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Kurzfassung

Die Bayes’sche Analyse bei der inversen Modellierung zielt darauf ab, die Wahrschein-
lichkeitsverteilung von unsicheren Parametern zu berechnen, die durch Vorwärtsmodelle
(PDE) eingeschränkt werden, wobei ein Vorwissen über den unbekannten Parameter und
verrauschte Beobachtungen vorausgesetzt werden. Prominente Beispiele sind Bayes’sche
inverse Probleme in der Medizin, Biologie, Bildgebung und unterirdischen Strömung sowie
Klima- und Wettervorhersagen. Eine der Hauptfragen, die sich hier stellt, ist, wie viel
und wie optimal man durch einen Bayes’schen Ansatz aus gegebenen Messdaten in einem
Experiment Informationen extrahieren kann. In dieser Dissertation beantworten wir diese
Frage, indem wir Methoden zur optimalen Versuchsplanung (OED) für inverse Bayes’sche
Probleme entwickeln. Zu diesem Zweck wird der erwartete Informationsgewinn (Expected
Information Gain, EIG) als Optimalitätskriterium berechnet, und zwar als erwartetes loga-
rithmisches Verhältnis zwischen der Posterior- und der Prior-Verteilung. Die Optimierung
dieses Verhältnisses führt zu optimalen Versuchsplänen mit den informativsten Daten.
Dies führt zu einer Verringerung der Unsicherheit bei den Bayes’schen Parametern, die im
mathematischen Modell von Interesse sind.

Der erwartete Informationsgewinn umfasst verschachtelte Integrale und lässt sich in der
Regel nicht in einer geschlossenen Form berechnen. In dieser Dissertation werden Double-
Loop-Monte-Carlo-Sampling-Methoden entwickelt, um den EIG in realen Anwendungen wie
dem inversen Problem der elektrischen Impedanztomographie (EIT) in der medizinischen
Bildgebung zu schätzen, bei dem es darum geht, die optimale Elektrodenkonfiguration zu
finden. Für dieses inverse Problem wird eine nichtlineare elliptische partielle Differenti-
algleichung, nämlich die Poisson-Boltzmann-Gleichung, als das entsprechende Vorwärts-
PDE-Modell verwendet. Da Double-Loop-Sampling-Methoden inhärent rechenintensiv sind,
wird eine Laplace-Approximationstechnik entwickelt, um dieses Problem zu überwinden
und das EIG schneller und effizienter zu berechnen. Darüber hinaus wird ein Ansatz zur
Varianzreduzierung entwickelt, nämlich die mehrstufige Quasi-Monte-Carlo-Methode zur
effizienten Approximation des EIG.
Die Bayes’sche Inversion und die optimale Versuchsplanung haben verschiedene Anwen-

dungen in den Computerwissenschaften und -techniken, der Medizin und der Biologie. In
dieser Dissertation wird als weitere Anwendung die Bayes’sche inverse Modellierung von
epidemiologischen Krankheiten erforscht. Um die Ausbreitung von Infektionskrankheiten zu
modellieren, wird ein SIR (susceptible-infectedremoved) System gewöhnlicher Differenti-
algleichungen entwickelt und Bayes’sche Inversionstechniken werden für die robuste und
zuverlässige Schätzung der unbekannten Parameter im epidemiologischen Modell eingesetzt.
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Abstract

Bayesian analysis in inverse modeling aims to compute the probability distribution of
uncertain parameters, constrained by forward (PDE) models, given a prior knowledge on
the unknown parameter, and noisy observations. Prominent examples include Bayesian
inverse problems in medicine, biology, imaging, and subsurface flow as well as climate and
weather forecasts. One of the main questions arises here is that how much and how optimal
information one can extract through a Bayesian approach from given measurement data
in an experiment. In this dissertation, we answer this question by developing optimal
experimental design (OED) methodologies for Bayesian inverse problems. To this end, the
expected information gain (EIG) is calculated as an optimality criterion which specifically is
the expected logarithmic ratio between the posterior and prior distributions. Optimizing this
ratio leads to optimal designs of experiments with the most informative data. This results
in the reduction of uncertainty in the Bayesian parameter of interest in the mathematical
model.
The expected information gain includes nested integrals and usually does not have a

closed form to compute. In this dissertation, double loop Monte Carlo sampling methods
are developed to estimate the EIG in real world applications such as electrical impedance
tomography (EIT) inverse problem in medical imaging, where the goal is to find the optimal
electrode configuration. For this inverse problem, a nonlinear elliptic partial differential
equation, namely, Poisson-Boltzmann equation is used as the corresponding forward PDE
model. Moreover, as double-loop sampling methods are inherently computationally expen-
sive, a Laplace approximation technique is developed to overcome this issue and to compute
the EIG in a faster and more efficient way. Furthermore, a variance reduction approach
namely the multilevel quasi Monte Carlo method for the efficient approximation of the EIG
is developed.
Bayesian inversion and optimal experimental design have various applications in com-

putational science and engineering, medicine and biology. In this dissertation, as another
application, the Bayesian inverse modeling of epidemiological diseases is explored. In order
to model the spread of infectious diseases, a SIR (susceptible-infected-removed) system of
ordinary differential equations is developed and Bayesian inversion techniques are deployed
for the robust and reliable estimation of the unknown parameters in the epidemiological
model.
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1 Introduction

1.1 Bayesian Inversion and Optimal Experimental Design

Various phenomena around us can be modeled by mathematical models, often with the
means of differential equations or systems. The coefficients and parameters used in the
mathematical model are effective factors on the response variable, but they have unknown
and uncertain values in the sense that they can only be determined with the help of
measurement data, which always come together with measurement errors. The goal of
an inverse problem is to find the unknown parameters given some observations as the
measurement data. The parameters cannot be controlled during the experiments. However,
knowing the parameter values gives concrete information about the system behavior. To
this end, we need to solve the inverse problem.

There are various methods for estimating the parameter values and solving the inverse
problem. One can divide the statistical inference approaches into two categories: frequentist
and Bayesian inference. The differences between these two approaches stem from the way the
concept of probability is interpreted. In the frequentist approach, the unknown parameter is
assumed to be fixed and deterministic, and probabilities are defined as long-term frequencies
of occurrences of an event. The event has to occur many times. Therefore, in this approach
we collect data from a sample of the population and estimate its mean as the value which
agrees best with the data.

In contrast, in the Bayesian approach, the unknown parameters are assumed to be random
variables. In this technique, probabilities are rooted in degrees of belief and logical support
and can be used to represent uncertainties in any event, even in non-repeatable events.
In Bayesian inference, we define probability distributions over possible parameter values
and use the data to update the distribution, which means that beliefs are updated in
response to new evidence. The updating is done by applying Bayes’ theorem. In fact, the
new information (e.g., experimental data) makes the probability distribution more focused
around the true value of the unknown parameter. Thus confidence intervals can easily be
calculated.

Prominent examples of exploiting Bayesian analysis for inverse modeling are in climate
and weather forecasts [1], subsurface flow [2], life sciences [3, 4, 5], and biomedicine [6, 7, 8].
Bayesian inference tools have been so far applied successfully to many inverse problems in
various applications (see for example [4, 9, 10]).

In Bayesian approach [11, 12, 13], in order to solve inverse problems, one considers the
unknown parameters as random variables and calculate the posterior probability density
that reflects the distribution of the parameter values based on the prior knowledge and the
observations. Therefore, in this method, not a single parameter value but its probability
distribution is found. This is an advantage, since probability distribution conveys information
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1 Introduction

how well the parameters can be determined. To this end, we consider the error model:

Y = g(θ) + ϵ,

where Y is the measurement data, g is the parameter-to-observable map and ϵ is an additive
Gaussian noise with the mean 0 and covariance matrix Σϵ. Moreover, it is assumed that p(θ),
p(θ|Y ), and p(Y |θ) are the probability density functions of the prior, posterior, and (data)
sampling distributions, respectively. The density p(Y |θ) of the data provides information
from the measured data to update the prior knowledge, and it is usually called the likelihood
density function. The goal of Bayesian inversion is to estimate the posterior probability
density function p(θ|Y ), which reflects the uncertainty about the quantity of interest θ using
measured data Y . In Chapter 2, we present a brief introduction to the Bayesian inversion
concept and numerical algorithms including general Markov Chain Monte Carlo methods
and Delayed-rejection adaptive Metropolis-Hasting (DRAM). Furthermore, we present an
application of the Bayesian approach for a PDE-governed inverse problem in biology, based
on our work in [4].

But, how much informative is the measurement data? When it comes to challenging
fields of study in computational science and engineering, where the experiments are too
expensive or rarely available to be carried out, the design of experiments plays an essential
role to overcome these issues. To obtain the most informative data, the experiments must be
set up under the best possible designs. The high quality and informative measurement data
gives a better quantitative and qualitative understanding of the problem, which leads to
the most accurate estimation of the unknown model parameters. However, the quantitative
methods for optimizing data acquisition have not been much explored. In this work, we aim
to obtain the designs under which the maximum amount of information can be extracted
from our experiments.
In order to optimize the design of experiments, there are various optimality criteria. In

statistical inversion models, the parameter(s) of interest is estimated via some proposed
estimators, and their mean value as well as covariance matrix. The inverse of the covariance
matrix is called the information matrix . Various criteria in optimal experimental design
are defined based on unique real-valued summaries obtained from the information matrix,
which are well-known as the information criteria. These criteria include

• A-optimality, which seeks to minimize the trace of the inverse of the information
matrix. This criterion results in minimizing the average variance of the estimates of
the parameter of interest in the model.

• D-optimality, amis to minimize the determinant of the inverse of the information
matrix. This criterion leads to maximizing the Shannon information content of the
parameter estimates.

• E-optimality, which maximizes the minimum eigenvalue of the information matrix.

In order to measure the information which is gained through a parameter estimation,
one can use the Kullback-Leibler distance (DKL) which measures the relative entropy. The
expected DKL is an indicator for measuring uncertainty and will be a criterion for the

2



1.1 Bayesian Inversion and Optimal Experimental Design

optimal experimental design, the so-called Expected Information Gain (EIG). The entropy
of a continuous parameter θ is given by

H(θ) := −
∫
Θ
p(θ) log(p(θ))dθ,

where Θ is the parameter space in the inverse problem. The entropy measures the degree
of disorder or lack of information carried by the pdf of θ. Low entropy indicates that few
data is needed to estimate the true value of the unknown quantity which shows the less
uncertainty in the estimation, whereas a high entropy means that, in order to determine
the true value, a lot of data needs to be collected.

The Kullback–Leibler Divergence, DKL, quantifies the discrepancy or closeness of two
probability distributions, and measures the amount of information of two different pdfs.
The Kullback-Leibler divergence, or simply, the KL divergence, is a non-symmetric measure
of the difference between two probability distributions p(θ) and q(θ), and has been used
popularly in data mining literature. The continuous version of the KL divergence between
p(θ) and q(θ) is defined by

DKL(p||q) =
∫
Θ
p(θ) log

p(θ)

q(θ)
dθ, (1.1)

which is a non-negative quantity, and DKL(p||q) = 0 if and only if p = q. In the case
that p and q are Gaussian distributions, i.e. p(θ) ∼ N (µp,Σp) and q(θ) ∼ N (µq,Σq), the
Kulback-Leibler distance has a closed form representation

DKL(p||q) =
1

2

(
tr(Σ−1

q Σp)− n+ (µp − µq)
TΣ−1

q (µp − µq) + log(
detΣq

detΣp
)
)
,

where n = dimΘ. For a simpler case, if µp = [µ1, . . . , µn]
T and Σp = diag([σ2

1, . . . , σ
2
n]) and

q(θ) ∼ N (0, I), the KL divergence has a much simpler representation as following:

DKL(p||q) =
1

2

n∑
i=1

(
σ2
i − 1 + µ2

i − log(σ2
i )
)
.

We consider an inverse problem with design parameters ξ and the measurement model

Yξ = g(θ, ξ) + ϵ,

where Yξ is the measurement data and g is the parameter-to-observable map. In this model,
ϵ is an additive Gaussian noise with the mean 0 and covariance matrix Σϵ. The goal is to
estimate the Expected Information Gain (EIG) for a given design ξ, which is defined by

EIGθ(ξ) = E[DKL] =

∫
Y

∫
Θ
p(θ|Yξ) log

(p(θ|Yξ)
p(θ)

)
dθ p(Yξ)dYξ,

where θ ∈ Θ is the parameter of interest, p(θ) is the prior knowledge on θ and p(θ|Yξ) is
the posterior distribution of the parameter of the interest. As the posterior distribution of
θ is intractable, we will use Bayesian approach, and related numerical methods to estimate
the EIG for given design parameters which will be explained in Chapter 2.

3



1 Introduction

1.2 Electrical Impedance Tomography

Electrical impedance tomography (EIT) [14, 15, 16, 17, 18] is an imaging technology
which reconstructs electrical properties of the interior of a body using surface electrode
measurements. The electrical and physical properties of a human body produce great
information about the body interior for the identification and characterization of inclusions,
for instance, cancerous tissues. This phenomenon is exploited in EIT, where the electrical
properties such as conductivity information is used to build images of the interior. This
technology has attracted lots of attention since it possesses lots of practical advantages such
as non-invasive, safe, portable and comparatively low cost devices. EIT technology has been
applied for imaging in various medical fields; lung imaging [19, 20, 21, 22] for example for
the detection of pulmonary edema, breast imaging for the detection of abnormalities [23, 24]
and brain imaging for the study of epilepsy, migraine, and strokes [25, 26, 27] as a fast
neuroimaging tool. Despite of all advances, this charming technology is not yet competitive
with computed tomography (CT) and magnetic resonance tomography (MRI) and has not
yet been adopted widely as a clinical imaging tool; EIT is an ill-posed and nonlinear inverse
problem [28], which suffers from low spatial resolution [29, 30] and a poor signal-to-noise
ratio (SNR) [31] compared to conventional tomographic imaging techniques such as CT and
MRI. Using more electrodes increases the spatial resolution, but housing many electrodes is
not always possible in real-life scenarios. Furthermore, using a smaller FEM mesh size may
improve the image quality, but results in higher computational time and cost.

The domain being considered in EIT problem is usually a cross-section of the main object
which contains inclusions representing a different material than the background medium
and with several electrodes which are equidistantly attached to the surface of the main
body. The device with this configuration will be used as the computational domain for the
underlying PDE problem later. In Figure 1.1, a schematic diagram of the device with one
of the measurement patterns is shown. In this pattern, a current is applied between two
electrodes, and the resulting potential is measured at the rest of the electrodes.

 

 

V 

Figure 1.1: Schematic diagram of a cross-section of an EIT device.

The EIT forward problem is to find the electrostatic potential in the physical domain
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1.3 Laplace Approximation for Electrical Impedance Tomography Inverse Problem

and then to calculate the potential at the electrodes. Assume that D ⊂ R2, is a closed and
bounded domain with a smooth boundary ∂D. Using the quasi-static approximation, the
electrical field E can be represented in terms of a scalar potential u by

E(x) = −∇u(x), (1.2)

where x ∈ D. For simplicity, we assume direct current or sufficiently low-frequency current
such that the magnetic field can be neglected. The linear model of EIT problem

∇ · (A∇u) = 0, (1.3)

where A(x) is the conductivity of the tissue inside the domain. The linear model (1.3) is
widely used for modeling EIT; the Electrical Impedance Tomography and Diffuse Optical
Tomography Reconstruction Software EIDORS [32] (http://eidors.org) is based on this
model equation.
Mathematical modeling and numerical simulations of the EIT problem including uncer-

tainty quantification and efficiently solving the tomography inverse problem are essential
for optimal and efficient design of EIT devices in imaging technology. In Chapter 3 which is
based on our work in [7, 8], we develop a new PDE model for EIT and propose Bayesian
inversion techniques for solving a real-world EIT inverse problem. Furthermore, the well-
posedness of Bayesian inversion for the new inverse problem as well as numerical approaches
for estimating the conductivity of the domain as the unknown parameter are developed in
this chapter.
Beyond Bayesian approach for EIT, we explore the optimal design of experiment in

real-world EIT applications. The main question is: how and where should the electrodes at
the body surface be located to extract more informative measurement data? To answer this
question, we will maximize the expected information gain over the EIT design space. To
this end, the inversion recipe includes the presentation of optimal measurement frequency
and optimal electrode placement to collect the measurement data, which lead to estimate
the parameter of interest in the model, i.e., the conductivity of interior body. In Chapter
3, we also develop a double-loop Monte-Carlo (DLMC) method for the EIT problem to
calculate the expected information gain as well as a stochastic optimization to obtain the
optimal designs for the EIT problem.

1.3 Laplace Approximation for Electrical Impedance Tomography
Inverse Problem

In order to compute the expected information gain (EIG), we apply a double-loop Monte
Carlo method which is in fact a sampling-based method. It utilises the Bayes’ rule and sample
from the prior distribution of the parameter of interest, and the likelihood distribution to
calculate the EIG. In this process, the data evidence p(y) has to be also calculated through
the inner loop, which results in high complexity in computations, specially when the forward
problem is not easily possible to assess, for instance in PDE governed inverse problems such
as EIT.
Instead of using the double-loop Monte Carlo method, which is computationally very

expensive, an alternative is to exploit a Laplace approximation to the posterior to reduce

5



1 Introduction

the computational complexity. This approach estimates the posterior distribution using a
Gaussian approximation and accelerates the estimation of the expected information gain
significantly [33, 34, 35, 36]. Laplace approximation provides an analytical expression for
the posterior distribution of the unknown parameter θ by fitting a Gaussian distribution
[37, 38]. The mean for the target Gaussian distribution is obtained via the Maximum a
Posteriori (MAP) estimation and the covariance of the distribution is found via the Fisher
information matrix, which is obtained through the Hessian inverse of the forward problem.
Assume θ ∈ RNp is the parameter of interest, and has a multivariate Gaussian prior

distribution. Further assume that the likelihood density function is defined by p(Yξ|θ) :=
exp(−1

2∥gξ(θ) − Yξ∥2Σnoise
), where Yξ = {Y i

ξ }Mi=1 are the measurement data (which are
obtained via the experiment with the design ξ), and gξ is the forward problem which is
in most of the cases a (partial) differential equation. The noise ϵ = {ϵi}Mi=1 is assumed to
be a Gaussian additive noise ϵ ∼ N (0,Σnoise). According to the Bayes’ rule, the posterior
distribution of the parameter θ can be obtained by

p(θ|Yξ) ∝ P (Yξ|θ)P (θ).

which means the posterior of the parameter θ is proportional to the product of the likelihood
function and the prior pdf, and it can be represented by

p(θ|Yξ) = p(θ|{Y i
ξ }) ∝

M∏
i=1

exp

(
−1

2
(Y i

ξ − gξ(θ))
TΣ−1

noise(Y
i
ξ − gξ(θ))

)
p(θ).

The Laplace approximation of the posterior distribution is a Gaussian distribution

p(θ|Yξ) ∼ N (θ̂,Σpost),

where θ̂ is the MAP estimation of the negative logarithm of the posterior pdf, and Σpost is

the negative inverse Hessian of the log posterior pdf evaluated at θ̂.
Considering the Laplace approximation of the posterior, and a fast estimation of it

presented in [34, 36], the expected information gain (EIG) can be estimated in a much more
faster way than the double-loop Monte Carlo method. Using the Laplace approximation,
the complexity of having a nested integral will be reduced to an integral over the parameter
space, which can be estimated via a standard Monte Carlo method or multilevel approaches
[39, 40, 41]
In Chapter 4, we will consider a simpler version of the nonlinear EIT problem with

the same domain as it is considered in Chapter 3. To solve the proposed EIT model, the
first order Galerkin finite element method is used and in order to illustrate the numerical
solution, a cross-section of a human right leg is assumed as the computational domain, where
eight electrodes are attached to its boundary. The main domain includes three different
subdomains: bone, muscle, and fat. Each subdomain has its own electrical conductivity
and in the solution of the forward problem, the FEM mesh is aligned with the inclusions
such that each element has a constant value for the coefficient A in the EIT model.

In Chapter 4, we will develop a Laplace approximation methodology for this PDE governed
inverse problem, and will estimate the posterior distribution for the conductivity of the
body interior tissues. We will also estimate the expected information gain (EIG) using the
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1.4 Multilevel Monte-Carlo Methods for Optimal Bayesian Experimental Design

Laplace approximation approach for this inverse problem for a given design of experiment.
We expect a significant improvement in the performance in terms of computational cost
in the Laplace approximation comparing to the double-loop Monte Carlo approach as the
problem is reduced to a single-loop integration.

1.4 Multilevel Monte-Carlo Methods for Optimal Bayesian
Experimental Design

Despite the Monte Carlo and double-loop Monte Carlo methods are very useful approaches
for the estimation of expectations as well as nested expectations, they can be computationally
expensive, particularly when the cost of generating individual stochastic samples is very
high. This might happen when we are dealing with stochastic PDEs, or in the case of
PDE-governed inverse problems. In such problems, usually there are some features to
trade-off between accuracy and computational costs in the evaluation of the underlying
function or equation that should be estimated for each sample in the Monte Carlo approach.
In the other word, higher accuracy leads to higher computational costs. As an example,
the computational cost and accuracy of the solution in a PDE with random input data
depend on the finite element discretization and mesh size h. For the coarser mesh size the
accuracy is low while the CPU time for solving the PDE also decreases, but for finer mesh
sizes accuracy and running time will be quite high. The creative idea here is to use some
levels in the Monte Carlo process to take most samples in the starting levels (with coarser
mesh size) with a low accuracy and corresponding low cost, and only very few samples
are taken in final levels with high accuracy and high cost. This approach and its various
extensions are the so-called Multilevel Monte Carlo (MLMC) methods which greatly help
to reduce the computational costs by distributing the samples among the levels.

Giles [42, 43] introduced the Multilevel Monte Carlo (MLMC) in the context of stochastic
differential equations (SDEs) for option pricing, however, earlier traces are back to the work
in parametric integration by Heinrich [44]. In MLMC approach, the telescoping sum is
being considered as

E[ZL] = E[Z0] +
L∑

ℓ=1

E[Zℓ −Zℓ−1],

in which each term on the right hand side can be computed using the standard Monte Carlo
method with Nℓ samples drawn in level ℓ.

Since early works, the multilevel Monte Carlo method has been successfully applied
for various applications in computational science and engineering. These applications
include the stochastic drift-diffusion-Poisson system for modeling nano-scale semiconductor
devices [45, 46], applications to stochastic partial differential equations (SPDEs) or PDEs
with random coefficients [47, 48], and computing posterior expectations in elliptic inverse
problems [49]. Sinha and Chakrabarty [50] present a review of the recent developments
on the Multilevel Monte Carlo (MLMC) approach with applications in option pricing and
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financial risk management. They discuss how to incorporate the importance sampling
in conjunction with the MLMC estimator in order to achieve variance reduction in the
estimator. They also discuss efficient algorithms in order to estimate the risk measures
of Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR). To this end, an adaptive
sampling algorithm is constructed for efficient estimation of the nested expectations, which,
in general is computationally expensive [51].

In spite of widely use of Multilevel Monte Carlo method, there are still many problems in
machine learning and statistics which involve nested expectations where the conventional
(multilevel) Monte Carlo (MC) estimation is not enough. Among various applications, we
focus on the calculation of the expected information gain (EIG) in the Bayesian experimental
design problems [52]. The general form of the EIG is the following nested integral

I =

∫
Y
f
(∫

X
g(y, x)dx

)
dy,

for which the standard method to estimate numerically is the double loop Monte Carlo
(DLMC) estimator [33], which is defined by

IDLMC =
1

N

N∑
n=1

f
( 1

M

M∑
m=1

g(y(n), x(n,m))
)
,

where y(n) and x(n,m) are obtained by i.i.d sampling in the data and parameter spaces, i.e.,
Y and X , respectively. We will explain this approach in details in Section 2.5.

