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Zusammenfassung

In den letzten Jahren haben nanotechnologische Vorrichtungen, z.B. Silizium-Nanodraht-

Sensoren, Feldeffekttransistoren sowie Nanoporen, auf natürliche Weise zu Mehrskalen-

problemen geführt. Experimentell wurde gezeigt, dass Silizium-Nanodrahtsensoren winzige

Konzentrationen von Biomolekülen wie DNA-Oligomeren, Tumormarkern, toxischen

Gasmolekülen wie Kohlenmonoxid und die Diffusion von Ionen durch Transmembranpro-

teine detektieren können. Feldeffekttransistoren (FETs) sind zu einem weit verbreiteten

Bauteil in der Elektronikindustrie geworden. Diese Bauteile basieren auf modernsten

Technologien und sind zugleich ein interessantes Modellsystem für stochastische PDEs.

Verschiedene Quellen von Rauschen und Schwankungen werden hier in die Modell-

gleichungen inkludiert. Die Dotierung von Halbleitern is inhärent zufällig und führt

zu einer zufälligen Anzahl von Verunreinigungsatomen, die an zufälligen Positionen

platziert werden und von denen sich die Ladungskonzentrationen und Mobilität an den

Standorten ändert. Die hier entwickelten Simulationswerkzeuge sind allgemein genug,

um viele Situationen mit einzuschließen, wo der Ladungstransport in einer zufälligen

Umgebung auftritt. Diese Effekte aufgrund der zufälligen Lage von Dotierstoffen sind

von zunehmender Bedeutung, da die Geräte in die Nanometer-Skala geschrumpft sind

und Milliarden von ihnen trotz der unvermeidlicher Prozessvariationen zusammen ar-

beiten müssen. In Feldeffektsensoren binden Zielmoleküle an zufällig platzierte Rezep-

tormolekülen in einem stochastischen Prozess, so dass der Detektionsmechanismus auch

inhärent stochastisch ist. Die Brownsche Bewegung der Zielmoleküle führt auch zu

Änderungen der Ladungskonzentration und der Permittivität. Die Zufälligkeit an der

Sensoroberfläche breitet sich durch die selbstkonsistenten Transportgleichungen aus und

führt schließlich zum Rauschen im Sensorausgang.

Diese Überlegungen motivieren die Entwicklung fortgeschrittener stochastischer numerischer

Methoden, um die Unsicherheit in nanoelektronischen Geräten zu modellieren. Wir

addressieren die numerische Herausforderung durch Verwendung von State-of-the-Art-

Methoden, wie z.B., der Multi-Level Monte-Carlo-Methode (MLMC) und verbessern sie

indem wir die Diskretisierungsparameter im numerischen Ansatz so bestimmen, dass die

Rechenarbeit für einen vorgeschriebenen Gesamtfehler minimiert wird. Auf diese Weise

werden die verschiedenen Fehlerquellen optimal ausgeglichen.



Abstract

In recent years, nanoscale devices such as silicon nanowire sensors, field-effect transis-

tors (FETs), and nanopores have been promising devices in medicine and engineering.

Silicon nanowire sensors have been used to detect minute concentrations of biomolecules

e.g., DNA oligomers, tumor markers, toxic gases and diffusion of ions through trans-

membrane proteins. FETs have become a very widely used device within the electronics

industry. These devices are cutting-edge technologies and, at the same time, an inter-

esting model system for stochastic partial differential equations (PDEs).

Various sources of noise and fluctuations are included in the model equations here.

Doping of semiconductor devices is inherently random and results in a random num-

ber of impurity atoms placed at random positions. These effects due to the random

location of dopants are of increasing importance, as the devices have been shrunk into

the nanometer scale and billions of them are required to work together despite the un-

avoidable process variations. In field-effect sensors, target molecules bind to randomly

placed probe molecules in a stochastic process so that the detection mechanism is inher-

ently stochastic. The Brownian motion of the target molecules also results in changes

in charge concentration and permittivity which propagates through the self-consistent

transport equations and finally results in noise in the sensor output.

These considerations motivate the development of advanced stochastic numerical meth-

ods to model the uncertainty in nanoelectronic devices. We develop stochastic drift-

diffusion-Poisson system of equation to model the effect of randomness on charge trans-

port. To that end, existence and local-uniqueness theorems for weak solutions of the are

presented and for the stochastic PDE an efficient computational technique (Scharfetter-

Gummel iteration) is used to solve it. In order to calculate the ionic currents through

various transmembrane proteins a transport equation for confined structures is employed.

