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Abstract A transport equation for confined structures is
used to calculate the ionic currents through various trans-
membrane proteins. The transport equation is a diffusion-
type equation where the concentration of the particles
depends on the one-dimensional position in the confined
structure and on the local energy. The computational signifi-
cance of this continuum model is that the (6 + 1)-dimensional
Boltzmann equation is reduced to a (2 + 1)-dimensional
diffusion-type equation that can be solved with small compu-
tational effort so that ionic currents through confined struc-
tures can be calculated quickly. The applications here are
three channels, namely OprP, Gramicidin A, and KcsA. In
each case, the confinement potential is estimated from the
known molecular structure of the channel. Then the confine-
ment potentials are used to calculate ionic currents and to
study the effect of parameters such as the potential of mean
force, the ionic bath concentration, and the applied voltage.
The simulated currents are compared with measurements,
and very good agreement is found in each case. Finally, vir-
tual potassium channels with selectivity filters of varying
length are simulated in order to discuss the optimality of the
filter.
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1 Introduction

The fundamental transport equation for large-scale systems
is the Boltzmann transport equation [6,16]. Its indepen-
dent variables are time, three space, and three momentum
dimensions; therefore, calculating numerical approximations
to its solutions is very computationally expensive. Popular
approaches to the calculation of currents through ion chan-
nels such as molecular dynamics and Brownian dynamics are
valuable to elucidate various aspects, but also require a huge
computational effort when currents are calculated. However,
only currents are measured in experiments. In order to over-
come this problem, we have derived a (2 + 1)-dimensional
transport equation from the (6 + 1)-dimensional Boltzmann
transport equation to simulate geometrically complicated
structures and to decrease the computational cost of current
calculations [11].

Here confined structures are understood as long, narrow
3D geometries where the transport of the particles occurs
in one space dimension, namely the longitudinal direction,
due to the presence of a potential wells in the two transverse
dimensions. The potential wells responsible for the confine-
ment can vary along the transport direction and are given
as functions of position. The independent variables in the
(2 + 1)-dimensional transport equation are position along the
longitudinal direction, local particle energy, and time. In the
case of harmonic confinement potentials, i.e., when they are
quadratic functions of position, it was even possible to find
explicit expressions for the transport coefficients.

This is an essential feature of the present model: the con-
finement potentials determine the local fluxes and hence
the transport coefficients. This is an important improvement
compared to using bulk transport coefficients for the simula-
tion of extremely small structures and it means that the phys-
ical properties of the channels and especially their selectivity
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filters are captured. Since the transport coefficients are given
by explicit expressions, the numerical solution of the trans-
port equation is as computationally expensive as the solution
of a diffusion equation with constant transport coefficients
so that currents are obtained with relatively small computa-
tional effort. Therefore this transport equation for confined
structures is ideally suited for the simulation of ion channels.

Due to the physiological importance of ion channels [15],
this transport model is applied to three transmembrane pro-
teins here, namely the phosphate specific channel OprP (an
antibiotic), the Gramicidin A channel (another antibiotic),
and the well-known KcsA ionic channel. In each case, the
model is validated by comparison with current measurements
of various ions. Then we elucidate physiological properties of
the channels. For example, the selectivity of potassium chan-
nels between sodium and potassium is its primary physiologi-
cal function and therefore it is investigated in the simulations.
The model reproduces selectivity. We also constructed vir-
tual ion channels by changing the length of the selectivity
filter in order to answer the question if and in which respect
the natural KcsA channel is optimal.

The rest of the paper is organized as follows. In Sect. 2,
the transport equation is presented. In Sect. 3, the three trans-
membrane proteins are simulated. Finally, in Sect. 4, conclu-
sions are drawn.

2 The transport equation

We recapitulate the transport equation and its relation to
the given confinement potential in this section. Throughout
[11], the calculations were performed using dimensionless
variables and the theoretical feasibility of this approach was
demonstrated. In [12], the derivation of the transport equa-
tion was extended so that all variables have physical units
and a complete discussion of all the units can be found there
as well.

The starting point is the Boltzmann transport equation in
the form

∂t f + {E, f }X P + Q[ f ] = 0, (1)

where the Poisson bracket is defined as

{g, f }X P := ∇Pg · ∇X f − ∇X g · ∇P f. (2)

Here f (X, P, t) is the kinetic particle density, X ∈ R
3 is

position, P ∈ R
3 is momentum, t is time, E(X, P) is the

energy, andQ is the scattering operator. The energy is defined
as

E(X, P) := V (X) + |P|2
2m

,

being the sum of the potential energy V of the confinement
and the kinetic energy. m denotes the mass of a particle.

