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Abstract A basis-adaptation method based on polyno-
mial chaos expansion is used for the stochastic nonlinear
Poisson–Boltzmann equation. The uncertainty in this numer-
ical approach is motivated by the quantification of noise and
fluctuations in nanoscale field-effect sensors. The method
used here takes advantage of the properties of the nonlinear
Poisson–Boltzmann equation and shows an exact and effi-
cient approximation of the real solution. Numerical examples
are motivated by the quantification of noise and fluctuations
in nanowire field-effect sensors as a concrete example. Basis
adaptation is validated by comparison with the full solution,
and it is compared to optimized multi-level Monte-Carlo
method, and the model equations are validated by compari-
son with experiments. Finally, various design parameters of
the field-effect sensors are investigated in order to maximize
the signal-to-noise ratio.

Keywords Poisson–Boltzmann equation · Current ·
Biological noise · Polynomial chaos expansion · Biosensor

1 Introduction

A basis-adaptation method for the stochastic nonlinear
Poisson–Boltzmann equation is applied. Here the main
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sources of randomness in the stochastic version of the nonlin-
ear Poisson–Boltzmann equation are random permittivities
and random charge concentrations near the sensor surface.
Because the number of dimensions describing the random
permittivity and charge concentration is large in realistic
applications, a reduction of the computational complexity is
essential and this goal is achieved by the basis-adaptation
approach presented here. The quantity of interest is the
current through the transducer subdomain, which can be
calculated by a nonlinear functional in the graded-channel
approximation.

The Poisson–Boltzmann equation, whose stochastic ver-
sion is the basic model equation here, is one of the most
important equations in computational chemistry. The equa-
tion models the electrostatic potential in any application
where screening by free ions in a liquid occurs. It also
describes screening in a semiconductor. A concrete phys-
ical realization of the model equation are affinity- based
field-effect sensors. In the numerical examples shown here,
nanowire field-effect biosensors are simulated, and the
expected values, standard deviations, and signal-to-noise
ratios are calculated.

Affinity-based sensors, in particular the recently exper-
imentally demonstrated nanowire field-effect sensors, pose
demanding numerical problems because of the large num-
ber of stochastic dimensions. A cross section through a
nanowire field-effect biosensor [10,12,15,22,26,27,34,35,
42] is shown in Fig. 1, but the same principle also applies
to gas sensors [6,20,31,40]. The sensors are affinity-based,
since the target molecules are only detected when they are
sufficiently close to the sensor. The current through the semi-
conducting silicon nanowire, which is the actual transducer,
is measured. The conductance of the nanowire is modulated
by the electrostatic potential, which—in turn—is changed
when charged target molecules bind to the probe molecules
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Fig. 1 Cross section through a field-effect nanowire sensor, showing
subdomains and boundary conditions. In the electrolyte (Dliq), the ran-
dom binding of target molecules to immobilized receptor molecules at
the surface defines molecule subdomain (DM)

functionalized at the surface of the sensor. The number of
target molecules bound to probes at the sensor surface is
random, since the target molecules bind to and dissociate
from the probe molecules. The positions of the probe mole-
cules, as well as their orientations and the orientations of
the probe–target complexes are random. This type of noise is
often called biological noise [16,38]. The uncertainty domain
(electrolyte and molecule subdomains) is shown in Fig. 1 as
well. Each molecule or each probe molecule adds at least one
stochastic dimension.

The concept of nanowire field-effect sensors is very gen-
eral and has been applied to the detection of DNA, proteins
such as tumor markers, and toxic gases such as carbon
monoxide. The sensors offer advantages like miniaturization,
high sensitivity, fast response, and low power consumption
[12,27,35]. Furthermore, the target molecules do not have to
be marked in field-effect sensors in contrast to the commonly
used fluorescent or radioactive markers in other detection
methods.

There are various sources of noise and fluctuations in
affinity- based sensors, where the biological noise is one of
the most prominent ones. Its quantification is essential for
understanding the signal-to-noise ratio [33] and the detection
limit of the sensors. Regarding the modeling, the randomness
due to the biological noise at the sensor surface propa-
gates through a partial differential equation (PDE) model
and finally yields the sensor output. The model used in the
present work, based on the stochastic nonlinear Poisson–
Boltzmann equation and a functional for the quantity of
interest, is described in detail in Sect. 2.