The computational significance of this continuum model is that the (6 + 1)-dimensional

Boltzmann equation is reduced to a (2 + 1)-dimensional diffusion-type equation and

ionic currents through confined structures can be calculated immediately.

We address the numerical challenge by using state-of-the-art methods, such as multilevel

Monte Carlo method, and improve on it by determining the discretization parameters in

the numerical approach such that the computational work is minimized for a prescribed

total error. In this way, the various sources of error are balanced optimally. To further

improve the computational efficiency, a randomized low-discrepancy sequence such as a

randomly shifted rank-1 lattice are applied.
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Chapter 1

Introduction

Designing fully functional nanoscale devices with sensing, computing, and actuating
capabilities has been a long-standing goal of science and engineering community. In the
last few decades, the noticeable advances in nanotechnology such as the development of
novel nanodevices like silicon nanowire sensors and multi-gate field-effect transistors are
pronounced.

Generally, uncertainty quantification (UQ) is the process by which uncertainties in a sys-
tem are characterized and propagated to a given Quantity of Interest (QoI). In fact, the
UQ is a broad phrase used to describe methodologies for taking account of uncertainties
when mathematical and computer models are used to describe real-world phenomena.
This includes propagating uncertainty from unknown model inputs to model outputs,
the study of uncertainty in the models themselves, developing approximation schemes
that result in accurate computer models, robust design, model calibration, and other
inverse problems, model bias, and discrepancy etc. In nanoelectronic devices, noise
and fluctuations are of great importance, especially in nanometer-scale devices, as any
random effect becomes proportionally more important as devices are shrunk. In this
dissertation, we will focus on the UQ to model the complex systems which have compli-
cated mathematical descriptions such as systems of partial differential equations. The
developed stochastic models, on one hand, enable us to study the physical behavior of
the semiconductor devices and model the noise and fluctuations due to their uncertainty.
Also, they are useful to decrease the cost of calculation in the computer model and ob-
tain the solution with lower computational effort. Furthermore, in order to verify the
achieved results, several comparisons with the measurements will be drawn.

The main aim of this work is using uncertainty quantification to study the noise and
fluctuations in the nanoelectronic devices. Their physical behavior can be modeled by
using stochastic partial differential equations. The thesis is organized as follows.

• In Chapter 1, we first introduce three nanoelectronic devices, namely silicon nanowire
sensors, multi-gate transistors and ion channels. Then, we explain their physi-
cal/biological significance and different sources of noise in these devices will be
described in detail.

1



Chapter 1. Introduction 2

• In Chapter 2, we will present comprehensive PDE-based mathematical/physical
systems to model the randomness in the explained devices. An important feature
of the models used here is that the random coefficients in the stochastic equations
are computed from additional physical models, so that there are essentially no
free parameters or coefficient functions whose values are unknown or have to be
estimated. The system of stochastic PDEs representing a full transport model
and the additional models for the random coefficients together constitute the most
comprehensive model for this general type of devices developed and implemented so
far. Moreover, a transport equation for confined structures will be used to calculate
the ionic currents through various transmembrane proteins. The computational
importance of this model is that the (6+1)-dimensional Boltzmann equation is
reduced to a (2 + 1)-dimensional diffusion-type equation that can be solved with
small computational effort so that ionic currents through confined structures can
be calculated quickly.

• In Chapter 3, we will develop the advanced stochastic numerical techniques to
quantify noise and fluctuations in the devices. These methods will be compared
with popular stochastic approaches, e.g., Monte Carlo to explain their efficiency.
For the numerical approximation of the expected value of the solution of the sys-
tem, we develop a multilevel Monte Carlo (MLMC) finite-element method (FEM)
and we analyze its rate of convergence and its computational complexity. This
allows to find the optimal choice of discretization parameters. Afterward, a mul-
tilevel quasi-Monte Carlo finite element method for a class of elliptic PDEs with
random coefficients will be presented. It will be shown that the computational cost
of the optimal multilevel randomized quasi-Monte Carlo method, which uses ran-
domly shifted low-discrepancy sequences, is one order of magnitude smaller than
that of the optimal multilevel Monte Carlo method and five orders of magnitude
smaller than that the standard Monte Carlo method.

• In Chapter 4, we will concentrate on the application of uncertainty quantification
in the introduced nanoelectronic devices. The stochastic drift-diffusion-Poisson
system models a nanowire field-effect biosensor. This concrete model system serves
two purposes. First, it is a much more complex model system than a semiconductor
transistor and highlights the challenges of developing comprehensive models and
efficient numerical methods. It includes many other applications as special cases,
in particular, nanoscale transistors such as FinFETs. Second, it is a useful device
with important applications whose fabrication has been demonstrated. We apply
this approach to develop cardiac troponin sensors which have many utilities in
early diagnosis of cardiovascular diseases. In ion channels, the transport equation
will be used to calculate the ionic current through three different ion channels. The
simulated currents are compared with measurements, and very good agreement is
found in each case.

