) 7.0 (3.1) 9.4 (4.0) 11.3 (3.3) 9.1 (3.9) 9.0 (3.1) 16.3 (6.1) 

Mechanical ventilation 17759 

(32.7%) 207 (55.9%) 

4994 

(32.1%) 97 (43.5%) 31 (26.7%) 

7273 

(71.2%) 669 (84.9%) 

6302 

(69.6%) 219 (77.4%) 83 (93.3%) 

Vasopressors 0.1 (2.5) 0.1 (3.1) 0.1 (2.4) 0.1 (2.6) 0.1 (3.1) 1.8 (4.0) 10.1 (3.3) 0.9 (3.9) 6.7 (3.1) 1.8 (6.1) 

Length of stay, days 4.0 (3.1) 8.3 (3.3) 3.8 (2.9) 6.7 (3.8) 4.9 (3.3) 5.5 (3.4) 8.6 (2.5) 5.2 (3.3) 8.2 (2.7) 6.9 (3.2) 

Hospital mortality 7.2% 32.4% 5.1% 18.9% 15.4% 8.9% 36.0% 5.7% 29.0% 37.1% 

90-day mortality 16.5% 35.7% 15.2% 34.1% 48.3% 15.7% 43.4% 12.5% 33.9% 39.3% 

Heart rate, beats/min 85.1 (17.1) 89.7 (18.9) 85.0 (17.0) 87.2 (17.0) 88.6 (17.8) 79.4 (16.7) 87.3 (18.2) 78.5 (16.3) 87.0 (17.5) 83.1 (19.6) 

Systolic blood pressure, 
mmHg 120.1 (17.9) 116.2 (19.0) 120.0 (17.8) 119.6 (20.5) 113.8 (15.5) 119.7 (18.2) 111.6 (18.4) 120.6 (18.0) 116.6 (19.6) 110.9 (18.5) 

Mean blood pressure, mmHg 81.1 (12.6) 78.0 (13.0) 81.2 (12.6) 79.1 (13.8) 76.5 (11.1) 80.4 (11.6) 75.6 (10.5) 80.9 (11.6) 78.9 (12.4) 76.8 (11.5) 

Respiratory rate, breaths/min 19.2 (4.2) 20.9 (5.4) 19.1 (4.2) 19.7 (4.6) 20.6 (4.7) 17.9 (7.1) 17.9 (7.1) 17.9 (7.2) 17.3 (7.0) 17.3 (7.4) 

Temperature, °C 36.8 (0.6) 36.7 (0.8) 36.8 (0.6) 36.7 (0.6) 36.8 (0.5) 36.5 (0.8) 36.2 (0.9) 36.5 (0.7) 36.3 (0.8) 36.6 (1.0) 

12-hour total output, mL 519.0 
(574.0) 

185.5 
(313.5) 

526.4 
(568.7) 

270.6 
(451.3) 

397.7 
(494.4) 

669.9 
(617.3) 

656.9 
(1102.5) 

674.0 
(551.3) 

620.4 
(723.2) 

524.1 
(625.1) 

RASS score -0.8 (1.5) -1.6 (1.9) -0.7 (1.4) -1.0 (1.4) -0.6 (1.3) -2.0 (2.0) -2.9 (1.9) -1.9 (2.0) -2.4 (1.9) -3.4 (1.7) 

GCS score 13.3 (3.0) 11.4 (4.3) 13.4 (3.0) 12.9 (3.0) 13.7 (2.4) 8.9 (5.4) 7.4 (4.9) 9.1 (5.4) 5.7 (4.9) 6.4 (5.9) 

Anion gap, mEq/L 13.6 (3.5) 17.3 (6.3) 13.5 (3.4) 15.7 (4.5) 15.4 (3.5) 12.4 (3.5) 14.2 (3.3) 12.3 (3.7) 13.6 (1.9) 11.1 (1.6) 

Chloride, mEq/L 103.6 (5.7) 100.9 (7.1) 103.7 (5.6) 100.6 (7.1) 103.0 (5.4) 106.8 (4.8) 106.2 (5.6) 106.8 (4.7) 105.9 (5.0) 109.0 (5.5) 

Cumulative balance, mL 3585.6 
(12727.5) 

6327.9 
(15015.8) 

3490.8 
(12503.7) 

4430.8 
(9635.8) 

3407.3 
(12119.0) 

2025.4 
(1520.3) 

2838.8 
(2890.6) 

1936.8 
(1278.6) 

2459.6 
(1974.7) 

2454.5 
(2318.6) 

Hematocrit, % 31.9 (5.6) 29.5 (5.9) 32.0 (5.6) 29.2 (5.5) 28.4 (5.8) 32.7 (5.6) 31.3 (5.4) 32.9 (5.6) 30.9 (5.4) 31.3 (5.8) 

Total bilirubin, mg/dL 1.9 (3.8) 4.1 (7.5) 1.8 (3.4) 2.3 (4.7) 5.0 (7.7) 1.5 (2.6) 3.1 (4.7) 1.3 (2.1) 2.1 (2.8) 2.2 (2.9) 

Phosphorus, mg/dL 3.6 (1.1) 4.7 (2.0) 3.5 (1.0) 4.6 (1.8) 4.1 (1.3) 3.9 (1.3) 5.2 (1.8) 3.7 (1.1) 4.7 (1.7) 4.3 (1.2) 

Creatinine, mg/dL 1.4 (1.3) 3.4 (2.5) 1.3 (1.1) 3.2 (2.5) 2.1 (1.6) 1.3 (1.2) 2.5 (1.8) 1.1 (0.9) 2.2 (1.7) 1.5 (0.9) 

BUN, mg/dL 25.9 (19.1) 46.3 (29.6) 25.1 (18.0) 46.3 (29.5) 40.0 (23.4) 22.6 (17.6) 40.0 (25.4) 19.8 (14.3) 36.2 (23.0) 28.9 (30.7) 

Hemoglobin, g/dL 10.4 (1.9) 9.6 (2.0) 10.4 (1.9) 9.5 (1.9) 9.2 (1.9) 10.7 (1.9) 10.2 (1.9) 10.7 (1.9) 10.1 (1.8) 10.2 (1.9) 

WBC count, ×10^3/µL 11.9 (7.9) 15.6 (17.6) 11.6 (5.5) 12.9 (7.3) 45.5 (67.4) 12.8 (7.4) 13.7 (9.5) 12.7 (7.0) 13.1 (9.3) 13.1 (8.7) 

Platelet count, ×10^3/µL 
212.4 (98.8) 

183.9 
(100.4) 214.0 (99.3) 

201.0 
(102.0) 

162.7 
(130.9) 

203.7 
(114.4) 

177.2 
(135.3) 

208.9 
(111.0) 153.9 (99.8) 

209.0 
(139.4) 



ICU – intensive care unit; SOFA – Sequential Organ Failure Assessment; RASS – Richmond Agitation-Sedation Scale; GCS – Glasgow Coma Scale; BUN - 
Blood Urea Nitrogen; WBC – White Blood Cells. 

 

  



Figures

Figure 1

Reinforcement learning algorithm including evaluation and clustering optimization. Vital parameters,
drug administration details, and renal replacement therapy (RRT) indications were extracted from the
MIMIC dataset, which was split into training and test sets. A random forest model was trained on the
training set to rank feature importance. Kullback-Leiber divergence and matrix norms were then used to
compare train and test state-transition probabilities and determine the optimal number of features and
clusters. Based on these results, a weighted k-means algorithm was applied to cluster all subsequent
data. A reinforcement learning (RL) model was trained to optimize RRT timing based on a reward linked
to 90-day mortality, and it was evaluated using off-policy evaluation methods (WIS and DICE). Finally, the
RL model was validated using both an internal (MIMIC test) and an external (MUW) dataset.



Figure 2

This �gure illustrates the model’s performance (dark blue) at varying levels of RRT initiation penalty
within the validation set. The clinicians’ performance is shown in light blue. The black curve represents
the proportion of patients receiving AI-RRT recommendations as the penalty changes, and the black
dashed lines show the average RRT treatment rates in the MIMIC and MUW test sets. The red dashed
line represents the selected model, which we selected for 2 reasons: Firstly, the treatment rate yielded is
analogous to that of the MIMIC dataset, thereby re�ecting real-world constraints. Secondly, among the
models exhibiting a treatment rate comparable to that of MIMIC, the 22% penalty model demonstrates
the highest average WIS.



Figure 3

This �gure demonstrates the proportion of AI-recommended renal replacement therapy (RRT) in the test
set compared to actual clinical practice, displayed across all time steps and for all patients, strati�ed by
ICU groups and SOFA score categories. The term "time steps" is used to denote the proportion of 12-
hour steps in which the model or clinician recommended RRT in the data set. While the overall treatment
strategies appear similar, the AI tends to recommend RRT less frequently and demonstrates a more
pronounced response to increasing SOFA scores.



Figure 4

This �gure presents the survival probability of four patient groups categorized by treatment type: AI-
recommended RRT, Clinician-initiated RRT, Both AI- and Clinician-initiated RRT, and Neither RRT.
Additionally, the 90-day mortality rate is shown on the right axis. The legend indicates the number of
patients in each group. Notably, the group receiving only AI-recommended RRT exhibits higher mortality,
suggesting a potential bene�t from optimized treatment strategies.
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Continuous Intraoperative Blood Pressure
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Summary
Background During surgery, intraoperative hypotension is associated with postoperative morbidity and should
therefore be avoided. Predicting the occurrence of hypotension in advance may allow timely interventions to prevent
hypotension. Previous prediction models mostly use high-resolution waveform data, which is often not available.

Methods We utilised a novel temporal fusion transformer (TFT) algorithm to predict intraoperative blood pressure
trajectories 7 min in advance. We trained the model with low-resolution data (sampled every 15 s) from 73,009
patients who were undergoing general anaesthesia for non-cardiothoracic surgery between January 1, 2017, and
December 30, 2020, at the General Hospital of Vienna, Austria. The data set contained information on patient
demographics, vital signs, medication, and ventilation. The model was evaluated using an internal (n = 8113) and
external test set (n = 5065) obtained from the openly accessible Vital Signs Database.

Findings In the internal test set, the mean absolute error for predicting mean arterial blood pressure was 0.376
standard deviations—or 4 mmHg—and 0.622 standard deviations—or 7 mmHg—in the external test set. We also
adapted the TFT model to binarily predict the occurrence of hypotension as defined by mean arterial blood pressure <
65 mmHg in the next one, three, five, and 7 min. Here, model discrimination was excellent, with a mean area under
the receiver operating characteristic curve (AUROC) of 0.933 in the internal test set and 0.919 in the external test set.

Interpretation Our TFT model is capable of accurately forecasting intraoperative arterial blood pressure using only
low-resolution data showing a low prediction error. When used for binary prediction of hypotension, we obtained
excellent performance.

Funding No external funding.

Copyright © 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Intraoperative hypotension; Continuous prediction; Machine learning; Temporal fusion transformer;
Haemodynamic monitoring; Blood pressure forecasting

Introduction
General anaesthesia for surgical interventions routinely
involves administrating hypnotics and opioid analgesics
to induce a loss of consciousness and tolerance to sur-
gery. Commonly used anaesthetics interfere with the
cardiovascular system by reducing cardiac inotropy and

systemic vascular resistance, ultimately leading to hy-
potension.1 This is further amplified by additional
stressors such as hypovolemia, blood loss during sur-
gery or intraoperative positioning (e.g., Trendelenburg
position). Intraoperative hypotension, which is
commonly defined as mean arterial pressure (MAP)
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below 65 mmHg,2 is potentially harmful, being linked to
conditions such as myocardial injury,3 kidney injury,3,4

delirium5 and postoperative nausea and vomiting.6

Therefore, anaesthesiologists monitor patients under
general anaesthesia and typically respond to hypoten-
sion when it occurs, for example, by administering va-
sopressors, by giving an intravenous fluid bolus, or by
adjusting the depth of anaesthesia, in a reactive fashion.3

However, the actual prevention of hypotensive episodes
may be advantageous, yet this requires accurate predic-
tion of hypotension in advance.

As a result, several tools for predicting intraoperative
hypotension in advance have been developed through
the use of conventional machine learning methods7–9

and neural networks.10–12 These models do not forecast
actual MAP values but either make binary predictions
(i.e., the patient will be hypotensive or not)9,13 or provide
a dimensionless number indicating the probability of
hypotension.14 In addition, those models are limited in
terms of the input variables used for prediction because
they mainly employ past vital signs and data on patient
demographics. There is also discussion whether existing
prediction models are superior to simply extrapolating
the MAP trajectory.15 Finally, most of the existing
models require the use of high-quality arterial blood
pressure waveform data and cannot be used when
invasive arterial blood pressure monitoring is not in use.

There have been recent technical advances in time
series data forecasting: The novel temporal fusion
transformer (TFT) algorithm is an attention-based
model that is designed for advanced multi-horizon
forecasting.16 It employs recurrent layers to effectively
process short-term temporal patterns while using
interpretable self-attention layers to understand

long-term dependencies.17 Hence, it can appropriately
integrate static, time-stamped and time series data. In
addition, the TFT algorithm can selectively focus on the
relevant data points that are the most important for its
forecast while filtering out nonessential elements.18

We hypothesised that the TFT algorithm would be
well suited to predict intraoperative blood pressure tra-
jectories and that it could be used to predict the occur-
rence of intraoperative hypotension, even with low
resolution vital sign data. Therefore, we trained a TFT
model to predict intraoperative MAP using a data set
consisting of pre- and intraoperative data collected
during routine patient care. To evaluate our model’s
performance, we assessed discrimination and calibra-
tion in both internal and external validation.

Methods
This retrospective observational study was performed
after approval of the Ethics Committee of the Medical
University of Vienna (reference number 2387/2020,
January 19, 2021). Given the retrospective nature of the
study, the requirement for informed consent was
waived.

We screened all patients who underwent anaesthesia
at the General Hospital of Vienna between January 1,
2017, and December 30, 2020, for eligibility. The Gen-
eral Hospital of Vienna is a tertiary academic hospital in
Vienna, Austria. Anaesthesia is conducted by resident
and consultant anaesthetists from the Department of
Anaesthesia, Intensive Care Medicine and Pain Medi-
cine of the Medical University of Vienna.