To exploit the MLMC idea to construct an efficient estimator for the EIG, first we define
an increasing geometric sequence, Mℓ = M0 2ℓ, for the number of inner samples at level
ℓ, and to determine the number of outer samples in an optimal way [41]. Another option
is to use the multilevel approach to estimate the single integral over the parameter space
obtained through the Laplace approximation procedure [39] (see Chapter 4). In this case,
one should rely on the finite element discretization mesh size hℓ in each level ℓ. In this
approach, the coarser mesh sizes are used in early levels with more number of samples, and
on the opposite side, finer FEM mesh sizes are used for the final levels in which the cost of
evaluating the forward PDE problem is high due to the smaller mesh size hℓ.
As an extension to (multilevel) Monte Carlo methods, randomised quasi-Monte Carlo

(ML)RQMC method is another sampling approach, where low-discrepancy sequences such
as the Halton sequence [53] and the Sobol sequence [54] are employed to achieve variance
reduction. The MLRQMC method was first introduced in [55] and developed for a PDE
problem in [56]. Figure 1.2 shows visually the points sampled in 2D with different point
sets.
The main difference between the (multilevel) quasi-Monte Carlo and the original one is

the way the samples are chosen. Bartuska et. al. [40] developed a randomized quasi Monte
Carlo method to estimate nested integrals where they exploit this approach to evaluate the
expected information gain (EIG). In Chapter 5 of this thesis, we present a new approach
by combining multilevel double-loop Monte Carlo and a randomised quasi Monte Carlo
method, namely multilevel double-loop randomised quasi Monte Carlo (ML-DL-RQ-MC)
for the estimation of the EIG, where we use Goda’s [41] approach for the nested integrals.
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Figure 1.2: 200 points sampled in 2D with a uniform random (left), Halton (middle), Sobol
(right) sequences.

1.5 Epidemiological Models

Mathematical modeling of epidemiological diseases using differential equations are of great
importance in order to recognize the characteristics of the diseases and their outbreak.
The coronavirus COVID-19 pandemic was a new infectious disease in recent years which
emerged from China in fall 2019 and then spread around the world. The limitations in
result of this outbreak did influence all people and countries in social, economical, political
aspects. This pandemic spreads through (micro-) droplets and its outbreak speed was very
high. The first reported case of SARS-CoV-2 was identified in Wuhan, China. The first
case outside of China was reported in Thailand on 13 January 2020 [57]. Since then, this
ongoing outbreak had spread all over the world [58]. In the first wave of this pandemic, till
May 21st 2020, the number of 5 230 000 individuals this pandemic had infected around the
world and more than 335 000 deaths was reported. Despite restrict measures and limitations
by governments, this pandemic which lasted for couple of years through different waves.
In the very first wave, out of more than 2 780 000 active cases around the world, 2% were
critical patients, in the time of publication of our work in [59]. One of the main sources
which collected the data of pandemic in each country separately was the Johns Hopkins
CSSE database (https://github.com/CSSEGISandData/COVID-19). On March 10, 2023,
the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global
COVID-19 data.

The COVID-19 pandemic was first officially confirmed to have spread to Austria on 25
February 2020 and till May 21st 2020 (which is considered for the modeling at the time
of publication of [59]. This period of time covers almost the first wave of the pandemic
in Austria) more than 16 400 people were infected and 633 deaths and 833 active cases
were reported. Various databases have reported different numbers and some of them
update their daily reported data even for preceding days. For instance, the Federal
Ministry of Social Affairs, Health, Care and Consumer Protection, Republic of Austria
(https://info.gesundheitsministerium.at), has updated the number of deaths till May 21 to
657. However, here we have used the Johns Hopkins CSSE database. Figure 1.3 displays
daily confirmed cases in Austria as well as the total cumulative count of confirmed, active,
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and fatality cases in Austria. By removing deaths and recoveries from total cases, we obtain
the “currently infected cases” or “active cases” (cases still awaiting an outcome).
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Figure 1.3: (left) Daily confirmed count of coronavirus infected cases and (right) total
cumulative count of confirmed infected, active and fatality cases (till May 21st
2020) in Austria.

Infected people needed breathing assistance and a large number of them required medical
treatment in an intensive care unit (ICU). Countries which were affected by COVID-19
attempted to keep the daily number of cases below the capacity of their health care
system. In order to avert the disastrous inundation of hospitals, the virus had be kept
from spreading fast. To this end, countries implemented protective measures such as
closing schools, canceling mass gatherings, working from home (home office), self-quarantine,
self-isolation, avoiding crowds, social distancing, wearing protection masks, etc.

In Chapter 6 which is based on our published work in [59], we propose Bayesian inference
for the analysis of the COVID-19 data in order to estimate the crucial unknown quantities
of the pandemic models. We use an adaptive MCMC method to find the probability
distributions and confidence intervals of the epidemiological models parameters using the
Austrian infection data. We use this analysis for the prediction of the duration of the
epidemic in Austria as well as the total number of infected people and fatalities. The model
validation shows a very good agreement between the computational and measurement data
of infections in Austria which proves the reliability and the accuracy of the predictions. This
is of great importance for making governmental decisions in implementing the measures in
order to prevent the spread of the virus.
The estimated parameters and the analysis of fatalities provide useful information for

decision makers and makes it possible to perform more realistic forecasts of future outbreaks.
According to our Bayesian analysis for the logistic model, the growth rate and the carrying
capacity are estimated respectively as 0.28 and 14 974. Moreover for the parameters of
the SIR model, namely the transmission rate and recovery rate, we estimate 0.36 and
0.06, respectively. Additionally, we obtained an average infectious period of 17 days and a
transmission period of 3 days for COVID-19 in Austria. We also estimate the reproduction
number over time for Austria. This quantity is estimated around 3 on March 26, when the
first recovery was reported. Then it decays to 1 at the beginning of April. Furthermore,
we present a fatality analysis for COVID-19 in Austria, which is also of importance for

10



1.6 Conclusions

governmental protective decision making. According to our analysis, the case fatality rate
(CFR) is estimated as 4% and a prediction of the number of fatalities for the coming 10
days is also presented. Additionally, the ICU bed usage in Austria indicates that around
2% of the active infected individuals are critical cases and require ICU beds. Therefore, if
Austrian governmental protective measures would not have taken place and for instance if
the number of active infected cases would have been around five times larger, the ICU bed
capacity could have been exceeded.

1.6 Conclusions

The focus of the thesis is on the inverse UQ methods and more specifically on the Bayesian
inversion and optimal experimental design for inverse problems. After giving some prelim-
inaries in Chapter 2, we focus on developing theory and numerical methods in Bayesian
inversion and optimal Bayesian experimental design to estimate posterior distribution as
well as the expected information gain (Chapters 3-6). The applications include electrical
impedance tomography (EIT) in medical imaging, an inverse problem in Biology and
Medicine, as well as in epidemiological models. The main part of this dissertation is based
of following publications of the author:

• A. Karimi, C. Heitzinger, Laplace Approximation for PDE Governed EIT Inverse
Problems. (2024), preprint.

• A. Karimi, L. Taghizadeh, C. Heitzinger, Optimal Bayesian experimental design for
electrical impedance tomography in medical imaging, Computer Methods in Applied
Mechanics and Engineering 373 (2021) 113489.

• L. Taghizadeh, A. Karimi, B. Stadlbauer, W. J. Weninger, E. Kaniusas, C. Heitzinger,
Bayesian inversion for electrical-impedance tomography in medical imaging using the
nonlinear Poisson–Boltzmann equation, Computer Methods in Applied Mechanics
and Engineering 365 (2020) 112959.

• L. Taghizadeh, A. Karimi, E. Presterl, C. Heitzinger, Bayesian inversion for a biofilm
model including quorum sensing, Computers in Biology and Medicine 117 (2020)
103582.

• L. Taghizadeh, A. Karimi, C. Heitzinger, Uncertainty quantification in epidemio-
logical models for the COVID-19 pandemic, Computers in Biology and Medicine 125
(2020) 104011.
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2 Optimal Bayesian Experimental Design in
Inverse Problems

In this chapter, the goal is to explain the Bayesian optimal experimental design approach
for inverse problems. As this method is based on the statistical Bayesian inversion, we first
give a brief overview on Bayesian inverse problems and the so-called Markov Chain Monte
Carlo (MCMC) methods. Then we will switch to optimal experimental design.

2.1 Bayesian Inverse Problems

Bayesian inversion is a statistical inference approach, which is a robust and reliable technique
to quantify the uncertain parameters of mathematical models including partial differential
equations. In this section, first, we explain the formulation of Bayesian inverse problems in
the finite-dimensional setting using Bayes theorem, and then we aim to describe the Bayesian
inversion in the infinite-dimensional setting in the sense of Radon-Nikodym derivative.

Assume a given probability space (Ω, F, P ), where Ω is the set of elementary events (sample
space), F a σ-algebra of events, and P a probability measure. The solution of the Bayesian
inverse problem is the posterior density that best reflects the distribution of the unknown
parameter based on the given a prior knowledge on the parameter (prior distribution) as
well as the observations (data likelihood distribution). Hence, the measurement model is
defined by

Y = g(θ) + ϵ, (2.1)

where ϵ is the measurement noise, which is a mean-zero random variable, θ ∈ Θ denotes the
uncertain parameters of the model, Y ∈ Y is a given random variable representing observed
data or measurements, and g : Θ → Y is the parameter-to-observable map[1].

Bayes’ Theorem in terms of probability densities can be written as

p(θ|Y ) =
p(θ)p(Y |θ)

p(Y )
(2.2)

with

p(Y ) :=

∫
Rn

p(θ)p(Y |θ)dθ ̸= 0, (2.3)

where the unknown parameters θ = (θ1, . . . , θn) ∈ Rn and the observed data Y are realiza-
tions of the random variables of the quantity of interests and measurement data, respectively.
Furthermore, p(θ), p(θ|Y ), and p(Y |θ) are the probability density functions of the prior,
posterior, and (data) likelihood distributions, respectively. A probability density function
is density of a continuous random variable, which is used to specify the probability of the
random variable falling within a particular range of values. The density p(Y |θ) of the data
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provides information from the measurement data to update the prior knowledge, and it is
well-known as the likelihood density function. The goal of Bayesian inversion is to estimate
the posterior probability density function p(θ|Y ), which reflects the uncertainty about the
quantity of interest θ using measurement data Y .

Equation (2.2) gives the posterior density and summarizes our beliefs about θ after we
have observed Y . Therefore, Bayes’ Theorem for inverse problems can be stated as follows.

Theorem 1 (Bayes’ Theorem for inverse problems [1, 2]). Let p(θ) be the prior probability
density function of the realizations θ of the random parameter of interest. Let Y be a
realization of the measurement data. Then the posterior density of θ given the measurements
Y is

p(θ|Y ) =
p(θ)p(Y |θ)

p(Y )
=

p(θ)p(Y |θ)∫
Rn p(θ)p(Y |θ)dθ

. (2.4)

Computing the integral appearing in Bayes’ Theorem 1 is costly especially if the parameter
space Rn is high-dimensional. Another problem with quadrature rules is that they require a
relatively good knowledge of the support of the probability distribution, which is usually
part of the information that we seek [1, 2]. In Section 2.2 we shortly discuss the numerical
algorithms for Bayesian estimation, namely generating samples by Monte-Carlo methods,
which do not require evaluations of the integral. An advantage of the finite-dimensional
setting is the existence of the Lebesgue measure, in the sense that the prior and posterior
measures possess a density with respect to the Lebesgue measure.

To describe the Bayesian approach on function spaces, we formulate Bayes’ Theorem
in a measure-theoretic framework, which is suitable for problems on infinite-dimensional
spaces. To this end, assume that (Θ, ∥ · ∥Θ) (infinite-dimensional) and (Y, ∥ · ∥Y) (possibly
infinite-dimensional) are separable Banach spaces and θ ∈ Θ is a random variable distributed
according to prior measure µ0 on Θ, in which our prior beliefs about the unknown parameter
θ are described. We assume the distribution of the measurement error ϵ (data likelihood) is
defined by

π(Y |θ) := π(Y − g(θ)). (2.5)

Then, the posterior probability measure µY for θ ∈ Θ given Y ∈ Y, is defined by

π(θ|Y ) =
π0(θ)π(Y −G(θ))∫

Θ π0(θ)π(Y − g(θ))dθ
(2.6)

using Bayes’ formula, where π0 and π are the prior and posterior density functions and
correspond to the probability measures µ0 and µY , respectively. Thus, we have

π(θ|Y ) ∝ π0(θ)π(Y − g(θ)) (2.7)

with a constant of proportionality depending only on Y .

As in infinite-dimensional spaces there is no density with respect to the Lebesgue measure,
Bayes’ rule should be interpreted as providing the Radon-Nikodym derivative between
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2.1 Bayesian Inverse Problems

the posterior measure µY (dθ) = P (dθ|Y ) (with density π(θ|Y )) and the prior measure
µ0(dθ) = P (dθ) (with density π0), yielding

dµY

dµ0
(θ) ∝ π(Y − g(θ)). (2.8)

Without loss of generality, since the density π is nonnegative, we can view the right-hand
side as the exponential of the negative of Φ(θ, Y ), where Φ: Θ × Y → R is a potential
function [3]. Hence, equation (2.8) can be rewritten as

dµY

dµ0
(θ) ∝ exp (−Φ(θ, Y )), (2.9)

which gives a more general definition for the posterior measure in the infinite-dimensional
setting using the Radon-Nikodym derivative, and generalizes the Bayes rule for the function
spaces. According to this equation, the prior measure should be absolutely continuous with
respect to the posterior measure, i.e., µ0 ≪ µY .

More precisely, the posterior measure µY can be formulated as

dµY

dµ0
(θ) =

1

C(Y )
exp (−Φ(θ, Y )), (2.10)

where C(Y ) is a normalization constant and chosen such that µY is a probability measure,
i.e.,

C(Y ) :=

∫
Θ
exp (−Φ(θ, Y ))dµ0(θ). (2.11)

Furthermore, we assume that µ0(Θ) = 1 holds for the infinite-dimensional separable Banach
space Θ. This was a brief explanation on the finite- and infinite-dimensional setting of
Bayesian inverse problems. For more details, we refer to [1, 3].

It is worth to mention that usually the posterior distribution is intractable and has no
closed form. However, it is well known that Gaussian prior and likelihood measures, and a
linear parameter-to-observable map g lead to a Gaussian posterior measure N (mpost,Σpost).
More precisely, we assume a Gaussian prior µ0 = N (m0,Σ0), and that the data is given by

Y = g(θ) + ϵ = Aθ + ϵ, ϵ ∼ (0,Σϵ), (2.12)

where A is the matrix corresponding to the linear parameter-to-observable map g. Then
the posterior measure has a Gaussian distribution with the following covariance and mean:

Σpost :=
(
ATΣ−1

ϵ A+Σ−1
0

)−1
(2.13)

and

mpost := Σpost(A
TΣ−1

ϵ Y +Σ−1
0 m0). (2.14)
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2 Optimal Bayesian Experimental Design in Inverse Problems

2.1.1 Well-posedness of Bayesian Inversion

In this subsection, we give a brief overview for the well-posedness of the Bayesian inversion
according to [3]. To this end, we first define the Hellinger distance between probability
measures on Θ, and then we define the well-posedness of Bayesian inverse problems.

Definition 1 (Hellinger distance). Suppose µ1, µ2 and ν denote probability measures on Θ
such that µ1, µ2 ≪ ν. Then, the Hellinger distance between µ1 and µ2 is defined by

dHell(µ1, µ2) :=
(1
2

∫
Θ

(√dµ1

dν
−
√

dµ2

dν

)2
dν
) 1

2
. (2.15)

Definition 2 (Wellposedness). The Bayesian inverse problem given by (2.10), for any prior
measure µ0 on Banach space Θ and any likelihood potential function Φ, is well-posed if the
following two properties are satisfied:

1. (Well-definedness) There exists a unique posterior probability measure µY given by
(2.10), where µY ≪ µ0.

2. (Stability) The posterior measure µY is Lipschitz continuous with respect to the data
Y in the Hellinger metric, i.e., there exists a positive constant C = C(r) such that

dHell(µ
Y1 , µY2) ≤ C∥Y1 − Y2∥Y . (2.16)

for all Y1, Y1 ∈ Y with max (∥Y1∥Y , ∥Y2∥Y) < r, and for any r > 0.

The following assumptions ([3, Assumption 2.6]) on the log-likelihood function Φ guarantee
that the corresponding Bayesian inverse problem in the infinite-dimensional setting is well-
posed.

Assumptions 1. Assume that Θ and Y are Banach spaces, and potential function Φ: Θ×
Y → R satisfies the following properties:

1. For an α1 > 0 and every r > 0, there is a constant M(α1, r) ∈ R such that for all
θ ∈ Θ and y ∈ Y with ∥Y ∥Y < r

Φ(θ;Y ) ≥ M − α1∥θ∥Θ.

2. For every r > 0, there exists a constant K = K(r) > 0 such that for all θ ∈ Θ and
Y ∈ Y with max{∥θ∥Θ, ∥Y ∥Y} < r

Φ(θ;Y ) ≤ K.

3. For every r > 0, there exists a constant L = L(r) > 0 such that for all θ1, θ2 ∈ Θ and
Y ∈ Y with max{∥θ1∥Θ, ∥θ2∥Θ, ∥Y ∥Y} < r∣∣Φ(θ1;Y )− Φ(θ2;Y )

∣∣ ≤ L∥θ1 − θ2∥Θ.
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2.2 Markov-Chain Monte-Carlo Methods

4. For an α2 > 0 and for any r > 0, there exists a positive constant C = C(α2, r) such
that for all θ ∈ Θ and Y1, Y2 ∈ Y with max (∥Y1∥Y , ∥Y2∥Y) < r,∣∣Φ(θ;Y1)− Φ(θ;Y2)

∣∣ ≤ exp(α2∥θ∥Θ + C)∥Y1 − Y2∥Y . (2.17)

The following two theorems state the well-defindness and stability of the Bayesian posterior
measure if Assumptions 1 hold true.

Theorem 2 (Well-definedness, [3, Thm. 4.1]). Suppose that Θ and Y are Banach spaces
and the likelihood potential function Φ satisfies Assumptions 1 (1), (2) and (3). Further
assume that µ0 is a Gaussian measure with µ0(Θ) = 1. Then, the posterior measure µY in
(2.10) is a well-defined probability measure on Θ.

Theorem 3 (Stability, [3, Thm. 4.2]). Suppose that Θ and Y are Banach spaces and the
likelihood potential function Φ satisfies Assumptions 1 (1), (2) and (4). Further assume
that µ0 is a Gaussian measure with µ0(Θ) = 1, and that µY ≪ µ0 with Radon-Nikodym
derivative given by (2.10). Then, the posterior measure µY is Lipschitz continuous in the
data Y with respect to the Hellinger distance.

If the observation space is finite-dimensional, the well-posedness Assumptions 1 on the
potential function are reduced to the following two properties [3]:

Assumptions 2. Assume that Θ is a Banach space with µ0(Θ) = 1, and the parameter-to-
observable map g : Θ → Rm satisfies the following two conditions:

1. For every ϵ > 0, there exists a constant M = M(ϵ) ∈ R such that for all θ ∈ Θ

∥g(θ)∥Σϵ ≤ exp(M + ϵ∥θ∥Θ).

2. For every r > 0, there exists a constant L = L(r) > 0 such that for all θ1, θ2 ∈ Θ with
max{∥θ1∥Θ, ∥θ2∥Θ} < r, ∥∥g(θ1)− g(θ2)

∥∥
Σϵ

≤ L∥θ1 − θ2∥Θ.

Then, the likelihood potential satisfies the well-posedness Assumptions 1.

2.2 Markov-Chain Monte-Carlo Methods

Markov-chain Monte-Carlo (MCMC) methods are a class of Monte-Carlo methods with the
general idea of constructing Markov chains whose stationary distribution is the posterior
density of the unknown parameter, given a prior density and the measurement data [1]. In
the following subsections, first we introduce the standard random-walk Metropolis-Hastings
(MH) and then an adaptive MH algorithm.
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2 Optimal Bayesian Experimental Design in Inverse Problems

2.2.1 Standard Metropolis-Hastings algorithm

The Metropolis-Hastings (MH) algorithm is an MCMC algorithm to draw samples from a
desired distribution by building a Markov-chain of accepted values (out of proposed values)
for the unknown parameter as a posteriori distribution. In this algorithm, the first state of
the chain θ0 is given and the new state θk, k = 1, 2, . . . , N of the chain is constructed based
on the previous state θk−1. To this end, a new value θ∗ is proposed using the proposal density
function J(θ∗|θk−1) = N (θk−1, σ

2
n), where σn is the proposal covariance. Admissibility of

this proposed value is tested by means of calculating the acceptance ratio α(θ∗|θk−1), which
is defined by

α(θ∗|θk−1) = min

(
1,

p(θ∗|Y )

p(θk−1|Y )
· J(θk−1|θ∗)
J(θ∗|θk−1)

)
, (2.18)

where p(θ|Y ) and J are respectively posterior and the proposal distributions. Applying
Bayes’ Theorem of inverse problems, we calculate α as

α(θ∗|θk−1) = min

(
1,

p(Y |θ∗)p(θ∗)
p(Y |θk−1)p(θk−1)

· J(θk−1|θ∗)
J(θ∗|θk−1)

)
, (2.19)

where J(θk−1|θ∗) = J(θ∗|θk−1) for symmetric proposal functions and p(θ) is a given prior
distribution. Furthermore, p(Y |θ) is the likelihood distribution which is defined by

p(Y |θ) = N(Y, σ2
L) =

1

(2πσ2
L)

n/2
e−Sθ/2σ

2
L , (2.20)

where σL is the likelihood covariance, Sθ :=
∑L

i=1(Yi−g(θ))2 is the sum of squares error and
g(θ) denotes the parameter-dependent model response. If the proposed value is admissible,
it is accepted as θk, otherwise the old value is kept. The mechanism of acceptance and the
evolution of the chain are clearly described in Algorithm 1, which is an adaptive MCMC
algorithm and will be explained in the next subsection. More details can be found for
example in [4, 5, 6, 7] and we refer the reader especially to [1, Chapter 8].

Although the convergence speed is determined by the choice of a good proposal distribution,
at least tens or hundreds of thousands of samples are necessary to converge to the target
distribution. Choosing the optimal proposal scaling is a crucial issue and affects the MCMC
results; if the covariance of the proposal distribution is too small, the generated Markov
chain moves too slowly, and if it is too large, the proposals are rejected. Hence, optimal
proposal values should be found to avoid both extremes, which leads to adaptive MCMC
methods [8, 9, 10]. In the following section, we will consider an adaptive algorithm that
helps sample from potentially complicated distributions.

2.2.2 Delayed-Rejection Adaptive-Metropolis algorithm

Searching for a good proposal value can be done manually through trial and error, but
this becomes intractable in high dimensions. Therefore, adaptive algorithms that find
optimal proposal scales automatically are advantageous. The delayed-rejection adaptive-
Metropolis (DRAM) algorithm is an efficient adaptive MCMC algorithm [9]. It is based on
the combination of two powerful ideas to modify the Markov-chain Monte-Carlo method,
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2.2 Markov-Chain Monte-Carlo Methods

namely adaptive Metropolis (AM) [11, 12] and delayed-rejection (DR) [13, 14], which are
used as global and local adaptive algorithms, respectively. AM finds an optimal proposal
scale and updates the proposal covariance matrix, while DR updates the proposal value
when θ∗ is rejected.