Previous work on the modeling and simulation of nanowire
field-effect sensors has focused on deterministic equations.
The inherent deterministic multiscale problem was solved
in [18]. Existence and uniqueness of a self-consistent model
was shown in [3], and a FETI algorithm was presented in
[4]. A method for calculating the probabilities of the orienta-

tions of various molecules and hence the stochastic process
was developed in [17]. The design of optimal sensors was
discussed in [5], and the biological noise was modeled in
[37,38]. An effective equation for the covariance was found
in [19] as the result of a homogenization approach. Nanowire
field-effect biosensors were also modeled and simulated
in [22,28–30], where the alternating-current small-signal
regime was considered.

The numerical approach developed here can also be
applied to investigate various sources of noise and fluctu-
ations in more traditional semiconductor devices such as
MOSFETs and FinFETs. Random-dopant effects are one
example [1,8] and of great importance for integrated circuits
consisting of nanoscale transistors. Another example is ran-
dom telegraph noise (RTN) [23,39]. It is caused by random
trapping and de-trapping of charges at interface states and
also of great importance for such small devices. By using
stochastic partial differential equations, these effects can be
modeled by stochastic coefficients analogously to the present
work.

The rest of this paper is organized as follows: In Sect. 2, the
stochastic Poisson–Boltzmann equation and the rest of the
model are described explicitly. In Sect. 3, basis adaptation
for this model is introduced in detail. In Sect. 4, optimal
multi-level Monte Carlo is shortly described and serves as
a comparison. Numerical results are presented in Sect. 5.
Finally, conclusions are drawn in Sect. 6.

2 The model equations

2.1 The stochastic nonlinear Poisson–Boltzmann
equation

The main model equation is the stochastic nonlinear Poisson–
Boltzmann equation:

− ∇ · (A(x, y,ω)∇u(x, y,ω))

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q(Cdop(x, y,ω)+ p(x, y,ω) − n(x, y,ω)) in DSi,

0 in Dox,

ρ(x, y,ω) in DM,

−2ϕ(x, y,ω) sinh(β(u(x, y,ω) − ΦF(x, y,ω))) in Dliq,

(1a)

u(0+, y,ω) − u(0−, y,ω) = α(y,ω) on Γ, (1b)
A(0+)∂xu(0+, y,ω) − A(0−)∂xu(0−, y,ω) = χ(y,ω) on Γ,

(1c)

u(x, y,ω) = uD(x, y) on ∂DD, (1d)
∇nu(x, y,ω) = 0 on ∂DN. (1e)

Here, u is the electrostatic potential, A is the permittiv-
ity function, ϕ is the ion accessibility function, ΦF is the
Fermi level, ρ describes the fixed (surface) charges of mole-
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cules, and Cdop is the doping concentration. Furthermore,
(Ω,Σ, P) is a probability space and ω ∈ Ω is a set of inde-
pendent Gaussian random variables. The domain D ⊂ R2 is
depicted in Fig. 1. It is partitioned into the four subdomains,
i.e., DSi, (silicon), Dox (oxide), Dliq (liquid), and DM (mole-
cule) with the interface Γ between Dox and Dliq. The silicon
nanowire is always covered by a thin layer of silicon oxide
(Dox) and surrounded by the liquid containing the target
molecules. The subdomain DM is defined when in the liquid
the charged target molecules bind to the probe molecules at
oxide (insulator) surface. The relative permittivities of the
subdomains are ASi = 11.7, Aox = 3.9, AM = 3.7, and
Aliq = 78.4. Furthermore, q > 0 is the elementary charge,
and the constant β is defined as β := q/(kBT ) in terms of the
Boltzmann constant kB and the temperature T . In the simula-
tions performed here, a thermal voltage of 0.021 V was used.
The concentration p(x, y,ω) of positive free charge carriers
and the concentration n(x, y,ω) of negative ones are given
by Boltzmann distributions as

p(x, y,ω) = κi exp
(

−q(u(x, y,ω) − ΦF)

kBT

)
, (2a)

n(x, y,ω) = κi exp
(
q(u(x, y,ω) − ΦF)

kBT

)
. (2b)

Here, the constant κi is the intrinsic carrier concentration ni
of the semiconductor (1.5 × 1010 cm−3) or the bulk ionic
concentration [7] in the electrolyte.

The discontinuities or interface conditions in the elec-
trostatic potential arise from homogenization [18]. At the
interface Γ between the silicon oxide and the liquid, the
charge concentration exhibits a rapidly oscillating spatial
structure which leads to a multiscale problem [18]. The con-
tinuity conditions (1b) and (1c) are due to the jump in the
permittivity A between two different materials. Here, 0+
denotes the limit at the interface on the side of the liquid,
while 0− is the limit on the side of the silicon oxide layer.
The two interface conditions mean that the rapidly oscillating
charge concentration in the surface layer is described by the
macroscopic dipole moment density α and the macroscopic
surface charge density χ [4].