Patients older than 18 years at the time of surgery
who had general anaesthesia performed for a diagnostic

Research in context

Evidence before this study
We searched PubMed database, from January 01, 2000, to
June 01, 2024, for papers published in English using the terms
“blood pressure”, “prediction”, “hypotension”, and
“forecasting”. Our search yielded 131 results, indicating that
intraoperative hypotension is a common occurrence during
anaesthesia for non-cardiac surgery that is thought to be
associated with postoperative morbidity. Predicting
intraoperative hypotension before its occurrence could help
anaesthesiologists to initiate prophylactic measures and
thereby reduce the incidence of intraoperative hypotension.
Existing machine learning algorithms mostly rely on the
presence of high-resolution waveform data, which may not
be available in many settings.

Added value of this study
We implemented the temporal fusion transformer (TFT)
algorithm to predict intraoperative blood pressure trajectories
using low-resolution data sampled at 15-s intervals from a

large cohort of patients undergoing non-cardiothoracic
surgery. We obtained robust predictive performance using
low-resolution data, which renders our algorithm potentially
more practical in clinical use. In addition to predicting
continuous blood pressure values, the TFT model also
provides binary predictions of hypotension with excellent
discrimination and calibration. In contrast to previous studies,
we incorporated data on intraoperative medication.

Implications of all the available evidence
The prediction algorithm developed by us is capable of
accurately predicting intraoperative hypotension using low-
resolution data. Implementation of our algorithm into clinical
practice could help reduce the incidence of intraoperative
hypotension, and thereby potentially reduce postoperative
morbidity. Future research should prioritise integrating this
predictive model into the clinical workflow and evaluating its
impact on patient outcomes.
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or surgical intervention were included. We excluded
patients who had cardiac, thoracic and/or vascular sur-
gery and patients who had neuraxial, regional or local
anaesthesia without general anaesthesia. We defined
general anaesthesia as the administration of sedatives
and invasive mechanical ventilation (either via laryngeal
mask, endotracheal intubation or tracheostomy).

Preprocessing
We generated the data set from pre-, intra-, and post-
operative data recorded for routine patient care in the
patient data management system (IntelliSpace Critical
Care and Anaesthesia, Philips Austria GmbH, Vienna,
Austria). The following variables were static: age, sex,
weight, American Society of Anaesthesiologists (ASA)
score and surgical urgency (elective/urgent/emergency).
The following variables were time series: heart rate
(beats per minute), pulse rate (beats per minute), pe-
ripheral transcutaneous oxygen saturation (SpO2, %),
non-invasive systolic, diastolic, and mean blood pres-
sures (each in mmHg), invasive systolic, diastolic, and
mean blood pressures (each mmHg) and end-tidal par-
tial pressure of carbon dioxide (etCO2; mmHg).
Anaesthetic agents, ventilation parameters and perfu-
sion parameters were time-stamped but processed as
time series; Supplemental Table S1 lists all the input
variables.

The vital parameters heart rate, pulse rate, and SpO2
were available at a 15-s resolution. Invasive blood
pressure was also available at a 15-s resolution while
non-invasive blood pressure was available at a 3-min
interval. We sampled all other time series variables
including non-invasive blood pressure up to a 15-s
resolution.

We grouped input features by type, differentiating
between categorical and numerical variables as well as
time-dependent and static variables. We checked the
values of the input features for plausibility by analysing
the maximum, minimum, and frequency distribution.
Using the ‘forward fill’ method,19 we replaced implau-
sible and missing values, as detailed Supplemental
Table S2, which lists their frequency of missingness.
We scaled numerical variables to a standard deviation of
1 and a mean value of 0. Categorical variables under-
went a one-hot encoding process, transforming each
categorical variable into a dichotomous variable.

We split the complete data set into training set
(70%), validation set (20%) and holdout test set (10%).
This was done by randomly assigning patient IDs to
each set. To prevent any potential leakage of data be-
tween different patients, we grouped each patient’s data
independently.

Model development
Google DeepMind’s GitHub repository served as the
foundational framework for the development of this
TFT model.20 We modified the model to handle data sets

lacking future-known time points. To enhance the
model’s performance evaluation, we incorporated the
metrics discussed in model evaluation. We integrated
TensorBoard—a tool to visualise metrics—to track the
training process.

We configured the TFT model to use the previous 32
values, corresponding to an input time interval of 8 min,
for each variable to predict the subsequent 28 MAP
values spanning 7 min. If the surgery duration was
shorter than the combined duration of the input and
output time intervals, the patients were excluded from
training. When less than 8 min of history were available,
we padded the oldest data point to form a complete
input window for prediction.

We trained the model on the training set and eval-
uated its performance on the validation set every 10
epochs. To prevent overfitting, we stopped the training
early if the error in the validation set did not reach a new
optimal value for three consecutive iterations.

The TFT model was optimised using a ‘Random-
Search’ algorithm, focusing on the optimisation of
several parameters, including batch size, learning rate,
number of attention heads, number of hidden neurons,
dropout rate and length of the input sequence; the final
hyperparameters can be found in Supplemental
Information S1.

Internal and external validation
We evaluated both MAP predictions themselves as well
as binary predictions of whether hypotension will occur
(defined by MAP < 65 mmHg). We used the holdout test
set for internal validation and generated an external test
set using the open public database ‘Vital Signs Data-
Base’ (VitalDB),21 which contains high-resolution intra-
operative data from 6388 patients. We transformed
VitalDB data to match the format of our training
data set.

Continuous MAP prediction
We evaluated continuous MAP predictions using two
different metrics: mean squared error (MSE) and mean
absolute error (MAE). MSE is the average of the squared
differences between predicted and actual values, and
MAE is the average of the absolute differences between
predicted and actual values. MSE emphasises large er-
rors, whereas MAE treats all errors equally, is easy to
interpret and can be directly translated into units such
as mmHg. We calculated the cumulative average of
these metrics across all patients in the holdout test sets.
This involved calculating the mean of all errors from the
28 predicted values for each data point of each patient in
the test set.

Binary prediction of hypotension
To generate binary predictions of hypotension, we
extracted the continuous MAP predictions at one, three,
five, and 7 min (Fig. 1). We used these values to
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MAP =
[103,104, ..., 79]

HF =
[60,59, ..., 52]

Attention
LayerInput Output

Observed Data

Datatypes

Numeric

Example Values

Propofol =
[0,0,...,100,0]

Gender = FemaleCatagorical

TFT Model

Predicted MAP = [...67.7,..., 57.54, ..., 56.47, ..., 58.47,...]

Fig. 1: Prediction of mean arterial pressure. A graphical representation of the temporal fusion transformer (TFT) model prediction process for mean
arterial pressure (MAP). The top graph shows the observed MAP over time, the model predicted values and expected future MAP. The lower left
section details the data input structure, separating real values and categorical data, with example values given. The bottom right shows a simplified
architecture of the TFT model, highlighting the input, attention layer and output. The blue, orange, green and red lines indicate the specific time
points used to assess hypotension, corresponding to predictions made 1, 3, 5, and 7 min into the future, respectively. The hypotension threshold
was set at 65 mmHg. Propofol leads to arterial hypotension which is counteracted by the alpha-adrenergic agent phenylephrine. As the
administration of phenylephrine occurs after the prediction start, it cannot be taken into account for forecasting MAP.
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construct a binary prediction model that could estimate
the likelihood of hypotension, defined as a MAP <
65 mmHg.

The model provided a range (lower and upper limits)
for each of the 28 values. To evaluate the model using
metrics such as which require probabilities rather than
‘true’ or ‘false’, we fit a Gaussian curve with the lower and
upper limits. This allowed us to calculate probabilities.

For example, in the scenario shown in Fig. 1, the
MAP values [68, 58, 57, 59] over four consecutive time
points translated into a binary sequence of [false, true,
true, true] with a decision threshold of 0.5, meaning that
any probability greater than 50% was interpreted as a
prediction of hypotension.

We calculated the following metrics for evaluating
the binary hypotension predictions: Accuracy quantified
the overall correctness of the model across all classes.
Sensitivity (true positive rate) and specificity (true
negative rate) measured the model’s ability to correctly
identify positive and negative cases, respectively. The
positive predictive value (PPV) and negative predictive
value (NPV) reflected the accuracy of positive and
negative predictions. The area under the receiver oper-
ating characteristic curve (AUROC) assessed the ability
of the model to discriminate between classes. Calibra-
tion slope, intercept and expected calibration error
(ECE) together measured the agreement of the predicted
probabilities with the observed outcomes and indicated
the probabilistic accuracy of the model. To visualise
these metrics, we plotted the receiver operating charac-
teristic (ROC) curve and calibration plot.

Comparison with the XGB model
To establish a benchmark for the TFT model, we also used
the extreme gradient boosting (XGB)22 algorithm on the
same training data set used for the TFT model as a way to
train several models predicting the binary occurrence of
hypotension at one, three, five, and 7 min.

We vectorised time-dependent variables into se-
quences and transformed them into unit scale. Separate
XGB models were trained and optimised to predict oc-
currences of hypotension at one, three, five, and 7 min
into the future.

We assessed the performance of the XGB model using
the same metrics as those applied to the TFT model.

Interpretability
The attention mechanism allowed the model to focus on
the most relevant aspects of the input data by assigning
different levels of attention to different input parameters
and acting as a filtering mechanism.17

To visualise the model’s focus and determine the
importance of temporal inputs, we computed the sum of
the attention values assigned to all features at each time
point. This allowed us to visualise the importance of
each time step within the input sequence. In parallel, we
assessed the weight of each input parameter across

the data set by summing its attention values across all
time points, thereby ranking its overall importance to
the model’s output.

In addition, we conducted experiments to investigate
the influence of medication data on the behaviour of the
model. After completing the training, we artificially
manipulated the input data by omitting medication in-
formation and measured the effect of these differences
on the predicted MAP over the next 3 min. This
approach was only undertaken to provide insight into
the extent to which the model was being influenced by
medication data.

Statistical analysis
Because of patient privacy concerns and the regulations
of the Medical University of Vienna, all data used to
train the model are not available for public release in
their current format. The external database, which was
utilised for validation purposes, is openly available,
enabling replication of the validation process.21 The code
for model training and evaluation is available (https://
github.com/lorenzkap/MAP_TFT). We performed all
calculations with R and Python 3.11.3, TensorFlow
2.12.0, and Scikit-learn 1.2.2.

Role of the funding source
This study was funded by institutional funds of the
Medical University of Vienna, Department of Anaes-
thesia, Intensive Care Medicine and Pain Medicine and
the Ludwig Boltzmann Institute Digital Health and Pa-
tient Safety.

Results
We screened data from 88,016 anaesthesia cases and
included data from 81,122 cases in the final data set.
The baseline characteristics of the anaesthesia cases
analysed are given in Table 1. The internal data set was
split randomly into training (70%), validation (20%), and
holdout (10%) test sets, consisting of 56,785, 16,224 and
8113 cases. We tested the final algorithm in an external
test set consisting of 5065 cases. Details of the external
test set are given in Supplemental Table S3.

Continuous MAP prediction
We trained the TFT model to predict the continuous
MAP trajectory for the next 7 min (Fig. 1; Supplemental
Fig. S1), here by utilising 52 input features
(Supplemental Table S2). In the internal test set, MSE
was 0.405 standard deviations and MAE 0.376 standard
deviations, corresponding to an average prediction error
of 4 mmHg off the actual measurements. In the external
test set, the average MSE was 1.165 standard deviations,
and the average MAE was 0.622 standard deviations, or
7 mmHg. In both the internal and the external test sets,
MAE was reduced when the forecast distance was lower
and vice-versa (Fig. 2).
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A key feature of the TFT model was considering past
data to predict blood pressure. The TFT model utilised
medication data, for example, intravenous anaesthetics
or vasopressors, to predict blood pressure. The model

reacted to medication and its predictions became better
when medication data was present (Fig. 3, Panel a). The
model’s attention mechanism can filter the data for
more relevant time stamps (Fig. 3, Panel c). The top
features selected for blood pressure predictions are
shown in Fig. 3, Panel b, and the influence of the most
common drugs on the prediction of the model in the
data set is depicted in Fig. 3, Panel d.

Binary prediction of hypotension
We predicted the likelihood of blood pressure falling
below 65 mmHg at one, three, five, and 7 min in the
future by using specific quantiles of blood pressure
predictions and compared these predictions with
those from an XGB model (Fig. 4). In the internal test
set, both the TFT and XGB models had area under the
receiver operating characteristic curve (AUROC) scores
above 0.9 (Table 2; Fig. 4) although the XGB model had
slightly superior discrimination compared with the TFT
model at the five- and 7-min marks. For both models,
discrimination was reduced in the external test set. The
TFT model was consistently able to discriminate be-
tween timepoints with and without hypotension when
the forecast distance was increased from one to 7 min,
but discrimination of the XGB model declined with
increasing forecast distance, as evidenced by lower
AUROC (Table 2; Supplemental Tables S4 and S5).

The calibration plots are shown in Fig. 5. The TFT
model demonstrated an ECE ranging from 0.05 to 0.11
in the internal test set and from 0.06 to 0.08 in the
external test set (Table 3). In both test sets, the TFT
model had a calibration slope of less than one, indi-
cating a tendency to overestimate the likelihood of hy-
potension (Fig. 5 Panel a, c; Supplemental Table S6).
The XGB models showed good calibration in the inter-
nal test set (ECE < 0.03). However, the XGB models
were poorly calibrated in the external test set (ECE >

a b

Fig. 2: Performance for continuous blood pressure prediction. Mean absolute error (MAE) of the temporal fusion transformer model for
continuous prediction of intraoperative blood pressure in the internal (a) and external (b) test sets. The standard deviation of all MAEs is
indicated by the lighter blue area.