The basic idea of the DR algorithm is that, if the proposal θ∗ is rejected, delayed rejection
(DR) provides an alternative candidate θ∗∗ as a second-stage move rather than just retaining
the previous value θk−1. This process is called delayed rejection, which can be done for
one or many stages. Furthermore, the acceptance probability of the new candidate(s) is
calculated. Therefore, in the DR process, the previous state of the chain is updated using
the optimal parameter scale or proposal covariance matrix that has been calculated via the
AM algorithm.

The AM algorithm is a global adaptive strategy, where a recursive relation is used to
update the proposal covariance matrix. In this algorithm, we take the Gaussian proposal
centered at the current state of the chain θk and update the chain covariance matrix at the
k-th step using

Vk = snCov(θ0, θ1, . . . , θk−1) + εIn, (2.21)

where sn is a design parameter and depends only on the dimension n of the parameter
space. This parameter is specified as sn := 2.382/n as the common choice for Gaussian
targets and proposals [15], as it optimizes the mixing properties of the Metropolis-Hastings
search in the case of Gaussians. Furthermore, In denotes the n-dimensional identity matrix,
and ε ≥ 0 is a very small constant to ensure that Vk is not singular, and in most cases it
can be set to zero [9].
The adaptive Metropolis algorithm employs the recursive relation

Vk+1 :=
k − 1

k
Vk +

sn
k

(
kθk−1θ

⊤
k−1 − (k + 1)θkθ

⊤
k + θkθ

⊤
k

)
to update the proposal covariance matrix, where the sample mean θk is calculated recursively
by

θk = θk +
k

k + 1
(θk−1 − θk).

A second-stage candidate θ∗∗ is chosen using the proposal function

J2(θ
∗∗|θk−1, θ

∗) := N(θk−1, γ
2
2Vk), (2.22)

where Vk is the covariance matrix produced by the adaptive algorithm (AM) as the covariance
of the first-stage and γ2 < 1 is a constant. The probability of accepting the second-stage
candidate, having started at θk−1 and rejected θ∗, is

α2(θ
∗∗|θk−1, θ

∗) := min

(
1,

p(θ∗∗|Y )J(θ∗|θ∗∗)(1− α(θ∗|θ∗∗))
p(θk−1|Y )J(θ∗|θk−1)(1− α(θ∗|θk−1))

)
, (2.23)

where α is the acceptance probability (2.24) in the non-adaptive approach. The acceptance
probability is computed so that reversibility of the posterior Markov chain is preserved
(for more details see for example [1, Section 8.6]). The DRAM technique is summarized in
Algorithm 1.
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2 Optimal Bayesian Experimental Design in Inverse Problems

Algorithm 1 The DRAM algorithm

Initialization:
Choose the first state of the chain θ0 such that p(θ0) > 0.
Choose the number Nsamples of samples or iterations.
Choose the parameter ε.
Choose the initial proposal covariance matrix V0 (diagonal or symmetric).
Choose the factor γ (often γ := 1/5) for the second-stage proposal distribution.
for k = 1 : Nsamples do

1. (Adaptivity:) The covariance matrix Vk in the k-th step is updated by (2.21).

2. A first-stage proposal θ∗ is generated from J(θ∗|θk−1) := N(θk−1, Vk).

3. The new value θ∗ is accepted with probability

α(θ∗|θk−1) = min

(
1,

p(θ∗|Y )

p(θk−1|Y )
· J(θk−1|θ∗)
J(θ∗|θk−1)

)
. (2.24)

4. If the new state is accepted, we set θk = θ∗. Otherwise:

a) (Delayed rejection:) A second-stage proposal θ∗∗ is generated from proposal
density

J2(θ
∗∗|θk−1, θ

∗) := N(θk−1, γ
2
2Vk), (2.25)

where Vk is the adapted covariance matrix.

b) The new value θ∗∗ is accepted with probability

α2(θ
∗∗|θk−1, θ

∗) := min

(
1,

p(θ∗∗|y)J(θ∗|θ∗∗)(1− α(θ∗|θ∗∗))
p(θk−1|Y )J(θ∗|θk−1)(1− α(θ∗|θk−1))

)
.

(2.26)

c) If the new state is accepted, we set θk := θ∗∗, otherwise θk := θk−1.
end for
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2.2.3 An Application in Biology

In order to understand the growth of biofilms in biology, we have developed a mathematical
model based on parabolic partial differential equations (PDE) that describes the time-
dependent evolution of the size of the biofilm [16]. The model contains parameters such as
growth rate and cooperation that cannot be determined directly from experimental data.
We therefore solve the corresponding inverse problem to estimate these important parameter
values. Here, we use Markov-chain Monte-Carlo techniques and specifically the DRAM
algorithm for a simplified version of the original model.

This section is a part of author’s work in [16].

The original model (1-3) in [16] can be rewritten in polar coordinates as

∂u

∂t
= A

∂2u

∂r2
+

A

r

∂u

∂r
+ αu(1− u/β)− γ(t)(1− v)u, (2.27a)

∂v

∂t
= ρmax

(
0, arctan

(
µ(q(u)− ν)

))
v − κv2, (2.27b)

where
q(u)(t, r) :=

(
u(t, ·) ∗ rG(·)

)
(r) (2.28)

and

G(r) :=
1

2πσ2
exp

(
− r2

2σ2

)
, (2.29)

with the initial conditions

u(t = 0, r) = exp(−r2/10), (2.30a)

v(t = 0, r) = exp(−r2/10), (2.30b)

which are symmetric, and with zero Neumann boundary condition for u. Here, A, α, β,
ρ, κ, ν and µ denote positive constants which describe the growth of the biofilm. For
more detail on the model, we refer to our work in [16]. We have implemented the PDE
model (2.27)–(2.30) of growth and degradation of biofilms including quorum sensing by
means of the method of lines (MOL) and present the results in the the rest of this section.
MOL is a technique for solving partial differential equations by discretizing in all but one
dimension and then integrating the semi-discrete problem as a system of ODEs. Here,
the discretization in space is done utilizing the finite-difference method, and the resulting
ODE system in time is solved using a multistep solver based on numerical differentiation
formulas (NDFs). Here, we present simulation results for the model (2.27)–(2.30). We
assume a circular dish with diameter 35mm centered at the origin as the growth space and
the computational domain for the biofilms, which are initially located at the center of the
dish. Biofilm growth is monitored for about six hours. The goal is to calculate the area
covered by the biofilm every hour. In these simulations, the initial biofilm was located at
the center of the dish. We find the largest circle in the computational domain where the
concentration is above a certain threshold and calculate the relative coverage using the area
of this circle.
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2 Optimal Bayesian Experimental Design in Inverse Problems

Fig. 2.1 shows concentrations of biofilms for three different growth rates α = 1.01, 1.03
and 1.05. In fact, if two populations of bacteria start to grow with the same diffusion
constant but different growth rates, the one with higher growth rate creates a much more
concentrated and thicker biofilm. Furthermore, the numerical results show larger coverage
area for a bigger growth rate.
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Figure 2.1: Biofilm concentration for α = 1.01 (left), α = 1.03 (middle), and α = 1.05
(right).

The approach here to solve the biofilm inverse problem is Bayesian PDE inversion
[1, 17, 18]. In this method, we consider the unknown parameters as random variables and
calculate the posterior probability density that reflects the distribution of the parameter
values based on the observations. Therefore, in this method, not a single parameter value
but its probability distribution is found. This is an advantage, since probability distribution
conveys information how well the parameters can be determined.
Fig. 2.2 illustrates the 9D Bayesian estimation results and it displays the marginal

histograms of the resulted posterior distribution of nine parameters of the biofilm model
together with their mean values. The results give us confidence intervals for each of the
unknown quantities as well.

The correlation between some of the model parameter pairs is illustrated in Figure 2.3 by
showing two dimensional histograms of the posterior distribution of the pairs calculated by
the DRAM algorithm. For the rest of the pairs, similar histograms have been obtained.

In order to verify the response of the presented biofilm model, we compare the simulated
coverage using the optimal parameter values with the experimental data. Figure 2.4
illustrates this assessment and shows a very good agreement between the simulations and
the measurements, which proves the efficiency of the presented mathematical model as well
as the robustness of the applied inverse methods for parameter estimation.

28



2.2 Markov-Chain Monte-Carlo Methods

Figure 2.2: Marginal histograms of posterior distributions of the parameters in the biofilm
model using the DRAM algorithm with 30 000 samples.

Figure 2.3: Two dimensional histograms of posterior distributions of the parameter pairs in
the biofilm model displaying the correlation between some of the pairs.
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Figure 2.4: The model assessment: experimental data versus simulated coverage.

2.3 Optimal Experimental Design

The goal of the optimal experimental design (OED) [1, 19, 20, 21] is to reduce the uncertainty
in the Bayesian inversion to get the most accurate estimation of the unknown parameter.
This is especially of great importance when the experiments to collect measurement data are
expensive, delicate, or time-consuming to perform. In such cases, OED plays an essential
role in accurate parameter estimation and uncertainty quantification. OED has various
criteria, while they all try to measure uncertainty, they differ for linear and nonlinear
Bayesian inverse problems.
For instance, the A-optimal criterion evaluates the average variance of the estimated

parameters, which should be minimized to find the optimal design parameter. This example
gives the idea behind the OED, which is a two-stage approach; first, quantification of the
uncertainty measure as the design criterion, and second, minimization of the uncertainty
measure. Furthermore, in an OED problem, a Bayesian inverse problem is involved, which
can be challenging to deal with if it is a nonlinear Bayesian inverse problem for functions (see
for instance [22, 23]), due to the nonlinearity as well as the so-called curse of dimensionality.
In particular, in the case of PDE-based OED problems, the forward model is expensive to
solve, and therefore the OED problem can be prohibitively costly.

We consider the following model:

Y i
ξ = g(θ, ξ) + ϵi, (2.31)

where Y i
ξ is the ith (i = 1, 2, . . . ,M) s-dimensional response vector, g : Rd × Rr → Rs is a

nonlinear function in terms of parameter θ and design parameter ξ. Here, ϵi is a Gaussian
noise with the mean 0 and covariance matrix Σϵ. The noises ϵ = {ϵi}Mi=1 are assumed to
be independent and identically distributed (i.i.d.). Suppose that we are able to generate
M synthetic data points Yξ = {Y i

ξ }Mi=1 using the same design parameter and repetitive
experiments. We should note that there data points are M i.i.d. samples of the random
variable Yξ (measurement data), and in the model-based problems we can generate them
given true θ∗, specific value for ξ and {ϵi}Mi=1.
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There are various types of OED criteria for Bayesian inverse problems, including A-
optimality and D-optimality, as well as the information-based optimality criterion, namely
the expected information gain.

2.4 Optimal Experimental Design Criterion: Expected Information
Gain

This section is mainly based on [24, 25] and aims to clearly define one of the most important
criteria for the quality of measurement data in Bayesian Experimental Design, so-called
Excepted Information Gain (EIG).

Assume that θ is a random variable that represents the uncertain quantity of interest.
We can reduce the uncertainty of θ with the help of collected measurement data Yξ through
carrying out some experiments under an experimental setup ξ. A very known way to
compute the uncertainty of θ is to measure its information entropy [26]. The aim of
Bayesian experimental designs is to find an optimal experimental setup ξ∗ which maximizes
the expected information gain, that is, the expected amount of the information entropy
reduction about θ. In the case that ξ is a continuous variable, the straightforward way would
be to evaluate the derivative of the expected information gain with respect to ξ, in order to
search for a maximizer ξ∗. Otherwise, an accurate evaluation of the expected information
gain for given ξ plays the essential role in constructing optimal Bayesian experimental
designs.

Definition 3. Let θ be a random variable and p(θ) denotes the probability density function
of θ. The information entropy of the random variable θ is given by

−Eθ[log p(θ)]. (2.32)

Note that we usually consider p(θ) as the prior probability density function of θ in Bayesian
inversion and optimal experimental design context. Therefore, −Eθ[log p(θ)] is indeed
unconditional (prior) entropy of the θ. Respectively, after collecting data Yξ, the conditional
(posterior) information entropy of θ is defined the same way as −Eθ|Yξ

[log p(θ|Yξ)], where
p(θ|Yξ) denotes the posterior probability density function of θ given Yξ. The expectation
in the conditional (posterior) information is taken with respect to posterior distribution
of θ, i.e. p(θ|Yξ), which is conditional on the measurement data Yξ. Thus the expected
conditional information entropy of θ by collecting measurement data Yξ is

EYξ

[
−Eθ|Yξ

[log p(θ|Yξ)]
]
. (2.33)

In 1956, Lindley [26] suggested for the first time the use of Shannon expected information
gain [27], which is based on Bayes’ Theorem and the Kullback-Leibler (KL) divergence
[28, 29] from the posterior to the prior probability density functions of the unknown
parameters. The expected information gain EIGθ(ξ) is the average amount of the reduction
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of the information entropy about θ by collecting measurement data Yξ.

EIGθ(ξ) := −Eθ[log p(θ)]− EYξ

[
−Eθ|Yξ

[log p(θ|Yξ)]
]

= EYξ

[
−Eθ|Yξ

[log p(θ)] + Eθ|Yξ
[log p(θ|Yξ)]

]
= EYξ

Eθ|Yξ

[
log

p(θ|Yξ)
p(θ)

]
. (2.34)

The inner expectation is the Kullback-Leibler divergence between prior p(θ) and p(θ|Yξ),
which is denoted by DKL. The criterion EIGθ(ξ) is to estimate the efficiency of the proposed
experiment setup ξ. The larger value of EIGθ(ξ) means that the gathered data Yξ is more
informative about θ.

Based on measure theoretic approach, if Θ and Y are respectively the support of p(θ)
and p(Yξ), the Kullback-Leibler divergence is as follows,

DKL =

∫
Θ
p(θ|Yξ) log

(p(θ|Yξ)
p(θ)

)
dθ, (2.35)

and the expected information gain is calculated by

EIGθ(ξ) = E[DKL] =

∫
Y

∫
Θ
p(θ|Yξ) log

(p(θ|Yξ)
p(θ)

)
dθ p(Yξ)dYξ. (2.36)

Remark 1. As we fix the design ξ in the rest of this chapter, we omit the subscript ξ and
simply write g, Y , EIG in the formulas. In the case that there is no confusion of different
designs ξ, we stick to the simpler model

Y = g(θ) + ϵ. (2.37)

Since Y − g(θ) follows the probability distribution of ϵ, it is easy to compute p(Y |θ) for
given θ and Y .

Remark 2 (Closed-form expression for the likelihood entropy). Let ϵi ∼ N (0,Σϵ), 1 ≤ i ≤
M , where Σϵ is a diagonal matrix in Rs×s with entries σ2

ϵ{j,j}, 1 ≤ j ≤ s. The likelihood
entropy is only depends on ϵ and can be computed in closed form

−M

2

s∑
j=1

(
log
(
2πσ2

ϵ{j,j}

)
+ 1
)
. (2.38)

For more details, we refer to [30, 31].
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2.5 Numerical Methods for Quantification of the Expected
Information Gain

In this section, we present numerical methodology to compute EIG for a given design ξ.
The known approach is the Double-Loop Monte Carlo Method (DLMC) which is basically
for calculating nested integrals. This approach is also called Nested Monte Carlo (NMC).
To calculate EIG, the key point is to sample from the posterior distribution. As sampling
directly from the posterior distribution of the θ is usually hard, the expected information
gain in Equation (2.36) has no closed form and must be approximated numerically. Using
Bayes’ rule

p(θ|Y ) =
p(θ)p(Y |θ)

p(Y )
=

p(θ)p(Y |θ)
Eθ[p(Y |θ)]

we rewrite (2.34) as [32]

EIG = EY Eθ|Y

[
log

p(Y |θ)
Eθ[p(Y |θ)]

]
= EY Eθ|Y [log p(Y |θ)]− EY Eθ|Y [logEθ[p(Y |θ)]]
= EY Eθ|Y [log p(Y |θ)]− EY [logEθ[p(Y |θ)]]
= EθEY |θ [log p(Y |θ)]− EY [logEθ[p(Y |θ)]] . (2.39)

Correspondingly, based on the measure theory approach, we can rewrite (2.36):

E[DKL] =

∫
Y

∫
Θ
log

(
p(θ|Y )

p(θ)

)
p(θ|Y )dθp(Y )dY

=

∫
Y

∫
Θ
log

(
p(Y |θ)
p(Y )

)
p(Y |θ)dθp(θ)dY

=

∫
Θ

∫
Y

(
log(p(Y |θ))− log(p(Y ))

)
p(Y |θ)dY p(θ)dθ. (2.40)

Monte Carlo sampling can then be used to estimate the integral in Equation (2.40). Assume
that θ(k) are samples drawn from the prior p(θ) and Y (k) are drawn from the conditional
distribution p(Y |θ = θ(k)) (i.e. likelihood). Therefore

E[DKL] ≈
1

nout

nout∑
k=1

(
log(p(Y (k)|θ(k)))− log(p(Y (k)))

)
. (2.41)

Here, nout is the number of samples in the outer Monte Carlo estimate. The evidence
evaluated at Y (k) can be again approximated using another importance sampling estimate:

p(Y (k)) =

∫
Θ
p(Y (k)|θ(k))p(θ)dθ ≈ 1

nin

nin∑
l=1

p(Y (k)|θ(k,l)) (2.42)
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where θ(·,l) are drawn from the prior p(θ) and nin is the number of samples in the “inner”
Monte Carlo sum. The combination of Equations (2.41) and (2.42) yields an estimator for
EIG:

EIG = E[DKL] = I ≈ IDLMC =
1

nout

nout∑
k=1

log
( p(Y (k)|θ(k))

1
nin

∑nin
l=1 p(Y

(k)|θ(k,l))

)
. (2.43)

Algorithm 2 shows the procedure of calculating EIG using the double loop Monte Carlo
method [33]. This method is also called in the literature as Nested Monte Carlo (NMC)
method [24].

Algorithm 2 Double Loop Monte Carlo to compute Expected Information Gain (EIG)

Require: Design parameter ξ, Prior pdf p(θ) and likelihood p(Y |θ) ;
Ensure: Expected Information Gain with respect to parameter θ and design ξ

1: Generate a sample (θ1, . . . , θN ) of size N from the p(θ)

Outer Loop:
2: Choose an index set of size nout ≤ N randomly from the range 1 to N to get samples

for the outer loop (θ1, . . . , θnout)
3: Obtain the noisy measurement data, {Y (k)}nout

k=1 , by solving forward problem and calculate
the likelihood probability p(Y (k)|θ(k)), (using probability distribution of ϵ)

Inner Loop:
4: Choose an index set of size nin ≤ N randomly from the range 1 to N to get samples for

the inner loop (θ1,l, . . . , θnout,l) for l = 1, 2, . . . , nin

EIG:
5: Compute the Expected Information Gain, E[DKL] using (2.43)

2.6 Error and Variance Analysis of the Double-Loop Monte Carlo
Method

The outer loop in the DLMC estimator (2.43) is in fact a Monte Carlo estimator. Generally,
the standard MC estimator is unbiased and its variance decreases by increasing the number
of samples. However, here in the DLMC estimator, the outer MC estimator has a bias
related to the error of the inner integral estimator. In this section, we are going to present
an upper bound for the bias of DLMC estimator, i.e. biasDLMC := |I − E[IDLMC]|.

In the case that we are dealing with a PDE governed inverse problem with h as the
discretization size in PDE solution (as the forward map), we should also consider a numerical
bias for the estimator due to the mesh discretization. In this case, the the total error is

|I − IDLMC,h| ≤ |I − E[IDLMC]|+ |E[IDLMC − IDLMC,h]|. (2.44)
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in which the numerical bias follows as

|E[IDLMC − IDLMC,h]| = C1h
η + o(hη), (2.45)

where C1 > 0 is a constant. Assuming that each evaluation of the forward map gh, has
the computational work of h−γ , the average computational work of the double-loop Monte
Carlo estimator is

WDLMC ∝ ninnouth
−γ .

In order to have a shorter notation, We define p̂nin(Y ) := 1
nin

∑nin
l=1 p(Y |θl). In the rest

of this section, we present estimations for the bias and variance of the DLMC estimator
through following theorems. For more details on the bias and variance of DLMC estimator,
we refer to [25, 34, 35].

Theorem 4. The bias of the DLMC estimator IDLMC can be estimated by:

|I − E[IDLMC]| =
C2

nin
+O

( 1

nin
2

)
, (2.46)

where

C2 =
1

2
E
[
Var
[p(Y |θ)
p(Y )

|Y
]]
.

Proof. We will show that DLMC bias is proportional to the number of samples used for the
inner loop in the estimator. To this end, we have

|I − E[IDLMC]| =
∣∣∣E[ 1

nout

nout∑
k=1

log
(p(Y k|θk)

p(Y k)

)]
− E

[ 1

nout

nout∑
k=1

log
(p(Y k|θk)
p̂nin(Y

k)

)]∣∣∣
=
∣∣∣E[ log (p̂nin(Y )

)]
− E

[
log
(
p(Y )

)]∣∣∣
Applying the second-order Taylor expansion of log

(
p̂nin(Y )

)
around E[

(
p̂nin(Y )

)
] yields

E
[
log
(
p̂nin(Y )

)]
= E

[
log
(
E
[
p̂nin(Y )

])]
− 1

2
(
E
[
p̂nin(Y )

])2E[(p̂nin(Y )− E
[
p̂nin(Y )

])2]
+O

( 1

nin
2

)
= log(p(Y ))− 1

2p2(Y )
E
[(
p̂nin(Y )− p(Y )

)2]
+O

( 1

nin
2

)
.
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Therefore, we conclude

|I − E[IDLMC]| =
1

2
E
[ 1

p2(Y )
E
[(
p̂nin(Y )− p(Y )

)2∣∣∣Y ]]+O
( 1

nin
2

)
=

1

2
E
[ 1

p2(Y )
Var
[
p̂nin(Y )

∣∣∣Y ]]+O
( 1

nin
2

)
=

1

2
E
[ 1

p2(Y )

1

nin
2
Var
[ nin∑

l=1

p(Y |θl)
∣∣∣Y ]]+O

( 1

nin
2

)
=

1

2
E
[ 1

p2(Y )

1

nin
2

nin∑
l=1

Var
[
p(Y |θl)

∣∣∣Y ]]+O
( 1

nin
2

)
=

1

2
E
[ 1

p2(Y )

nin

nin
2
Var
[
p(Y |θ)

∣∣∣Y ]]+O
( 1

nin
2

)
=

1

2nin
E

Var
[
p(Y |θ)

∣∣∣Y ]
p2(Y )

+O
( 1

nin
2

)
,

which completes the proof.

Theorem 5. The variance of the DLMC estimator IDLMC is estimated by:

Var[IDLMC] =
C3

nout
+

C4

noutnin
+O

( 1

noutnin
2

)
, (2.47)

where

C3 = Var
[
log
(p(Y |θ)

p(Y )

)]
,

C4 =
(
1 + E

[
log
(p(Y |θ)

p(Y )

)])
E
[
Var
[p(Y |θ)
p(Y )

|Y
]]

− E
[
log
(p(Y |θ)

p(Y )

)
Var
[p(Y |θ)
p(Y )

|Y
]]
.