The boundary conditions in (1), as illustrated in Fig. 1, are
Dirichlet boundary conditions (∂DD) and Neumann bound-
ary condition (∂DN). A voltage across the simulation domain
in the vertical direction can be applied as well by an electrode
in the liquid (solution voltage) and by a back-gate contact at
the bottom of the structure (back-gate voltage). These are
also part of ∂DD. Zero Neumann boundary conditions hold
on the Neumann part ∂DN of the boundary.

In crystals of pure silicon, the number density of electrons
in the conduction band and of holes in the valence band are
equal, and therefore the Fermi level as a function of doping
concentration can be calculated for electrons and holes as

ΦF = Ec + kBT ln
n
ni

= Ec − kBT ln
p
ni
,

where Ec is the minimum energy of the conduction band in
the semiconductor and ni is again the intrinsic carrier concen-
tration of silicon. The equation holds true because pn = n2

i .

2.2 The quantity of interest and the graded-channel
approximation

Solving the Poisson–Boltzmann equation (1) yields the elec-
trostatic potential on a cross section of the structure as shown
in Fig. 1, from which the current through the sensor can be
calculated by the graded-channel approximation as in [17].
The graded-channel approximation can be derived from the
drift-diffusion equations as follows:

∇ · Jn(x, y,ω) = qR(n(x, y,ω), p(x, y,ω)),

− ∇ · Jp(x, y,ω) = qR (n(x, y,ω), p(x, y,ω)) ,

Jn(x, y,ω) = q(Dn∇n(x, y,ω)

− µnn(x, y,ω)∇u(x, y,ω),

Jp(x, y,ω) = q(−Dp∇ p(x, y,ω)

− µp p(x, y,ω)∇u(x, y,ω)),

where n and p are the electron and hole concentrations; Jn
and Jp are their current densities; Dn and Dp are their dif-
fusion coefficients; and µn and µp are their mobilities. In
addition, we use the popular Shockley–Read–Hall (SRH)
recombination rate:

R(n(x, y,ω), p(x, y,ω))

:= n(x, y,ω)p(x, y,ω) − n2
i

τp(n(x, y,ω)+ ni)+ τn(p(x, y,ω)+ ni)
.

Two assumptions are necessary for the graded-channel
approximation. The first assumption is that only the drift cur-
rent, and not the diffusion current, plays a role. This yields
the current density as

J drift := J drift
n + J drift

p = −qµnn∇u − qµp p∇u.

The second assumption is that the electric field is constant
along the z-axis of the sensor, i.e., E = (uS − uD)/Z holds,
where uS − uD is the potential difference between the two
contacts (the source and the drain) with a distance Z apart.
Since E = −∂zu, we hence find

J drift = qE(µnn + µp p).

The total electrical current is now obtained by taking the
integral
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I (ω) := f (u(x, y,ω)) :=
∫

J drift dxdy

= qE
∫
(µnn(x, y,ω)+ µp p(x, y,ω)) dxdy (3)

with n and p from (2) over a cross section of the semiconduct-
ing part (DSi) of the sensor. This is the quantity of interest
that is recorded in measurements.

As we have seen, the graded-channel approximation is
a simplification of the drift-diffusion–Poisson equations and
neglects diffusion. Therefore, the full drift-diffusion–Poisson
system is a better model for investigations in the subthreshold
regime.

2.3 The random coefficients in the stochastic nonlinear
Poisson–Boltzmann equation

The biological noise, i.e., the random movement of probe and
target molecules at or near the surface of any affinity-based
sensor, propagates through a PDE model of the sensor and
results in noise in the sensor output. Biological noise is one
of the major sources of noise and fluctuations in field-effect
sensors; it is due to two effects: the random association of
target molecules with probe molecules functionalized at the
sensor surface and their random dissociation from the probe
molecules as well as randomness in the orientation of any
molecule bound to a surface. In order to quantify biological
noise, the association and dissociation processes were mod-
eled in [38], where the expected number and variance of the
number of target molecules bound to probe molecules were
calculated. The random orientations were modeled in [17],
where the probabilities of the orientations were determined.