N = 81,121

Age (years) 52 (34, 70)

Male sex (−) 35,730 (44%)

ASA score

1 36,272 (27%)

2 36,272 (45%)

3 20,251 (25%)

4 2066 (2.5%)

5 730 (0.9%)

Surgical urgency (−)

Elective 64,855 (80%)

Emergency 3459 (4.6%)

Urgent 12,808 (16%)

Duration of surgery (min) 132 (6, 296)

Surgical discipline

General surgery 20,881 (26%)

Orthopaedics/Trauma surgery 16,098 (20%)

Plastic surgery 3153 (3.9%)

ENT 6110 (7.5%)

Maxillofacial surgery 3532 (4.4%)

Neurosurgery 5240 (6.5%)

Gynaecology 8905 (11%)

Obstetrics 5569 (6.9%)

Urology 6849 (8.4%)

Ophthalmology 4123 (5.1%)

Dermatology 656 (0.8%)

Undefined 6 (<0.1%)

1 Median (IQR); n (%)

Table 1: Patient characteristics: primary data set.
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0.15 for 7 min) and overestimated the occurrence of
hypotension (Fig. 5 Panels b, d; Supplemental Table S6).

Discussion
In the present study, we used the TFT algorithm to
develop a predictive model 1) for continuously fore-
casting intraoperative blood pressure trajectories for the
next 7 min and 2) for binarily predicting the occurrence
of hypotension (defined as MAP below 65 mmHg)
within the next one, three, five, and 7 min. We validated
our model using internal and external test sets and
found that our model predicted MAP with a low pre-
dictive error of 4 mmHg, respectively 7 mmHg in the
internal and external test sets. Using the dichotomised
TFT model, we obtained excellent discrimination and
reasonable calibration for binary prediction of the
occurrence of hypotension.

Predicting vital sign derangements, such as hypo-
tension, is a well-established problem, and multiple

studies from the field of anaesthesia and critical care
medicine have used different study designs and
computational algorithms to solve it.8,10,11 For instance,
Kendale et al. utilised multiple machine learning tech-
niques to binarily predict the occurrence of hypotension
(defined as a single MAP value below 55 mmHg) after
the induction of anaesthesia. Jo et al. used deep learning
models trained on high-resolution waveform data from
VitalDB to predict intraoperative hypotension.23 Hatib
et al. and Davies et al. similarly applied deep learning to
binarily predict hypotension (defined by them as MAP
below 65 mmHg). Their model, which is commercially
available11,14, provides users with the hypotension pre-
diction index (HPI), a dimensionless number ranging
from 0 to 100, which indicates the likelihood of hypo-
tension within the next 15 min. One of the key features
distinguishing our TFT model from those works is the
fact that our model directly predicts the course of MAP
together with an uncertainty interval. In theory, this
could be more readily interpretable by clinicians than an

a b

dc

Fig. 3: Importance of medication and attention mechanism. (a) is a representative example of continuous mean arterial pressure (MAP)
predictions using the temporal fusion transformer (TFT) model and shows that predicted MAP varies significantly when data on the use of
propofol is included in the model vs. when these data are omitted. (b) shows the impact of the 10 most administered drugs on the predicted
MAP over the next 3 min as predicted by the TFT model. The drugs are normalised by their average dosage because of their varying effects per
milligram. (c) shows the relative importance of each time step in the model’s input window. Self-attention in transformer models selectively
focuses on the most relevant parts of the input. It highlights a significant increase in the importance of the time steps when propofol is
administered, underscoring its influence on the model’s output. (d) depicts the top 10 features that the model considers as being the most
critical to its blood pressure predictions. Among these, historical MAP data stand out as the most influential factor for subsequent MAP
predictions.
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Fig. 4: Performance in binary prediction of hypotension. Receiver operating characteristic (ROC) curves for the temporal fusion transformer
(TFT) model (a, c) and extreme gradient boosting (XGB) model (b, d) across time frames of 1, 3, 5 and 7 min for the prediction of hypotension
in the internal and external validation. Area under receiver operating characteristic (AUC) values demonstrate high accuracy for both classifiers
internally, with a modest decline externally. The TFT classifier shows a small drop in performance over time, while the XGB-classifier exhibits
excellent internal but diminished external performance.

Forecast time Internal validation External validation

TFT XGB TFT XGB

1 min 0.9883 (0.9880, 0.9886) 0.9941 (0.9939, 0.9943) 0.9598 (0.9590, 0.9607) 0.9607 (0.9602, 0.9612)

3 min 0.9544 (0.9536, 0.9553) 0.9874 (0.9871, 0.9878) 0.9453 (0.9444, 0.9462) 0.8909 (0.8900, 0.8918)

5 min 0.9095 (0.9083, 0.9107) 0.9893 (0.9890, 0.9896) 0.9032 (0.9017, 0.9046) 0.8420 (0.8409, 0.8432)

7 min 0.8800 (0.8785, 0.8816) 0.9908 (0.9905, 0.9910) 0.8667 (0.8648, 0.8686) 0.7981 (0.7968, 0.7994)

Area under the receiver operating characteristic (AUROC) of the temporal fusion transformer (TFT) and the extreme gradient boosting (XGB) model in internal and external
validation. The forecast time indicates the time before a hypotensive event. The 95% confidence interval is indicated by the values within the brackets.

Table 2: AUROC in internal and external test set.

Articles

8 www.thelancet.com Vol 75 September, 2024



arbitrary index, and in addition, the length and severity
of hypotension is easily visible, which is not the case
with the models from Kendale et al. and with the HPI.
The second key feature of the TFT model is the use of
low-resolution data. In contrast to previous works,
which have used waveform data that requires the inva-
sive placement of an arterial line, we utilised vital signs
data that is sampled every 15 s. Still, our TFT model
showed similar discriminative performance compared
with the HPI for predicting hypotension 5 min before it
occurred, with an AUROC of 0.909 (TFT) compared
with 0.926 (HPI). The higher specificity of the TFT
model (0.960 compared with 0.858 for the HPI) could be
advantageous because false positive predictions are less
likely with our model, potentially reducing alarm fa-
tigue. Notably, the HPI has recently been criticised for
selection bias being present during training and vali-
dation, leading to data leakage which potentially falsely

elevates its performance metrics.24 As such, it has been
suggested that HPI may not be superior to setting the
mean blood pressure alarm threshold in the range of
70–75 mmHg.24 Because our model utilises the TFT
algorithm that is specifically designed for the prediction
of time series data, we avoided such bias.

We conducted a series of tests on a range of models
(LSTM, ARIMA, XGB, transformers) for the continuous
MAP forecast. However, the results indicated that these
models were not optimal. The TFT model demonstrated
superior performance when applied to medical data.
Consequently, we concentrated our efforts on the TFT
model in our publication.

To the best of our knowledge, only the prediction
model from Lee et al. could forecast continuous intra-
operative blood pressure values similar to our TFT
model; they applied a deep learning technique to predict
blood pressure as well as hypotension (i.e., the

dba c

Fig. 5: Calibration curves for binary prediction of hypotension. Calibration curves for the temporal fusion transformer (TFT) model (a, c) and
extreme gradient boosting (XGB) model (b, d) at 1, 3, 5 and 7 min for both internal and external validation for the prediction of hypotension.
The graphs compare the predicted probabilities of positives against the actual proportion of positives, with the dotted line representing perfect
calibration. The corresponding histograms below the calibration curves show the distribution of predicted probabilities at each time interval.
The closer the calibration curve is to the dotted line, the better the calibration of the model. The histograms give an indication of the frequency
and confidence of the classifier’s predictions.

Forecast time Internal validation External validation

TFT XGB TFT XGB

1 min 0.0259 (0.0255, 0.0264) 0.0008 (0.0004, 0.0011) 0.0529 (0.0524, 0.0533) 0.0791 (0.0788, 0.0793)

3 min 0.029 (0.0283, 0.0298) 0.0008 (0.0005, 0.0012) 0.0478 (0.0473, 0.0482) 0.1060 (0.1057, 0.1063)

5 min 0.0346 (0.0337, 0.0353) 0.0007 (0.0004, 0.0010) 0.0465 (0.0459, 0.0469) 0.1076 (0.1073, 0.1079)

7 min 0.0398 (0.0391, 0.0404) 0.0008 (0.0005, 0.0011) 0.0471 (0.0466, 0.0475) 0.1166 (0.1163, 0.1169)

Expected calibration error (ECE) of the temporal fusion transformer (TFT) and the extreme gradient boosting (XGB) model in the internal and external validation. The
forecast time indicates the time before a hypotensive event. Low values represent a low error, thus better calibration. The 95% confidence interval is indicated by the values
within the brackets.

Table 3: Expected calibration error in the internal and external test sets.
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occurrence of blood pressure below 65 mmHg) within
the next 5, 10, and 15 min using data from VitalDB, the
database we used for external validation.12 However, in
the present study, we obtained lower predictive errors
than in their study (MAE 4 mmHg in the internal test
set and 7 mmHg in the external test set vs. 7 mmHg in
the study from Lee et al.), even though we utilised
lower-resolution data (sampled once every 15 s) as
opposed to high-quality waveform data. In addition,
their model was limited to predicting a single MAP
value, whereas our model predicted an entire curve
consisting of 28 different values, which can facilitate
easier interpretation in the operating room. The TFT
model also incorporates data on administered medi-
cation, such as hypnotics, analgesics and vasoactive
agents, intraoperative ventilation parameters and
intraoperative positioning. These features set our
model apart from previous studies and are—in our
opinion—the most important factor explaining the
model’s good performance. Our analysis also showed
that data on administered medications were critical for
the TFT model in predicting the blood pressure tra-
jectory. Data on the use of propofol were especially
used to improve MAP predictions, and the predictive
error increases, for example, when data on the use of
propofol were missing.

Fig. 3, Panel b, illustrates the directional influence of
commonly administered drugs on blood pressure. The
graph, created by excluding these drugs from the test set
and analysing the prediction curves from Fig. 3, Panel a,
shows an expected decrease in blood pressure when
fentanyl or propofol are administered; however, the ef-
fect of noradrenaline varies widely, despite its known
pressure-increasing effect. This variability may be
attributed to patients entering the dataset with an active
noradrenaline perfusor or the fact that the noradrena-
line perfusor is often initiated and adjusted early to
stabilise blood pressure, then maintained at a consistent
level, resulting in minimal fluctuations during surgery.
This may mask the actual influence of noradrenaline on
blood pressure. Another potential use case of our TFT
model could be the calculation of the ‘optimal’ dose of
hypnotics/analgesics during the induction of anaes-
thesia. Furthermore, the black box problem of machine
learning algorithms was alleviated by indicating the
probability of the occurrence of hypotension as well as
the time-resolved representation (Fig. 3, Panel d) of the
essential features for decision-making.25 For example,
the model primarily uses the past MAP-values (Fig. 3,
Panel d) for predicting MAP. Furthermore, it can
identify significant occurrences such as the adminis-
tration of propofol (see Fig. 3, Panel c).

To facilitate a comparison with previous studies, we
used the results of the TFT model for binary predictions
of the occurrence of hypotension. The discrimination of
our model was superior to previously published
works.8,11,12 The generalisability of an algorithm was a

persistent challenge that complicated the implementa-
tion of machine learning algorithms in clinical prac-
tice.26 Our approach to predicting hypotension by
directly calculating the MAP curve rather than providing
an index offered additional robustness, as confirmed by
external validation. Compared with the XGB models,
which have previously been shown to have excellent
performance in binary classification tasks, such as pre-
dicting hypotension13,27 trained on the same data set, our
model demonstrated greater robustness. This was evi-
denced by its superior performance on the external test
set, even though the XGB models performed better on
the internal test set and were trained on simpler tasks
(hypotension: yes/no).

Although the model was reasonably calibrated in the
internal test set, it overestimated the occurrence of
hypotension in the external test set (Fig. 5). Mis-
calibration is a common phenomenon when predictive
models are tested in a population that they were not
developed in28, highlighting that predictive models
should be carefully tested prior to implementation into
clinical practise.29 However, this overestimation is not
necessarily an error of the TFT model but is rather a
reflection that the model is not anticipating future
medical interventions, even though we trained the
model on retrospective surgical cases in which clini-
cians intervened during adverse events. For instance, if
the model detected a potential drop in blood pressure, it
could predict the onset of hypotension. However, in an
actual OR scenario, clinicians often intervene to prevent
such events. Therefore, a ‘good’ model should over-
estimate the likelihood of hypotension because it does
not know these interventions at the time of prediction
and therefore cannot and should not take them into
account. In addition, these concerns were alleviated by
the fact that our model could directly output blood
pressure values.

Our study has several strengths and limitations.
First, TFT is a state-of-the-art, novel algorithm that can
utilise data on administered medication, a factor plau-
sibly related to the occurrence of hypotension. We
assembled a large and diverse patient cohort and had
surgical cases from many specialties. We adhered to the
transparent reporting of a multivariable prediction
model for individual prognosis or diagnosis (TRIPOD)
guidelines30 for the development and validation of pre-
dictive models and performed internal and external
validation. However, the present retrospective study
used data recorded for routine patient care, which
likely introduced errors in our data set. Some data
highly relevant for changes in blood pressure were not
captured in our data set, such as bleeding, surgical
compression of blood vessels or incorrectly documented
medication regarding timing of data entry. Similarly,
VitalDB lacks information on bolus drugs, which affects
the performance of the models in the external valida-
tion. A 15-s sampling interval was employed to benefit
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from higher resolution data and accurately time the ef-
fects of medication. However, this may result in inac-
curacies due to the mismatch with standard 3-min blood
pressure measurements. Although this approach offers
increased detail, the use of forward filled values between
actual measurements may impact the performance of
the model and introduce noise into the learning process.
In addition, medical interventions such as administra-
tion of vasopressors in response to hypotension were
captured in our data set, which may have biased the TFT
model towards an expectation of these interventions.
Due to the extensive training time requirements, cross-
validation was not employed to train the TFT model,
which may have an impact on the final results’ accuracy.
While the TFT model performs well in continuous
prediction tasks, the XGB model demonstrated superior
results in binary predictions during internal validation,
highlighting the importance of selecting the appropriate
model for specific needs.