Proof. Using the law of total variance we have

Var[IDLMC] = Var
[ 1

nout

nout∑
k=1

log
(p(Y k|θk)
p̂nin(Y

k)

)]
=

1

nout
Var
[
E
[
log(p(Y |θ))− log

(
p̂nin(Y )

)∣∣∣θ, Y ]]
+

1

nout
E
[
Var
[
log(p(Y |θ))− log

(
p̂nin(Y )

)∣∣∣θ, Y ]]
=

1

nout
Var
[
E
[
log(p(Y |θ))− log

(
p̂nin(Y )

)∣∣∣θ, Y ]]+ 1

nout
E
[
Var
[
log
(
p̂nin(Y )

)∣∣∣Y ]].
(2.48)
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Applying the second-order Taylor expansion of log
(
p̂nin(Y )

)
around E[

(
p̂nin(Y )

)
] for the

first term of (2.48) yields

1

nout
Var
[
E
[
log(p(Y |θ))− log

(
p̂nin(Y )

)∣∣∣θ, Y ]]
=

1

nout
Var
[
E
[
log

(
p(Y |θ)
p(Y )

)
− 1

2 p2(Y )

(
1

nin

nin∑
l=1

p(Y |θl)− p(Y )

)2 ∣∣∣θ, Y ]]+O
( 1

noutnin
2

)
=

1

nout
Var
[
log

(
p(Y |θ)
p(Y )

)
− 1

2nin
Var
[p(Y |θ)
p(Y )

∣∣∣Y ]]+O
( 1

noutnin
2

)
=

1

nout

(
Var
[
log

(
p(Y |θ)
p(Y )

)]
+

1

4nin
2
Var
[
Var
[p(Y |θ)
p(Y )

∣∣∣Y ]]
− 1

nin
Cov

[
log

(
p(Y |θ)
p(Y )

)
, Var

[p(Y |θ)
p(Y )

∣∣∣Y ]])+O
( 1

noutnin
2

)
=

1

nout

(
Var
[
log

(
p(Y |θ)
p(Y )

)]
+

1

4nin
2
Var
[
Var
[p(Y |θ)
p(Y )

∣∣∣Y ]]
− 1

nin

(
E
[
log

(
p(Y |θ)
p(Y )

)
Var
[p(Y |θ)
p(Y )

∣∣∣Y ]]
− E

[
log

(
p(Y |θ)
p(Y )

)]
E
[
Var
[p(Y |θ)
p(Y )

∣∣∣Y ]]))+O
( 1

noutnin
2

)
=

1

nout
Var
[
log

(
p(Y |θ)
p(Y )

)]
− 1

noutnin

(
E
[
log

(
p(Y |θ)
p(Y )

)
Var
[p(Y |θ)
p(Y )

∣∣∣Y ]]− E
[
log

(
p(Y |θ)
p(Y )

)]
E
[
Var
[p(Y |θ)
p(Y )

∣∣∣Y ]])
+O

( 1

noutnin
2

)
.

For the second term of (2.48) we have:

1

nout
E
[
Var
[
log
(
p̂nin(Y )

)∣∣∣Y ]]
=

1

nout
E
[
Var
[
log(p(Y )) +

1

p(Y )

(
1

nin

nin∑
l=1

p(Y |θl)− p(Y )

)∣∣∣Y ]]
=

1

nout
E
[
Var
[ 1

p(Y )

(
1

nin

nin∑
l=1

p(Y |θl)− p(Y )

)∣∣∣Y ]]
=

1

nout
E
[
Var
[ 1

nin

∑nin
l=1 p(Y |θl)
p(Y )

∣∣∣Y ]]
=

1

noutnin
2
E
[
Var
[∑nin

l=1 p(Y |θl)
p(Y )

∣∣∣Y ]]
=

1

noutnin
E
[
Var
[p(Y |θ)
p(Y )

∣∣∣Y ]],
which completes the proof.

37



2 Optimal Bayesian Experimental Design in Inverse Problems

38



Bibliography

[1] R. C. Smith, Uncertainty Quantification: Theory, Implementation, and Applications,
Vol. 12, SIAM, 2013.

[2] J. Kaipio, E. Somersalo, Statistical and Computational Inverse Problems, Springer
Science & Business Media, 2006.

[3] A. M. Stuart, Inverse problems: a Bayesian perspective, Acta Numerica 19 (2010)
451–559.

[4] W. R. Gilks, S. Richardson, D. Spiegelhalter, Markov Chain Monte Carlo in Practice,
Chapman & Hall, 1996.

[5] C. P. Robert, G. Cassella, Monte Carlo Statistical Methods, Springer Verlag, 1999.

[6] M. Sambridge, K. Mosegaard, Monte Carlo methods in geophysical inverse problems,
Reviews of Geophysics 40 (3) (2002) 1–29.

[7] K. Mosegaard, M. Sambridge, Monte Carlo analysis of inverse problems, Inverse
Problems 18 (3) (2002) R29.

[8] J. S. Rosenthal, et al., Optimal proposal distributions and adaptive MCMC, Handbook
of Markov Chain Monte Carlo 4 (2011).

[9] H. Haario, M. Laine, A. Mira, E. Saksman, DRAM: efficient adaptive MCMC, Statistics
and Computing 16 (4) (2006) 339–354.

[10] S. L. Cotter, G. O. Roberts, A. M. Stuart, D. White, MCMC methods for functions:
modifying old algorithms to make them faster, Statistical Science (2013) 424–446.

[11] H. Haario, E. Saksman, J. Tamminen, Adaptive proposal distribution for random walk
Metropolis algorithm, Computational Statistics 14 (3) (1999) 375–396.

[12] H. Haario, E. Saksman, J. Tamminen, et al., An adaptive Metropolis algorithm,
Bernoulli 7 (2) (2001) 223–242.

[13] L. Tierney, A. Mira, Some adaptive Monte Carlo methods for Bayesian inference,
Statistics in Medicine 18 (1718) (1999) 2507–2515.

[14] P. J. Green, A. Mira, Delayed rejection in reversible jump Metropolis–Hastings,
Biometrika 88 (4) (2001) 1035–1053.

[15] A. Gelman, G. O. Roberts, W. R. Gilks, et al., Efficient Metropolis jumping rules,
Bayesian Statistics 5 (599-608) (1996) 42.

39



Bibliography

[16] L. Taghizadeh, A. Karimi, E. Presterl, C. Heitzinger, Bayesian inversion for a biofilm
model including quorum sensing, Computers in Biology and Medicine 117 (2020)
103582.

[17] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, D. B. Rubin, Bayesian
Data Analysis, Chapman and Hall/CRC, 2013.

[18] A. Tarantola, Inverse Problem Theory: Methods for Data Fitting and Model Parameter
Estimation, Elsevier, 1987, new York.

[19] A. Atkinson, A. Donev, R. Tobias, Optimum experimental designs, with SAS, Vol. 34,
OUP Oxford, 2007.

[20] E. G. Ryan, C. C. Drovandi, J. M. McGree, A. N. Pettitt, A review of modern
computational algorithms for Bayesian optimal design, International Statistical Review
84 (1) (2016) 128–154.

[21] A. Alexanderian, Optimal experimental design for infinite-dimensional Bayesian inverse
problems governed by PDEs: A review, Inverse Problems 37 (4) (2021) 043001.

[22] A. Alexanderian, P. J. Gloor, O. Ghattas, On Bayesian A-and D-optimal experimental
designs in infinite dimensions (2016).

[23] A. Alexanderian, N. Petra, G. Stadler, O. Ghattas, A fast and scalable method for
A-optimal design of experiments for infinite-dimensional Bayesian nonlinear inverse
problems, SIAM Journal on Scientific Computing 38 (1) (2016) A243–A272.

[24] T. Goda, T. Hironaka, T. Iwamoto, Multilevel Monte Carlo estimation of expected
information gains, arXiv preprint arXiv:1811.07546v3 (2019).

[25] Q. Long, M. Scavino, R. Tempone, S. Wang, Fast estimation of expected information
gains for Bayesian experimental designs based on Laplace approximations, Computer
Methods in Applied Mechanics and Engineering 259 (2013) 24–39.

[26] D. V. Lindley, et al., On a measure of the information provided by an experiment, The
Annals of Mathematical Statistics 27 (4) (1956) 986–1005.

[27] C. E. Shannon, A mathematical theory of communication, Bell System Technical
Journal 27 (3) (1948) 379–423.

[28] S. Kullback, Information theory and statistics, Courier Corporation, 1997.

[29] S. Kullback, R. A. Leibler, On information and sufficiency, The Annals of Mathematical
Statistics 22 (1) (1951) 79–86.

[30] P. Tsilifis, R. G. Ghanem, P. Hajali, Efficient Bayesian experimentation using an
expected information gain lower bound, SIAM/ASA Journal on Uncertainty Quantifi-
cation 5 (1) (2017) 30–62.

40



Bibliography

[31] A. Bartuska, A. G. Carlon, L. Espath, S. Krumscheid, R. Tempone, Double-loop
quasi-Monte Carlo estimator for nested integration, arXiv preprint arXiv:2302.14119
(2023).

[32] X. Huan, Y. M. Marzouk, Simulation-based optimal Bayesian experimental design for
nonlinear systems, Journal of Computational Physics 232 (1) (2013) 288–317.

[33] C. Ben Issaid, Bayesian Optimal Experimental Design Using Multilevel Monte Carlo,
Masters Thesis: King Abdullah University of Science and Technology, 2015.

[34] J. Beck, B. M. Dia, L. F. Espath, Q. Long, R. Tempone, Fast Bayesian experimental de-
sign: Laplace-based importance sampling for the expected information gain, Computer
Methods in Applied Mechanics and Engineering 334 (2018) 523–553.

[35] K. J. Ryan, Estimating expected information gains for experimental designs with
application to the random fatigue-limit model, Journal of Computational and Graphical
Statistics 12 (3) (2003) 585–603.

41





3 Optimal Experimental Design for Electrical
Impedance Tomography

In this chapter, following the introductory in Section 1.2, we develop optimal Bayesian
inversion for electrical impedance tomography (EIT) technology for robust estimation of
electrical properties of body tissues and to put this promising imaging technology more
into practice. We optimize Bayesian experimental design by maximizing the expected
information gain in the Bayesian inversion process in order to design optimal experiments
and obtain the most informative data about the unknown parameters. We present optimal
experimental designs including optimal frequency and optimal electrode configuration, all
of which result in the most accurate estimation of the unknown quantities to date and
high-resolution EIT medical images, which are crucial for diagnostic purposes. Numerical
results show the efficiency of the proposed optimal Bayesian inversion method for the EIT
inverse problem.

This chapter is based on the author’s work in [1, 2].

3.1 The Linear Model

The EIT forward problem is to find the electrostatic potential in the physical domain and
then to calculate the electrical current flowing through the electrodes. Ignoring magnetic
effects and assuming no internal current source in EIT problems, the (complex-valued)
linear model is the Poisson equation

∇ · (A∇u) = 0, (3.1)

where
A(x, ω) := σ(x, ω) + iωϵ(x, ω) (3.2)

is the admittivity, and σ and ϵ are the electric conductivity and permittivity, respectively.
Also, ω is the frequency of the electrical current. Since we restrict the present discussion to
static fields, i.e., ω → 0+, the admittivity is real and coincides with the static conductivity,
i.e., A = σ(x), which we use here. Moreover, the impedivity ρ = 1/A is just the resistivity
of the body [3]. The linear model (3.1) is widely used for modeling EIT; the Electrical
Impedance Tomography and Diffuse Optical Tomography Reconstruction Software EIDORS
[4] is based on this model equation.

To find the boundary conditions, we assume that there are L contact electrodes eℓ, which
are attached to the surface of the body, i.e., eℓ ⊂ ∂D, 1 ≤ ℓ ≤ L, such that eℓ ∩ ek = ∅ for
ℓ ̸= k. We assume that the electrodes conduct perfectly, and thus the tangential electrical
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field vanishes along the electrodes. Then, possible boundary conditions on the electrodes
are the Dirichlet boundary conditions

u(x) = Uℓ, x ∈ eℓ, 1 ≤ ℓ ≤ L. (3.3)

We also assume that no current flows in and out of the body between the electrodes, which
leads to the zero Neumann boundary conditions

∂u(x)

∂n
= 0, x ∈ ∂D\

L⋃
ℓ=1

eℓ. (3.4)

3.2 The Nonlinear Model

To extend the model, we consider free charges of the background medium in the equation.
Assuming that the energies of all ions in the electric field are distributed according to a
Boltzmann distribution, we define the charge density of free charges in the system by

ffree := η(exp(−βu)− exp(βu)) = −2η sinh(βu),

where η is the ion accessibility function. The constant β is defined as β := 1/UT , where
UT is the thermal voltage at room temperature and it is defined by UT := kBT/q in terms
of the Boltzmann constant kB and the temperature T , and q > 0 the elementary charge.
Here, we assume that the charge of single positive and negative charge carriers are the same.
In the definition of charge density of free charges, the exponential terms stem from the
Boltzmann distributions for two species of ions, which leads to sinh in the model.
Adding charge density of free charges ffree to the fixed charges ffixed (for simplicity we

denote it by f in the equation), we arrive at the nonlinear Poisson-Boltzmann equation

−∇ · (A(x)∇u(x)) = f(x)− 2η(x) sinh(βu(x))

as the extended model for the EIT problem. Therefore, the new forward problem describing
EIT is to find the potential u in the main object D, given the conductivity A, the voltage
pattern U = (U1, . . . , UL)

T , the ion accessibility function η, and the concentration f of fixed
charges, that solves the (real-valued) nonlinear elliptic PDE

−∇ · (A(x)∇u(x)) + 2η(x) sinh(βu(x)) = f(x) ∀x ∈ D, (3.5a)

u(x) = Uℓ ∀x ∈ eℓ, (3.5b)

∂u(x)

∂n
= 0 ∀x ∈ ∂D\

L⋃
ℓ=1

eℓ. (3.5c)

As mentioned before, in every measurement pattern a potential is applied to the electrodes
and the resulting electrical current on the rest of the electrodes is measured. The electrical
current flowing through the electrodes in the EIT problem [5] is calculated by

Iℓ =

∫
eℓ

A
∂u(x)

∂n
ds, 1 ≤ ℓ ≤ L. (3.6)
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The nonlinear Poisson-Boltzmann equation (3.5) has a unique solution and a pointwise
estimate for the solution of the equation has been presented in [6]. The required assumptions
for the existence of a unique solution are listed below.

Assumptions 3. The conductivity A : D → R2×2 and the voltage simulation pattern
{Uℓ}Lℓ=1 ∈ RL satisfy the following assumptions:

1. The coefficient A : D → R2×2 is a piecewise constant-valued matrix, which is uniformly
elliptic and satisfies

A ∈ L∞(D;R2×2), ess infx∈D A(x) = A− > 0 (3.7)

and contains the conductivity of the inclusion and the background medium, as the two
materials are different in their physical properties.

2. The voltages applied to the electrodes are chosen such that
∑L

ℓ=1 Uℓ = 0.

To solve the proposed EIT model, the first order Galerkin finite element method is used
and in order to illustrate the numerical solution, a cross-section of a human right leg is
assumed as the computational domain, where eight electrodes are attached to its boundary.
Figure 3.1 (right) shows the domain with a finite element discretization. In this figure (left),
three different subdomains are displayed: the first subdomain is a circular bone (in dark
blue) surrounded by the second subdomain, the muscle (in brown), which itself consists
of many partitions, and the rest is fat (in blue). Each subdomain has its own electrical
conductivity and in the solution of the forward problem the FEM mesh is aligned with the
inclusions such that each element has a constant value for the coefficient A.
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Figure 3.1: EIT domain: cross-section of a right leg illustrating a schematic of the three
subdomains (left) and the discretization by a FEM mesh (right) used for solving
the forward problem.

Assuming that voltages of ±10 V are applied to the injection electrode pair under the
neighboring/adjacent method, Figure 3.2 displays the obtained electrical potential as the
solution of the model equation on the simulation domain for eight injection patterns.
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Figure 3.2: Solution of the nonlinear forward problem (in Volt) using the neighboring
injection method illustrated in 8 patterns in the frequency of 50 kHz for a
cross-section of a right leg.
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3.3 Electrical Impedance Tomography Inverse Problem

The Electrical Impedance Tomography (EIT) inverse problem is to reconstruct the electrical
and physical properties of the body interior, given the electrode measurements on its surface.
To solve this inverse problem, we propose Bayesian inversion techniques, in which the
solution of the inverse problem is the posterior density that best reflects the distribution of
the parameters based on the observations [7].

In [2], we solved the EIT inverse problem corresponding to the nonlinear model (3.5)
on the cross-section of a right leg using real-world surface electrode measurements in
order to identify the electrical conductivity of muscle tissue inside the leg. To this end,
we developed a Bayesian inversion theory for the proposed EIT model and proposed an
adaptive Markov-chain Monte-Carlo (MCMC) method in order to solve the EIT inverse
problem.

One of the main challenges is the sensitivity of the conductivity on the boundary mea-
surements, which results from the severely ill-posed and nonlinear EIT inverse problem. In
this chapter, we aim to deal with this challenge by optimizing the EIT experimental designs.
More precisely, the goal is to determine the optimal frequency and electrode configuration
in EIT based on the statistical interpretation of the reconstruction problem. The chapter is
dedicated to the Bayesian inversion and optimal Bayesian experimental design for EIT by
means of maximizing the expected information gain.

The first goal here is to show that the posterior measure µy of the form (2.10) is well-
defined and that the problem is well-posed with respect to its dependence on the data. To
this end, the function Φ: X × Y → R should have essential properties, namely lower and
upper bounds and the Lipschitz property in θ and y. As this function is defined in terms of
the function g : X → Rm, it is sufficient to prove the following properties of the function g
corresponding to the inverse problem of interest. This implies that Φ: X×Rm → R satisfies
Assumption 2.6 in [8] with (Y, ∥ · ∥Y ) = (Rm, | · |).

Assumptions 4. The function g : X → Rm has the following properties.

1. For every ε > 0, there exists an M(ε) ∈ R such that the inequality

|g(θ)| ≤ exp(ε∥θ∥2X +M(ε)) (3.8)

holds for all θ ∈ X.

2. For every r > 0, there exists a K(r) > 0 such that the inequality

|g(θ1)− g(θ2)| ≤ K(r)∥θ1 − θ2∥X (3.9)

holds for all θ1, θ2 ∈ X with max(∥θ1∥X , ∥θ2∥X) < r.

To prove the well-definedness of the posterior measure and well-posedness of the EIT
Bayesian inversion, we need to verify if the bounds and Lipschitz properties in Assumptions 4
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3 Optimal Experimental Design for Electrical Impedance Tomography

hold true when g is given by the solution of the (real-valued) nonlinear elliptic PDE

−∇ · (A(x)∇u(x)) + 2η(x) sinh(βu(x)) = 0 ∀x ∈ D, (3.10a)

u(x) = U ∀x ∈ ∂DD, (3.10b)

∂u(x)

∂n
= 0 ∀x ∈ ∂DN , (3.10c)

where ∂DD and ∂DN denote the Dirichlet and Neumann boundaries. In (3.10), the solution
u can be the real or the imaginary part of the solution of the complex-valued model, i.e.,
either ℜ(u) or ℑ(u). Here, for the sake of simplicity, we denote the solution of the real-valued
model (3.10) by u as well. We present the results in Subsection 3.4 as a proposition.
The nonlinear Poisson-Boltzmann equation (3.10) has a unique solution. Moreover a

pointwise estimate for the solution of the equation has been presented in [6], which will be
used later.

3.4 Well-Posedness of Bayesian Inversion

Here, the main results including the well-definedness of the posterior measure and well-
posedness of the EIT Bayesian inversion for the new model (3.10) are presented. To this end,
the validity of Assumptions 4 should be verified in the sense that a parameter dependent
bound for the solution of the nonlinear model equation must be found and the Lipschitz
property of the solution must hold true as well. We have collected our theoretical findings
for the new model in Proposition 1. For the linear model a similar bound and the Lipschitz
property has been already proved in [9].

Proposition 1. Suppose the real-valued nonlinear elliptic equation (3.10) holds in the
bounded domain D ⊂ Rn, n ∈ {2, 3}, with a smooth boundary ∂D and A := eθ =: η, where
θ ∈ L∞(D). Then the estimate

∥u∥H1 ≤ He2∥θ∥L∞ (3.11)

holds for all θ ∈ L∞(D), and the estimate

∥u1 − u2∥H1 ≤ Se4max(∥θ1∥L∞(D),∥θ2∥L∞(D))∥θ1 − θ2∥L∞(D) (3.12)

holds for all θ1, θ2 ∈ L∞(D), where H = H(∥∇U∥L2(D)) and S = S(∥∇U∥L2(D)) are

functions and U ∈ L2(D) is the Dirichlet lift of U .

Proof. We substitute v := u−U in (3.10), where U is the Dirichlet lift of g. It is defined by

U :=

{
U on ∂D,

arbitrary in D
(3.13)

such that U ∈ L2(D).
In order to find estimates (3.11) and (3.12), we take the inner product with any v ∈ H1

0 (D),
which leads to

I :=

∣∣∣∣∫ A∇v · ∇v

∣∣∣∣ = ∣∣∣∣−∫ A∇U · ∇v −
∫

2η sinh(β(U + v))v

∣∣∣∣ ,
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3.4 Well-Posedness of Bayesian Inversion

where A = eθ. Using η = eθ and sinh(β(U + v)) = (eβ(U+v) − e−β(U+v))/2 as well as the
triangle inequality, we find

e−∥θ∥L∞∥∇v∥2L2 ≤ I ≤
∣∣∣∣∫ eθ∇U · ∇v

∣∣∣∣+ ∣∣∣∣∫ eθeβ(U+v)v

∣∣∣∣+ ∣∣∣∣∫ eθe−β(U+v)v

∣∣∣∣ .
Using the Cauchy-Schwarz and Poincaré inequalities and κ ≤ u = U + v ≤ λ, which is a
pointwise estimate [6] for the solution of the Poisson-Boltzmann equation, we can write

e−∥θ∥L∞∥∇v∥2L2 ≤ I ≤e∥θ∥L∞ (∥∇U∥L2 + Cpe
|βλ| + Cpe

|βκ|∥∇v∥L2),

where Cp is a Poincaré constant and κ and λ are constants. Therefore, we calculate

∥∇u∥L2 ≤ ∥∇v∥L2 + ∥∇U∥L2 (3.14)

≤ e2∥θ∥L∞ (∥∇U∥L2 + Cpe
|βλ| + Cpe

|βκ|) + ∥∇U∥L2

= (1 + e2∥θ∥L∞ )∥∇U∥L2 + Cpe
2∥θ∥L∞ (e|βλ| + e|βκ|)

≤ 2Cpe
2∥θ∥L∞ (∥∇U∥L2 + e|βλ| + e|βκ|)

= H0e
2∥θ∥L∞ ,

where H0 := 2Cp(∥∇U∥L2 + e|βλ| + e|βκ|). Using the definition of H1-norm and inequal-
ity (3.14), we can write

1

(1 + C2
p)

1/2
∥u∥H1 ≤ ∥∇u∥L2 ≤ H0e

2∥θ∥L∞ ,

where Cp is a Poincaré constant. This leads to

∥u∥H1 ≤ He2∥θ∥L∞ , (3.15)

where H = H0(1 + C2
p)

1/2.
To prove inequality (3.12), we assume that u1 and u2 satisfy (3.10) with coefficients

A1 = eθ1 = η1 and A2 = eθ2 = η2. Hence, subtracting the term ∇ · (eθ1∇u2), the difference
u2 − u1 satisfies the equation

∇ · (eθ1∇(u2 − u1)) = ∇ · ((eθ1 − eθ2)∇u2) + eθ2(eβu2 − e−βu2)− eθ1(eβu1 − e−βu1).