The spatial multiscale problem arises, since the struc-
tures are much narrower than long. We write the confinement
potential as

V (x, y) = V0(x) + V1(x, y), (3)

where V0 is the applied potential, and we will rescale in (4a)
below.

Here we consider 3D structures that are confined in two
dimensions such that transport occurs in one dimension.
Therefore we split position X and momentum P into

X = (x, y) = (x, y1, y2) ,

P = (p, q) = (p, q1, q2) ,

where x is the longitudinal direction of charge transport and
y1 and y2 are the two transverse directions of confinement.
Accordingly, p is the momentum in the longitudinal direction
and q1 and q2 are the momenta in the transverse directions.
We also split the energy E into two contributions Ex and Ey

from the longitudinal and transverse directions, respectively,
i.e.,

E(X, P) = Ex (x, p) + Ey(x, y, q),

Ex (x, p) := V0(x) + |p|2
2m

,

Ey(x, y, q) := V1(x, y) + |q|2
2m

.

The scattering operator Q is defined such that it describes
the physical system correctly. In the transport (longitudinal)
x-direction, it relaxes the density towards a Maxwellian dis-
tribution, whereas in the confinement (transverse) y-direction
it conserves the local energy so that the particles do not lose
or gain energy on average by colliding with the sidewalls
of the structure, i.e., there is no net energy transfer between
the particles and the sidewalls. The scattering operator is a
relaxation operator and it has the form

Q[ f ](x, y, p, q, t)

:= 1

τ

(
f − M(p)

u f (x, Ey(x, y, q), t)

N (x, Ey(x, y, q))

)
.

The details of the operator can be found in [11, Sect. 2.1].
Relaxation towards a Maxwellian distribution in the trans-
port direction leads to the final diffusion-type behavior in
this direction similar to the derivation of the drift-diffusion
equations from the Boltzmann transport equation.

Then, in [11, Sect. 2.2], all variables were scaled and trans-
formed into a dimensionless formulation. Here, however, we
only scale the confinement direction y and time t by setting
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ys := y

ε
, (4a)

ts := εt. (4b)

We consider the limit ε → 0. Regarding the spatial mul-
tiscale problem, this means that the width ε � 1 of the
structure is very small corresponding to pores that are much
longer than wide. Regarding the temporal multiscale prob-
lems, this scaling in conjunction with the scattering operators
means that we are interested in time scales where diffusion
is the dominant mechanism. We now simplify notation by
using the same variable names as before the scaling; addi-
tionally, in order to be consistent with the notation in [11],
we set v := p and w := q, but note that v and w denote
momenta.

Dramatic simplifications are possible when assumptions
on the form of the confinement potential, and especially on
the form of V1(x, y), are made. We assume that V1(x, y)
has the quadratic form

V1(x, y) = 1

2
(y − b(x))�B(x)(y − b(x)), (5)

where y, b ∈ R
2 and the diagonal matrix B(x) is given by

B(x) =
(
B1(x) 0

0 B2(x)

)
.

In this case, the confinement potential is called harmonic. Of
course it is required that B1(x) > 0 and B2(x) > 0 for all x
so that the particles are indeed confined.

Finally, a diffusion-type equation for transport through a
confined structure can be found. Its coefficients are given by
the coefficients of the confinement potential. The equation is
the conservation law

∂tρ(x, η, t) + ∂x F
x (x, η, t) + ∂ηF

η(x, η, t) = 0, (6)

where the three independent variables are x, the longitudinal
position, η, the local energy in the transverse direction, and
time t. The two fluxes Fx and Fη are

Fx (x, η, t) = −4π2kT τη√
B1B2

T1

− π2kT τη2

√
B1B2

(∂x (ln B1) + ∂x (ln B2)) T2,

(7)

and

Fη(x, η, t) = −π2kT τη2

√
B1B2

(∂x (ln B1) + ∂x (ln B2)) T1

− π2kT τη2

6
√
B1B2

(
12mB1(∂xb1)

2

m + τ 2B1

+ 12mB2(∂xb2)
2

m + τ 2B2
+2η∂x (ln B1) ∂x (ln B2)

+ η(3m + 8τ 2B1)(∂x (ln B1))
2

m + 4τ 2B1

+ η(3m + 8τ 2B2)(∂x (ln B2))
2

m + 4τ 2B2

)
T2, (8)

where

T1 := e−V0/kT∇x

(
eV0/kT ρ

N

)
,

T2 := e−η/kT ∂η

(
eη/kT ρ

N

)
.