In summary, we applied the novel TFT algorithm to
predict intraoperative blood pressure trajectories for the
upcoming 7 min. Our model used easily obtainable
input data available during routine care—most impor-
tantly, data on intraoperatively administered medica-
tions—and only required low-resolution data, which can
be obtained without the placement of an arterial line.
We obtained a low predictive error for continuous blood
pressure predictions and—regarding the binary predic-
tion of hypotension—and excellent discrimination with
reasonable calibration. Future studies should investigate
how our prediction model could be integrated into the
anaesthesiologist’s workflow and how this would affect
patient outcomes.
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Chapter 8

Discussion

8.1 Overview
In our research, we have taken a step-by-step approach to using machine learning to improve
decision-making in the ICU. We started with a project focused on optimizing the administration
of corticosteroids in patients with sepsis, moved on to improving decision support for starting or
stopping RRT in patients with AKI, and finally turned our attention to predicting blood pressure
changes during surgery using a transformer-based deep learning model.

In our first study (chapter 5), we developed an RL algorithm to guide corticosteroid dosing
in critically ill sepsis patients. We used a rich dataset of routinely collected information from
the ICU, and divided the data into 24-hour segments to match the daily cycle of ICU rounds.
Traditionally, clinicians have relied on markers such as blood pressure and vasopressor use
to make decisions about corticosteroid therapy. However, our RL model learned from the
data that other factors were also important. One particularly interesting finding was that the
algorithm responded to the presence of septic shock, even though septic shock was not a direct
input. In other words, the model adjusted its treatment strategy to reflect the severity of the
patient’s condition, demonstrating that it could recognize the underlying signals associated
with shock. In addition, when we compared the algorithm’s recommendations with historical
clinician decisions, we found a high level of agreement. This means that the model often made
similar treatment decisions as experienced clinicians, but also provided new insights into patient
outcomes. Off-policy evaluations showed that when the model’s recommendations matched the
historical clinicians’ treatment strategies, patient outcomes improved compared to standard
practice. These results suggest that our data-driven approach could provide a more personalized
treatment strategy, even when working with retrospective, single-center data.

Building on these results, our second study focused on guiding RRT decisions for patients
with AKI. In this project, we recognized that ICU patients are very diverse, so we needed a
way to capture these differences more effectively. To do this, we incorporated weighted k-means
clustering into our RL framework. By grouping patients based on 40 commonly measured clinical
variables, clustering allowed us to create meaningful patient states that simplified the data
while preserving important differences in each patient’s condition. The refined RL model not
only achieved very high concordance (96%) with clinicians’ treatment policy, but also identified
a subset of high-risk patients who might have benefited from earlier initiation of RRT. To
ensure that our model was reliable, we used more advanced off-policy evaluation techniques.
In both internal and external validation, the model achieved higher scores on metrics such as
WIS and DICE. These results confirmed that our approach was robust and that the model’s
recommendations were consistent with, and sometimes superior to, conventional clinical decision
making. We also experimented with different penalty values for initiating RRT to simulate
different clinical practices (for example, differences between European and American treatment
styles).
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Our third study took a different direction, using a deep learning model to predict blood
pressure changes during surgery. Being able to accurately predict blood pressure is critical, so
instead of simply classifying whether a patient might become hypotensive, we aimed to predict
the entire blood pressure trajectory. We used a TFT model, a neural network based on the
transformer architecture designed for time-series data, and fed it low-resolution vital sign data
recorded every 15 seconds, along with information about medications administered, such as
hypnotics, analgesics, and vasoactive agents. The TFT model was able to generate a continuous
prediction of MAP for the next few minutes, complete with uncertainty intervals that indicate
how confident the prediction is. Not only did the model accurately predict hypotension, but it
also appeared to be more robust than a model based on XGB. The TFT model achieved low
prediction errors, around 4 mmHg on internal validation and 7 mmHg on external validation, and
was consistent in identifying the risk of hypotension. It was also able to highlight the effects of
specific interventions, such as the antihypertensive effects of drugs such as propofol or fentanyl.

8.2 RL for Optimizing Corticosteroid Therapy in Intensive Care
In this work, we developed an RL algorithm to optimize corticosteroid therapy in critically ill
patients with sepsis. Our approach was designed to address the inherent challenges of applying
RL in the medical domain by carefully constructing the RL environment, weighing the benefits
of clustering versus continuous representations for the state space, and rigorously evaluating the
resulting policy using OPE methods. In the following discussion, we elaborate on these aspects
and suggest future directions for improving clinical RL systems.

8.2.1 Constructing RL Environments in Medical Applications
Creating an RL environment for medical applications starts with a clear definition of the state
space. In clinical settings, the state should capture the complete physiological state of a patient
at any point in time. This includes vital signs (heart rate, blood pressure, respiratory rate, and
oxygen saturation), laboratory values (blood counts, electrolyte levels, and biochemical markers),
and clinical observations (from imaging studies, physical examinations, and clinician notes).
It is also important to include the patient’s treatment history, such as previous interventions,
medications, and how they have responded. Furthermore, deciding how much historical data to
include – i.e. choosing an appropriate time window that covers enough past events – is crucial to
ensure that the state representation reflects both current and relevant past conditions [33, 93].

As clinical datasets often have different data types and missing values, robust pre-processing,
normalization and imputation techniques are required [94]. The challenge is to balance a detailed
representation of the patient with the limits of computational resources and the need for a model
that generalizes well.

In addition to the state space, the design of the action space is critical. The action space
lists the clinical interventions available to healthcare providers. Some actions are discrete (e.g.
deciding whether or not to start a particular treatment), while others are continuous (e.g. setting
the exact dosage of a drug or adjusting the rate of an intravenous infusion). It is important
that the action space closely resembles real clinical workflows so that the RL model remains
interpretable and can be more easily integrated into clinical practice [95].

The reward function is at the heart of the RL environment. In medical applications, rewards
are typically based on a mix of short-term and long-term outcomes. Short-term outcomes might
include immediate changes in vital signs or lab results after an intervention, while long-term
outcomes might relate to overall survival, reduction in morbidity, or improved quality of life.
Designing a good reward function is challenging because interventions can have both immediate
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benefits and delayed adverse effects. Therefore, the reward function must be carefully balanced –
often with input from clinical experts – to encourage actions that are beneficial in both the short
and long term [33, 96].

Finally, it is important to consider temporal dynamics and data granularity. Patient conditions
evolve over time, and clinical decisions often depend on this dynamic process. It is important to
choose a temporal resolution that captures meaningful changes in a patient’s condition without
adding too much noise. Data may be available in high-frequency formats (such as continuous
waveform recordings) or as lower-resolution summaries (such as hourly or daily readings). In
addition, as many clinical interventions have delayed effects, the RL environment needs to account
for these delays with appropriate reward timing [93].

8.2.2 Clustering for RL Environments
When developing an RL environment for clinical applications, a key decision is whether to
simplify the state space by clustering or to retain the raw, high-dimensional data. Each approach
has distinct trade-offs in performance, interpretability and practicality.

Clustering reduces complexity by grouping similar patient states, making RL algorithms easier
to train and faster to converge. It can reveal clinical patterns – such as disease stages – while
smoothing out noise from measurement error or missing data. For example, clustering techniques
have been successfully applied to derive clinically meaningful sepsis phenotypes [21]. Weighted
clustering (as in paper 2) improves this further by prioritizing clinically relevant data points and
better capturing transitions between states over time. This method also simplifies the creation
of environments by estimating transition probabilities between clusters, which is critical for
off-policy evaluation methods [93].

However, there are challenges to clustering medical data. Extreme values (e.g. dangerously
high glucose levels) are often clinically significant, but may be grouped with less critical cases,
masking urgent scenarios [34]. Clustering algorithms also require careful tuning of parameters
(e.g. number of clusters) and validation against medical expertise to ensure meaningful groupings.
These limitations highlight the risk of oversimplifying nuanced patient states.

Retaining raw, continuous data preserves fine-grained patient detail, which is critical when
subtle parameter changes (e.g., small shifts in blood pressure) significantly affect outcomes [3].
Modern deep learning methods excel at processing high-dimensional data directly, enabling
end-to-end learning without manual feature engineering [67]. In other domains, such techniques
outperform manual processing by automatically identifying hidden patterns, suggesting similar
potential in clinical RL [44]. A continuous state space could capture complex relationships in
patient data that clustering might miss, potentially improving overall model performance.

Disadvantages include higher computational costs, risk of overfitting due to the large state
space, and reduced interpretability. Clinicians often require transparent models, and the "black
box" nature of deep learning can be a concern for trust. However, the benefits of detailed data
may outweigh these drawbacks for applications where precision is essential, such as personalized
treatment plans [97].

The decision depends on the clinical context and data characteristics. Clustering works well
when there are clear patient subgroups, providing an interpretable, efficient framework for policy
evaluation. However, a continuous state space may better reflect clinical reality in scenarios where
granular data drives decisions – or where extremes and subtle patterns are critical. Advances in
deep learning continue to address computational and interpretability challenges, making this
approach increasingly viable for complex healthcare tasks [98].
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8.2.3 Evaluation of RL Environments in Medical Applications
The evaluation of RL policies in medical applications is a unique challenge. It ensures that the
application of new models meets the ethical obligation to avoid harm [99]. Unlike domains such
as gaming or robotics, where suboptimal policies can lead to recoverable failures, errors in clinical
settings can have irreversible consequences. This means that we need to make sure that we test
the policies carefully using data from past clinical practices. OPE is not just a technical step, it
is also a moral safeguard. It helps to ensure that new medical treatments are safe and effective
without putting patients at risk. However, while OPE is fundamental, its application in medicine
is associated with complexities that require careful consideration [100].

Direct experimentation with RL-derived policy in live clinical settings is ethically unacceptable
[101]. OPE avoids this risk by using retrospective data, such as EHRs, to simulate how a new
policy might work relative to established practice [93]. This approach is consistent with the
principle of primum non nocere ("first, do no harm"), ensuring that innovations are tested against
historical benchmarks before being implemented in the real world. Without OPE, there would be
no viable way to translate RL research into clinical practice, as prospective trials of unvalidated
interventions would pose unacceptable risks.

Despite its significance, OPE in health care is far from straightforward. First, confounding
factors inherent in observational data – such as unmeasured variables (e.g., socioeconomic status,
patient compliance) or selection bias – can introduce error into performance estimates [102].
For example, a policy to reduce steroid use in asthma patients may appear safe in historical
data if healthier patients (who require fewer steroids) are overrepresented. Failure to adjust for
such biases could lead to false conclusions and could advocate policies that harm vulnerable
subgroups.

Second, rare but critical outcomes such as sepsis or cardiac arrest present statistical challenges.
Methods such as WIS, which reweight trajectories based on the difference between target and
historical policy, suffer from high variance when assessing rare events [74]. Even advanced
techniques such as distribution correction methods (e.g. DICE) require large datasets to stabilize
estimates, which are often not available for rare conditions or underrepresented populations [76].

Third, temporal dependencies in medical decision making complicate evaluation. Treatments
such as chronic disease management have delayed effects that require OPE to consider long-term
trajectories [103]. Simplifying these into short-term interactions risks misrepresenting outcomes,
as critical consequences (e.g., drug toxicity) may occur months after initial interventions. Similarly,
sparse reward signals, such as 1-year survival rates, make it difficult to attribute success or failure
to specific decisions, further blurring performance estimates [104].

Finally, discrepancies between historical and target policies can destabilize the OPE. If clinicians
have historically avoided a high-risk treatment, evaluating a policy that frequently recommends
it may produce unreliable estimates due to extreme sampling weights. This problem, known
as “weight collapse” or “variance explosion”, shows the risk of traditional OPE methods when
policies deviate significantly from historical norms [74].

Counterfactual reasoning frameworks apply causal inference tools, such as inverse propensity
scoring, to estimate “what-if” scenarios under a new policy while adjusting for observed con-
founders [105]. While promising, these methods need validation against clinical experience. For
example, a policy that prioritizes early ICU transfer for deteriorating patients must be evaluated
not only for statistical accuracy but also for its consistency with clinician intuition and hospital
workflow [93].

The complexity of OPE in medicine reflects broader tensions between innovation and caution. In
fields such as finance or advertising, suboptimal strategies can be iteratively refined through A/B
testing [106]. In health care, however, such trial-and-error approaches are ethically prohibited,
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putting immense pressure on OPE to deliver “first-time, right” validation. This challenge
necessitates interdisciplinary collaboration – RL researchers must work closely with clinicians to
ground OPE in the medical context, while statisticians ensure methodological consistency.

However, even the most advanced OPE cannot fully replicate real-world performance. Historical
data may not capture edge cases, and unobserved confounders may persist. OPE should therefore
be seen as a risk mitigation tool, not a guarantee of safety. A careful deployment pipeline could
progress from OPE to simulated environments (e.g. digital twin patients [107]) and ultimately to
tightly controlled prospective trials, with iterative post-deployment monitoring [108].

In our first study, we chose to train the RL model using continuous clinical data rather than
applying an initial clustering step. This decision was driven by our desire to capture the full
granularity of patient trajectories and to develop nuanced, patient-specific treatment policies. By
leveraging an actor-critic framework, we allowed the critic network to implicitly learn an effective
state representation directly from raw, continuous inputs. This approach enabled our model
to capture subtle clinical nuances and generate individualized treatment recommendations, as
evidenced by promising performance on real-world clinical datasets.

However, the continuous data approach brings its own challenges. The increased complexity
of the state space requires robust off-policy evaluation methods to ensure reliable performance
estimates. In our experience, traditional OPE methods such as High Confidence Off-Policy
Evaluation sometimes struggle when applied to high-dimensional continuous data, possibly due
to insufficient concordance between the behavior and target policies. To overcome this limitation,
we have incorporated the DICE method into our subsequent work, which has demonstrated
improved stability and accuracy in policy evaluation.

Notably, while our primary analysis in this paper used a single-centre dataset, we explicitly
addressed this limitation by performing external validation (e.g., the MIMIC-IV data set) in the
subsequent studies.