Taking the inner product of this equation with u2 − u1 leads to

I : =

∣∣∣∣∫ eθ1∇(u2 − u1) · ∇(u2 − u1)

∣∣∣∣
=

∣∣∣∣∫ (eθ1 − eθ2)∇u2 · ∇(u2 − u1) + (eθ2(eβu2 − e−βu2)− eθ1(eβu1 − e−βu1))(u2 − u1)

∣∣∣∣ ,
where the inequalities

e−∥θ1∥L∞∥∇(u2 − u1)∥2L2 ≤ I ≤
∣∣∣∣∫ (eθ1 − eθ2)∇u2 · ∇(u2 − u1)

∣∣∣∣
+

∣∣∣∣∫ (eθ2 − eθ1)(eβmax(λ1,λ2) − e−βmax(λ1,λ2))(u2 − u1)

∣∣∣∣
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3 Optimal Experimental Design for Electrical Impedance Tomography

hold because of the triangle inequality and the pointwise estimates κi ≤ ui ≤ λi, i ∈ {1, 2},
for the solution of the nonlinear Poisson-Boltzmann equation [6], where κi and λi are
constants.

Now we use the Cauchy-Schwarz and Poincaré inequalities to find

e−∥θ1∥L∞∥∇(u2 − u1)∥L2 ≤ I ≤ ∥eθ1 − eθ2∥L∞(∥∇u2∥L2 +Cp|eβmax(λ1,λ2) − e−βmax(λ1,λ2)|),

where Cp is a Poincaré constant. Since eθ(x) (x ∈ D) is continuously differentiable, it is
Lipschitz continuous by the Weierstrass Theorem. Thus we have

∥eθ2 − eθ1∥L∞ ≤ ∥θ1 − θ2∥L∞emax(∥θ1∥L∞ ,∥θ2∥L∞ ). (3.16)

Using inequalities (3.14) and (3.16), we obtain

e−∥θ1∥L∞∥∇(u2 − u1)∥L2 ≤ I

≤ ∥θ1 − θ2∥L∞emax(∥θ1∥∞,∥θ2∥∞)
[
e2∥θ2∥∞

(
∥∇g∥L2

+ Cpe
|βλ2| + Cpe

|βκ2|)+ Cp|eβmax(λ1,λ2) − e−βmax(λ1,λ2)|
]
,

which leads to

∥∇(u2 − u1)∥L2 ≤ ∥θ1 − θ2∥L∞e4max(∥θ1∥∞,∥θ2∥∞)
[
∥∇g∥L2

+ Cpe
|βλ2| + Cpe

|βκ2| + Cp|eβmax(λ1,λ2) − e−βmax(λ1,λ2)|
]

= S0∥θ1 − θ2∥L∞e4max(∥θ1∥∞,∥θ2∥∞),

where S0 := ∥∇g∥L2 + Cpe
|βλ2| + Cpe

|βκ2| + Cp|eβmax(λ1,λ2) − e−βmax(λ1,λ2)|. Now, we can
write

∥u1 − u2∥H1 ≤ (1 + C2
p)

1/2∥∇(u1 − u2)∥L2

≤ (1 + C2
p)

1/2
[
∥∇g∥L2 + Cpe

|βλ2| + Cpe
|βκ2|

+ Cp|eβmax(λ1,λ2) − e−βmax(λ1,λ2)|
]
e4max(∥θ1∥∞,∥θ2∥∞)∥θ1 − θ2∥L∞

= Se4max(∥θ1∥∞,∥θ2∥∞)∥θ1 − θ2∥L∞ ,

where S := S0(1 + C2
p )

1/2, which completes the proof for the nonlinear equation (3.10).

Remark 3. The quantity ∥∇U∥L2(D) is non-zero even if the Dirichlet datum U is a constant.

The new variable v := u− U is defined such that U = U on ∂D and U is arbitrary in D.
Therefore in the (realistic) case of non-constant U , ∥∇U∥L2(D) is non-zero in D. Hence,
even if f = 0, the quantities F , H, and S are non-zero.

We summarize the above results for nonlinear elliptic inverse problems in the following
theorem:
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3.4 Well-Posedness of Bayesian Inversion

Theorem 6. Assume g(θ) = u is the observation operator representing the solution u of
the real-valued nonlinear equation (3.10) in the bounded domain D ⊂ Rn, n ∈ {2, 3}, with a
smooth boundary ∂D and A = exp(θ) = η with θ ∈ L∞(D). Then the estimates

|g(θ)| ≤ H exp (2∥θ∥L∞(D)) (3.17)

and

|g(θ1)− g(θ2)| ≤ S exp (4max{∥θ1∥L∞(D), ∥θ2∥L∞(D)})∥θ1 − θ2∥L∞(D) (3.18)

hold, where H = H(∥∇U∥L2) and S = S(∥∇U∥L2) , which have been defined in Proposi-
tion 1.

The estimates (3.17) and (3.18) for real and imaginary parts of the solution yield estimates
for the complex-valued equation (3.10) as well. Therefore, Assumptions 4 are satisfied
for the general EIT model equations (3.10), where U is constant at each contact at the
surface of the device. This will lead us to the one of the main results of this chapter,
i.e., well-definedness and well-posedness of the Bayesian inversion problem for linear and
nonlinear elliptic problems including the EIT inverse problem.
The posterior probability measure µy defined by (2.10) is well-defined if we show that

the measure is normalizable. For well-posedness, the continuity of the posterior measure
in the Hellinger metric with respect to the data must be shown. We state the two main
theorems resulting from Proposition 1. The reader is referred to [8] for the proofs.

Theorem 7 (Well-definedness of the posterior measure [8, Theorem 4.1]). Let g satisfy
Assumptions 4 and assume that the prior measure µ0 is a Gaussian measure satisfying
µ0(X) = 1. Then the posterior measure µy given by (2.10) is a well-defined probability
measure.

The following theorem states the well-posedness for inverse problems by showing Lipschitz
continuity of the posterior measure in the Hellinger metric with respect to changes in the
data.

Theorem 8 (Well-posedness of the Bayesian inverse problem [8, Theorem 4.2]). Let g
satisfy Assumptions 4. Assume also that the prior measure µ0 is a Gaussian measure
satisfying µ0(X) = 1 and that the measure is absolutely continuous, µy ≪ µ0, with its
Radon-Nikodym derivative given by (2.10) for each y ∈ Y .

Then the posterior measure µy is Lipschitz continuous in the data y with respect to the
Hellinger distance, i.e., if µy and µy′ are two measures corresponding to data y and y′, then
there exists α = α(r) > 0 such that the inequality

dHell(µ
y, µy′) ≤ α∥y − y′∥Y

holds for all y and y′ with max{∥y∥Y , ∥y′∥Y } < r.
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3 Optimal Experimental Design for Electrical Impedance Tomography

3.5 Numerical Results

In the context of Bayesian inversion theory [3, 7, 10, 11], there are two approaches to
optimization of Bayesian experimental design: optimizing posterior covariance functionals
with respect to the design/hyper parameters [12], and optimizing the Bayesian expected
information gain (EIG) [13, 14, 15, 16].
The first approach is based on the notion of distinguishability of the measurements.

In the distinguishability approach, the optimality criterion is defined by maximizing the
difference between measurements corresponding to two different predetermined parameter
distributions and minimizing the volume of the posterior density. The second approach to
optimize Bayesian inversion is to maximize the information about model uncertainty. In
this approach, the expected information gain is taken as the design criterion into account
and the optimal experiments are found from a continuously parametrized design space by
inferring the model parameters from noisy data/observations in a Bayesian setting.
As the expected information gain has no closed form, it should be approximated nu-

merically. The numerical evaluation of the design criterion is computationally expensive
since it involves the calculation of nested integrals on one hand, and searching the whole
design space to find the maxima on the other hand. This evaluation is even harder and in
some cases infeasible when, for instance, a higher-dimensional parameter or design space
or an expensive forward solver is involved. Here, we propose a double-loop Monte-Carlo
approximation, introduced in Section 2.5, for the evaluation of the expected information
gain of the EIT model parameters in a finite-dimensional case.
We consider the following model:

Yξ = gξ(θ) + ϵ, (3.19)

where gξ is our forward PDE model for EIT which is in terms of unknown conductivity of
muscle θ, Yξ is a 64-dimensional response vector which are voltages measured in electrodes.
Here, ϵ is a Gaussian noise with the mean 0 and covariance matrix Σϵ. The Kullback-Leibler
divergence is as follows,

DKL =

∫
Θ
p(θ|Yξ) log

(p(θ|Yξ)
p(θ)

)
dθ,

and the expected information gain is calculated by

EIGθ(ξ) = E[DKL] =

∫
Y

∫
Θ
p(θ|Yξ) log

(p(θ|Yξ)
p(θ)

)
dθ p(Yξ)dYξ.

The Double-Loop Monte Carlo method which was introduced in Section 2.5 is used to
calculate the expected information gain EIGθ(ξ) for a given design ξ.

The goal of optimal Bayesian experimental design (OBED) is to maximize the expected
information gain over the design space D to find the optimal experimental design parame-
ter(s)

ξ∗ = argmax
ξ∈D

EIGθ(ξ)

by providing the most informative observations.
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3.5.1 Quantification of the Design Criterion

The goal here is to find optimal experimental designs including optimal frequency, and
optimal electrode placement in EIT model. In this section, we implement the DLMC method
(see Algorithm 2 in Section 2.5) to compute the expected information gain for the example
of a cross-section of a right leg as a real-world application of EIT. The goal is to extract the
electrical conductivity of muscle inside the right leg using the optimal Bayesian inversion
mechanism using the nonlinear Poisson-Boltzmann equation as the EIT forward model.

In Figure 3.3 (top), the calculated information gain corresponding to the 8 injection
patterns used in Figure 3.2 are illustrated. According to this result, the information that
we can obtain from different EIT design patterns is not the same. Figure 3.3 (bottom)
displays the information gain for different numbers of samples used in Bayesian inversion
process. According to this figure, there is no significant difference between the information
gain from 10k samples and more than 10k in our EIT problem. That makes it possible to
use the lower value 10k as the number of samples in our calculations. This prior knowledge
regarding an optimal number of samples will lead us to efficient and low-cost calculations
without losing (much) information.
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Figure 3.3: The expected information gain for different design patterns used in Figure 3.2 in
order to extract the conductivity of the muscle as a parameter of interest (top).
The expected information gain vs. different numbers of samples (bottom).

3.5.2 Stochastic Optimization

As mentioned, an optimal experimental design aims to maximize the worth of information of
an experiment for statistical inference. This optimal process is of importance, especially for
experiments that are long or expensive to perform. Hence, in order to solve the optimization
problem of Bayesian experimental design (3.5), iterative search strategies and in particular
stochastic optimization methods [17, 18, 19, 20] instead of deterministic ones for high-
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3 Optimal Experimental Design for Electrical Impedance Tomography

dimensional problems are proposed, since the objective function is noisy. Here, we develop
the simultaneous perturbation stochastic approximation (SPSA) algorithm [21, 22] for
the stochastic optimization of the noisy EIG, which is approximated by the double-loop
Monte-Carlo method.

SPSA is a gradient-based optimization algorithm in the stochastic setting, which is used
when only measurements of the objective function are available but no gradient information.
The SPSA algorithm can be written in the general recursive stochastic approximation (SA)
form

ξk+1 = ξk − akgk(ξk), (3.20)

where k is the iteration number and gk(ξk) is the simultaneous perturbation estimate of the
gradient, which is approximated by finite differences using only two random perturbations,
i.e.,

gk(ξk) =
y(ξk + ck∆k)− y(ξk − ck∆k)

2ck
[∆−1

k1 ,∆
−1
k2 , . . . ,∆

−1
kp ]

T , (3.21)

where ∆k = [∆k1,∆k2, . . . ,∆kp]
T is the mean-zero p-dimensional random perturbation vec-

tor with i.i.d. entries drawing from a user-specified distribution satisfying certain conditions
[17, Sections 7.3 and 7.4], and y is the objective function. Furthermore ak is a non-negative
scalar gain coefficient and ck is a positive scalar, which are defined by

ak =
a

(C + k + 1)α
and ck =

c

(k + 1)γ
,

where a,C, α, c and γ are parameters of the algorithm and their values can be found in [21].
The advantage of this stochastic approximation method is that in order to approximate the
gradient only two function evaluations per step are required, while in a full finite difference
scheme 2p evaluations are needed.

Algorithm 3 The optimal Bayesian inversion algorithm

Choose ξ1 ∈ D as the initial vector of the EIT design parameters.
for k = 1 : Niter do
1. Calculate the expected information gain for the design parameter ξk using the
DLMC approximation (Algorithm 2).
2. Terminate the algorithm if the number of iterations has reached Niter, express ξk as
the optimal design.
3. Update ξk to a new value ξk+1 using the recursive stochastic approximation form
(see Section 3.5.2):

ξk+1 = ξk − akgk(ξk).

4. Replace ξk by ξk+1.
end for

3.5.3 Optimal Frequency for Electrical Impedance Tomography Measurements

In this section, numerical results of optimal Bayesian inversion for the estimation of optimal
frequency for the EIT inverse problem, namely the extraction of the conductivity of a
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3.5 Numerical Results

human leg muscle, are presented. Variation in the applied frequency as an EIT experimental
design results in different Bayesian analysis. In Figure 3.4, the posterior distribution of
the generated Markov-chains for four different frequencies are illustrated. According to
these results, the chains obtained for different frequencies have different characteristics
and contain different amounts of information. These results motivated us to calculate the

Figure 3.4: Posterior distributions of the muscle conductivity for frequencies 10, 200, 500
and 900 kHz.

expected information gain of each frequency in the range from 1 kHz to 1 MHz, which was
very costly and time-consuming. The results are displayed in Figure 3.5.

To overcome the problem of cost and complexity of calculations in order to reach a
real-time experimental design in the EIT problem on one hand, and according to the noisy
objective function (see Figure 3.5) on the other hand, we employed an stochastic optimization
method, namely the simultaneous perturbation stochastic approximation (SPSA), which
was explained in Section 3.5.2. This method is applied to the problem of maximization of
the expected information gain in order to obtain optimal and more informative experimental
designs. According to the numerical results, the optimal frequency for the described EIT
problem is estimated as 162 kHz. Table 3.1 includes the results for different frequencies.

In the optimal frequency, the conductivity of the muscle as the mean of posterior chain is
estimated more accurately and the distribution of the posterior has the highest expected
information gain compared to other non-optimal frequencies. Figure 3.6 shows the posterior
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Figure 3.5: The calculated expected information gains for different frequencies.

Frequency Conductivity Conductivity Error of Estimation Expected
kHz (True value) (Estimated) Information Gain
10 0.3410 0.3500 0.0090 3.7819

162 (optimal) 0.3754 0.3811 0.0057 4.4557
200 0.3840 0.3905 0.0065 4.1200
500 0.4460 0.4535 0.0075 2.4660
900 0.4950 0.5069 0.0119 1.7007

Table 3.1: Estimated mean values of muscle conductivity for various frequencies using
Bayesian inference and corresponding calculated values of expected information
gain.
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3.5 Numerical Results

distribution and trajectory of the parameter of interest at the optimal frequency 162 kHz in
our EIT problem.
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Figure 3.6: The posterior distribution (left) and trace plot (right) of muscle conductivity
for the obtained optimal frequency 162 kHz.

3.5.4 Optimal Electrode Configuration for Electrical Impedance Tomography
Measurements

Due to the nonlinearity and ill-posedness of the EIT inverse problem, any small variation
in the electrode configuration leads to a big change in the gained information in Bayesian
extraction process. In this section, we aim to find the optimal electrode configuration
including the optimal placement of injection and measurement electrodes as well as the
optimal measurement strategies using the optimal Bayesian inversion methodology that we
proposed in Section 3.5.2 and Algorithm 3. In Figure 3.7, various electrodes placement are
displayed. The calculated information gain for the extraction of the muscle conductivity and
mean of the estimated posterior chain for the unknown quantity in each case are indicated
in the figures as well. The numerical experiments confirm the sensitivity of the EIT inverse
problem on the electrode configuration and measurement strategy.

Figure 3.8 depicts the mean of the posterior chains generated in the optimization process
versus the corresponding expected information gains. This figure illustrates the convergence
of the means to the true value of the muscle conductivity, i.e., 0.3754, while reaching
the maximum information gain using the optimal electrode configurations chosen by the
optimization algorithm.

Clustering the Electrode Configurations

Since the objective function is noisy, it is hard to decide exactly which configuration is
eventually the optimal one. According to various injection patterns, we need to use two
and even more (near) optimal electrode configurations for the process of the measurement
and image reconstruction. Therefore, we split the obtained configurations into the optimal
and non-optimal ones and to this end we apply data clustering methods. The K-means
algorithm is one of the most preferred clustering tools in data mining for many real world
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Figure 3.7: Various electrode positioning together with the corresponding expected informa-
tion gains and means of the estimated posterior chains are illustrated. Green
electrodes are the injection pairs and red ones are measurement electrodes.
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Figure 3.8: Mean of the posterior chains in the optimization process versus the corresponding
expected information gains.
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applications [23, 24]. Although this clustering method is simple to understand and deploy,
it suffers from some limitations; due to the use of the Euclidean distance, K-means assumes
that the data space is isotropic in the sense that distances are unchanged by translations
and rotations and therefore each cluster consists of the data points lying within a sphere
around the centroid. One of the limitations of K-means is that this method implicitly
assumes all clusters have the same radius while sometimes they are very clearly identifiable.
Additionally, K-means implicitly assumes each cluster has the same volume in data space
in the sense that each cluster contains the same number of data points, while there might
be significant differences in clusters density. Another limitation is that small changes in
the data result in small changes to the position of the cluster centroid, which is assumed
as average of the data points in a cluster. Therefore, outliers can significantly impair the
results of K-means. Moreover, in the method of K-means it is assumed that the number
K of clusters is given, while this is rarely the case in practice. These limitations lead to
inaccurate conclusions about the structure in the data.

To overcome these limitations, we apply maximum a-posteriori Dirichlet process mix-
tures (MAP-DP) algorithm [25]. This method is statistically rigorous and it is based on
nonparametric Bayesian Dirichlet process mixture modeling, which is a probabilistic model
and involves fitting a probability density model to the data, while K-means is essentially
geometric. This method for instance estimates the number of necessary clusters for given
data points using Bayesian nonparametric (BNP) models [26] as well as it separates out-
liers from the data efficiently and thus the centroid is estimated accurately. Figure 3.9
demonstrates the optimal and non-optimal electrode configuration clusters using the two
methods, i.e., K-means and MAP-DP algorithms. This figure clearly illustrates the efficiency
of the MAP-DP compared to the K-means by more accurately identifying the optimal
configurations.
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Figure 3.9: Optimal (blue) and non-optimal (red) electrode configuration clusters using
K-means clustering method (left) and MAP-DP method (right).

In Figure 3.10, the standard uniform electrode configuration versus two optimal design
patterns with high expected information gains are displayed. The optimal patterns are
proposed by the applied optimization method on Bayesian results of the EIT inverse problem
and they belong to the optimal cluster. Due to these results, injection from the top-left
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3 Optimal Experimental Design for Electrical Impedance Tomography

of the computational domain with measurement electrodes which are close together leads
to a larger information gain and more accurate estimation of the muscle conductivity,
whose true value is 0.3754, while uniformly distributed electrodes result in a moderate
information gain and an inaccurate estimation of the unknown quantity compared to the
optimal configurations. All experiments are performed in the optimal frequency of 162 kHz,
which was calculated in subsection 3.5.3.
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Figure 3.10: Standard uniform (top) electrode configuration versus optimal (bottom) con-
figurations with the highest expected information gains and estimations of the
muscle conductivity closest to its true value.

The results of various electrode configurations shown in Figure 3.7 and 3.10 including the
corresponding expected information gain and the estimated value for the muscle conductivity
using Bayesian inversion are summarized in Table 3.2. The comparison shows the efficiency
of the presented optimal Bayesian inversion for the EIT inverse problem.

Electrode configuration Expected information gain Estimated muscle conductivity
non-optimal I (Figure 3.7-left) 1.5565 0.4386

non-optimal II (Figure 3.7-right) 2.7911 0.3858
uniform (Figure 3.10-top) 3.8077 0.3831

optimal I (Figure 3.10-bottom left) 5.1297 0.3756
optimal II (Figure 3.10-bottom right) 5.2870 0.3748

Table 3.2: Estimated expected information gains and mean of Markov chains for the muscle
conductivity (true value: 0.3754) for various electrode configurations.

3.6 Conclusions

We developed an optimal algorithm for Bayesian inversion for the EIT problem, which has
applications in medical imaging. The new inversion methodology presents an optimal EIT
experimental design recipe including the optimal frequency and electrode configuration by
maximizing the expected information gain in the inversion process, which results in accurate
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3.6 Conclusions

estimation of EIT model unknowns and high-resolution medical images. To this end, we
developed a double-loop Monte-Carlo method and simultaneous perturbation stochastic
approximation for the EIT inverse problem. The comparison of numerical results for various
electrode configurations indicates the efficiency of the proposed optimal Bayesian inversion
methodology for the EIT problem. It is valuable to mention that the optimal sensor
placement would be affected by the object to be imaged and updates to the configuration
would be needed as the object is imaged. In clinical practice, electrode configurations should
be implemented by more advanced EIT devices.
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4 Laplace Approximation for the Electrical
Impedance Tomography Inverse Problem

Electrical impedance tomography (EIT) is the problem of determining the electrical conduc-
tivity distribution of an unknown medium using surface electrode measurements attached to
the boundary of the object. The EIT inverse problem for image reconstruction is a nonlinear
and severely ill-posed problem [1, 2, 3]. Bayesian inversion [4, 5, 6, 7] is an approach to
tackle ill-posed and/or ill-conditioned inverse problems. This approach provides a solution
that quantifies uncertainty by assigning a probability to each possible value of the unknown
parameter and also incorporates prior information and beliefs about the parameter [8].
In this chapter, we specifically focus on the Laplace approximation approach for the

EIT inverse problem for Bayesian estimation of the posterior distribution as well as to
estimate the expected information gain (EIG) for a given design of experiment. The goal of
optimal experimental design is to find the best design under which the most informative
measurement data can be obtained. There are two approaches for the optimization of the
Bayesian experimental design: optimizing posterior covariance functionals with respect to
the design/hyper parameters [9], and optimizing the Bayesian expected information gain
(EIG) [10, 11, 12, 13].