The computational significance is that this (2 + 1)-dimens-
ional equation can be solved fast numerically in contrast to
the original (6 + 1)-dimensional problem. Then the total cur-
rent is immediately found by integrating the flux Fx in the
longitudinal direction over all local energies η, i.e., the total
current I is

I =
∫ ∞

η=0
Fx (x0, η) dη,

which does not depend on the particular cross section given
by x0.

3 Simulation of transmembrane proteins

Ion channels are of essential physiological importance. They
are located in cells membranes and manage the concentra-
tion gradients of ions across the membranes. Hence they are
the fundamental regulators, amplifiers, and transducers of the
nervous system. Ion channels are small enough that interac-
tions between the ions and the channel protein are important
for their operation, while they are large enough that it is
impossible to calculate all such interactions at the atomistic
level on realistic time scales where ionic conductance occurs.

All organisms have ion channels for Na+, K+ and Cl−.

These are significant in osmoregulation and the transmis-
sion of signals via the transmembrane potential between the
inside (potassium) and the outside (sodium and chlorine) of
the cell. Because of their important role in physiology, we
simulate currents through three different ion channels. The
channels considered are the phosphate selective OprP chan-
nel, the Gramicidin A channel, and the Streptomyces livi-
dans KcsA channel. In each case, the calculated currents are
compared with measurements. We also discuss virtual KcsA
channels in order to elucidate if and how the structure of the
natural channels is optimal with respect to its selectivity.

3.1 Determination of the confinement potential

The confinement potential enters the transport model via
Eqs. (3) and (5). For each channel type and each ionic species,
the potential of mean force (PMF) and the channel width
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completely determine the confinement potential, i.e., the
PMF and the channel width determine the functions V0, b
and B in the confinement potential V in (3). In other words,
the microscopic structure of the channel as it is experienced
by each ionic species is fully described by the PMF and the
channel width.

Harmonic confinement potentials can always be con-
structed by calculating the best approximation from given
forces according to [11, Sect. 5.1]. Here the channels are con-
sidered to be straight for simplicity so that b1(x) = b2(x) =
0 holds for all x. The minimum energy, i.e., the minimum of
each parabola, at each x along the channel is then given by
V (x, (0, 0)�) = V0(x). These energies are taken from the
literature for each structure considered here, e.g., they are
PMFs [8]. Applied potentials can be added to V0.

Finally, the coefficient function B is determined from the
known width of the structure. For simplicity, we assume that
the channels have a rotational symmetry so that B := B1 =
B2. The width r of the structure at x for the present purposes
is the distance r(x) in y-direction from the center of the cross
section where the confinement force reaches a constant value
F that may depend on channel type. In order to determine the
coefficient B from the known width r(x), we first calculate
the gradient as

∇yV (x, y) = ∇y

(
V0(x) + 1

2
B(x)

(
y2

1 + y2
2

))

=
(
B(x)y1

B(x)y2

)
.

Therefore, the confinement force F at x is

|F | = ∣∣∇yV (x, y)
∣∣ = |B(x)|

√
y2

1 + y2
2 = B(x)r(x),

so that the sought coefficient is

B(x) = |F |
r(x)

.

This procedure is used to determine the functions V0, b,
and B in (3) and (5) from the given structure in all of the
following simulations. The channel width is known from
structures in the Protein Data Bank (PDB) and the energy
landscape along the channel from data in the literature for
the PMF, where is has been calculated, e.g., from molecular-
dynamics simulations.

3.2 Simulation of phosphate specific OprP channels

Pseudomonas aeruginosa is a versatile gram-negative outer
membrane bacterium, which can live in various environments
and leads to diseases in humans and animals such as pneu-
monia, osteomyelitis, and meningitis. OprP is a transmem-
brane beta-barrel protein of this bacterium and forms a highly

selective phosphate channel. The selectivity of the pore for
molecular interactions and the permeability of OprP for small
anions or antibiotics in the absence of phosphate were studied
in [18,19].

We simulate the passage of potassium and chlorine ions
through the OprP channel. The PMFs as well as the width of
the channel were determined in [17]. The PMFs are shown
in Fig. 1. The figure illustrates that the potential barriers have
their extrema in the middle of the pore, between R226 and
K121 for chlorine and R59 and D94 for potassium, whereas
the barriers are smaller and the pore is wider near R220, K30,
and K322. These areas are entrance funnels to OprP allowing
chlorine and potassium ions to move easily [17].