While our current actor-critic model using continuous data has yielded promising results,
further improvements can be achieved by exploring new architectures. Transformer models,
equipped with advanced embedding layers and self-attention mechanisms, have the potential to
better capture the long-term temporal dependencies and complex interactions within clinical data.
Particularly promising are decision transformers, which integrate sequential decision making
with transformer architectures to directly map trajectories to actions. In paper 3 of this research
series, we explicitly investigate transformer-based models and demonstrate their superior ability
to model extended temporal contexts in treatment histories. Such architectures may prove
particularly beneficial when scaling the model to external datasets, where variations in data
quality, collection protocols and patient demographics are common. Scaling our approach to
these diverse datasets presents additional challenges related to heterogeneity in clinical practice,
making external validation essential to confirm the generalizability. Our ongoing work, which
will be detailed in a third publication, addresses these issues by applying the model to external
datasets and refining our evaluation techniques to ensure robust performance across different
clinical settings.

8.3 RL for RRT Decision Support in AKI
In this paper (chapter 6), we present an RL algorithm developed using real-world medical
data from the MIMIC-IV database [109], with external validation using data from the MUW.
Our main finding is that RL shows considerable promise in guiding RRT decisions for ICU
patients with AKI [110]. By integrating 40 routinely measured ICU variables through a weighted
K-means clustering approach [96], our model achieved 98.5% agreement with human clinicians



8.3 RL for RRT Decision Support in AKI 107

and outperformed conventional off-policy assessment methods such as WIS [74] and the DICE
algorithm [76] in both internal and external validation. The model is updated every 12 hours,
reflecting the clinical decision interval, and dynamically provides data-driven recommendations
on when to initiate and discontinue RRT. These results suggest that AI-driven strategies can
significantly complement clinical decision-making, particularly by identifying high-risk patients
who may benefit from earlier intervention.

There are several innovative aspects to our methodology. The use of real-world data from
MIMIC-IV for model training and MUW for external validation sets our study apart from
others that rely solely on clinical trial data, which often have strict inclusion criteria and limited
sample sizes [111]. We coregistered a comprehensive set of 88 variables, prioritising the 40 most
representative. The weighted K-means clustering method was instrumental in reducing state
space complexity while preserving critical heterogeneity, in particular by placing strong emphasis
on the RRT feature to effectively distinguish between patients who had already received RRT
and those who had not.

To assess the quality of our clustering, we analysed the transitions between patient states using
the Kullback-Leibler (KL) divergence as a metric to compare the state transition probability
matrices between the training and test sets [79]. Notably, weighted K-means clustering reduced
the KL divergence to approximately one-third of its original value, an improvement that exceeded
that achieved by simply changing the number of clusters or features. After clustering, the
significant increase in the clinician’s WIS estimate indicated that patient trajectories were well
represented [93]. This also had an interesting effect: The improved capture of the dynamics of
patient states also improved the clinician’s WIS estimation, making it difficult to find a model
that outperformed the clinician’s performance.

Traditional methods such as HCOPE face challenges when applied to high-dimensional con-
tinuous data [93]. Furthermore, evaluating the effectiveness of off-policy algorithms on a single
dataset can be problematic. To address these limitations, we introduced an additional off-policy
evaluation method to facilitate direct comparisons and provide a more reliable overall assessment.
Specifically, we used the DICE algorithm [76], which provides more stable performance estimates.

Our analysis also revealed clinically significant findings. The model showed high agreement
with human clinicians in both internal and external test sets; a notable finding given the rarity
of RRT events, which typically reduces the likelihood of high agreement [3]. We performed a
detailed subgroup analysis focusing on cases where AI recommendations and clinical decisions
differed. Although these subgroups were relatively small, one subgroup of patients, those who
did not receive RRT based on clinical judgement but would have been treated according to the
model recommendations, had higher 90-day mortality. Conversely, another subgroup, consisting
of patients treated by clinicians but not recommended for RRT by the AI, showed higher ICU
mortality compared with patients with concordant AI and clinical decisions, suggesting a potential
adverse effect of therapy in this cohort.

In addition, our model was able to simulate different treatment protocols by adjusting the
penalty for RRT initiation. Lower penalties resulted in strategies more similar to European
practice [17], whereas higher penalties resulted in strategies more similar to US protocols. Notably,
despite being trained exclusively on US data, the model was able to emulate European-style
treatment patterns.

This analysis also addressed an important issue regarding treatment strategies for RRT in
Europe compared to the United States. In the US, treatment typically involves shorter durations,
higher doses and an overall lower rate of RRT, whereas in Europe continuous RRT is the standard
[17].

Our results showed a subtle trend suggesting that a lower rate of RRT may be associated
with higher mortality. Although this trend is subtle and did not reach statistical significance
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when using the limits of the WIS estimates [74], it remains observable and could potentially be
significant in a study specifically designed to detect these differences.

Looking ahead, the impact of reinforcement learning on clinical medicine appears promising
[112]. Our study demonstrates that AI-driven decision support can not only mirror but sometimes
exceed human clinician performance, particularly in complex scenarios such as RRT initiation
and discontinuation. Although we initially decided against predicting the dosage of RRT – given
that clinicians already have robust methods for dosage determination – a logical next step could
involve directly forecasting the dosage rather than relying on a binary on/off decision. This
refinement may further enhance personalized patient care. Moreover, future work should include
the development of an RL environment where different algorithms can be trained and rigorously
compared using clinical data [97]. Such an environment would facilitate a systematic evaluation
of various algorithmic strategies, promoting the advancement of AI-driven decision support
systems in critical care.

In conclusion, our study demonstrates that an RL-based model can effectively support RRT
decision-making in critically ill patients with AKI by achieving high concordance with human
clinicians and identifying high-risk patients who might benefit from earlier intervention. While
continuous data models capture detailed patient information, the weighted clustering approach
enhances interpretability and reduces complexity [96]. Despite limitations such as reliance on
retrospective data and variability in RRT practices across centers, our findings underscore the
promise of RL in critical care. Future research should focus on integrating continuous and
clustering-based methods, exploring advanced architectures like decision transformers [112],
conducting prospective clinical trials to validate AI-driven systems [97], and developing compar-
ative RL environments. These efforts will be essential for safely and effectively incorporating
reinforcement learning into clinical practice to ultimately improve patient outcomes in the ICU.

8.4 TFT for Blood Pressure Forecasting
Our journey in developing a model to predict blood pressure during surgery (see chapter 7)
started with Long Short-Term Memory (LSTM) networks, a standard method for time-series
forecasting [92]. Early experiments with LSTMs, however, revealed a key problem: the model
tended to pull predictions toward an average blood pressure value, missing important fluctuations
– especially sudden changes after events like medication administration. This likely happens
because LSTMs naturally smooth out noisy data over time, which makes them less sensitive
to brief yet critical events [113]. Because of this limitation, we switched to transformer-based
architectures. Unlike LSTMs, transformers use self-attention to highlight important moments –
such as the precise time propofol is given – by assigning different weights to past data points [89].
This ability proved essential for capturing the cause-and-effect relationships between interventions
(like vasopressor doses) and subsequent changes in blood pressure.

One surprising observation during transformer training was that the model could overfit our
data, even though we had more than 40 million data points. This challenges the idea that
larger datasets automatically prevent overfitting [114] and suggests that medical time-series data
contain complex, hidden patterns that powerful models can learn. Overfitting here underscores
the richness of perioperative data, where subtle interactions – such as the delayed drop in blood
pressure from analgesics or the body’s response to fluid administration – create intricate patterns
[1]. Interestingly, increasing the number of attention heads did not improve performance, which
indicates that our task may not require highly detailed separation of features or that even a few
attention heads are enough to capture the most important temporal dependencies [115].
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XGBoost (XGB) performed very well on our internal validation set for predicting hypotension
as a yes-or-no outcome [116]. However, when we tested it on external data, its performance
dropped significantly. We believe this discrepancy comes from two factors. First, reducing
continuous blood pressure changes to a simple binary outcome lets XGB focus on static features,
like baseline hypertension, rather than the timing of events [117]. Second, our internal dataset
might have contained indirect clues about clinicians’ responses to early signs of hypotension –
such as the timing of vasopressor use – which XGB could exploit. These clues, however, are less
likely to appear in external datasets where recording practices differ [111].

To improve the model’s reliability and its ability to generalize across different datasets, we
propose using data augmentation. Just as computer vision models benefit from rotating, scaling,
and adding noise to images [118], medical time-series models might improve by incorporating
synthetic scenarios that mimic expected drug effects. For example, creating artificial segments
where propofol administration is paired with a controlled drop in blood pressure could reinforce
the model’s understanding of cause and effect [119]. Similarly, tweaking medication timing or
dosage in existing records might simulate rare but clinically important events, such as an overdose.
Although there is a risk of introducing biases if not done carefully, using synthetic data that
follows known pharmacological principles could help fill gaps in real-world data [119].

We are also exploring the idea of adding constraints to our transformer models. Since we
know that certain medications have a predictable impact on blood pressure, we could force these
known effects into the model’s output. This approach may make the predictions more reliable by
grounding them in established physiological principles [120]. Looking ahead, combining several
of these specialized models could lead to the development of a foundational model that serves
multiple medical applications [121]. As more data and models are integrated over time, such
foundational systems could offer a holistic view of a patient’s current condition and provide
doctors with more efficient decision support.

Beyond blood pressure prediction, our work highlights the transformative potential of trans-
former architectures in perioperative medicine. Their strength in integrating various data sources
– vital signs, medication logs, ventilator settings – positions them as key elements in building
comprehensive clinical AI systems. Future models might combine intraoperative data with
preoperative risk factors and postoperative outcomes, effectively creating digital twins that
simulate a patient’s trajectory under different treatment strategies [107]. These systems could
guide personalized hemodynamic management, predict complications like sepsis or delirium, or
even assist with clinical documentation by highlighting key events, such as a norepinephrine dose
before a predicted blood pressure rise. Importantly, the ability to visualize attention weights
helps reduce concerns about AI as a “black box,” allowing clinicians to understand which events
influenced the predictions [122].

8.5 Conclusion
Our research has demonstrated the potential of RL and deep learning to improve decision-making
in critical care. By applying machine learning techniques to optimize corticosteroid therapy in
sepsis, guide RRT decisions in AKI and predict blood pressure fluctuations during surgery, we
have highlighted key methodological advances and practical challenges in using AI in clinical
practice.

The development of our RL algorithm for corticosteroid therapy is an example of how data-
driven approaches can refine treatment strategies beyond traditional clinical heuristics. Our model
not only aligned with established medical knowledge, but also uncovered subtle relationships
between patient states and treatment efficacy. The ability of the algorithm to recognize septic
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shock, despite not being explicitly coded, underlines the promise of RL in recognizing complex
physiological patterns. Similarly, our work on RRT initiation showed that a clustering-based
state-space representation can improve policy learning and interpretability while maintaining
high agreement with clinical decisions. Furthermore, our analysis of different policy penalties
provided insights into how RL frameworks can be adapted to reflect different clinical preferences.

Beyond RL, our exploration of deep learning for blood pressure prediction during surgery
illustrated the power of neural networks in modeling complex physiological dynamics. The TFT
model achieved high predictive accuracy while maintaining interpretability through uncertainty
estimation. This capability is critical for translating AI-driven recommendations into real-time
clinical decision support systems. The results suggest that deep learning can improve perioperative
patient management by enabling proactive interventions to mitigate haemodynamic instability.

Despite this progress, significant challenges remain. Constructing reliable RL environments
in medicine requires careful definition of state and action spaces, robust reward design, and
comprehensive evaluation methods. Clustering methods facilitate interpretability but may
obscure critical patient-specific nuances, while high-dimensional continuous representations
improve precision but increase computational complexity. The evaluation of RL interventions
using OPE techniques remains an ongoing challenge due to biases in historical data, the rarity
of critical clinical events, and temporal dependencies in treatment outcomes. While techniques
such as WIS and DICE provide robust validation frameworks, no single approach can completely
remove the uncertainties associated with retrospective analyses.

Looking ahead, the successful integration of RL and deep learning into clinical workflows will
depend on interdisciplinary collaboration. RL researchers, clinicians and statisticians need to
work together to refine state space representations, optimize reward structures and improve
methods for evaluating interventions. The adoption of AI in healthcare should follow a phased
deployment strategy, including digital twin simulations and prospective trials before real-world
implementation. In addition, addressing ethical and regulatory considerations will be critical to
ensure that AI-driven recommendations augment rather than replace clinical expertise.

Ultimately, our research underscores the transformative potential of AI in critical care medicine.
By using data-driven methods, we can move towards more personalized, adaptive and effective
treatment strategies, improving patient outcomes while supporting clinical decision making.
Future work should focus on refining these models, expanding their applicability to different
patient populations, and integrating them seamlessly into clinical practice to realize the full
potential of AI in healthcare.
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Supplemental Table S1. Diagnosis of sepsis 

Non-prophylactic 
anti-infective drugs used 

Cultures drawn suggestive of 
sepsis 

Admission diagnosis suggestive 
of infection 

Amikacin Urine culture Pneumonia 

Amoxicillin MRSA swab Meningitis 

Benzylpenicillin Blood culture Endocarditis 

Ceftazidime Catheter tip culture Cholangitis 

Cefotaxime Drain fluid culture Pancreatitis 

Ciprofloxacin Stool culture Abscess 

Rifampicin CSF culture Fasciitis 

Clindamycin Nasal swab Peritonitis 

Tobramycin Perineal swab GI perforation/rupture 

Vancomycin Rectal swab GI ischemia 

Imipenem Wound swab Diverticulitis 

Doxycycline Ascites culture Sepsis 

Metronidazole Legionella urinary antigen Infection 

Erythromycin  Inflammatory 

Flucloxacillin   

Fluconazole   

Ganciclovir   

Flucytosine   

Gentamicin   

Foscarnet   

Amphotericin B   

Meropenem   

Myambutol   

Co-Trimoxazole   

Voriconazole   

Amoxicillin/Clavulanic acid   

Aztreonam   

Chloramphenicol   

Fusidic acid   

Piperacillin   

Ceftriaxone   

Cefuroxime   

Cefazoline   

Caspofungin   

Itraconazole   

Levofloxacin   

Anidulafungin   

Linezolid   

Tigecycline   

Daptomycin   

Colistin   

MRSA: Methicillin-resistant Staphylococcus aureus; CSF: cerebrospinal fluid; GI: gastro-intestinal.   