Finally, the conclusions will be drawn in Chapter 5.
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1.1 Silicon nanowire field-effect sensors

Silicon nanowire (SiNW) field-effect biosensors [43, 86, 121, 122, 140, 141] (SiNW-FETs)
and gas sensors [21, 91] have been demonstrated experimentally in recent years (see
Figure 1.1). SiNW-FETs initially introduced in Lieber’s group [69]. They have re-
ceived substantial interests because they are ultrasensitive, selective, low-cost devices
and they can be fabricated using commercial microfabrication technology. The devices
are designed to detect and quantify biological species, e.g., cancer cells [92], tumor-
initiating cells [58], DNA/miRNA [69, 168] and proteins [140]. Hence, SiNW-FETs are
very promising candidates for the sensitive electrical detection of biomarkers since they
are reliable, label-free, have rapid response and they are able to detect the subpicomolar
concentration of target species [32].

Generally, biosensors are detection devices used to detect the presence or concentration
of a biological analyte, such as biomolecules. A biosensor usually consists of sensing and
electronic components where its uniqueness is that the components are integrated into
one single sensor. In the device, biological parts are target molecules e.g., biomarkers and
recognition elements e.g., antibodies or aptamers that act as the sensor. The transducer
converts the signal generating from the interactions of the analytes into a measurable
electrical signal i.e., a current or voltage. In order to improve the detection property of
the sensor, bioreceptor molecules have to be immobilized in the vicinity of the transducer.

In general, electrical biosensors can be classified into two groups based on their recog-
nition method: biocatalytic and affinity-based sensors. Biocatalytic recognition em-
ploys specific enzymes immobilized on a layer to detect the targets based on enzymatic
reactions [159]. Affinity-based sensors are based on the selective binding of certain
receptor-ligand pairs on the recognition layer [132]. Affinity-based sensors are feasible
for a larger range of target molecules with higher sensitivity and selectivity. Moreover,
affinity-based biorecognition is more convenient for the current molecular communica-
tion models which are mostly based on ligand-receptor binding, thus, provides an easier
path to be adapted into the receiver models. Therefore, in this work, we only focus our
attention into affinity-based electrical sensors.

In recent years, several types of biosensors are used to detect DNA molecules. Opti-
cal biosensors are advantageous detection and analysis device because they enable the
direct, real-time and label-free detection of many biological species. Optical Surface
plasmon resonance (SPR) biosensors are useful detection tools that have vast appli-
cations in medicine, biotechnology, medical diagnostics, healthcare, and pharmaceu-
ticals. Fluorescence-based biosensors are frequently used to monitor environmentally
hazardous gas molecules e.g., nitric oxide, hydrogen sulfide or metastatic cells and tis-
sues. Electrochemiluminescence-based biosensors are developed to detect different hu-
man biomarkers e.g., cardiac troponin I [137]. At present, the most successful surface-
based affinity biosensors are SPR sensors. However, these devices have a detection limit
for small molecular weights (typically less than 2,000 gmol−1) and require integration
with optical components, significantly increasing the cost of operation and causing diffi-
culties in carrying out high-throughput analyses [50]. Moreover, other methods require
labeling which increases detection time and complexity of the sensor device.
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Using silicon nanowires has several advantages which some of them are listed here.
First, the small size of nanowires allows us to fabricate devices with a parallel ar-
ray of nanowires which improves noticeably the device performance. Different types
of nanowires e.g., trapezoidal, rectangular, triangular and radial devices can be fabri-
cated for different purposes [87]. Second, binding of molecules at the surface increases
the accumulation of carriers and enhance the sensitivity. In fact, using longer nanowires
increases the surface to volume ratio and therefore the response of the sensor to the
biomolecule. Third, the dopant type and its concentration can be controlled and there-
fore the sensitivity is tuned in the absence of backgate voltages [42].

The sensor can directly translate the analyte–surface interaction into an electrical signal
to provide real-time ultrasensitive high-throughput detection of the desired biomolecules,
without the requirement for any labels. The specificity of the biosensor system is given
by the immobilized biomolecules. In fact, the devices are fabricated by immobilizing bi-
ological receptor materials on the surface of a suitable transducer that converts the bio-
chemical signal into a quantifiable electronic signal [126]. Biological species are charged
in the electrolyte and they can be detected by the device when appropriate receptors are
linked to the nanowire surface [120]. As target molecules bind to the immobilized probe
molecules on the surface layer, the charge distribution changes and modulates the con-
ductance of the semiconductor transducer. The transducer (ΩSi) converts the molecular
signal into an electric or digital signal that can be quantified, displayed and analyzed.
As an example, a target molecule with negative charge results in the accumulation of
hole carriers in a p-type SiNW-FET and, therefore, increase its conductivity [120].