In Fig. 2, the measured and simulated K+ and Cl− conduc-
tivities are shown as functions of the applied voltage for an
ionic bath concentration of 0.1 M. The simulations indicate
that the conductivities increase mostly linear between 50 and
100 mV; however, the increases show exponential behavior
for larger applied voltages meaning that the currents become
voltage driven in this regime. Furthermore, the considerable
difference between the conductivities shows that the current
in OprP is mostly chlorine. The simulations show good agree-
ment with the experimental data points in Fig. 2, although the
potassium current is overestimated.

3.3 Simulation of Gramicidin A channels

More measurements are available for Gramicidin A chan-
nels. Gramicidin channels are polypeptide antibiotics active
against gram-positive bacteria such as, e.g., Escherichia
coli, Shigella, and Stenotrophomonas. They are selective for
monovalent cations [3]. Their effect is to increase the cation
flow through the target bacterial membrane due to the forma-
tion of bilayer spanning channels. Figure 3 shows the Grami-
cidin A channel from the side with its alternatingL–D amino-
acid sequence. The structure of the bilayer spanning channel
is well known and the ion permeability can be modulated
by defined chemical modifications whose influence on the
structure can be specified experimentally.

In order to validate the simulation approach, we compare
the simulated sodium current as a function of applied voltage
and bath concentration with measurements [2,14]. Figure 4
shows the results for various ionic concentrations from 10
to 1000 mM, and Fig. 5 shows the results for positive and
negative applied voltages. In both figures, very good agree-
ment between the simulated and measured Na+ currents is
observed.

The selectivity of Gramicidin channels with respect to
different ion species is also an important property. In
order to investigate this effect, we calculated the potas-
sium current and compared the results with experimental
data [2]. Very good agreement was found and is shown
in Fig. 6. The potential barrier inside the channel leads
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Fig. 1 Potentials of mean force (top) of potassium (left) and chlorine (right) in the OprP phosphate channel, and the corresponding channel radius
(bottom). Arginine ladders are additionally shown

Fig. 2 The simulated
potassium (left) and chlorine
(right) conductivities versus
experimental data as functions
of applied voltage for one of the
monomers of the porin
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to higher selectivity for K+ ions compared to Na+ ions,
and the current ratio varies between 2.5 and 3 depending
on applied potential. The PMFs are from [1,13], respec-
tively.

In order to model the transport of anions, we used the
PMF of Cl− in Gramicidin A from [9, Fig. 3]. The PMF in
the channel is approximately two times larger than the PMF
of potassium, which greatly reduces the Cl− current. Using
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Fig. 3 Structure of the Gramicidin A channel (PDB code 1MIC)

an ionic concentration of 0.1 mM and an applied voltage of
0.1 mV yields a negligible Cl− current of 1.5577×10−7 pA,
which agrees well with experimental data [9].

3.4 Simulation of KcsA channels

The transduction of potassium ions through transmembrane
channels plays an important role in cell metabolism. In con-

trast to sodium, potassium is intracellular. Potassium chan-
nels enable and control the flux of potassium ions across
cell membranes and are found in most cell types. They reg-
ulate a wide variety of cell functions; for example, the high
selectivity of the KcsA channel with respect to potassium is
fundamental for signal conduction in nerve cells.

The potassium channel of S. lividans, KcsA (PDB id
1K4C), is a membrane protein with sequence similarity to
all known potassium channels, implying that the selectivity
filter is highly conserved. The KcsA channel consists of four
identical subunits that form an inverted pyramid surround-
ing a large central cavity and leading to a narrow pore at the
extracellular end. The pore region consists of an inner pore,
a large cavity near the middle of the pore, and the selectivity
filter that separates the cavity from the extracellular liquid
(see Fig. 7) [5,10]. The inner pore and the internal cavity are
hydrophobic, while the selectivity filter is lined exclusively
by chain atoms belonging to the conserved sequence. Muta-
tion experiments demonstrated that this signature sequence
is responsible for potassium selectivity. The selectivity filter

Fig. 4 Comparison of
experimental [14] and simulated
Na+ currents through the
Gramicidin A channel as
functions of applied potential
for different bath concentrations
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Fig. 6 The simulated versus
the experimental [2] K+ current
for different applied voltages
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Fig. 7 The 1K4C potassium channel KcsA with a radius of 0.28 nm
and a length of 12.4 nm. The extracellular space and the cytoplasm are
illustrated with red and blue dotted lines, respectively (Color figure
online)

has four binding sites which can be occupied by monova-
lent cations or water molecules. The geometry of the KcsA
channel is much more complicated than other transmem-
brane pores. The coefficient functions were again determined
as described in Sect. 3.1 according to the geometry of the
protein.