 



Patients with sepsis were identified based on the Sepsis-3 criteria. Accordingly, patients with new organ 
dysfunction as indicated by either a SOFA score ≥2 at admission or an increase of 2 points or more in the 
SOFA score during the ICU stay in the context of suspected infection were included in the sepsis cohort 
used to develop the RL algorithm. The definition of suspected infection, which has been previously 
described (Thoral et al., AmsterdamUMCdb GitHub repository), was operationalized by identifying 
antibiotic therapy (other than prophylactic use), cultures drawn, sepsis flagged by admitting physicians 
or admission diagnosis suggestive for severe infection. The onset of the septic episode was considered 
the day the change in the SOFA score occurred and patients remained in the sepsis cohort until discharge 
or death. 

Supplemental Table S2. Input features included in development of the algorithm 

Category Variable Type 
Preprocessing and 
derived features 

Patient characteristics 

Age (years) Discrete Bins* 

Male gender Boolean - 

Weight (kg) Continuous - 

Admission count Discrete - 

Vital parameters 

Respiratory rate (min-1) Continuous 

Mean, minimum, 
maximum, standard 

deviation 

Heart rate (min-1) Continuous 

Invasive systolic, diastolic, and 
mean blood pressure (mmHg) 

Continuous 

Non-invasive systolic, diastolic, and 
mean blood pressure (mmHg) 

Continuous 

SpO2 Continuous 

Temperature (°c) Continuous 

Laboratory values 

AG (mEq/l), BE (mEq/l), Bicarbonate 
(mEq/l), pH, Lactate (mmol/l), 

PaCO2 (mmHg), PaO2 (mmHg), SaO2 
Continuous 

Mean, minimum, 
maximum, standard 

deviation 

ACTH (pmol/l), Cortisol (nmol/l), 
TSH (mIU/l), fT3 (pmol/l) 

Continuous 

Albumin (g/l), Ammonia (µmol/l), 
Bilirubin (µmol), GOT (U/l), GPT 

(U/l) 
Continuous 

Blood glucose (mmol/l) Continuous 

CRP (mg/l), PCT (ug/l) Continuous 

Ca (mg/dl), Cl (mmol/l), Fe (μmol/l), 
K (mmol/l), Mg (mg/dl), Na 

(mmol/l), Phosphate (mg/dl), iCa 
Continuous 

Total cholesterol, HDL-cholesterol, 
LDL-cholesterol (mmol/l) 

Triglycerides (mg/dl) 
Continuous 

Serum creatinine (µmol/l), Serum 
urea (mmol/l), eGFR (ml/min) 

Continuous 

Fibrinogen (mg/dl), PTT (s), PT (s) Continuous 

GSF Glucose (mmol/l), CSF 
Leucocytes (ml-1), CSF Protein 

(mg/dl) 
Continuous 



Hematocrit, Hemoglobin (g/l), RBC 
count, Leucocyte count, 

Lymphocytes count, Neutrophils 
count, MCH (pg), MCV (fl), 

Thrombocyte count  

Continuous 

Urinary Na (mEq/l), Urinary K 
(mEq/l), Urinary Creatinine 
(mmol/day), Urinary Urea 

(mmol/day) 

Continuous 

Ventilation parameters 

FiO2  Continuous Mean, minimum, 
maximum, standard 

deviation 
PEEP (cmH2O) Continuous 

Set respiratory rate (min-1) Continuous 

Fluid balance 

Urine output (ml) Continuous - 

Net fluid balance (ml) Continuous - 

Ultrafiltration rate (ml/h) Continuous - 

Commonly used 
medication 

Dose of fast-acting insulins: 
Actrapid, Novorapid, Velosulin (IU) 

Continuous 

Mean, minimum, 
maximum, standard 

deviation, and sum for 
continuously 

administered drugs 
 

Dose of benzodiazepines: 
Alprazolam, Lorazepam, 

Midazolam, Oxazepam, Temazepam 
Continuous 

Dose of other sedatives and 
analgesics: Clonidine, Fentanyl, 

Haloperidol, Morphine, Propofol 
Continuous 

Dose of antiplatelet and 
anticoagulant drugs: Clopidogrel, 

Heparin 
Continuous 

Dose of antiarrhythmic drugs: 
Metoprolol, Amiodarone 

Continuous 

Dose of vasopressors and inotropic 
agents: Digoxin, Dopamine, 

Noradrenaline 
Continuous 

Diuretics: Furosemide, 
Spironolactone 

Continuous 

Highest antibiotic rank** Discrete 

Antiviral drugs Boolean 

Antifungal drugs Boolean 

 

Supplemental Table S2 presents all the input variables collected and the derived features used for 
developing the reinforcement learning algorithm, after excluding the variables not represented < 2% of 
the datapoints. SpO2: peripheral oxygen saturation; SOFA: sequential organ failure assessment; AG: 
anion gap; BE: base excess; pH: potential of hydrogen; PaCO2, PaO2: partial pressure of carbon dioxide 
and oxygen, respectively, in arterial blood; SaO2: arterial oxygen saturation; ACTH: adrenocorticotropic 
hormone; TSH: thyroid-stimulating hormone; fT3: free triiodothyronine; GOT: serum glutamic-oxaloacetic 
transaminase; GPT: serum glutamic-pyruvic transaminase; CRP: C reactive protein; PCT: procalcitonin; 
Ca: total calcium; Cl: chloride; Fe: serum iron; K: serum potassium; Mg: serum magnesium; Na: serum 
sodium; iCa: ionized Calcium; HDL: high-density lipoprotein; LDL: low-density lipoprotein; eGFR: 
estimated glomerular filtration rate;  PTT: partial thromboplastin time; PT: prothrombin time; CSF: 



cerebrospinal fluid; RBC: red blood cell; MCH: mean corpuscular hemoglobin; MCV: mean corpuscular 
volume; FiO2: fraction of inspired oxygen.   

*Age was sorted into bins: 18-39 years, 40-49 years, 50-59 years, 60-69 years, 70-79 years, 80+ years  

**Antibiotics were classified by rank after Braykov et al. and the highest rank of antibiotics administered 
was used as input feature. 

Supplemental Figure S1. Development of the RL Algorithm 

 

For each day of the ICU stays included in the sepsis cohort, a set of 281 variables were collected, of 

which 277 were used as inputs. Using imputation and normalization, we derived a balanced dataset of 



379 input variables. The RL algorithm consisted of 2 neural networks, with a similar structure that 

includes a hidden layer of 256 hidden neurons, but different outputs. The actor network has 5 potential 

outputs, corresponding to the 5 possible actions. The critic network ends in one node terminates with a 

single node. The 2 networks interact to determine the optimal policy. the actor network proposes an 

action based on the current state of the environment and the environment changes its state. The critic 

network evaluates the actor network based on the reward that the chosen action returns. 

Supplemental Figure S2. Micro-average ROC curve of the random forest model 
 

 

The micro-average multiclass AUROC for the random forest model was 0.8. Other performance metrics 

for the random forest model were:  

True positive rate (TPR):  0.7936205665317781 

True negative rate (TNR):  0.9255359157578037 

Positive predictive value (PPV:  0.8938337801608579 



Negative predictive value (NPV):  0.8502332008982553 

False positive rate (FPR):  0.07446408424219632 

False negative rate (FNR):  0.20637943346822185 

False discovery rate (FDR):  0.1061662198391421 

Accuracy:  0.8673179955877718 

F1-score:  0.8407514815281806 

F2-score:  0.8718163275979292 

 

Supplemental Table S3. The most relevant predictors of the clinicians’ policy according to the 

random forest model ordered from the lowest to highest rank 

Feature Component of the unit vector (normalized vectors) 

PTT min 0.124653211 

Fentanyl max 0.128485455 

Blood glucose max 0.134108057 

Length of stay 0.137129421 

Thrombocytes min 0.139307112 

Urea max 0.142143406 

Leucocytes mean 0.142262137 

PEEP mean 0.14305812 

Blood glucose std 0.147403945 

Midazolam (Dormicum) max 0.149040607 

PEEP max 0.167538026 

PEEP min 0.16780183 

PTT max  0.175419476  

PTT mean 0.17657839 

Highest antibiotic rank 0.177066982 

Thrombocytes mean  0.180251789 

Noradrenaline (Norepinephrine) sum 0.187155279 

Leucocytes max 0.202227827 

Thrombocytes max 0.274195479 

Noradrenaline (Norepinephrine) max 0.379869603 

 
 

 

The normalized vector is the unit vector with a length of 1, which is defined by 

𝑢𝑒 =
𝑢

||𝑢||
, where 𝑢𝑒 is the normalized vector, 𝑢 the original vector, and |𝑢| the norm of vector 𝑢. The 

norm of a vector is defined by   ||𝑢||  = √𝑢1
2 + 𝑢2

2 + ⋯ + 𝑢𝑛
2 , where 𝑢i is an entry of the vector. 

The normalized vector indicates how strongly a single input feature affects the decision in comparison to 

the other features.  



Supplemental Table S4. The most relevant feature for the RL policy listed from the lowest to 

highest rank 
 

Feature Component of the unit vector (normalized vectors) 

Velosulin (Insulin) max 0.078966455 

Urinary sodium std 0.079285593 

Serum sodium max 0.079325068 

CSF protein std 0.079650287 

CSF protein mean 0.079713876 

Magnesium mean 0.081478474 

invasive mean BP min 0.081885501 

Midazolam max 0.084812754 

Leucocytes max 0.086287831 

Serum sodium mean 0.088578701 

invasive diastolic BP min 0.10005845 

Respiratory Rate min 0.105951594 

Blood glucose max 0.113368019 

Blood glucose std 0.114456484 

Heartrate std 0.114888807 

Blood glucose mean 0.119304028 

Leucocytes mean 0.120227263 

Leucocytes min 0.127948494 

invasive mean BP mean 0.131318385 

invasive diastolic BP mean 0.136660705 

 

PTT: partial thromboplastin time; iCa: ionized Calcium; PaCO2: partial pressure of carbon dioxide in 
arterial blood; CSF: cerebrospinal fluid; BP: blood pressure; GOT: serum glutamic-oxaloacetic 
transaminase; GPT: serum glutamic-pyruvic transaminase; PCT: procalcitonin; K: serum potassium; iO2: 
fraction of inspired oxygen.   

 

The normalized vector is the unit vector with a length of 1, which is defined by 

𝑢𝑒 =
𝑢

||𝑢||
, where 𝑢𝑒 is the normalized vector, 𝑢 the original vector, and |𝑢| the norm of vector 𝑢. The 

norm of a vector is defined by   ||𝑢||  = √𝑢1
2 + 𝑢2

2 + ⋯ + 𝑢𝑛
2 , where 𝑢i is an entry of the vector. 

The normalized vector indicates how strongly a single input feature affects the decision in comparison to 

the other features.  

  



Supplemental Figure S3. The 20 most relevant input features for the RL and random forest 

models  

 

 

 
The normalized vectors for 20 most relevant features for each model, sorted by rank, are displayed 

together with the normalized vectors of the same features in the other model.  

 



Appendix B

Appendix: Optimized Renal Replacement
Therapy Decisions in Intensive Care: A
Reinforcement Learning Approach



SUPPLEMENTARY INFORMATION 

 

Supplemental Material 1. Patients with acute kidney injury from the MIMIC IV v3.1 database were identified 

using the AKI cohort. 

  



Feature Weight MIMIC MUW 

  Mean (SD) Missin

gness 

(%) 

Mean (SD) Missing

ness 

(%) 