When any affinity-based sensor is manufactured, the probe
molecules are functionalized at the sensor surface [32] at ran-

dom, but fixed locations. In other words, each probe molecule
is a binding site that is occupied by a target molecule with
a certain probability that can be determined [38]. Unspe-
cific binding of target molecules to the sensor surface in the
absence of probe molecules is also possible. Since this effect
is not important in a well-designed sensor, it is not included
here; however, it can be taken into account in the model in a
straightforward manner.

The orientation of a charged molecule with respect to a
charged surface is determined by the electrostatic free energy
of the system. A method for determining the free energies of
charged molecules as functions of various parameters was
presented in [17]. First, the electrostatic free energy E(η) is
calculated as a function of the angle η := (η1, η2), which
represents the orientation of the molecule with respect to the
surface. In general, each molecule has two degrees of free-
dom, although in the case of DNA oligomers their structure
leads to a simplification and one angle η := η1 ∈ [0,π/2] is
sufficient. Then a Boltzmann distribution is used to find the
probability of a configuration as a function of the angle η. It
is given by

P(η) = exp(−E(η)/(kBT ))∫
exp(−E(η)/(kBT ))dη

∝ exp
(

− E(η)
kBT

)
. (4)

Figure 2 shows a concrete example and the data used in the
numerical examples in this paper. Electrostatic free energies
for single- and double-stranded DNA oligomers of different
lengths are shown. As the charge density of dsDNA is twice
that of ssDNA, the binding energies of double-stranded DNA
(dsDNA) oligomers are higher than their single-stranded
(ssDNA) counterparts. The length of the oligomers decreases
the free energy mostly for lower angles, i.e., for horizontal
configurations, where electrostatic interactions with the sur-

Fig. 2 Electrostatic free
energies of various ssDNA and
dsDNA oligomers as a function
of angle for a surface charge of
−0.5 q nm−2 in a liquid with an
ionic concentration of 30 mM.
The angles are defined with
respect to the surface, where 0
means a molecule parallel to the
surface and π/2 means a
molecule perpendicular to the
surface (as indicated in Fig. 1).
Data were obtained from [17]
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Fig. 3 Probability density function (left) and cumulative distribution function (right) of random orientation of 12-base pair ssDNA oligomers in
an aqueous solution with different ionic concentrations and surface charges. The proteins rotate between 0 (horizontal) and π/2 (vertical) degrees
at the surface

face are stronger. The orientations also depend on the ionic
concentration of the liquid, as the effect of Debye screening
is significant. Figure 3 shows the probability density function
(PDF) and cumulative distribution function (CDF) of random
orientation of various DNA oligomers bound to the nanowire
surface. The figure indicates the Gaussian distribution of
random variables. In summary, the coefficients A(x, y, .),
ρ(x, y, .) and ϕ(x, y, .) in (1) are random variables, i.e.,
A(x, y,ω), ρ(x, y,ω), and ϕ(x, y,ω) depend on an ele-
ment ω = (ω1,ω2, . . . ,ωn) of the underlying probability
space (Ω,Σ, P). The sample space Ω describes the loca-
tions of the probe molecules, the state of the probe molecules
(bound to a target molecules or not), and the orientations of
the probe molecules and probe–target complexes. The mod-
eling and simulation results in [17,38] yield the probability
measure P .

We assume that the number of probe molecules per unit
area follows a Poisson distribution. Once the number N of
probe molecules or binding sites and their positions are fixed,
the sample space is

Ω =
(
{0, 1} × [0,π/2]

)N
,

where 0 denotes the absence of any target molecule, 1 the
presence of a target molecule, and η ∈ [0,π/2] is the angle
of molecule.

3 Basis adaptation

It is clear from Fig. 1 and Sect. 2 that the quantity of inter-
est I in (3) is a nonlinear functional of the potential u, the

solution of the stochastic semilinear elliptic equation (1). Fur-
thermore, in order to obtain a reasonable estimation of the
(expected value of) current, several evaluations are neces-
sary, which are computationally speaking expensive. These
facts motivate the use of basis adaptation [11] to solve (1).