4.1 Electrical Impedance Tomography Model and the Forward
Solution

Assume that our EIT problem domain D is surrounded by some electrodes which are
attached to its surface ∂D. Here, we consider a linearized version of the Complete Electrode
Model (CEM) of nonlinear elliptic PDE (3.10) for EIT [14, 15], which is defined by

−∇ · (A(x)∇u(x)) + 2η(x)u(x) = 0 in D, (4.1a)∫
eℓ

A
∂u

∂n
ds = Iℓ, on eℓ, ℓ = 1, 2, . . . L (4.1b)

u+ cℓA
∂u

∂n
= Uℓ on eℓ, ℓ = 1, 2, . . . L (4.1c)

∂u

∂n
= 0 on ∂D\ ∪L

ℓ=1 eℓ. (4.1d)

This model is a combination of the continuum model and the shunt model we used in
Chapter 3. The Robin boundary condition u + cℓA

∂u
∂n = Uℓ considers the formation of

a highly resistive, thin layer at the interface between the surface ∂D and the electrode’s
surface eℓ. In this model, cℓ is involved to account this resistance of flow into the body D
in the measured potential UDℓ

.
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4 Laplace Approximation for the Electrical Impedance Tomography Inverse Problem

Let Vh be a finite-dimensional subspace of H1(D) with continuous piecewise linear
basis functions {φj}Nj=1 corresponding to the nodal points {xj}Nj=1 such that φj(xi) = δij
for i, j ∈ {1, 2, . . . , N}. To present finite element solution of the PDE, we obtain weak
formulation of (4.1a) as∫

D
A∇u · ∇v dx−

∫
∂D

A
∂u

∂n
v ds+

∫
D
2ηuv dx = 0, (4.2)

where v ∈ H1(D) is a test function. Note that∫
∂D

A
∂u

∂n
v ds =

∫
∪L
ℓ=1eℓ

A
∂u

∂n
v ds+

∫
∂D\∪L

ℓ=1eℓ

A
∂u

∂n
v ds =

L∑
ℓ=1

∫
eℓ

A
∂u

∂n
v ds,

because
∫
A ∂u

∂nv ds = 0 on Neumann boundary. Therefore, weak formulation (4.2) turns to∫
D
A∇u · ∇v dx−

L∑
ℓ=1

∫
eℓ

A
∂u

∂n
v ds+

∫
D
2ηuv dx = 0. (4.3)

Now for Robin boundary condition

u+ cℓA
∂u

∂n
= Uℓ,

⇒ A
∂u

∂n
=

1

cℓ
(Uℓ − u), (4.4)

⇒
∫
eℓ

(Uℓ − u)Vℓ ds =

∫
eℓ

cℓA
∂u

∂n
Vℓ ds,

= cℓVℓ

∫
eℓ

A
∂u

∂n
ds

= cℓVℓIℓ,

⇒
L∑

ℓ=1

1

cℓ

∫
eℓ

(Uℓ − u)Vℓ ds =

L∑
ℓ=1

VℓIℓ.

where Vℓ = v|eℓ . Therefore,

L∑
ℓ=1

1

cℓ

∫
eℓ

(Uℓ − u)Vℓ ds−
L∑

ℓ=1

VℓIℓ = 0. (4.5)

Substituting (4.4) in (4.3) yields∫
D
A∇u · ∇v dx+

∫
D
2ηuv dx−

L∑
ℓ=1

1

cℓ

∫
eℓ

(Uℓ − u)v ds = 0,

which is indeed∫
D
A∇u · ∇v dx+

∫
D
2ηuv dx+

L∑
ℓ=1

1

cℓ

∫
eℓ

uv ds =

L∑
ℓ=1

1

cℓ

∫
eℓ

Uℓv ds, (4.6)
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4.1 Electrical Impedance Tomography Model and the Forward Solution

We define UD|eℓ = Uℓ, ℓ = 1, 2, . . . , L and UD = 0 on D\ ∪L
ℓ=1 eℓ. We will continue with the

simplified version of (4.6) as following∫
D
A∇u · ∇v dx+

∫
D
2ηuv dx+

∫
∂DD

uv ds =

∫
∂DD

UDv ds, (4.7)

where v ∈ H1(D) is a test function, and ∂DD = ∪L
ℓ=1eℓ. Now we define the finite element

discretized approximation of the functions A, η, UD and u by

Ã(x) :=
N∑
i=1

A(xi)φ(x) ≈ A(x), η̃(x) :=
N∑
i=1

η(xi)φ(x) ≈ η(x),

ŨD(x) :=

N∑
i=1

UD(xi)φ(x) ≈ UD(x), ũ(x) :=

N∑
i=1

u(xi)φ(x) ≈ u(x).

Let Ã = [Ã1, Ã2, . . . , ÃN ]T to be a vector for which Ãi = Ã(xi), , i = 1, . . . , N . Similarly,
for η̃, ŨD and ũ. We write nodal representation of (4.7) as following

N∑
j=1

N∑
i=1

(
Ãi

∫
D
φi∇φj · ∇v dx

)
ũj +

N∑
j=1

N∑
i=1

(
η̃i

∫
D
2φiφjv dx

)
ũj

+
N∑
j=1

(∫
∂DD

φjv ds
)
ũj =

N∑
i=1

(∫
∂DD

φiv ds
)
ŨDi .

Now assume that the discretized test function in one of basis functions, i.e. v ∈ {φi}Ni=1. In
order to derive Jacobian and Hessian of the EIT forward problem, we assemble the global
mass matrix M ∈ RN×N and the stiffness matrix S ∈ RN×N by local matrices M i and
Si ∈ RN×N . Then we let

Si
kj =

∫
D
φi∇φj · ∇φk dx, M i

kj =

∫
D
2φiφjφk dx,

Tkj =

∫
∂DD

φjφk ds, f i
k =

∫
∂DD

φiφk ds.

Therefore, we assemble

K =
N∑
i=1

ÃiS
i +

N∑
i=1

η̃iM
i + T and b =

N∑
i=1

ŨDif
i.

Thus the finite element approximation the solution, i.e. ũ can be obtained by solving the
linear equation

Kũ = b. (4.8)

We note that K is a function of the parameter of interest θ and the design parameter ξ. In
the next subsections we will present the calculation of Jacobian and Hessian of the forward
EIT problem with respect to θ, which are vital for the optimization purpose as well as in
Laplace approximation of the posterior.
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4 Laplace Approximation for the Electrical Impedance Tomography Inverse Problem

4.2 Electrical Impedance Tomography Inverse Problem

In order to investigate EIT inverse problem, consider the observation model

Yξ = gξ(θ) + ϵ,

where Yξ = {Y i
ξ }Mi=1 are i.i.d. samples of the measurement variable Yξ, i.e. measurement

data, which are electrode voltage measurement. The map gξ(θ) presents the forward problem,
which in our case is a PDE, which mapping the parameter of the interest θ = logA(x)
(conductivity of interior tissues) to the electrode measurements obtained from electrodes
attached to the surface of the underlying part of the body. The design parameter is the
electrode configurations before starting to take a measurement data. The noise ϵ = {ϵi}Mi=1

is assumed to be an additive Gaussian noise ϵ ∼ N (0,Σnoise), where Σnoise ∈ RL×L.
Based on the Bayes’ rule, the posterior distribution of the parameter θ can be obtained as

p(θ|Yξ) ∝ P (Yξ|θ)P (θ).

In other words, the posterior distribution of the parameter θ is proportional to the product
of the likelihood function and the prior pdf, which can also be represented as

p(θ|Yξ) = p(θ|{Y i
ξ }) ∝

M∏
i=1

exp

(
−1

2
ri(θ)

TΣ−1
noiseri(θ)

)
p(θ), (4.9)

where ri is the residual for the ith measurement, i.e. ri(θ) = Y i
ξ − g(θ).

In this chapter, the inversion parameter θ = [θ1, θ2, . . . , θNp ]
T is assumed to have a

multivariate Gaussian prior distribution, i.e. p(θ) ∼ N (µprior,Σprior). Therefore, p(θ) :=
exp(−1

2∥θ−µprior∥2Σprior
) is the prior density function. The likelihood density function is also

defined by p(Yξ|θ) := exp(−1
2∥gξ(θ)− Yξ∥2Σnoise

). Therefore, the posterior density function
can be written as

p(θ|Yξ) ∝ exp
(
− 1

2

[
∥gξ(θ)− Yξ∥2Σnoise

+ ∥θ − µprior∥2Σprior

])
.

Furthermore, we define

F (θ) := − log (p(θ|Yξ)) . (4.10)

Thus, using the definition of the posterior pdf and residual function we obtain

F (θ) = − log

(
M∏
i=1

exp

(
−1

2
ri(θ)

TΣ−1
noiseri(θ)

)
p(θ)

)
=

1

2

M∑
i=1

ri(θ)
TΣ−1

noiseri(θ)− h(θ) + C,

(4.11)

where h(θ) = log(p(θ)) and C is a constant.
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4.2 Electrical Impedance Tomography Inverse Problem

Theorem 9. Assume that Yξ = {Y i
ξ }Mi=1 is the set of M measurement data (response)

generated using the model (2.31) with a nonlinear forward function g is a nonlinear function
in terms of parameter θ, and {ϵi}Mi=1 independent and identically distributed (i.i.d.) Gaussian
noises with the mean 0 and covariance matrix Σnoise. Then, the Laplace approximation of
the posterior leads to a Gaussian pdf

p̃(θ|Yξ) =
1

√
2π

d|Σpost|
1
2

exp

(
−
(θ − θ̂)TΣ−1

post(θ − θ̂)

2

)
, (4.12)

where

θ̂ = argmin
θ

(
1

2

M∑
i=1

(Y i
ξ − g(θ))TΣ−1

noise(Y
i
ξ − g(θ))− h(θ)

)
, (4.13)

and

Σpost =
(
∇∇F (θ̂)

)−1
=
(
H(θ̂)TΣ−1

noiseEs +MJ(θ̂)TΣ−1
noiseJ(θ̂)−∇∇h(θ̂)

)−1
, (4.14)

where J and H are Jacobian and Hessian of the parameter-to-observational map g, respec-
tively. Also, Es = Es(θ̂) =

∑M
i=1 ri(θ̂).

Proof. The maximum a posteriori point is a point in the parameter space in which F (θ)
has the minimum value, i.e.

θ̂ = argmin
θ

F (θ) = argmin
θ

(
1

2

M∑
i=1

ri(θ)
TΣ−1

noiseri(θ)− h(θ)

)

= argmin
θ

(
1

2

M∑
i=1

(Y i
ξ − g(θ))TΣ−1

noise(Y
i
ξ − g(θ))− h(θ)

)
. (4.15)

F (θ) is in fact the negative logarithm of the posterior pdf of θ. Now, let F̃ (θ) be the
second-order Taylor expansion of F (θ) around a given θ̂ (MAP estimation). Then

F̃ (θ) ≃ F (θ̂) +∇F (θ̂)(θ − θ̂) +
1

2
(θ − θ̂)T∇∇F (θ̂)(θ − θ̂). (4.16)

where F (θ̂) is a constant and it does not influence the shape of the approximated posterior.
Furthermore, θ̂ is the maximum a posteriori point of the θ, so ∇F (θ̂) = 0.

For the functional F (θ) = 1
2

M∑
i=1

ri(θ)
TΣ−1

noiseri(θ)− h(θ) we compute the Jacobian of F as

JF (θ) := ∇F (θ) =
M∑
i=1

J(θ)TΣ−1
noiseri(θ)−∇h(θ)

= J(θ)TΣ−1
noise

M∑
i=1

ri(θ)−∇h(θ)

= J(θ)TΣ−1
noiseEs(θ)−∇h(θ), (4.17)
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and the Hessian of F as

HF (θ) := ∇∇F (θ) = H(θ)TΣ−1
noise

M∑
i=1

ri(θ) + J(θ)TΣ−1
noise

M∑
i=1

J(θ)−∇∇h(θ)

= H(θ)TΣ−1
noiseEs(θ) +MJ(θ)TΣ−1

noiseJ(θ)−∇∇h(θ), (4.18)

where J and H are Jacobian and Hessian of the parameter-to-observational (forward) map
g, respectively. Also, Es = Es(θ) =

∑M
i=1 ri(θ). This completes the proof.

In the following Theorem, Long et al. [11] presented an approximation for θ̂ based on the
true value for parameter θ∗:

Theorem 10 ([11]). Considering optimization problem (4.15) and using the first order
approximation the gradient of the objective function, one can obtain an approximation for θ̂:

θ̂ = θ∗ −
(
MJTΣ−1

noiseJ +HTΣ−1
noiseEs −∇∇h(θ∗)

)−1 (
JTΣ−1

noiseEs

)
+Op(

1

M
) (4.19)

where θ∗ is the true value for the unknown parameter θ! Here, J = J(θ∗), H = H(θ∗) and
Es = Es(θ∗).

To follow this approach, one needs to know the true value for the unknown parameter
in advance, which is not the case in many inverse problems. If we use the true value θ∗
as the initial point, as in [11], we will have a biased approach which gives a seemingly
accurate estimation of the MAP point θ̂ using one-step approximation (4.19). However, the
implementations show that the approximation is not accurate if we use an arbitrary initial
value θinit to estimate the MAP, even for a simple nonlinear problem with an one-dimensional
parameter space. We borrow the following example from [11, 16] to clarify the issue.

Example 1 (One-dimensional Parameter Space). Let y is the scalar response of the following
nonlinear model with one-dimensional parameter space:

Yξ = g(θ, ξ) + ϵ = θ3ξ2 + θ exp(−|0.2− ξ|) + ϵ, (4.20)

where ϵ ∼ N (0, 10−2) is Gaussian noise, the prior is chosen to be the uniform distribution
U(0, 1). Here, θ is the parameter of interest. Let ξ = 0.2 be the design parameter and
θt = 1 be the true value for the parameter θ. Let {Y i

ξ }Mi=1 for M = 1, 5, 10 be the response
of the model with θ = θt = 1 with the Gaussian noise ϵ. For a moment, assume that we
do not have the true value for θ and we would like to estimate the true value using MAP
estimation, given the response {Y i

ξ }Mi=1.
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Figure 4.1: Posterior pdf: One-step (left) vs. Iterative MAP estimation (right). θt = 1 is
the true value for the parameter of interest. The initial value for θ in both cases
one-step and iterative is θinit = 1.4 and design parameter ξ = 0.2.

We start with different initial values and try to compute the MAP point for Example 1
using one-step estimation (4.19). Figure 4.2 shows the posterior distributions with one-step
(left) versus iterative (right) estimations of the MAP, starting with a same arbitrary initial
value θinit for theta, while the true value of θ∗ is 1. The iterative model performs better.

4.3 Jacobian and Hessian calculations of the Electrical Impedance
Tomography Forward Mapping

Here we aim to derive the Jacobian (gradient) and Hessian of the parameter-to-observable
map g in our EIT model (4.1). g is an Elliptic PDE which maps the conductivity field to
the voltages at the electrodes that we measure them as observations:

g : A(x)
PDE7−−−→ u(x)

SaE7−−→ voltage at electrodes,

where SaE (Solution at Electrodes) is a projection that calculates voltage at the electrodes.
The partial derivative of the solution with respect to the parameter of interest is obtained
by the partial derivative of the finite element solution (4.8) of the EIT model, i.e. ũ = K−1b.
Using the rule for inverse matrix derivatives, we obtain

∂ũ

∂Ãi

=
∂K(Ãi)

−1b

∂Ãi

= −K−1 ∂K

∂Ãi

K−1b = −K−1 ∂K

∂Ãi

ũ. (4.21)

To calculate the Jacobian of g with respect to the conductivity, we use SaE operator, i.e.
∂g

∂Ãi
= SaE ∂ũ

∂Ãi
. Here, SaE is a matrix with as many rows as electrodes and as many

columns as nodal points. We recall the assembly of K =
∑N

i=1 ÃiS
i + η̃iM

i +T and assume
Ã = η̃ which guarantees the well-posedness of the Bayesian inversion of the EIT problem.
We obtain

∂K

∂Ãi

= Si +M i. (4.22)
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It is worth to mention that the conductivity field has the lognormal probability distribution
and θ = log Ã(x). Therefore, the Jacobian of the g with respect to θ (with Gaussian
posterior distribution) is

J(θ) :=
∂ũ

∂θ
=

∂ũ

∂Ã

∂Ã

∂θ
, (4.23)

where ∂Ã
∂θ is a matrix whose (k, n)-th element is δkn exp(θk).

As mentioned in (4.18), in order to compute the Hessian of the functional − log(p(θ|Yξ))
we need to calculate Hessian of the parameter-to-observable map, i.e. H. To this end, we
continue with (4.21) and will compute

Hs,t :=


∂2ũ
∂Ã2

s

∂2ũ
∂Ãs∂Ãt

∂2ũ
∂Ãt∂Ãs

∂2ũ
∂Ã2

t

 s, t = 1, 2, . . . , Np, (4.24)

where the second order partial derivative of the solution voltage with respect to conductivity
Ãs and Ãt for s, t = 1, 2, . . . , Np are obtained by

∂2ũ

∂Ãs∂Ãt

= K−1 ∂K

∂Ãs

K−1 ∂K

∂Ãt

ũ+K−1 ∂K

∂Ãt

K−1 ∂K

∂Ãs

ũ−

{
K−1 ∂2K

∂Ã2
s
ũ s = t,

0 else.
(4.25)

In our EIT model and its finite element solution ∂2K
∂Ã2

s
ũ = 0 due to (4.22). To work with our

parameter of interest θ with Gaussian distribution in the Laplace approximation approach,
we calculate the eternities of Hessian with respect to θ as follows

Hs,t(θ) = Hs,t exp(θs) exp(θt) + δstJt(θ), (4.26)

where Jt(θ) is the column number t of J(θ) calculated in (4.23).

Now with the calculated Jacobian and Hessian for the forward EIT problem as the
parameter to the observable map, we are ready to continue the Laplace approximation
approach to carry out an optimization for the MAP estimation as well as the computation
of the covariance of the posterior distribution (see Theorem 9).

4.4 Laplace Approximation for the Expected Information Gain

In optimal experimental design problems, we aim to find the best design parameter that
gives us the most information gain. This optimal design setup in real-world experiments
leads us to the most informative measurement data that helps us to estimate the parameter
of interest of the problem in a more accurate way. To this end, we need to compute the
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expected information gain over all possible (θt, {Y i
ξ (θt)}) where θt ∈ Θ (parameter space)

and {Y i
ξ (θt)} obtained by the model (2.31). Note, the pair (θt, {Y i

ξ (θt)}) is generated as
synthetic data which is not necessarily the true value for the unknown parameter θ given a
fixed measurement data {Y i

ξ } obtained by a real-world experiment. Based on this fact, all
approximations and discussions presented in the Section 4.2 are valid when we use θt as
initial value (as data is generated synthetically, the true value θt is known) and based on
one-step estimation (4.19), θ̂ = θt +Op(

1√
M
) as M → ∞.

As the approximated posterior pdf is normal, a closed-form approximation for DKL is
available with the help of the logarithm of the ratio posterior to prior which is involved in
the definition of Kullback-Leibler divergence.

Theorem 11 ([11]). The information gain (Kullback-Leibler divergence) for the model
parameter given the measurement data is obtained as a closed form

DKL = −1

2
log((2π)d|Σpost|)−

d

2
− h(θ̂)− tr(Σpost∇∇h(θ̂))

2
, (4.27)

where tr(·) is the trace operator.

Using the closed form of the Kullback-Leibler divergence presented in (4.27) and applying
the one-step MAP estimation (4.19), the Expected Information Gain (EIG) can be computed
by

EIGθ(ξ) = E[DKL] =

∫
Θ

[
−1

2
log((2π)d|Σpost|)−

d

2
− h(θt)

]
p(θt)dθt. (4.28)

In order to compute the expected information gain, using the expression (4.28), we use
numerical techniques such as the Monte Carlo methods or the sparse grid quadrature.

4.5 Numerical Results

Here, we present some numerical results for the computation of expected information gain.
In Example 1 with the one-dimensional parameter space and design parameter ξ ∈ [0, 1], we
calculate the Expected Information Gain (EIG) via integration (4.28) over the parameter
space θ ∈ [0.5, 1.5] (See Figure 4.2).
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Figure 4.2: Expected Information Gain (EIG) for Example 1 for different designs ξ calculated
with double-loop Monte Carlo method as well as Laplace Approximation method.

In electrical impedance tomography (EIT) method of imaging, the surface electrodes are
attached to the skin around the body part being examined. Electrical conductivity inside
the body varies considerably among various biological tissues and can be inferred using
surface electrode measurements. To solve our proposed EIT model, we use the first order
Galerkin finite element method on the same domain in Chapter 3, i.e. a cross-section of
a human right leg as our computational domain. On the boundary of the domain there
are eight electrodes attached with a fix distance from each other (See Figure 1.1). Here in
this chapter, our focus is on the computation of the EIG for a given design, not optimizing
designs to achieve the best design of for experiment. Therefore, we fix our design on the
standard configuration of the electrodes which are attached equidistantly.

Figure 4.3 (right) shows the domain with a finite element discretization. In this figure
(left), three different subdomains are displayed: the first subdomain is a circular bone (in
dark blue) surrounded by the second subdomain, the muscle (in brown), which itself consists
of many partitions, and the rest is fat (in blue). Each subdomain has its own electrical
conductivity and in the solution of the forward problem the FEM mesh is aligned with the
inclusions such that each element has a constant value for the coefficient A.

Injecting current to an electrode pair under the neighboring/adjacent method, and solving
the corresponding model using finite element method yields the solution u(x) (electrical
potential) at the all nodal points x in the domain and other electrodes. We repeat the
process for all possible neighboring options and combine all solutions of different PDEs in
one single vector that we call it measurement data. This measurement data might be noisy.
We use additive random noise with Gaussian distribution to simulate this noise. Therefore,
given the conductivity of the tissues of the body as the parameter A in the model, we obtain
a 40 dimensional measurement data with some noise, which is our forward model. Figure 4.4
(Top Left) shows the noisy measurements versus different values for muscle conductivity.

For the corresponding inverse problem, we narrow our focus on a low dimensional problem
and consider only two parameters of interest, namely, conductivity of muscle and the
conductivity of fat. This reducing here is necessary as dealing with high dimensional EIT
problem and calculating EIG is not an easy task from computational point of view, specially
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Figure 4.3: EIT domain: cross-section of a right leg illustrating a schematic of the three
subdomains (left) and the discretization by a FEM mesh (right) used for solving
the forward problem.

in our case that in each evaluating our forward mapping we should solve 8 PDEs of the
model (4.1) to obtain the measurements. With this reduce, our inverse problem is similar to
inclusion detection in EIT [17]. The main goal is here to estimate the expected information
gain EIG using Laplace approximation. We implemented the methodology presented in the
previous section, to estimate posterior distribution for the parameters of interest as well as
calculating the EIG using (4.28).
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Figure 4.4: Left: Expected Information Gain (EIG) for EIT problem computed by Laplace
approximation vs. number of measurements M . Right: Posterior distribution of
muscle conductivity estimated with Laplace approximation using the different
number of measurements M .

The conductivity of biological tissues like bone, muscle, and fat can vary depending
on factors such as water content, density, and composition. At 50 kHz frequency, the
conductivities of these tissues can be approximately in the range of 0.01 to 0.1 S/m for
bone conductivity, 0.2 to 0.6 S/m for muscle and approximately in the range of 0.03 to 0.1
S/m for fat. These values are approximated and can vary based on factors such as tissue
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4 Laplace Approximation for the Electrical Impedance Tomography Inverse Problem

hydration, temperature, and the specific characteristics of the individual being measured.
We note that different sources may provide slightly different ranges for tissue conductivities
[18, 19, 20]. Here in this thesis, we generate and use synthetic data for the simulations in
which the true value for the muscle and fat conductivities are assumed to be 0.352 and 0.04,
respectively.

The experiment can be done for several times to obtain noisy measurement data Yξ =
{Y i

ξ }Mi=1 which are in fact i.i.d. samples of the response random variable which has Gaussian
distribution with the mean g(θ) and the covariance Σnoise. With a higher number of
measurements (i.e. more repeat in the experiment) we can obtain better results with less
uncertainty for the inverse problem while the computation cost is also higher. Figure 4.4
(Right) shows the posterior distribution for the muscle conductivity for different numbers of
measurement repeats M . It is obvious that with more repeat of experiments we obtain better
results with more accurate MAP estimation and less uncertainty which are represented by
the variance of the unknown parameter.