12-hour total 

output, mL 

0,3944 765.77 ± 807.75 0 1274.57 ± 866.63 0 

SOFA score 0,2776 4.3 ± 2.7 0 8.87 ± 4.0 0 

Cumulative balance, 

mL 

0,2434 15884.29 ± 30463.42 0 23672.98 ± 20214.82 0 

Creatinine, mg/dL 0,2399 1.34 ± 1.24 0 1.13 ± 0.92 48,5 

Platelet count, 

×10^3/µL 

0,2141 210.07 ± 113.65 0 202.12 ± 127.7 48,4 

Chloride, mEq/L 0,1887 103.52 ± 6.08 0 106.57 ± 5.27 4,9 

BUN, mg/dL 0,1836 28.06 ± 21.91 0 25.93 ± 17.44 48,4 

Anion gap, mEq/L 0,1802 13.16 ± 3.5 0 11.72 ± 3.81 99,8 

Calcium, mg/dL 0,171 8.46 ± 0.69 0 8.35 ± 0.62 48,7 

Total input, mL 0,1679 10466.24 ± 27521.2 0 13308.13 ± 11358.36 0 

WBC count, 

×10^3/µL 

0,1614 11.74 ± 7.83 0 11.41 ± 6.47 48,3 

Total bilirubin, 

mg/dL 

0,1594 1.92 ± 4.18 0 1.4 ± 2.75 49 

Phosphorus, mg/dL 0,1537 3.49 ± 1.15 0 3.25 ± 1.18 48,7 

O2 flow, L/min 0,1529 11.6 ± 15.88 0 7.72 ± 12.2 52,6 

Total output, mL 0,1507 5418.05 ± 7215.22 0 10364.86 ± 9537.48 0 

Weight, kg 0,1478 83.21 ± 24.68 8,3 78.85 ± 20.03 0 

RASS score 0,1439 -0.66 ± 1.33 0 -1.51 ± 1.9 16,6 

Sodium, mEq/L 0,1434 138.97 ± 5.05 0 140.4 ± 5.04 4,9 

Temperature, °C 0,1417 36.9 ± 0.51 0 36.64 ± 0.69 40,1 

Age, years 0,1401 65.58 ± 16.25 0 59.23 ± 16.3 0 

Maximum 

vasopressor dose, 

µg/kg/min 

0,1178 0.11 ± 1.21 0 0.16 ± 1.66 0 

Mean airway 

pressure, cmH2O 

0,1151 9.07 ± 3.1 0 11.08 ± 3.48 48,8 

GCS score 0,1143 13.65 ± 2.66 0 8.94 ± 5.34 92,7 

AST (SGOT), U/L 0,1132 109.23 ± 386.12 0 139.07 ± 648.46 48,9 

PT, s 0,1112 15.49 ± 6.0 0 17.71 ± 8.87 99,8 

PTT, s 0,1109 38.66 ± 18.75 0 41.88 ± 11.06 48 

RBC count, 

×10^6/µL 

0,1085 3.35 ± 0.63 0 3.32 ± 0.57 48,2 

LDH, U/L 0,1066 357.1 ± 404.55 0 340.91 ± 601.05 49,2 

Hematocrit, % 0,106 30.98 ± 5.76 0 30.77 ± 4.91 5,8 

Respiratory rate, 

breaths/min 

0,1057 19.71 ± 4.37 0 19.93 ± 7.29 16 

Bicarbonate, mEq/L 0,1028 24.58 ± 4.56 0 27.2 ± 3.52 16,6 

SpO2, % 0,1024 96.57 ± 2.26 0 97.52 ± 2.73 0,7 

Ionized calcium, 

mmol/L 

0,1018 1.13 ± 0.08 0 1.17 ± 0.07 5,2 

Hemoglobin, g/dL 0,1011 10.1 ± 1.94 0 10.0 ± 1.64 4,9 

FiO2, % 0,0999 0.36 ± 0.15 0 0.44 ± 0.14 43,3 

ALT (SGPT), U/L 0,0978 115.29 ± 378.13 0 105.11 ± 338.9 49,2 



Shock index 0,0972 0.72 ± 0.23 0 0.66 ± 0.19 4,2 

Glucose, mg/dL 0,0971 141.27 ± 47.66 0 137.39 ± 33.57 5,1 

Heart rate, 

beats/min 

0,0961 84.4 ± 16.19 0 80.61 ± 15.82 1,1 

Minute ventilation, 

L/min 

0,0951 8.4 ± 2.31 0 7.72 ± 3.48 48,4 

Mean blood 

pressure, mmHg 

0 80.77 ± 12.34 0 83.75 ± 12.89 3,6 

INR 0 1.42 ± 0.61 0 1.27 ± 0.36 49,1 

Potassium, mEq/L 0 4.07 ± 0.49 0 4.16 ± 0.43 5,1 

Fibrinogen, mg/dL 0 362.07 ± 175.11 3,1 488.9 ± 192.91 48,6 

Arterial pH 0 7.41 ± 0.05 0 7.43 ± 0.06 16,6 

PaO2/FiO2 ratio 0 331.81 ± 224.32 0 248.07 ± 98.65 26,1 

Tidal volume, mL 0 452.67 ± 112.05 0 496.04 ± 180.16 47,7 

PaO2, mmHg 0 106.66 ± 61.77 0 96.24 ± 23.81 16,6 

Albumin, g/dL 0 3.05 ± 0.57 0 2.85 ± 0.46 48,6 

Diastolic blood 

pressure, mmHg 

0 60.61 ± 13.07 0 62.05 ± 11.1 3,6 

12-hour total input, 

mL 

0 1352.12 ± 3401.3 0 1519.81 ± 1025.09 0 

Magnesium, mg/dL 0 2.11 ± 0.33 0 2.14 ± 0.36 48,7 

Systolic blood 

pressure, mmHg 

0 120.54 ± 17.42 0 125.82 ± 18.96 3,6 

Peak airway 

pressure, cmH2O 

0 17.8 ± 5.96 0 18.38 ± 6.08 48,4 

Extubated (yes/no) 0 0.13 ± 0.33 64 0.52 ± 0.5 0 

Arterial base excess, 

mEq/L 

0 1.05 ± 4.33 0 0.4 ± 4.04 16,6 

Plateau airway 

pressure, cmH2O 

0 18.0 ± 3.96 0 21.22 ± 4.83 90,4 

Height, cm 0 168.88 ± 12.79 41,7 171.46 ± 10.88 0 

cCntral venous 

pressure, mmHg 

0 12.55 ± 18.56 0,9 12.73 ± 10.57 74,8 

PaCO2, mmHg 0 43.47 ± 10.63 0 42.02 ± 7.66 16,6 

Arterial lactate, 

mmol/L 

0 1.8 ± 1.08 0 1.25 ± 1.21 5,2 

PEEP, cmH2O 0 5.94 ± 2.31 0 8.05 ± 2.51 47,2 

CK-MB, ng/mL 0 12.79 ± 33.32 4,4 6.86 ± 22.41 81 

End-tidal CO2, 

mmHg 

0 36.96 ± 7.06 54 36.98 ± 0.0 0 

Troponin, ng/mL 0 0.35 ± 0.83 0 0.17 ± 0.28 97 

Mechanical 

ventilation (yes/no) 

0 0.34 ± 0.47 0 0.64 ± 0.48 0 

Absolute neutrophil 

count, ×10^3/µL 

0 11.14 ± 8.15 94,5 7.22 ± 2.66 81,2 

SIRS criteria 0 1.31 ± 0.96 0 0.73 ± 0.73 0 

SaO2, % 0 95.65 ± 3.91 91,9 96.51 ± 4.12 16,6 

Triglycerides, 

mg/dL 

0 213.55 ± 224.51 93,2 215.5 ± 0.0 0 

SvO2, % 0 65.54 ± 10.64 95,3 68.04 ± 11.38 98,5 

Pulmonary artery 

systolic pressure, 

mmHg 

0 39.99 ± 12.78 94,5 38.84 ± 22.05 96,7 



Pulmonary artery 

diastolic pressure, 

mmHg 

0 19.82 ± 6.64 94,5 21.44 ± 17.98 96,7 

re-admission 

(yes/no) 

0 0.31 ± 0.46 0 0.07 ± 0.26 0 

Mean pulmonary 

artery pressure, 

mmHg 

0 28.47 ± 19.51 94,5 28.22 ± 18.69 96,7 

Urine creatinine, 

mg/dL 

0 83.74 ± 59.71 96,7 61.21 ± 39.58 56,2 

Gender (M/F) 0 0.44 ± 0.5 0 0.39 ± 0.49 0 

BNP, pg/mL 0 7797.93 ± 11153.81 98,2 4444.9 ± 6366.23 97,1 

CRP, mg/L 0 101.46 ± 86.39 97,8 115.12 ± 94.43 48,5 

Urine urea nitrogen, 

mg/dL 

0 491.05 ± 311.08 97,9 540.96 ± 336.14 56,2 

Urine sodium, 

mEq/L 

0 65.29 ± 45.85 97,1 95.7 ± 46.47 57 

Urine potassium, 

mEq/L 

0 39.77 ± 20.49 98 42.37 ± 21.65 96,3 

Iron, µg/dL 0 46.18 ± 40.87 99 39.48 ± 35.01 99,1 

Ammonia, µg/dL 0 48.78 ± 41.24 99,2 55.97 ± 41.29 99,1 

TSH, mIU/L 0 3.42 ± 5.44 98,7 3.37 ± 5.08 98 

Total protein, g/dL 0 5.47 ± 0.96 99,5 5.18 ± 0.85 94,4 

Cardiac index, 

L/min/m² 

0 3.15 ± 0.95 99,4 3.32 ± 1.16 96,5 

ACT, s 0 157.45 ± 33.78 99 232.13 ± 151.92 99,8 

T3, ng/dL 0 72.17 ± 38.45 99,8 58.16 ± 26.64 100 

GGT, U/L 0 361.12 ± 438.95 99,9 283.31 ± 416.3 48,7 

Low molecular 

weight heparin 

(yes/no) 

0 0.47 ± 0.36 99,9 0.47 ± 0.0 0 

APACHE II renal 

failure score 

0 0.2 ± 0.39 100 0.0 ± 0.0 0 

Urine osmolality, 

mOsm/kg 

0 nan ± nan 100 490.09 ± 154.73 55,5 

Supplemental Material 2: Feature weight, feature distribution and number of missingness in both data sets. SOFA: 

Sequential Organ Failure Assessment; RASS: Richmond Agitation-Sedation Scale; GCS: Glasgow Coma Scale; 

BUN: Blood Urea Nitrogen; WBC: White Blood Cells; AST (SGOT): Aspartate Aminotransferase (Serum 

Glutamic-Oxaloacetic Transaminase); PT: Prothrombin Time; PTT: Partial Thromboplastin Time; RBC: Red 

Blood Cells; LDH: Lactate Dehydrogenase; SpO₂: Peripheral Capillary Oxygen Saturation; FiO₂: Fraction of 

Inspired Oxygen; ALT (SGPT): Alanine Aminotransferase (Serum Glutamic-Pyruvic Transaminase); INR: 

International Normalized Ratio; PEEP: Positive End-Expiratory Pressure; Central Venous Pressure: Central 

Venous Pressure; PaCO₂: Arterial Partial Pressure of Carbon Dioxide; PaO₂: Arterial Partial Pressure of Oxygen; 

CK-MB: Creatine Kinase-MB Isoenzyme; BNP: B-type Natriuretic Peptide; CRP: C-Reactive Protein; TSH: 

Thyroid-Stimulating Hormone; APACHE II: Acute Physiology and Chronic Health Evaluation II; ACT: Activated 

Clotting Time; T3: Triiodothyronine; GGT: Gamma-Glutamyl Transferase; SIRS: Systemic Inflammatory 

Response Syndrome; SaO₂: Arterial Oxygen Saturation; SvO₂: Mixed Venous Oxygen Saturation 



 

Supplemental Material 3: Proportion of AI-recommended renal replacement therapy (RRT) in the Medical 

University of Vienna (MUW) data set. SOFA: Sequential Organ Failure Assessment 

 

Supplemental Material 4: Survival probability in the Medical University of Vienna (MUW) data set. RRT: Renal 

Replacement Therapy 



 
Supplemental Material 5: Feature importance in the MIMIC data set. SOFA: Sequential Organ Failure Assessment; 

BUN: Blood Urea Nitrogen; RBC: Red Blood Cells; RASS: Richmond Agitation-Sedation Scale; GCS: Glasgow 

Coma Scale 

  



 

Supplemental Material 6: Feature importance in the MUW data set. 



Appendix C

Appendix: Development and External Validation
of Temporal Fusion Transformer Models for
Continuous Intraoperative Blood Pressure
Forecasting



Supplemental Tables 

Supplemental Table 1 Input features 

Variable Data type Input type 

Age of Patient Real Static 

Gender of Patient Categorical Static 

ASA Score: American Society of Anesthesiologists 

Physical Status Classification 

Categorical Static 

Urgency of Procedure Categorical Static 

Type of Surgery Categorical Static 

Mean Arterial Pressure (MAP) Real Target 

Pulse Rate (bpm) Real Observed 

Oxygen Saturation (SpO2%) Real Observed 

End-tidal Carbon Dioxide (EtCO2 mmHg) Real Observed 

Systolic Blood Pressure (mmHg) Real Observed 

Diastolic Blood Pressure (mmHg) Real Observed 

Heart Rate (bpm) Real Observed 

Invasive Blood Pressure (mmHg) Categorical Observed 

Inhaled Sevoflurane (Insevo) Real Observed 

Exhaled Sevoflurane (Exsevo) Real Observed 

Inhaled Desflurane (Indes) Real Observed 

Exhaled Desflurane (Exdes) Real Observed 

Berodual (Combination of Ipratropium and Fenoterol) Real Observed 

Cisatracurium (Neuromuscular Blocking Agent) Real Observed 

Esketamine (S-enantiomer of Ketamine) Real Observed 

Etomidate (Hypnotic Agent) Real Observed 

Fentanyl (Opioid Analgesic) Real Observed 

Midazolam (Benzodiazepine) Real Observed 

Noradrenaline (Vasopressor) Real Observed 

Phenylephrine (Vasopressor) Real Observed 

Piritramide (Opioid Analgesic) Real Observed 

Propofol (Anaesthetic) Real Observed 

Remifentanil (Opioid Analgesic) Real Observed 

Rocuronium (Neuromuscular Blocking Agent) Real Observed 

Succinylcholine (Neuromuscular Blocking Agent) Real Observed 

Sufentanil (Opioid Analgesic) Real Observed 



Compliance of the Respiratory System (ml/cmH2O) Real Observed 

Fraction of Inspired Oxygen (FiO2%) Real Observed 

Positive End-Expiratory Pressure (PEEP cmH2O) Real Observed 

Plateau Pressure (cmH2O) Real Observed 

Maximum Airway Pressure (Pmax) Real Observed 

Peak Inspiratory Pressure (Ppeak cmH2O) Real Observed 

Mean Airway Pressure (Pmean cmH2O) Real Observed 

Respiratory System Resistance (cmH2O/L/sec) Real Observed 

Ventilation Frequency (Ventfreq bpm) Real Observed 

Ventilation Mode (Ventmode) Categorical Observed 

Tidal Volume (Vt ml) Real Observed 

Dobutamine Infusion (Dobutamin Perfusor µg/kg/min) Real Observed 

Epinephrine Infusion (Epinephrin Perfusor µg/kg/min) Real Observed 

Levosimendan Infusion (Levosimendan Perfusor 

µg/kg/min) 

Real Observed 

Noradrenaline Infusion (Noradrenalin Perfusor 

µg/kg/min) 

Real Observed 

Phenylephrine Infusion (Phenylephrin Perfusor 

µg/kg/min) 

Real Observed 

Propofol Infusion (Propofol Perfusor µg/kg/min) Real Observed 

Remifentanil Infusion (Remifentanil Perfusor 

µg/kg/min) 

Real Observed 

Sufentanil Infusion (Sufentanil Perfusor µg/kg/min) Real Observed 

Vasopressin Infusion (Vasopressin Perfusor IU/min) Real Observed 

Phase of Surgery Categorical Observed 

Footnote Supplemental Table 1: The input features for the TFT model. The ‘Input Type’ column describes how 

the variables are processed: static variables (input once), observed variables (processed as time series) and the 

target variable (input as time series and predicted by the algorithm). 