3.1 Polynomial chaos expansion (PCE)

Generalized polynomial chaos (GPC) seeks to represent an
approximation of a random function by a set of random vari-
ables and orthogonal polynomials. It estimates coefficients
for known orthogonal polynomial basis functions based on a
set of response-function evaluations using sampling, tensor-
product quadrature, or Smolyak sparse-grid approaches [13].
The general idea of the expansion is to transfer randomness
to the basis functions and to use Hermite polynomials as
basis functions. A stochastic function like u ∈ L2(D,Ω)

can be explained as its Wiener–Hermite polynomial chaos
expansion [41]:

u(x,ω) :=
∑

β

uβ(x)Φβ(ω). (5)

Here, Φβ is an orthonormal Hermit polynomial, β =
(β1,β2, . . . ,βn) is a vector of n nonnegative integers which
describes the order of polynomials, x ∈ D, and ω is a vec-
tor of uncorrelated Gaussian random variables. In order to
approximate the series (5), we truncate it to a finite number
of terms for the sake of computation

u(x,ω) :=
∑

β∈Mk

uβ(x)Φβ(ω), (6)
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where the truncated index set

Mk = {β = (βi , i ≥ 1 | βi ∈ {0, 1, . . . , k}}

is used for the series. The function can be characterized by
its expected value with respect to the probability space as

E(u(x,ω)) =
∫

Ω
u(x,ω)µ(ω)dω, (7)

where µ(ω) is the probability density function (PDF) cor-
responding to random variable ω. By the Cameron–Martin
theorem, GPC approximation of (6) is fully converged in L2

norm if

lim
k→∞

∫

Ω

⎛

⎝
∑

β∈Mk

uβ(x)Φβ(ω) − u(x,ω)

⎞

⎠µ(ω)dω = 0.

(8)

The general idea of our basis adaptation is rotating random
variables and transferring them from uncorrelated to corre-
lated random variables. To this end, we define an isometry
L : Rn → Rn to define new basis. Therefore, the rotated
random variables are defined as

γ := Lω. (9)

The solution of (1) under this isometry can be obtained by

u(x, γ ) =
∑

β∈Mk

uLβ (x)Φβ(Lω). (10)

The calculation of the coefficients of the series is the main
point which can be defined as

uLβ (x) =
∑

β,δ∈Mk

uδ(x)
〈
Φβ(ω),Φ

L
δ (ω)

〉

=
∑

β,δ∈Mk

uδ(x)
〈
Φβ(ω),Φδ(γ )

〉
. (11)

The inner product in the Hilbert space is characterized by
weight function as the probability density function relative
to the Gaussian measure [41]. An important property of the
polynomials which will be used in the following estimations
is their orthogonality with respect to the Gaussian probability
measure. Therefore, the orthogonality of polynomial basis
can be used to simplify (11) as follows:

uLβ (x) =
∑

β∈Mk

uβ(x)
〈
Φβ(ω),Φβ(γ )

〉
. (12)

The isometry L still needs to be constructed in a suitable
manner to transfer one basis (ω) to other basis (γ ). To con-
struct the isometry L, we use quadratic adaptation [36]. As
the first step, we define a multi-index qi = (0, . . . , 1, . . . , 0)
where only the i th point is 1 and other elements are zero. The
matrix L is given by

LT DL = B, (13)

where the diagonal elements of B are bii = u2qi√
2

and the

rest of entries are bi j =
uqi j√

2
. After this calculation, L and

D, which are, respectively, eigenvectors and eigenvalues of
matrix B, can be calculated.

3.2 Application to the stochastic nonlinear
Poisson–Boltzmann equation

In the application considered here, the random process is
localized near the manifold that describes the surface of the
sensor. Physically speaking, the free ions in the aqueous solu-
tion screen the effect of the charges of the biomolecules,
whose movement is random. The distance where the field
effect is still significant is given by (a multiple of) the Debye
length. Mathematically speaking, the semilinear term in (1)
results in an exponential decay of the solution away from
a point charge. Therefore, the important uncertainty area of
biomolecules is at the surface.

In Monte-Carlo sampling, the coefficients of (6) are esti-
mated as follows:

uβ(x) =
1
M

M∑

j=1

u
(
x,ω( j))Φβ

(
ω( j)), (14)

where M is the number of evaluations and β ∈ Mk . For the
fluctuation of n target molecules at the surface, we calculate
(10) as an approximation of (1) using the following formula:

uL(x, γ ) = uL0 (x)+
n∑

i=1

uLi (x)γi +
n∑

i=1

uLi i (x)
γ 2
i − 1√

2

+
∑

β∈Mk
k≥3

n∑

i=1

uLβi Φβ(γi ), (15)

where the rotated random variables are as (9) and the coef-
ficients are calculated by (12) and (14). The main advantage
of the basis adaptation compared to full-dimensional vari-
ables (ω) is that with transformation of the chaos to Gaussian
process, the cost of calculation decreases dramatically. In
fact, in spite of truncation of (15), e.g., second-order adapted
series, very good estimation of (1) can be achieved. In this
work, the main goal is the calculation of electrical current