Numerical investigations show that the current as a func-
tion of applied voltage is larger compared to the other pores
underlining the selectivity of the channel for potassium (see
Fig. 8). In the next step, we simulate the transduction of
sodium ions through the channel. As is well-known, their
conductivity is much smaller and the sodium current is much
lower even at high sodium concentrations. This is also seen
in the simulations in Fig. 9 using the correct potential bar-
rier for sodium ions [20]. Moreover, in order to simulate the
transport of the ions, we used the experimental data in [4]
and the PMF in [20].

Having validated the simulations in this manner, we can
now discuss the selectivity of the KcsA channel. We pose the
question why the rings of oxygen atoms in the selectivity filter
are repeated four times. The oxygen atoms in the selectivity
filter provide binding sites for the cations and they imitate
the hydration shells of cations in bulk water. In the natural
protein, the oxygen atoms are arranged in four rings with the
coordination distance varying from 0.27 to 0.308 nm [21].
The length of the selectivity filter in the continuum model cor-
responds, of course, to the number of binding sites in the filter.

The natural selectivity filter is approximately 1.2 nm long
[5]. Since the length of the natural selectivity filter cannot be
changed in experiments (huge modifications of the protein
would be necessary) but can be changed quite easily in sim-
ulations, we have investigated the effect of filter length here.
In other words, we have simulated virtual channels that have
shorter and longer selectivity filters. An applied voltage of
100 mV is applied across the channel for bath concentration
of 100 and 200 mM. The numerical results for the ratio of
potassium–sodium current, used here as a measure of selec-
tivity, are shown in Fig. 10.

If there is only a selectivity filter shorter than the nat-
ural one, the selectivity decreases. On the other hand, for
filters longer than four oxygen rings, the selectivity remains
essentially constant. This behavior is observed independent
of bath concentration. Because of the selectivity for potas-
sium, the Na+ current is more than 20 times smaller than the
K+ current.

These results mean that a filter length of four oxygen rings
is the optimal filter length: longer filters would not be advan-
tageous compared to the natural selectivity filter, but they
would be harder to assemble and stabilize in a lipid bilayer
and would be generally wasteful, while shorter filters would
have the disadvantage of allowing larger sodium currents and
reducing selectivity, diminishing the physiological purpose
of the KcsA channel.
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Fig. 8 Comparison of
simulated and measured [4] K+
current through a KcsA channel
for bath concentrations of 100
and 200 mM
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Fig. 9 Comparison of
simulated and measured [7]
Na+ current through a KcsA
channel for a 500 mM bath
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Fig. 10 The ratio of
potassium–sodium currents as a
function of the length of the
selectivity filter. For filters
longer than four oxygen rings,
the ratio is constant, while it
decreases as the filter length
decreases below this length
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4 Conclusions

We have used a continuum transport model for confined
structures to investigate three kinds of transmembrane chan-
nels. The main feature of this diffusion-type transport equa-
tion is that the geometry of the confining protein directly
determines the transport coefficients in the equation. Its great
advantage as a continuum model is the fact that the currents
are obtained immediately from the 2D numerical solution by
integration over local energy; the numerical solutions of this
2D equation can be calculated quickly.

The model was validated by the application to three kinds
of channels. In all cases, very good agreement between sim-
ulation and experiments was found, implying that the poten-
tial barriers (PMFs) inside the channel and the widths of the
channels already capture the essential features of their func-
tioning.

In the case of the OprP porin and Gramicidin A, this
simulation capability can be used to further our quantitative
understanding of antibiotics. For example, mutations can be
investigated by first calculating the potential barrier that ions
experience and then calculating ionic currents through the
proteins.

The KcsA channel was considered as the third exam-
ple. The main physiological function of the KcsA potassium
channel is its selectivity between sodium and potassium ions.
Here the geometry of the protein is much more complicated
than the geometry of other pores. Nevertheless, the simulated
sodium and potassium currents match the measured data very
well. The optimal selectivity filter length was determined by
simulating virtual channels and agrees well with the natural
filter length. Hence it is possible to explain why the KcsA
channel has this particular geometry.
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