  



Supplemental Table 2 Missing and unplausible values 

 
Variable Missing Values (%) Unplausible Values 

(%) 

Ranges for plausibility 

check 

 Internal External Internal  External Max Min 

Age of Patient 
0·00 0·00 0·00 0·00 112 18 

Gender of Patient 
0·00 0·00 0·00 0·00 1 0 

ASA Score 
0·00 0·00 0·00 0·00 6·0 1 

Urgency of Procedure 
0·00 0·00 0·00 0·00 3 1 

Type of Surgery 
0·00 2·14 0·00 0·00 17 0 

Mean Arterial Pressure (MAP) 
0·23 0·00 0·00 0·00 300·0 0·0 

Pulse Rate (bpm) 
0·03 0·00 0·00 0·00 300·0 4·0 

Oxygen Saturation (SpO2%) 
0·00 5·72 0·00 0·00 100·0 24·0 

EtCO2 mmHg 
22·21 4·22 0·00 0·00 99·0 0·0 

Systolic Blood Pressure (mmHg) 
0·02 4·21 0·00 0·00 490·0 0 

Diastolic Blood Pressure (mmHg) 
0·02 5·70 0·00 0·00 350·0 0 

Heart Rate (bpm) 
0·00 7·15 0·00 0·01 350·0 0 

Invasive Blood Pressure (mmHg) 
0·00 7·14 0·00 0·07 1 0 

Inhaled Sevoflurane (Insevo) 
0·00 0·00 0·00 0·00 12·0 0·0 

Exhaled Sevoflurane (Exsevo) 
0·00 0·00 0·00 0·00 12·2 0·0 

Inhaled Desflurane (Indes) 
0·00 46·23 0·00 0·00 17·0 0·0 

Exhaled Desflurane (Exdes) 
0·00 46·23 0·00 0·00 26·3 0·0 

Berodual  
0·00 75·98 0·00 0·00 30 0 

Cisatracurium  
0·00 75·98 0·00 0·00 200·0 0·0 

Esketamine  
0·00 100·00 0·00 0·00 350·0 0·0 

Etomidate (Hypnotic Agent) 
0·00 100·00 0·00 0·00 150 0 

Fentanyl (Opioid Analgesic) 
0·00 100·00 0·00 0·00 1000·0 0·0 

Midazolam (Benzodiazepine) 
0·00 100·00 0·00 0·00 250·0 0·0 

Noradrenaline (Vasopressor) 
0·00 100·00 0·00 0·00 4000 0 

Phenylephrine (Vasopressor) 
0·00 100·00 0·00 0·00 4·0 0·0 

Piritramide (Opioid Analgesic) 
0·00 100·00 0·00 0·00 37·5 0·0 

Propofol (Anaesthetic) 
0·00 100·00 0·00 0·00 1000·0 0·0 

Remifentanil (Opioid Analgesic) 
0·00 100·00 0·00 0·00 400 0 

Rocuronium  
0·00 100·00 0·00 0·00 200·0 0·0 

Succinylcholine  
0·00 100·00 0·00 0·00 200 0 

Sufentanil (Opioid Analgesic) 
0·00 100·00 0·00 0·00 500·0 0·0 

Compliance  
89·56 100·00 0·00 0·00 200·0 0·0 



 FiO2% 
88·01 100·00 0·00 0·00 100·0 0·0 

Positive End-Expiratory Pressure  
89·09 10·64 0·00 0·00 88·0 0 

Plateau Pressure (cmH2O) 
89·47 5·77 0·00 0·00 63·0 0·0 

Maximum Airway Pressure 

(Pmax) 
90·29 12·69 0·00 0·03 50·0 0·0 

Peak Inspiratory Pressure 
88·92 12·66 0·00 0·00 81·0 0 

Mean Airway Pressure  
88·54 100·00 0·00 0·00 40·0 0 

Respiratory System Resistance  
99·56 11·71 0·00 0·00 900·0 0·0 

Ventilation Frequency  
90·18 6·92 0·00 0·04 85·0 0·0 

Ventilation Mode 
93·94 100·00 0·00 0·00 2·0 0·0 

Tidal Volume (Vt ml) 
89·62 100·00 0·00 0·00 2000·0 0·0 

Dobutamine Infusion  
0·00 100·00 0·00 0·00 52·5 0·0 

Epinephrine Infusion 
0·00 100·00 0·00 0·00 8·0 0·0 

Levosimendan Infusion  
0·00 100·00 0·00 0·00 7·5 0·0 

Noradrenalin Perfusor 
0·00 99·95 0·00 0·00 53·4 0·0 

Phenylephrin Perfusor 
0·00 100·00 0·00 0·00 200 0·0 

Propofol Perfusor 
0·00 98·93 0·00 0·00 20000 0·0 

Remifentanil Perfusor 
0·00 98·51 0·00 0·00 104·4 0·0 

Sufentanil Perfusor 
0·00 47·30 0·00 0·01 0·6 0·0 

Vasopressin Perfusor 
0·00 22·81 0·00 0·00 120·0 0 

Phase of Surgery - - - - - - 

Footnote Supplemental Table 2: The input features for the TFT model. The high number of missingness of the 

ventilation parameters is due to the resampling from 2 minutes to 15 seconds.  

 

  



Supplemental Table 3 Patient characteristics: external data set 

 N = 5,065 

Age (years) 58 (44, 72) 

Male sex (-) 2,545 (50%) 

ASA Score  

1 1,590 (31%) 

2 2,933 (58%) 

3 512 (10%) 

4 30 (0·6%) 

5 0 (0·0%) 

Surgical urgency (-)  

Elective 4,466 (88%) 

Emergency 733 (12%) 

Urgent 0 (0%) 

Duration of surgery (min) 187 (77, 296) 

Surgical discipline  

General surgery 4,727 (93%) 

Orthopaedics/Trauma surgery 0 (0·0%) 

Plastic surgery 0 (0·0%) 

ENT 0 (0·0%) 

Maxillofacial surgery 0 (0·0%) 

Neurosurgery 0 (0·0%) 

Gynaecology 222 (4%) 

Obstetrics 0 (0·0%) 

Urology 0 (0·0%) 

Ophthalmology 0 (0·0%) 

Dermatology 116 (2·2%) 



 N = 5,065 

Undefined 0 (0·0%) 

Vascular surgery 0 (0·0%) 

1 Median (IQR); n (%) 

 



Supplemental Table 4 Performance metrics for the TFT model 

Forecast time Accuracy Sensitivity Specificity PPV NPV AUROC 

1 min 

(internal) 

0·958 

(0·957–0·958) 

0·920 

(0·918–0·923) 

0·962 

(0·962–0·963) 

0·747 

(0·743–0·750) 

0·990 

(0·990–0·990) 

0·988 

(0·988–0·988) 

3 min 

(internal) 

0·928 

(0·927–0·929) 

0·678 

(0·673–0·682) 

0·958 

(0·957–0·958) 

0·656 

(0·652–0·661) 

0·961 

(0·961–0·962) 

0·954 

(0·954–0·955) 

5 min 

(internal) 

0·908 

(0·907–0·908) 

0·463 

(0·458–0·467) 

0·960 

(0·959–0·960) 

0·571 

(0·566–0·576) 

0·939 

(0·938–0·939) 

0·909 

(0·908–0·910) 

7 min 

(internal) 

0·903 

(0·902–0·903) 

0·352 

(0·347–0·356) 

0·965 

(0·965–0·966) 

0·536 

(0·530–0·541) 

0·929 

(0·928–0·930) 

0·879 

(0·877–0·880) 

1 min 

(external) 

0·942 

(0·941–0·942) 

0·856 

(0·852–0·859) 

0·946 

(0·946–0·947) 

0·458 

(0·454–0·462) 

0·992 

(0·992–0·992) 

0·960 

(0·959–0·961) 

3 min 

(external) 

0·946 

(0·946–0·947) 

0·572 

(0·567–0·577) 

0·966 

(0·965–0·966) 

0·465 

(0·460–0·470) 

0·978 

(0·977–0·978) 

0·945 

(0·944–0·946) 

5 min 

(external) 

0·944 

(0·944–0·945) 

0·377 

(0·372–0·383) 

0·973 

(0·973–0·974) 

0·418 

(0·413–0·424) 

0·969 

(0·968–0·969) 

0·903 

(0·902–0·905) 

7 min 

(external) 

0·944 

(0·944–0·945) 

0·275 

(0·270–0·280) 

0·978 

(0·977–0·978) 

0·379 

(0·372–0·385) 

0·965 

(0·964–0·965) 

0·867 

(0·865–0·869) 

Footnote Supplemental Table 4: Summary of hypotension performance metrics of the TFT model for different 

time frames (one, three, five, and seven minutes into the future) using different test sets. ‘Internal’ refers to the 

internal validation, while ‘external’ refers to the external validation. The 95% confidence interval is indicated by 

the values within the brackets. 

  



Supplemental Table 5 Performance metrics for the XGB model 

Forecast time Accuracy Sensitivity Specificity PPV NPV AUROC 

1 min 

(internal) 

0·975 

(0·975–0·976) 

0·872 

(0·869–0·875) 

0·988 

(0·987–0·988) 

0·894 

(0·892–0·897) 

0·985 

(0·984–0·985) 

0·994 

(0·994–0·994) 

3 min 

(internal) 

0·966 

(0·965–0·966) 

0·807 

(0·804–0·811) 

0·985 

(0·984–0·985) 

0·865 

(0·862–0·868) 

0·977 

(0·976–0·977) 

0·987 

(0·987–0·988) 

5 min 

(internal) 

0·970 

(0·969–0·970) 

0·825 

(0·821–0·828) 

0·987 

(0·987–0·987) 

0·883 

(0·880–0·886) 

0·979 

(0·979–0·980) 

0·989 

(0·989–0·990) 

7 min 

(internal) 

0·972 

(0·971–0·972) 

0·851 

(0·848–0·855) 

0·987 

(0·986–0·987) 

0·885 

(0·882–0·888) 

0·982 

(0·982–0·982) 

0·991 

(0·991–0·991) 

1 min 

(external) 

0·956 (0·956–

0·957) 

0·304 

(0·301–0·307) 

0·990 

(0·989–0·990) 

0·597 

(0·593–0·601) 

0·965 

(0·965–0·966) 

0·961 

(0·960–0·961) 

3 min 

(external) 

0·954 

(0·953–0·954) 

0·098 

(0·096–0·100) 

0·997 

(0·997–0·997) 

0·604 

(0·596–0·613) 

0·956 

(0·956–0·957) 

0·891 

(0·890–0·892) 

5 min 

(external) 

0·951 

(0·951–0·952) 

0·104 

(0·102–0·106) 

0·994 

(0·994–0·994) 

0·462 

(0·455–0·470) 

0·957 

(0·956–0·957) 

0·842 

(0·841–0·843) 

7 min 

(external) 

0·944 

(0·944–0·944) 

0·106 

(0·104–0·108) 

0·986 

(0·986–0·986) 

0·270 

(0·265–0·275) 

0·957 

(0·956–0·957) 

0·798 

(0·797–0·799) 

Footnote Supplemental Table 5: Summary of hypotension performance metrics of the XGB model for different 

time frames (one, three, five, and seven minutes into the future) using different test sets. ‘Internal’ refers to the 

internal validation, while ‘external’ refers to the external validation. The 95% confidence interval is indicated by 

the values within the brackets. 

  



Supplemental Table 6 Calibration slope and intercept 

 Internal validation External validation 

 TFT XGB TFT XGB 

Forecast 

time 
Slope Intercept Slope Intercept Slope Intercept Slope Intercept 

1 min 0·9 -0·01 1·00 0·0 0·54 -0·01 0·84 -0·05 

3 min 0·88 -0·01 1·00 0·0 0·88 -0·01 0·78 -0·07 

5 min 0·82 -0·01 1·00 0·0 0·82 -0·01 0·55 -0·04 

7 min 0·79 -0·01 1·00 0·0 0·52 -0·0 0·42 -0·02 

Footnote Supplemental Table 6: Calibration intercept and slope. A slope of 1 and intercept of 0 signify perfect 

model calibration, representing an exact match between predicted probabilities and observed fractions of 

positive outcomes. 

Supplemental Information 1 Hyperparameters 

Dropout rate: 0.3 

The dropout rate, which is expressed as a percentage, indicates the proportion of neurons that are randomly 

turned off during each training step. In this case, the dropout rate is 0.3, which means that 30% of the neurons 

will be randomly turned off during each training step. 

Hidden layer size: 240 

The hidden layer size, which is expressed in units, defines the size of the hidden layers in the neural network. 

Each hidden layer consists of 240 units. 

Learning rate: 0.0002 

The learning rate parameter, with a value of 0.0002, specifies the rate at which the model's parameters are 

updated in relation to the loss gradient. 

Max gradient norm: 100.0 

The max gradient norm parameter, with a value of 100.0, is used for gradient clipping, which prevents the 

gradients from becoming excessively large during training, potentially leading to more stable training. 

Minibatch size: 128 

The minibatch size parameter indicates the size of each mini-batch used during training. A minibatch size of 128 

means that the model processes 128 samples before updating the weights. 

Number of attention heads: 32 

The number of attention heads parameter defines the number of attention heads in multi-head attention 

mechanisms, which are often used in models such as transformers. 

Stack size: 1 

A stack size of 1 indicates a single layer. The total time steps parameter represents the total number of time steps 

in the sequence being processed 

Total time steps: 62 

This parameter represents the total number of time steps in the sequence being processed. 

Num of encoder steps: 32 

The number of encoder steps parameter indicates the number of time steps used by the encoder in sequence-to-

sequence models. 

Early stopping patience: 10 

The early stopping patience parameter defines the patience for early stopping, meaning that the training will stop 

if the validation performance does not improve for 10 consecutive epochs. 
 

 



Supplemental Figure 1 Dynamic blood pressure prediction 

 

The TFT model’s continuous prediction of a patient’s blood pressure over time. Key moments at 1, 3, 5 and 7 

minutes are highlighted with red dashed lines to indicate points of absolute prediction error. Initially predicting 

hypotension, the TFT model faces an unexpected challenge when an unanticipated intervention causes a sudden 

rise in blood pressure, significantly increasing the prediction error. However, the model demonstrates its 

adaptability by quickly adjusting to these changes, demonstrating the complexity and resilience of predictive 

models in medical scenarios. 
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