123



J Comput Electron

(quantity of interest). Hence, with respect to the transforma-
tion, it can finally be obtained by the following equation:

I (γ ) = f
(
uLβ (x, γ )

)
. (16)

4 Multi-level Monte-Carlo method

We have also devised a multi-level Monte-Carlo (MLMC)
method for this problem. Since numerical results comparing
MLMC and basis adaptation will be shown in Sect. 5, a sum-
mary of our MLMC approach is given here. The multi-level
approach to the Monte-Carlo method was introduced for sto-
chastic ordinary differential equations first [14] and has been
applied to stochastic partial differential equations since then
[2,9].

The basic idea of MLMC is to use levels ℓ ∈ {0, . . . , L}
with grids of different fineness hl in order to approximate the
expectation E[u] of the solution u and to reduce the variance
by combining the solutions at various levels. It is straightfor-
ward to see that

E[uhL ] =
L∑

ℓ=1

E[uhℓ − uhℓ−1 ]

holds after defining E[uh0 ] := 0. In multi-level Monte Carlo,
the expectation E[uhℓ − uhℓ−1 ] is approximated by a level-
dependent number Ml of samples, i.e., the estimator

EMLMC[u] :=
L∑

ℓ=1

EMC[uhℓ − uhℓ−1 ]

is used, where EMC is the usual Monte-Carlo estimator. For
the mesh refinement, we define the mesh size in level ℓ as

hℓ =
h0

2ℓ
,

where h0 denotes the mesh size of the coarsest triangulation.
If an inequality of the form

∥V[uhℓ − uhℓ−1 ]∥L2(D) ≤ C2
0h

α
ℓ−1 ∃C0 ∈ R+ (17)

holds for the variance and an inequality of the form

∥E[uhL − u]∥L2(D) ≤ C2
1h

β
L ∃C1 ∈ R+ (18)

holds for the spatial discretization, then it can be shown that
the estimate

MSE(u) ≤ C2
0

L∑

ℓ=0

M−1
ℓ hα

ℓ + C2
1h

β
L (19)

holds for the mean square error.

It is additionally possible to optimize the fineness of the
grids, the number of samples at each level, and the number
of levels. More precisely, one considers the minimization
problem

minimize
L∈N,Mℓ,hℓ∈R+

L∑
ℓ=0

Mℓh
−γ
ℓ

subject to C2
0

L∑
ℓ=0

M−1
ℓ hα

ℓ + C2
1h

β
L ≤ ϵ.

(20)

Here, L ∈ N, the terms h−γ
ℓ denote the average cost at level ℓ,

and ϵ is the given total error to be achieved. Then this min-
imization problem can be solved by numerical optimization
methods, e.g., interior point. This yields the optimal MLMC
method for a given spatial discretization method such as FEM
of a given order, a given implementation, and a given error.
Here, first of all we take advantage of multi-level Monte
Carlo, i.e., variance reduction of random variables. Secondly,
with optimized hierarchies of mesh size and number of sam-
ples, the lowest computational complexity (work) is achieved
for a given ϵ. It provides an efficient alternative of Monte
Carlo.

5 Numerical results

In order to assess the efficiency of the basis-adaptation
method devised and also to compare it to the MLMC
approach, the structure in Fig. 1 was considered with real-
istic parameter values. It corresponds to a cross section of
a nanowire field-effect biosensor. To verify our stochastic
methods, the statistical parameters of quantity of interests
(current) are compared. To this end, we compare the expected
value of current (E(I )) with respect to different physical
parameters, e.g., ionic concentration, doping concentration.
Moreover, we define signal-to-noise ratio (SNR) of current
as

SNR(I ) := E(I )√
Var(I )

,

where Var(I ) indicates the variance of quantity of interest.
The ratio enables us to study the effect of the parameters on
the biological noise, i.e., random movement of biomolecules
at the surface.

When quantifying noise and fluctuations in sensors, vari-
ous situations where different types of molecules are present
should be considered. Probe molecules are functionalized
at the sensor surface [32] when the sensor is manufactured
and thus they are responsible for selectivity. In the case of
DNA sensors, the probe molecules may be single-stranded
peptide-nucleic-acid (PNA) oligomers, which are uncharged,
or ssDNA oligomers, which are highly charged. The probe
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(right) widths of transducer. The simulations are performed for the reference structure, where the back-gate voltage was varied
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molecules move randomly, although there are preferred ori-
entations, which have been calculated [17]. Target molecules
bind to the probe molecules and are detected by the field
effect modeled here. In the case of a DNA sensor, ssDNA
oligomers bind to ssDNA or PNA oligomers. Binding and
unbinding are stochastic processes [38]. Here we consider the
leading example of a DNA sensor with ssDNA oligomers as

probe molecules and ssDNA oligomers as target molecules.
The double-stranded probe–target complex carries twice the
charge of a single strand. These considerations give the sto-
chastic coefficients in (1).