Affinity-based sensors, in particular, the recently experimentally demonstrated nanowire
field-effect sensors, pose demanding numerical problems because of a large number of
stochastic dimensions. The longitudinal and vertical cross sections through the nanowire
field-effect biosensor are illustrated in Figure 1.2 and Figure 4.1, respectively. The same
principle also works for gas sensors. The sensors are affinity-based since the target
molecules are only detected when they are sufficiently close to the sensor. The current
through the semiconducting silicon nanowire, which is the actual transducer, is mea-
sured. The conductance of the nanowire is modulated by the electrostatic potential,
which, in turn, is changed when charged target molecules bind to the probe molecules
functionalized at the surface of the sensor. Furthermore, the target molecules are not
marked in the field-effect sensors in contrast to the commonly used fluorescent or ra-
dioactive markers in other detection methods.

1.1.1 Biological noise in SiNW-FETs

There are various sources of noise and fluctuations in affinity-based sensors, where the
biological noise is one of the most prominent. Its quantification is essential for under-
standing the signal-to-noise ratio [128] and the detection limit of the sensors. Noise
sources can be mainly grouped into two important categories:



Chapter 1. Introduction 5

Figure 1.1: Schematic diagram of a nanowire field-effect sensor showing metal source
and drain electrodes with the NW and contacts on the surface of SiO2/Si substrate.

• Biological noise [86]: Target molecules in the electrolyte undergo random move-
ment which is governed by Brownian motion, and stochastically binds to the recep-
tors on the functionalized layer. The uncertainty in the location and the binding
state of the molecules results in random fluctuations of the transduced signal and
may severely hamper the instant detection of the concentration, and thus, the
molecular messages. Since this type of noise is due to the biological interactions
between target and probe molecules, it is called biological noise.

• Thermal and flicker noise [127]: Thermal noise results from thermal fluctua-
tions of charge carriers on the bound ligands. On the other hand, 1/f noise is
caused by the traps and defects in the semiconductor channel and could be effec-
tive at low frequencies. Hence, 1/f noise may dominate over other noise sources,
and needs a careful investigation.

Regarding the modeling, the randomness due to the biological noise at the sensor surface
affects the entire PDE model and finally yields the sensor output. In other words, the
random distribution of target molecules (due to Brownian motion) and their stochastic
binding to the immobilized receptors (probe molecules) gives rise to the randomness
of movement and orientation. Here, the position of each molecule is independent of
other molecules which guarantee the independence of input data. Randomness in the
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Figure 1.2: A longitudinal cross section of nanowire field effect sensor indicating the
random binding of the target molecules to the receptors. Here, the Dirichlet boundary
conditions (Vg, Vsolution, VS and VD) and zeros Neumann boundary condition (on left

and right) are depicted. The geometry of the device is shown additionally.

Figure 1.3: The orientation of a molecule in respect of oxide layer. The reference
axes are shown additionally.

biological system can be characterized by the position xiM in the domain and θiM the
angle with respect to y−axis (Figure 1.3). For the ith molecule we have

xiM = (1− αi)aiM + αibiM , αi ∈ [0, 1], (1.1a)

θiM = αm+iπ

2
, αm+i ∈ [0, 1]. (1.1b)

Here, each molecule has two degrees of freedom for its randomness i.e., position and
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orientation. In Section 2.2, we will develop a system of PDEs containing the stochas-
tic Poisson-Boltzmann equation to model the electrostatic interaction of randomly dis-
tributed charged molecules at the surface. The system is also coupled with drift-
diffusion equations to model the charge transport of carriers (holes/electrons) through
the nanowire. In Section 4.1 we will use a real example of the random distribution of the
DNA molecules. In this model, we will use the Boltzmann distribution to calculate the
probability of the molecule orientations. Finally, considering the system of equations,
we will obtain the electrical current due the modulation of the transducer.