For estimating EIG, a Monte Carlo approximation is carried out to compute the integration
presented in Equation (4.28). Figure 4.4 (Left) shows the estimated EIG for different numbers
of measurement repeats. Increasing the measurement repeats, the expected information
gain is also increases which is shown in this Figure.

For the EIT problem with two unknown parameters, i.e. muscle and fat conductivities,
we implemented Laplace approximation method. Figure 4.5 (Left) shows the posterior
joint distribution of unknown parameters of the EIT inverse problem (true value for fat
conductivity is 0.04 and for muscle is 0.352). We calculated the EIG by both double-loop
Monte Carlo (Section 2.5) and Monte Carlo Laplace approximation (carrying out a Monte
Carlo approximation for (4.28)). Figure 4.5 (Right) shows the expected information gain
estimated with these approaches for different number of samples. Note that the number
of samples here in the x-axis is the number of samples which are used for both inner and
outer loops in the double-loop Monte Carlo method, and are the same as the number of
samples used for the Monte Carlo approximation in order to calculate the integration in
Equation (4.28).

Computational complexity of double-loop Monte Carlo and Laplace approximation meth-
ods have been investigated in recent years [11, 21]. Laplace approximation method provides
a closed-form approximation of the inner integral resulting in reducing the estimation
problem to a single-loop integration, and therefore a significant reduction in computational
costs. Figure 4.6 shows a comparison of computational cost between Monte Carlo Laplace
approximation and the double-loop Monte Carlo methods.
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Figure 4.5: Left: Posterior distribution of unknown parameters of the EIT inverse problem
(true value for fat conductivity is 0.04 and for muscle is 0.352). Right: Expected
Information Gain (EIG) for the EIT problem with two unknown parameters
computed by Monte Carlo Laplace Approximation and Double-Loop Monte
Carlo methods for different numbers of samples.
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Figure 4.6: Computation cost for Monte Carlo Laplace Approximation and Double-Loop
Monte Carlo methods in estimating EIG for the EIT problem.

4.6 Conclusions

In this chapter, we developed a Laplace approximation methodology for a PDE governed
EIT inverse problem. To this end, we considered a linearised version of the nonlinear EIT
model presented in [14, 15], and estimated the posterior distribution for the conductivity,
as well as the expected information gain (EIG) using Laplace approximation approach.
Comparing CPU times shows the superiority of the Laplace approximation versus the
double-loop Monte Carlo approach.
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5 Multilevel Monte-Carlo Methods for
Optimal Bayesian Experimental Design

In this chapter, following the introduction presented in Section 1.4, we focus on the multilevel
methods for the numerical estimation of the expected information gain (EIG) which is in
fact a nested integral. Before we start the multilevel methods for double loop integrals, we
first go through the basic theory of the multilevel Monte Carlo (MLMC) method.

5.1 Multilevel Monte Carlo Method

Multilevel Monte Carlo method was introduced by Giles in 2008 [1, 2] and since then has
been widely used in different areas of computational science and engineering [3, 4, 5, 6]. In
this section, we give an overview on the multilevel Monte Carlo method based on [2, 5, 6, 7]
to which we will refer in the rest of the thesis.

Multilevel Monte Carlo method is an approach to compute expected values that arise
in stochastic simulations and uncertainty quantification. This method is as Monte Carlo
method based on random sampling, but samples are taken from different levels. In order to
use multilevel method, one needs to define different levels of accuracy in which the solution
is tending to the true solution when the number of levels increases. However, the cost of
computation increases while the accuracy improves.

Let Z be a random variable (for example, parameter of interest in inverse problems)
which can not be sampled exactly, and let Z0,Z1, . . . be a sequence of random variables
which approximate Z with increasing accuracy but also with increasing cost. As an example,
consider the solution of a stochastic differential equation which one can approximate it
using finite element approximation Zhℓ

, where hℓ is the finite element discretization size
defined as hℓ = hℓ−1/2 (we call ℓ = 0, 1, 2, . . . to be different levels of accuracy). In this
case, Zhℓ

→ Z while ℓ → ∞.

The goal here is to estimate E[Z] efficiently. Assume that ZL is an approximation of Z.
The standard Monte Carlo estimator is defined by

EMC[ZL] =
1

N

N∑
i=1

Z(i)
L , (5.1)

where Z(i)
L are random samples of ZL. The Mean Square Error (MSE) of the Monte Carlo
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estimator is given by:

MSEMC = E
[(
EMC[ZL]− E[Z]

)2]
=
(
E[ZL −Z]

)2
+

Var[ZL −Z]

N
, (5.2)

where Var is the variance and E[ZL −Z] is the bias.
Now consider the telescoping sum

E[ZL] = E[Z0] +
L∑

ℓ=1

E[Zℓ −Zℓ−1]. (5.3)

In the multilevel Monte Carlo method, one can compute each term on the right hand side
of the telescopic sum (5.3) using standard Monte Carlo method with Nℓ samples drawn in
level ℓ. In this case,

ẐL := EMLMC[ZL] =
L∑

ℓ=0

1

Nℓ

Nℓ∑
i=1

(
Z(i)
ℓ −Z(i)

ℓ−1

)
, (5.4)

where Z(i)
ℓ are samples of Z drawn in the level of accuracy ℓ. If we define

∆Zℓ :=

{
Zℓ −Zℓ−1 ℓ > 0,

Zℓ ℓ = 0,
(5.5)

then the multilevel Monte Carlo estimator can be written as

EMLMC[ZL] =
L∑

ℓ=0

E[∆Zℓ]. (5.6)

We use Z−1 = 0 when needed. The MSE of the MLMC estimator is given by

MSEMLMC = E
[(
EMLMC[ZL]− E[Z]

)2]
=
(
E[ZL −Z]

)2
+

L∑
ℓ=0

Var[Zℓ −Zℓ−1]

Nℓ
. (5.7)

For simplicity, we define Vℓ = Var[ZL −Z] and note that

• E[ẐL] = E[ZL] and

• Var[ẐL] =
∑L

ℓ=0
Var[Zℓ−Zℓ−1]

Nℓ
=
∑L

ℓ=0
Vℓ
Nℓ

.

Theorem 12 (Computational Cost of MLMC [2]). Let Zℓ be an approximation of random
variable Z in level ℓ with the computational cost Cℓ and variance Varℓ. Assume that there
are positive constants α, β, γ, c1, c2, c3 such that α ≥ min(β, γ)/2 and
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• |E[Zℓ −Zℓ−1]| ≤ c12
−αℓ,

• Varℓ ≤ c22
−βℓ,

• Cℓ ≤ c32
−γℓ,

then there is a positive constant c4 such that for any ε < exp(−1) there are L and NL for
which MLMC estimator has a mean square error less than ε2, i.e. E[ZL − Z] < ε2. The
computational complexity of the estimator has the the bound

E[C] ≤


c4ε

−2 β > γ,

c4ε
−2(log ε)2 β = γ,

c4ε
−2−(γ−β)/α β < γ.

(5.8)

We note that the samples drawn in consequent levels ℓ−1 and ℓ can be somehow correlated.
Therefore Var[Zℓ −Zℓ−1] would decrease when the level ℓ increases. This leads to a smaller
number of necessary samples in higher levels. That means the most samples are drawn in
smaller levels, and since the computational cost of Zℓ is cheaper in smaller levels, then the
overall computational cost can be reduced compared to the standard Monte Carlo method.

Remark 4. In order to ensure that MSEMLMC is less than ε2, it is sufficient to show that
both (E[ẐL − Z])2 and Var[ẐL] are less than ε2/2. To this end, the number of levels is
chosen so to have (E[ẐL −Z])2 ≤ ε2/2 while number of samples in each level, Nℓ, is chosen
to ensure Var[ẐL] ≤ ε2/2.

In order to find the optimal number of samples Nℓ in each level, one should solve an
optimization problem that minimizes the total cost of the estimator for a fixed variance.
The optimization problem is

{N∗
ℓ }Lℓ=0 = argmin

Nℓ

L∑
ℓ=0

NℓCℓ (5.9)

s.t

L∑
ℓ=0

Var[Zℓ −Zℓ−1]

Nℓ
=

ε2

2
.

Using Lagrange multipliers method, the problem is reformulated as the minimization
problem

min

L∑
ℓ=0

NℓCℓ + µ2

(
Var[Zℓ −Zℓ−1]

Nℓ
− ε2

2

)
, (5.10)
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which gives the optimal number of samples in each level:

N∗
ℓ = µ

√
Var[Zℓ −Zℓ−1]

Cℓ
.

Therefore, to achieve a total variance ε2, we need to have

µ =
1

ε2

L∑
ℓ=0

√
Var[Zℓ −Zℓ−1]Cℓ.

Thus, the total cost is given by

C =
1

ε2

(
L∑

ℓ=0

√
Var[Zℓ −Zℓ−1]Cℓ

)2

.

5.2 Multilevel Monte Carlo Method for Nested Integrals

In this section, we extend the idea of multilevel Monte Carlo method to estimate the nested
integrals of the form

I =

∫
Y
f
(∫

X
g(y, x)dx

)
dy, (5.11)

where the square-integrable function f is nonlinear and twice differentiable with respect
to y. As an specific application, we focus on the case that the function f is logarithmic in
which the nested integral is to estimate the expected information gain (EIG) (see Equation
(2.40)).

In Section 2.5, we presented a double loop Monte Carlo estimator for calculating the EIG
based on the Bayes’ rule, which is defined by

EIGDLMC =
1

N

N∑
n=1

[
log
(
p(Y (n)|θ(n,0))

)
− log

( 1

M

M∑
m=1

p(Y (n)|θ(n,m))
)]

. (5.12)

Here we try to briefly introduce the multilevel Monte Carlo estimator for the expected
information gain, but for more details, we refer to [5, 6]. The random variable that is used
in the EIG formula is

Z := log p(Y |θ)− logE[p(Y |θ)], (5.13)

where Y is distributed conditionally on the random variable θ. The second term of (5.13)
includes Eθ[p(Y |θ)] which is an expected value with respect to the parameter θ ∼ p(θ), and

84



5.2 Multilevel Monte Carlo Method for Nested Integrals

it has no closed form to compute. To deal with this, we define a sequence of approximations
Z0,Z1, . . . of Z with increasing accuracy but also increasing computational cost,

Zℓ := log p(Y |θ)− log
( 1

Mℓ

Mℓ∑
m=1

p(Y |θ(m))
)
, (5.14)

where M0 < M1 < . . . is an increasing sequence. We also define

SMℓ(Y ) :=
1

Mℓ

Mℓ∑
m=1

p(Y |θ(m)),

and we assume that {Mℓ}∞ℓ=0 is a geometric sequence for which Mℓ = M02
ℓ. Based on the

definition of ∆Zℓ we have

∆Zℓ :=

{
logSMℓ−1(Y )− logSMℓ(Y ) ℓ > 0,

log p(Y |θ)− logSM0(Y ) ℓ = 0.
(5.15)

Goda [6] suggested that the first Mℓ−1 random samples of θ used in the computation of
logSMℓ(Y ) is also used in the logSMℓ−1(Y ). There are also techniques for better coupling of
Zℓ and Zℓ−1 to avoid more computational costs [6, 7, 8]. Figure 5.1 illustrates the behavior
of the variances of Zℓ and ∆Zℓ which shows a decay in variance of ∆Zℓ, while that of Zℓ is
constant.
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Figure 5.1: Behavior of the empirical variances of both Zℓ and ∆Zℓ. Here we plot the
variance as a function of level. While the variance of Zℓ is almost constant, the
variance of ∆Zℓ decays as the level increases.

For our EIT problem explained in Chapter 4, we developed a multilevel Monte Carlo
methodology to calculate the expected information gain for the given design of experiment.
As it is shown in the Figure 5.1, the variance of ∆Zℓ decays as the level increases, while the
variance of Zℓ is almost constant.
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In the rest of this chapter, we turn our focus on developing a new approach for calculating
EIG. This new method is called Multilevel Double Loop Randomized Quasi Monte Carlo
(ML-DL-RQ-MC), where we use low-discrepancy point sets, namely randomized quasi points,
for sampling.

5.3 Multilevel Randomized Quasi-Monte Carlo for Calculating of
Expected Information Gain

In this section, we aim to develop a multilevel randomized quasi Monte-Carlo method for
the calculation of the expected information gain in Bayesian inverse problems. In fact, the
goal is the calculation of the expected value of the random variable

Z := log p(Y |θ)− logE[p(Y |θ)],

which is presented in Equation (5.13). Before that, we give a brief overview of the Random-
ized Quasi Monte Carlo nested integrals.

Quasi-Monte Carlo method (QMC) is an extension to Monte Carlo method in which
low-discrepancy sequences (also called quasi-random sequences or sub-random sequences)
are used for sampling purposes. In this approach, quasi-Monte Carlo uses a low-discrepancy
sequence such as the Halton sequence [9], the Sobol sequence [10], or other options and tries
to reduce the variance.

In the calculation of nested integration where a nonlinear function is involved, sometimes
there is no closed-form solution. As explained before, such nested integrations are common in
engineering problems, such as optimal experimental design. Using the Monte Carlo method
to approximate both integrals leads to a double-loop Monte Carlo estimator (see Section 2.5),
which is often prohibitively expensive and estimation of the outer integral has bias relative
to the variance of the inner integrand. In the case that the the inner integrand is not exact
and is calculated approximately, then an additional bias will be involved the estimation
of the outer integral. To overcome this issue, one can use variance reduction methods, e.g.
importance sampling, to reduce the computational cost and to make computations more
affordable. Another solution is to use deterministic low-discrepancy sequences instead of
random samples. This approach leads us to quasi-Monte Carlo techniques [11]. Beyond this,
randomizing the low-discrepancy sequences simplifies the error analysis of the proposed
double-loop quasi-Monte Carlo estimator.

In [12], Bartuska et. al. developed a randomized quasi Monte Carlo method to estimate
nested integrals namely Double Loop Quasi-Monte Carlo (DLQMC) in which randomized
low-discrepancy Sobol sequences are used for sampling. The authors present the asymptotic
error bounds and obtain the optimal number of samples for both integral approximations.
In the rest of this section, we focus on the Double Loop Randomized Quasi-Monte Carlo
(DLRQMC) method to calculate the nested integrals.
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Let’s consider again the nested integral (5.11) where the square-integrable function f is
nonlinear and twice differentiable with respect to y. Here, Y and X are in fact hypercubes
in finite dimensional spaces. The standard method to approximate this nested integral is
via the Double Loop Monte Carlo (DLMC) estimator [13], is defined by

IDLMC =
1

N

N∑
n=1

f
( 1

M

M∑
m=1

g(y(n), x(n,m))
)
, (5.16)

where y(n) and x(n,m) are sampled i.i.d. from the uniform distributions on hypercubes [a, b]d1

and [a, b]d2 , respectively. We have already used the Double Loop Monte Carlo (DLMC)
estimator for estimating expected information gain. See Section 2.5 for more details.

Generally in the case of single integrals, the standard MC estimator is unbiased, and its
variance decreases by increasing the number of samples. But here, the outer MC estimator
has a bias related to the variance of the inner integral estimator [12]. Therefore, we need
many inner and outer samples to keep the bias and variance of this estimator under control.
This would limit significantly practical problems, Specially for computationally demanding
problems, such as PDE-governed inverse problems, in which a finite element method (FEM)
approximation gh with discretization parameter h is used to evaluate forward mapping g.

Definition 4 (DLQMC estimator [12]). The DLQMC estimator of the nested integral (5.11)
is defined as follows:

IDLQMC =
1

N

N∑
n=1

f
( 1

M

M∑
m=1

g(y(n), x(n,m))
)
, (5.17)

where the square-integrable function f : R → R is nonlinear, and g : [0, 1]d1 × [0, 1]d2 → R is
square-integrable. The sample points have the following shape:

y(n) = {ξ(n)d1
, ρd1}, 1 ≤ n ≤ N

x(n,m) = {ξ(m)
d2

, ρ
(n)
d2

}, 1 ≤ n ≤ N, 1 ≤ m ≤ M, (5.18)

where ξd1 ∈ [0, 1]d1 and ξd2 ∈ [0, 1]d2 are chosen from a low-discrepancy sequence.

Note that y(n) and x(n,m) consist of a deterministic component ξdi ∈ [0, 1]di , i = 1, 2
and a random component ρdi , i = 1, 2 [14]. An option is to choose Sobol sequence as low-
discrepancy sequence which uses a base of two to form successively finer uniform partitions
of the unit interval. The difference between the estimators (5.16) and (5.17) lies only in the
points used to evaluate the function to be integrated.

In the context of Bayesian inverse problems, Monte-Carlo methods are used to approximate
posterior distribution of the quantity of interest, which is usually intractable. The mean
squared error (MSE) of the approximation by the Monte-Carlo method is of the rate O(N−1)
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in terms of N number of samples, and an accuracy of ϵ needs O(ϵ−2) samples. One approach
to mitigate this issue is to use random points with better quality than the MC points
in the sense of a better coverage of the random space and a reduced MSE. To this end,
quasi Monte-Carlo (QMC) points with the (MSE) error rate of O(N−2 logN2d−2) have been
investigated (see for instance [15, 16, 17]). The disadvantage of QMC methods is that their
MSE depends on the dimension d of the random variable. That means for high dimensions,
one need a big number of samples to reach the same accuracy as the MC, which leads to
high computational costs. To overcome this issue, randomized quasi Monte-Carlo points are
proposed [18], which use randomly shifted low-discrepancy points and the corresponding
optimal rate is independent of the dimension of the random variable. For instance there
exist shifted rank-1 lattice rules, which are constructed by the component-by-component
(CBC) algorithm, and has the convergence rate of O(N−2+δ) for any δ > 0 [19].

The randomized quasi-Monte-Carlo methods are constructed using a uniformly distributed
d-dimensional random shift ρ ∼ U [0, 1)d, on the QMC low discrepancy sequences (for instance
Halton and Sobol sequences). In particular, a randomized rank-1 lattice rule [20] is defined
by

x
(i)
j :=

j

N
λ+ ρ(i) mod 1, j ∈ {1, . . . , N}, i ∈ {1, . . . ,M}, (5.19)

where N is the number of random points, M the number of random shifts, and λ ∈ Rd is a
d-dimensional generating vector. The idea of developing Double Loop Quasi Monte Carlo
(DLQMC) is to use N low-discrepancy points for outer loop and M points with importance
sampling for the inner loop of the double-loop Monte Carlo estimator. For the randomized
version, one can use one randomization of the outer samples in the estimator and utilize
low-discrepancy points with randomizations.

We can also improve the computational efficiency of the sampling method by using the
multilevel idea proposed by Heinrich [21] for the integration and Giles [2] for the stochastic
differential equations.

Here in this thesis, we develop a Multilevel Randomized Quasi-Monte Carlo (MLRQMC)
method for evaluating nested integrals. For the low-discrepancy sequences, unlike [12],
instead of Sobol points, we exploit the generalized Fibonacci grid [22, 23] to be our low-
discrepancy point sets and will transform them to optimal deterministic Gaussian sampling
sets to be used for our importance sampling purposes. The advantage of the generalized
Fibonacci grid is that the low-discrepancy will be preserved when we transform the uniform
quasi points to the Gaussian ones. That is important because we usually deal with Gaussian
priors in uncertainty quantification problems, more specifically in the estimation of the EIG,
where we use Laplace-approximation-based importance sampling for the inner loop to avoid
numerical underflow. Figure 5.2 illustrates low-discrepancy Gaussian points generated by
the generalized Fibonacci grid due to given the target mean and covariance. The MLRQMC
approach is a sampling method, where we use the multilevel idea for the randomized
quasi Monte-Carlo (RQMC) sampling method. In this method, randomly shifted quasi
Monte-Carlo points are used instead of Monte-Carlo points as in multilevel Monte-Carlo
approach.
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To define our Multilevel Double-loop Quasi-Monte Carlo (MLDLQMC), we consider the
sequence of approximations Z0,Z1, . . . of Z with increasing accuracy but also increasing
computational cost. We apply the same notation introduced in MLMC estimator for EIG as

Zℓ := log p(Y |θ)− log
( 1

Mℓ

Mℓ∑
m=1

p(Y |θ(m))
)
= log p(Y |θ)− logSMℓ(Y ), (5.20)

where M0 < M1 < . . . is an increasing sequence. In this case, the MLDLQMC is

IMLDLQMC :=

1

M0

N0∑
n=1

[
log(Y n|θn)− logSM0(Y n)

]
+

L∑
ℓ=1

1

Nℓ

Nℓ∑
n=1

[
logSMℓ−1(Y n)− logSMℓ(Y n)

]
, (5.21)

where N0 > N1 > · · · > NL are the number of low-discrepancy samples chosen for each
level. The samples for each inner loop are quasi-random Gaussian [24] points generated
using a Gaussian distribution, e.g. the posterior distribution. Laplace approximation-based
posterior distribution explained in Theorem 9 (See Section 4.2) is used for this purpose. For
a faster estimation of MAP, we use one-step approximation presented in Theorem 4.19 (See
also [25])

θ̂n = θn −
(
J(θn)TΣ−1

noiseJ(θ
n) +H(θn)TΣ−1

noiseEs(θ
n)−∇∇ log(p(θn))

)−1 (
J(θn)TΣ−1

noiseEs(θ
n)
)

where θn are the low-discrepancy quasi points generated for the outer loop. Here, J
and H Jacobian and Hessian of the −g (forward problem), i.e., J(θ) = −∇g(θ), and
H(θ) = −∇∇g(θ). Also, the residual Es is defined by Es(θ

n) = Y − g(θn). For the
covariance to generate quasi-random Gaussian points related to each low-discrepancy point
to be used for inner loops, we use

Σ̂n =
(
J(θ̂n)TΣ−1

noiseJ(θ̂
n)−∇∇ log(p(θ̂n))

)−1
.

As the multilevel estimator is a variance reduction approach, one could investigate the
optimal size for the number of samples at each level by minimizing the total variance of the
estimator. A similar optimization problem is done in [6].

5.4 Generalized Fibonacci Grid and Quasi-Random Gaussian
Points

Quasi-random sequences, such as Sobol or Halton, usually deal with the uniform distribution
in [0, 1]d in which the goal is to approximate the uniform distribution by finite sets of points.
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But for many applications in uncertainty quantification and optimal experimental design
purposes, we need to work with Gaussian distribution and sampling. In order to obtain
low-discrepancy points which correspond to the Gaussian distribution, there are various
options.

Having uniform quasi points in hand, one can transfer to Gaussian points using inverse
transform sampling to generate pseudo-random samples from any probability distribution
given its cumulative distribution function. Inverse transformation sampling takes u ∈
[0, 1], and then returns the smallest x ∈ R such that F(x) ≥ u where F is the target
cumulative distribution function [26]. The Box–Muller transform was developed as a more
computationally efficient alternative to the inverse transform sampling method [27, 28].
Gauss–Hermite quadrature points are alternatives to use ideally for scalar integrals of
polynomial-like functions multiplied with a univariate Gaussian density function [29]. The
required points increases exponentially with the number of dimensions.