The sizes in the various subdomains in Fig. 1 were deter-
mined by the following considerations. As found in [5], the
optimal width of the silicon transducer is certainly smaller
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Fig. 6 Comparison of expected value (top) and signal-to-noise ratio of
current (bottom) for 60-nm (left) and 100-nm (right) widths as functions
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the surface charge is −0.5 q nm−2; the oligomer length is 12 base pairs;
VBG = −3 V; and the thermal voltage is 0.021 V

than 100 nm, while its precise value depends on other
parameters such as the applied back-gate voltage. Smaller
geometries were found to have higher sensitivity.

In order to validate the basis-adaptation approach, two
nanowires with different widths are compared and shown in
Fig. 4. The geometry of the sensor is shown in Fig. 1, where
the thickness of the oxide layer is 8 nm and the thickness
of the nanowire is 50 nm. For the simulations, we define
a reference structure, where the back-gate voltage (VBG)

is −3 V; the solution voltage is 0 V; uS − uD is 0.2 V;
the length of the nanowire is 1000 nm; the ionic concen-
tration is 30 mM; the surface charge is −0.5 q nm−2; the
doping concentration is 1016 cm−3; the oligomers consist
of 12 base pairs; and the thermal voltage is 0.021 V. The
length of each base pair is 0.34 nm. Furthermore, the elec-
tron mobility is 1000 cm2 V−1 s−1, and the hole mobility
is 100 cm2 V−1 s−1. The model is validated by comparison
with experimental data (using the same data as in [5]).
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Fig. 7 Comparison of expected value (top) and the signal-to-noise ratio
of the current (bottom) for 60-nm (left) and 100-nm (right)-wide sensors
as functions of surface charge density. Here, the doping concentration

is 1016 cm−3; the ionic concentration is 30 nm; the oligomer length is
12 base pairs; VBG = −3 V; and the thermal voltage is 0.021 V

The good agreement shows that the current calculated by
the graded-channel approximation in Sect. 2.2 works very
well for this kind of device due to its long length. Secondly,
the solutions obtained by basis adaptation are compared with
full-dimensional solutions.

The basis-adaptation approximation is obtained using
a second-order polynomial chaos expansion of (15). The
full-dimensional solution is the benchmark and actually

results from Hermite polynomial chaos expansion up to
order 2. Here, the simulations are for fluctuations of 10 tar-
get molecules (n = 10) and 1000 Monte-Carlo replications
(M = 1000). The agreement suggests that the implementa-
tion is correct. The differences between the full- dimensional
solutions and the solutions obtained by basis adaptation
become larger as the absolute value of the back-gate volt-
age increases; this is due to the fact that small differences
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are amplified by the large applied potential. The results
are shown in Fig. 4. In the basis adaptation, the differ-
ence between second-order and third-order of PCE for both
60- and 100-nm-wide nanowires was negligible; therefore,
second-order is used for all expected value and noise cal-
culation in subsequent simulations. The results indicate the
efficiency and the exactness of the basis adaptation against
the full solution. The agreement with experimental data is
very good and again justifies the model equations.

In this work, we also apply MLMC as another effec-
tive numerical technique. In different levels, optimized mesh
sizes and number of realizations are obtained by solving
the optimization problem (20). The coefficients of (17) and
(18) are regarding the convergence of expected value and
variance. The total error consists of discretization (spa-
tial) error and statistical errors where the corresponding
exponents are α ≈ 3.2 and β ≈ 1.7. The coefficient γ

is related to the dimension of the computational domain

123



J Comput Electron

(D ⊂ R2). The hierarchies are obtained for the lowest cost
of calculation such that the constraint (MSE) is satisfied for
ϵ = 0.001.

The stochastic equation (1) makes it possible to calculate
higher-order moments and in particular the signal-to-noise
ratio, an important characteristic value. In the following, we
discuss how various important device parameters influence
the quantity of interest, i.e., the current, and the signal-
to-noise ratio. These simulations cover a large part of the
parameter space and hence answer the question whether basis
adaptation is generally useful or only for the choice of para-
meters in the previous figures.

The first parameter investigated here is the doping concen-
tration. Currents were calculated for doping concentrations
between 1015 and 1017 cm−3 and are shown in Fig. 5. The
results show that both the current and the signal-to-noise ratio
increase for 60- and 100-nm-wide transducers as the doping
concentration increases. This means that higher doping con-
centrations not only increase the total current, but they also
improve the signal compared to the noise, yielding a better
sensor.

The second parameter considered here is the ionic con-
centration. It plays a crucial role, since a higher ionic
concentration leads to higher screening and thus reduces the
effectiveness of field-effect sensing. On the other hand, a
certain ionic concentration (at least about 10 mM) is usu-
ally necessary—especially in the case of DNA—to enable
probe–target binding. A Monte-Carlo algorithm to find the
concentration of (counter) ions around biomolecules was
developed in [7], and the ramifications of screening and how
to overcome them were discussed in [21,24]. For a typical
salt concentration of 100 mM, the Debye length is approx-
imately 1 nm and any charge is completely screened at a
distance of only a few nanometers.

The numerical results in Fig. 6 show that the effect
of the intrinsic charges of the target molecules on charge
transport in the transducer is still measurable. Furthermore,
the wider nanowire is more affected by screening within
the semiconductor. Additionally, the signal-to-noise ratio in
the 100-nm-wide transducer is increased by a factor of 10
compared to the 60-nm-wide device. Here, the ionic concen-
tration varies between 10 and 150 mM.

The third parameter investigated here is the surface (fixed)
charge of molecules. The surface charge is important since
it determines the operating point of the sensor, which has
a crucial influence on the sensitivity of the sensor [5]. Fur-
thermore, a more negative surface charge repels target DNA
oligomers, again emphasizing the necessity of considering
the system in a self-consistent manner. In Fig. 7, the differ-
ence between ssDNA and dsDNA oligomers is clearly seen
in both 60- and 100-nm-wide devices, as expected. The width
of the device has a strong influence on current and signal-to-
noise ratio. The current is about twenty times larger in the

wider device, while the signal-to-noise ratio is approximately
twelve times larger.

The fourth and final parameter varied here is the length
(and hence charge) of the DNA oligomers. The oligomers
in the reference structure considered here are 12-base pairs
long. However, depending on the application, the length
of the probe and target oligomers may be varied. Figure 8
illustrates that increasing the oligomer length increases the
current as well as the signal-to-noise ratio.

6 Conclusions

In all the numerical results, a very good agreement between
basis adaptation and the full solution was found. This is
true for a wide range of parameter values: doping concentra-
tion, ionic concentration, surface charge, and size and charge
of molecules which were varied over large intervals. These
numerical results show the effectiveness of basis adaptation
for the stochastic nonlinear Poisson–Boltzmann equation.

The effectiveness of basis adaptation is due to the trans-
formation of random variables and the properties of solutions
of the (stochastic) nonlinear Poisson–Boltzmann equation. In
particular, it is known that pointwise estimates hold for this
type of semilinear problem [3, Lemma 3.2], [25], justifying
the transformation of the basis of stochastic process.

Basis adaptation was also compared to a multi-level
Monte-Carlo method as an example of another modern
numerical approach for computing expected values of solu-
tions of stochastic partial differential equations. In this
problem, multi-level Monte Carlo performs well, but not as
good as the basis adaptation. This is mainly due to the fact
that the particular multi-level Monte-Carlo method used here
does not take into account the special structure of the model
equation, whereas the basis adaptation by the rotated ran-
dom variables does. Ideas from the multi-level Monte-Carlo
approach adapted to the problem at hand may increase the
performance considerably specifically when the mesh sizes
and number of evaluations are optimized.

Finally, an efficient numerical method for this equation
makes it possible to perform simulations of realistic struc-
tures. Regarding the application of nanowire field-effect
sensors, where the nonlinear Poisson–Boltzmann equation
plays an important role as a fundamental model equation,
a very good agreement of the basis-adaptation method with
measurements was found. The stochastic nonlinear Poisson–
Boltzmann equation makes it possible to include noise and
fluctuations in the modeling, and the numerical results show
how the various parameters affect the size of the signal and
the signal-to-noise ratio, an important characteristic value of
sensors. Also, we compared the influence of the width of two
devices, where it was found that the 100-nm-wide sensor has
a larger SNR than the 60-nm-wide one.
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