As a recent work, Frisch and Hanebeck [22, 23] use the generalized Fibonacci grid as
the low-discrepancy point set to present an optimal deterministic Gaussian sampling. For
univariate Gaussian samples, the inverse Gaussian distribution is applied to transform
uniform samples into Gaussian ones. For multivariate Gaussians, this scalar transformation
is applied along the directions of the eigenvectors of the covariance matrix, respectively.
They utilities the Fibonacci grid, as it can be anisotropically re-scaled along the main
axes while preserving the uniformity of points. Instead of colliding, Fibonacci grid points
automatically get new neighbors, depending on the amount of re-scaling. The steps for a
discrepancy preserving mapping that transforms the uniform density on [0, 1] to arbitrary
Gaussian densities, is described in [22]. Here, we use these low-discrepancy Gaussian points
for our quasi-Monte Carlo sampling in the new multilevel approach for the estimation of
expected information gain.
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Figure 5.2: Low-discrepancy Gaussian points generated by Fibonacci grid points. Here, a
sample set of 200 quasi-Gaussian points is generated with respect to the prior
distribution.
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5.5 Numerical Results

5.5 Numerical Results

In this section, we implement our methodology of MLDLQMC for a linear inverse problem
for which the analytical value of the EIG is available. Consider following linear model

Y = Aθ + ϵ, (5.22)

in which θ ∈ Rd is the vector of parameters of the interest, A ∈ Rw×d forward mapping,
and Y ∈ Rw the measurement data. The noise ϵ is Gaussian with the mean 0 and
covariance matrix Σϵ. We also assume that we are given a prior knowledge on θ by a
multivariate Gaussian distribution N (µprior,Σprior). Under the assumption of Gaussian
prior and Gaussian noise, the posterior of θ is also Gaussian, and the analytical solution
for the maximum a posteriori (MAP) estimation (See Theorem 9 and Equation (4.13)) as
well as the covariance matrix of the posterior are available. In this case, the mean of the
posterior distribution of θ is given by

θ̂ = Σpost

(
ATΣ−1

ϵ Y +Σ−1
priorµprior

)
,

and the covariance of the posterior is

Σpost = (H +Σ−1
prior)

−1,

where H = ATΣ−1
ϵ A is the Hessian of the negative logarithm of the posterior pdf [30].

Therefore, the expected information gain (EIG) for this linear inverse problem admits the
closed form

EIG =
1

2
log det

(
NexΣ

−1
ϵ AΣpriorA

T + I
)
, (5.23)

where Nex is the number of experiments repeats [6]. However, [30, 31] present a similar but
slightly different closed form for EIG using prior-preconditioned Hessian that includes both
data and prior information. We recall the benchmark linear problem presented in [6] and
implement numerically our multilevel double-loop quasi-Monte Carlo method on this linear
inverse problem. To this end, we assume θ = [θ1, θ2]

T to be the parameter of interest from
two-dimensional real-valued parameter space, and define

A =

1 2
2 3
3 4

 , Σϵ =

 0.1 −0.05 0
−0.05 0.1 −0.05

0 −0.05 0.1

 .

The measurement data Y is calculated using the model 5.22. We also assume we have a
prior knowledge given by a Gaussian distribution with the mean and covariance

µprior =

[
1
0

]
, and Σprior =

[
2 −1
−1 2

]
,

respectively. For this setting, Figure 5.3 shows the true expected information gain (EIG)
calculated for different numbers of experiment repeats.
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Figure 5.3: True expected information gain (EIG) vs. Number of Experiments (Nex) for
the linear inverse problem with the given setting.

For the double-loop Monte Carlo method, we follow the Algorithm 2. The random samples
for the outer loop are drawn using the prior distribution which is a multivariable normal
distribution. Furthermore, we exploit the fact that the mean and covariance of the posterior
distribution are available as a closed form. We use the posterior distribution p(θ|Y ) as the
importance measure to draw important samples for the inner loops. To develop double-loop
quasi-Monte Carlo method, we apply the low-discrepancy Gaussian points generated with
generalized Fibonacci grid considering the mean and covariance of the posterior.

Figure 5.4 shows the total cost as the number of samples versus the accuracy of the
presented estimators. As seen in this figure, the double-loop quasi-Monte Carlo and
multilevel double-loop quasi-Monte Carlo have better performance against the standard
double-loop Monte Carlo regarding the number of samples in total they need to reach the
specific accuracy level.
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Figure 5.4: Error vs. total cost (total number of samples needed to reach the specific
accuracy level).
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6 Uncertainty Quantification in
Epidemiological Models

Mathematical modeling of epidemiological diseases using differential equations are of great
importance in order to recognize the characteristics of the diseases and their outbreak.
The procedure of modeling consists of two essential components: the first component is
to solve the mathematical model numerically, the so-called forward modeling. The second
component is to identify the unknown parameter values in the model, which is known as
inverse modeling and leads to identifying the epidemiological model more precisely.

The main goal of this chapter is to develop the forward and inverse modeling of the
coronavirus (COVID-19) pandemic using novel computational methodologies in order to
accurately estimate and predict the pandemic. This leads to governmental decisions support
in implementing effective protective measures and prevention of new outbreaks. To this end,
we use the logistic equation and the SIR (susceptible-infected-removed) system of ordinary
differential equations to model the spread of the COVID-19 pandemic.

For the inverse modeling, we propose Bayesian inversion techniques, which are robust and
reliable approaches, in order to estimate the unknown parameters of the epidemiological
models. We deploy an adaptive Markov-chain Monte-Carlo (MCMC) algorithm for the
estimation of a posteriori probability distribution and confidence intervals for the unknown
model parameters as well as for the reproduction number. We perform our analyses on the
publicly available data for Austria to estimate the main epidemiological model parameters
and to study the effectiveness of the protective measures by the Austrian government.

This chapter is based on the author’s work in [1].

6.1 Mathematical Models for COVID-19

Predictive mathematical models are essential for the quantitative understanding of epidemics
and for supporting decision makers in order to implement the most effective and protective
measures. Many mathematical models for the spread of infectious diseases [2, 3, 4, 5] and in
particular for the novel COVID-19 [6, 7, 8, 9, 10] have been presented and analyzed. Here
we start with the logistic equation as a preliminary model for epidemics and continue with
the SIR model and its extensions [11, 12, 13, 14, 15, 16].
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6.1.1 The Logistic Model

The logistic equation is a nonlinear ordinary differential equation, which is used for modeling
population growth. This ODE is also well-known as logistic growth model and is given by

y′(t) = αy(t)
(
1− y(t)

β

)
, y(0) = y0, (6.1)

where y0 ̸= 0 is the initial population size (initial number of confirmed cases), y denotes
population size (total accumulated confirmed cases) and t time. Furthermore, α and β are
respectively the growth rate (infection rate) and the carrying capacity (maximum number
of confirmed cases), which are positive constants.
The solution to the logistic model equation is

y(t) =
βy0

y0 + (β − y0)e−αt
,

which can be rewritten as

y(t) =
β

1 +Ae−αt
,

where

A =
β − y0
y0

.

The inflection point represents the time that maximal rate of confirmed cases (growth rate)
occurs. The inflection point of the logistic function is calculated as

t∗ =
ln(A)

α
,

where the estimated number of infected people is β/2. However, there are generalizations
of the näıve logistic function, and we will present numerical results based on them in
Section 6.3.2.

6.1.2 The Susceptible-Infected-Removed Model

The susceptible-infected-removed (SIR) model is an epidemiological model that computes
the number of people infected with a contagious disease in a closed population over time.
The Kermack-McKendrick model [17, 18, 19] is one of the SIR models, which is defined by
the system

dS

dt
= −βIS

N
, (6.2a)

dI

dt
=

βIS

N
− γI, (6.2b)

dR

dt
= γI (6.2c)

of ordinary differential equations, where β and γ are the infection and recovery rates,
respectively. The model consists of three components: S for the number of susceptible, I
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for the number of infectious, and R for the number of recovered or deceased (or immune)
individuals. Furthermore, N denotes the constancy of population, i.e.

S(t) + I(t) +R(t) = N. (6.3)

Moreover, the dynamics of the infectious class depends on the basic reproduction number,
which is defined as

R0 :=
β

γ
.

If the reproduction number is high, the probability of a pandemic is high, too. This number
is also used to estimate the herd immune threshold (HIT). If the reproduction number
multiplied by the percentage of susceptible individuals is equal to 1, it shows an equilibrium
state and thus the number of infectious people is constant.
Additionally, the recovery period is defined by

t1 =
1

γ

and describes the average days to recover from infection. The transmission period in the
sense of the average days to transmit the infection to a person is defined by

t2 =
1

β
.

However in a population with vital dynamics, new births can provide more susceptible
individuals to the population, which sustain an epidemic or allow new introductions to
spread in the population. Taking the vital dynamics into account, the SIR model is extended
to

dS

dt
= µN − βIS

N
− νS, (6.4a)

dI

dt
=

βIS

N
− γI − νI, (6.4b)

dR

dt
= γI − νR, (6.4c)

where µ and ν denote the birth and death rates, respectively. To maintain a constant
population, we assume µ = ν is the natural mortality rate.

6.2 Bayesian Inversion for the Model Parameters

We propose Bayesian inversion methods, in which probabilities are used as a general concept
to represent the uncertainty in the model parameters in order to solve the backward/inverse
problem of COVID-19, i.e., the problem of accurate estimation of the epidemiological model
parameters as well as the reproduction ratio. Bayesian inference in the context of the
statistical inversion theory is based on Bayes’ Theorem and represents the uncertainty
probabilistically by defining a probability distribution over the possible values of the
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parameters and uses sample data to update this distribution. Bayesian analysis, in contrast
to traditional inverse methods, is a robust inversion technique for determining parameters,
yields the (a posteriori) probability distribution, and has the advantage of updating the
prior knowledge about the unknown quantity using the measurement/observation data,
giving confidence intervals for the unknowns instead of providing a single estimate. We
have already successfully applied Bayesian inversion techniques to various PDE models in
engineering and medicine in order to identify parameters (see for instance [20, 21, 22, 23]).

6.3 Numerical Results

In this section, we present simulation results of Bayesian inversion and the adaptive MCMC
method (see Algorithm 1) for the two epidemic models, namely the logistic and the SIR
models, using the data of the COVID-19 outbreak in Austria. The results include model
parameter estimation, model validation and outbreak forecasting.

6.3.1 Parameter Estimation

According to Bayesian analysis, the unknown parameters of the logistic and SIR models
using the data of COVID-19 outbreak in Austria were found and summarized in Table 6.1
and Table 6.3, respectively. These tables show the confidence intervals for the models
parameters as well as the mean of the obtained Markov chains in the Bayesian inference.

Parameter Description Estimated mean Confidence interval 95%
α Growth rate 0.28 [0.23, 0.33]
β Carrying capacity 14 974 [12 703, 17 244]

Table 6.1: Estimated confidence intervals and mean of Markov chains for the parameters of
the logistic model using Bayesian inversion method for Austria.

Inflection point t∗ Infected cases at inflection point
Estimated Estimated Actual
March 27 7 486 7 697

Table 6.2: Estimated and actual number of the infected cases in Austria at the inflection
point of the logistic model.

Furthermore, Tables 6.2 and 6.4 include temporal quantities such as inflection time of the
outbreak estimated using the Bayesian inference for the logistic and SIR models. According
to our analysis, March 27 is estimated as the inflection point of the outbreak in Austria,
when the maximal rate of confirmed cases (growth rate) occurs. The estimated total number
of confirmed cases till the inflection point agrees with measured data (see Table 6.2).

Figure 6.2 illustrates marginal histograms of posterior distribution for the three quantities
of interest in the SIR model, namely β, γ and R0 using Bayesian analysis.
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Figure 6.1: The marginal histograms of posterior distribution for the two quantities of
interest in the logistic model, namely α and β.

Parameter Description Estimated mean Confidence interval 95%
β Transmission rate 0.36 [0.32, 0.39]
γ Recovery rate 0.06 [0.03, 0.09]

Table 6.3: Estimated confidence intervals and means of Markov chains for the parameters
of the SIR model using Bayesian inversion method for Austria.

Quantity Description Average Estimation (days)
t1 Infectious period 16.7
t2 Transmission period 2.8

Table 6.4: Estimated temporal quantities for Austria using the SIR model.
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Figure 6.2: The marginal histograms of posterior distribution for the three quantities of
interest in the SIR model, namely β, γ and R0.
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6.3.2 Model Validation

Here, we aim to validate the logistic and SIR models for forecasting the COVID-19 outbreak
by comparing the Bayesian simulation results and the actual data. Figure 6.3 illustrates the
actual number of infected individuals in Austria till now, as well as the estimated number
of infected people according to the Bayesian inversion for the logistic equation.
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Figure 6.3: Estimated total cumulative count of coronavirus confirmed infected cases in
Austria using Bayesian analysis for the logistic model versus actual or measured
infected population.

Figure 6.4 displays a similar estimation using the Bayesian inference for the SIR model,
which shows a very good agreement between the measurements and the simulation.
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Figure 6.4: Estimated total count of coronavirus infected and recovered cases using Bayesian
analysis for the SIR model as well as actual confirmed active cases in Austria.

Figure 6.5 illustrates the number of infected people estimated using the Gompertz function
and a generalized logistic function. The Gompertz function is a sigmoid function which
describes population growth and it is defined by

G(t) := ae−be−ct
, (6.5)

where a is an asymptote, and b and c are the negative growth rates. The second derivative
of G(t) gives the tipping point t = − log(−b))/c in which the growth of daily cases will start
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to decrease. In contrast to the logistic function, the Gompertz function does not have a
symmetrical first derivative at the inflection point.
As another more complex generalization of logistic method, we apply the model

P (t) :=
M

(1 + e−at+b)α
, (6.6)

where a is growth rate and M is the carrying capacity. Furthermore, b is multiplication of
the growth rate and unknown inflection time. Moreover, α = 1/ν, where ν > 0 affects near
which asymptote maximum growth occurs.

The comparison shows a better agreement between the measured data and both of the
Gompertz estimation and the generalized logistic function than the naive logistic function
(see Figures 6.3 and 6.5).
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Figure 6.5: Estimated total cumulative count of infected cases using the Gompertz function
(left) and a generalized logistic function (right) versus the observed infected
population in Austria.

Quantifying the uncertain parameters such as the reproduction number leads to calculate
the average number of days to recover from the infection and gives useful information about
properly and accurately implementing protective measures in order to prevent the spread
of the virus. Furthermore, the parameter identification in the epidemic model makes it
possible to predict the length of the pandemic, the number of infected individuals and the
fatality rate.

In Figure 6.6, the actual and estimated infection rates are depicted. This rate is defined
by

infection rate :=
∆In
In−1

, n ∈ {2, 3, . . .}, (6.7)

where ∆In = In − In−1, In and In−1 are infected population of consequent times (e.g. in
days or weeks), which are obtained using the estimated infection from the SIR model.
Figure 6.7 shows the estimated and actual reproduction number R(t) at day t for Austria,
i.e. the average number of people someone infected at time t would infect over their entire
infectious lifespan. In order to calculate R(t), we apply the formula

R(t) =
Iinc(t)∑t∗1

τ=1 ω(t)Iinc(t− τ)
, (6.8)

104



6.3 Numerical Results

Mar Apr May Jun

Date 2020   

0

50

100

150

D
a
ily

 I
n
fe

c
ti
o
n
 R

a
te

 (
%

) 

5%

Meseaured

Estimated

Threshold

Figure 6.6: Infection rate in Austria.

where Iinc(t) is the number of incident cases at time t and t∗1 = 17 is the average estimated
infectious period in days (see Table 6.4). The normal distributed function ω specifies the
so-called infectivity profile during the infectious period [24, 25]. The first recovery in Austria
was reported on March 26, where the reproduction number is estimated around 3. This
estimated quantity decays to 1 in the beginning of April, and since then remains below
1 (till the time of writing this paper on May 21, 2020). The measured R(t) is below 1 in
April, then oscillates around 1 for the rest of time frame in this study. In this figure, the
threshold of R = 1 is also displayed in the sense that there is no immediate public health
emergency any more when the reproduction number is below this threshold.
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Figure 6.7: Reproduction number in Austria.

6.3.3 Fatality Analysis

Social-distancing and other protective measures started in Austria around March 16, 2020
in order to slow down the outbreak and consequently to prevent an increase in fatalities by
keeping the cases that require hospitalization below the capacity of the healthcare system.
In Figure 6.8, the daily fatalities in Austria as well as the relative change in fatalities are
illustrated.
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Figure 6.8: Fatalities in Austria including the daily fatalities (left) and the relative change
in fatalities (right).

Applying the fatality ratio as well as confirmed infected cases, we present a fatality analysis
which is of importance for governmental protective decision making. In epidemiology, a case
fatality rate (CFR) is the proportion of deaths from a certain disease compared to the total
number of people diagnosed with the disease for a certain period of time. Figure 6.9 depicts
the case fatality rate (CFR), which is defined by

CFR :=
fatalities

fatalities + recoveries
, (6.9)

and we call it the true CFR here, in contrast to the naive CFR defined by

naive CFR :=
fatalities

infections
. (6.10)

The straightforward calculations using the recorded data in Austria show that both CFR
and naive CFR converge to the same value of CFR∗ = 0.04 (Figure 6.9).

Apr 14 Apr 21 Apr 28 May 05 May 12 May 19 May 26

Date 2020   

0.04

0.06

0.08

0.1

0.12

0.14

0.16

C
F

R
 (

In
fe

c
ti
o
n
s
 s

h
if
te

d
 b

y
 1

0
 d

a
y
s
)

True CFR

Naive CFR

CFR=0.040

Figure 6.9: Case fatality rate (CFR) in Austria.

We can roughly predict the fatalities using the confirmed infections, a shift, and the CFR.
The shift is approximately equal to the time between infection and death/recovery (currently
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average estimated to be 17 days (see Table 6.4)) minus the incubation time (currently
estimated to be 5–6 days [26]) minus 1 day for testing and reporting (see Figure 6.10). The
average time between infection and death is reported approximately 17.8 days in [27]. The
estimator of fatalities in Austria is defined by

fatality cases := CFR∗ × confirmed infected cases (shifted by 10 days).

Figure 6.10 shows a good agreement between the estimated fatalities and true values in
Austria.
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Figure 6.10: Prediction of number of fatalities in Austria.

6.3.4 The Impact of Governmental Protective Measures

Here, in order to study the effect of the protective measures implemented by the Austrian
government, we compare the infection rate and the infected population in different time
intervals with and without implementing the measures. Although public health measures
were in place from March 16 to control the spread of COVID-19, Austrians started to
practice social distancing in advance. Table 6.5 shows the weekly infection rate in Austria
and how it decays in subsequent weeks. The comparison between the estimated infection
rates in subsequent weeks before and after implementing the protective measures highlights
the importance and effectiveness of the measures such as social-distancing and lock-down in
controlling and slowing down the spread of COVID-19.

The main goal of protective measures and lock-down is to “flatten the curve”, i.e., to
decrease the infection rate so that the healthcare system is kept from becoming overwhelmed
with too many critical cases at the same time. In countries where the counterfactual scenario
i.e., no public health interventions is applied, for instance in Sweden, the ICU demand is
estimated to be almost 20 times higher than the intensive care capacity in the country
and a much larger number of deaths is predicted [28]. However according to Institute for
Health Metrics and Evaluation (IHME) database (http://www.healthdata.org/), France,
Italy, and Spain, where lock-downs were enacted, also experienced problems due to the
limited numbers of ICU beds. In early April, these countries experienced an overload in
their health care systems.
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without with
measures measures

Time March March March April April
interval before 18th 18–24 25–31 1–7 after 7th

Infection rate 7.30 3.97 1.93 1.2 ≈ 1
Infected population 1 332 5 283 10 180 12 639 14 000–17 000

Table 6.5: Infection rate (see Equation (6.7)) and total cumulative infected population at
the end of different time intervals with and without implementing the protective
measures in Austria.

The fatality forecast in Section 6.3.3 is valid as long as protective measures are in place,
otherwise the number of fatalities will increase due to a large number of infected people
and the limit in the capacity of intensive care unit (ICU) beds as the number of intensive
cases increases dramatically. According to the website of the Federal Ministry of Social
Affairs, Health, Care and Consumer Protection of Austria, around 700 ICU beds have
been available on average for COVID-19 patients since the beginning of the pandemic.
Figure 6.11 illustrates the average number of available ICU beds for COVID-19 patients
and the reported number of occupied ICU beds in Austria. In early April around 26% and
in mid-May around 5% of all available intensive care beds for COVID-19 patients were
occupied by these patients. This amount of ICU beds usage shows that approximately 2%
of the active infected individuals were critical cases and required ICU beds. If Austrian
governmental protective measures would not have taken place and the reproduction number
would have remained as before the measures, active infected cases would have increased
dramatically. In the case the number of active infected cases would have been around five
times larger, the ICU bed capacity could have been exceeded according to the rate of around
2% critical cases in Austria.
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Figure 6.11: The average number of available ICU beds for COVID-19 patients vs. the
reported number of occupied ICU beds in Austria.
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6.4 Conclusions

In this work, we developed an adaptive Bayesian inversion for epidemiological models,
namely the logistic and the SIR models, in order to solve the inverse problem of estimating
unknown quantities for the novel coronavirus COVID19. Quantifying the uncertainties
in these models is essential since it leads to describe the characteristics of the epidemics
on one hand and accurately forecasting the pandemic on the other hand. The proposed
inversion recipe is robust and yields probability distributions and confidence intervals for the
unknown parameters of the epidemic models including the growth rate of the outbreak and
transmission and recovery rates as well as the reproduction number, whose quantification is
crucial for decision makers.
We applied our methodology to the publicly available data for Austria to estimate the

main epidemiological model parameters and to present a fatality analysis, all of which are
of great importance for the government and decision-makers to adopt the most efficient
and effective protective measures in order to prevent human and economic damages. We
also validated the presented models by comparing the simulated and measured data, whose
results show a very good agreement.
Based on Bayesian analysis for the logistic model, the means of the growth rate α and

the carrying capacity β are estimated respectively as 0.28 and 14 974. Furthermore for
these parameters, 95% confidence intervals of [0.23, 0.33] and [12 703, 17 244] are obtained.
Moreover for the parameters of the SIR model, namely the transmission rate β and recovery
rate γ the means of 0.36 and 0.06 as well as the 95% confidence intervals of [0.32, 0.39]
and [0.03, 0.09] are inferred. Additionally, we obtained the infectious period of 17 days
and transmission period of 3 days for COVID-19 in Austria. The first recovery in Austria
was reported on March 26, where the reproduction number is estimated around 3. This
estimated quantity decays to 1 in the beginning of April, and since then remains below
1 (till the time of writing this paper on May 21, 2020). The measured R(t) is below 1 in
April, then oscillates around 1 for the rest of time frame in this study.

Analyzing data of infected, recovered and death cases, we obtained that the case fatality
rate (CFR) has converged to the value 4%. This estimation makes it possible to forecast
the fatalities in the coming 10 days. According to our analysis, the total number of death
in Austria is estimated as 633 in May 21, which perfectly matches the measured data,
according to the Johns Hopkins CSSE database.
Furthermore, we estimated the infection rate for consequent weeks starting from before

implementing the protective measures, which shows a significant decay after the measures
are in place. Moreover, the ICU bed usage shows that approximately 2% of the active
infected individuals were critical cases and needed ICU beds. If Austrian governmental
protective measures would not have taken place and the reproduction number would remain
as before the measures, active infected cases would increase dramatically. In the case that
the number of active infected cases was around five times larger, the ICU bed capacity
could have been exceeded according to the rate of around 2% critical cases in Austria.
These results indicate the impact of the measures such as social distancing and lock-down
in controlling the spread of COVID-19.
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