In the nanowire field-effect sensors, the surface of a nanowire sensor is functionalized with
probe molecules and surrounded by an aqueous solution containing the target molecules.
In the case that number of molecules taking part in the association-dissociation or hy-
bridization processes are sufficiently large, the binding process is deterministic. However,
since we are interested in detection limits, it is essential to consider cases when only a
few molecules are present in the system. Therefore, the number of target molecules
bound to probes on the sensor (PT-complex) at the surface is random. In Section 2.4,
we will introduce the stochastic Langevin equation and explain how analytically the
expected value and the variance of the PT-complex can be calculated. Also, in 4.2.2 we
will add this term of noise to random movement/orientation of molecules and will make
a comprehensive stochastic model for biological noise.

1.1.2 Application of the biosensors in medicine

The sensors recently have shown their unavoidable importance in clinical diagnostics
[19, 83, 90]. The devices are used in diverse range of diseases medical diagnosis. CA 15-
3, for Carcinoma Antigen 15-3, is a tumor marker for many types of cancer, most notably
breast cancer. Its main use is to monitor a person’s response to breast cancer treatment
and to help watch for breast cancer recurrence. The advantage of the using the device for
the detection of breast cancer biomarker was studied in [155]. Prostate-specific antigen
(PSA), is a protein produced by cells of the prostate gland. The blood level of PSA is
often elevated in men with prostate cancer, and the PSA test was originally approved by
the FDA in 1986 to monitor the progression of prostate cancer in men who had already
been diagnosed with the disease.

In recent years, direct detection of proteins from whole blood has been demonstrated
experimentally including the detection of PSA a short while ago. In fact, PSA antigen-
antibody sensors consist of nanowires functionalized with antibodies at the surface [14].
CA125 is a protein that is found in blood. A small sample of blood will be taken from
the arm and sent to a lab where a simple test will measure the level of CA125 in the
blood sample. In most healthy women the level of CA125 is usually less than 25 U/mL

[51]. However, some women do have a naturally high level of CA125 in their blood.
The level of CA125 in the blood can rise for many reasons, which include endometriosis,
menstruation, ovarian cysts, and sometimes ovarian cancer. Similar to the troponin
sensitive sensors, for CA125 we can develop the sensors to detect the protein in the
blood.
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Troponin I and troponin T are proteins found in heart muscle and are released into the
blood when there is damage to the heart. The interaction of troponin-C with troponin-I
plays a central role in skeletal and cardiac muscle contraction [99]. Troponin tests are
also sometimes used to evaluate people for heart injury due to causes other than a heart
attack or to distinguish signs and symptoms such as chest pain that may be due to
other causes. Testing may also be done to evaluate people with angina if their signs and
symptoms worsen. In this thesis, we focus on the design strategy of troponin sensitive
sensors. The main aim is the development of the most sensitive device in order to detect
different cardiac troponin concentrations.

Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality for
both men and women in developed and developing countries [6]. In the US, in 2010, the
overall rate of death attributable to CVD was 235.5 per 100 000 [65]. Additionally, each
year cardiovascular diseases cause over 4.3 million deaths (48%) in Europe and over 2.0
million deaths (42%) in the European Union [3]. Acute myocardial infarction (AMI),
also known as heart attack, occurs when the flow of blood to the heart is blocked, most
often by a build-up of fat, cholesterol, and other substances, which form a plaque in the
arteries that feed the heart (coronary arteries). The interrupted blood flow can damage
or destroy part of the heart muscle.

Rapid and accurate diagnosis of CVDs is extremely important since it increases patient
survival and saves enormous costs for the health-care system. An electrocardiogram
(ECG) is a traditional test that checks for problems with the heart electrical activity.
However, ECG is a poor diagnostic test for AMI since more than half of the CVD patients
who go to the Emergency Department show normal or no diagnostic electrocardiograms,
which makes an early diagnosis of CVD more difficult [143, 160]. A range of biochem-
ical markers is available for diagnosis of AMI of which the cardiac troponins, cardiac
troponin T (cTnT), and cardiac troponin I (cTnI) are the newest and clinically the most
interesting. The unique features of the cardiac troponins (cTn) are that they are highly
sensitive and specific for myocardial damage and they are prognostic [9, 131]. In patients
with suspected myocardial infarction or minor myocardial damage, the cTn was found
in their blood. However, in the many cases, creatine kinase-MB (CK-MB) mass was not
increased and the ECGs did not indicate any cardiac problem [10, 114]. Enzyme-linked
immunosorbent assay (ELISA) [46] is one of the most popular techniques that may be
used for cardiac biomarker detection since it ensures high diagnostic accuracy. However,
the method has several drawbacks, such as long diagnostic time, which may range from
hours to days due to laborious bio-analytical methodologies, or delay in transportation
of samples [167]. Although the method requires highly skilled laboratory staff and con-
siderable investment in resources and equipment, it is not often sensitive enough or fast
for early diagnosis and treatment [32]. Furthermore, the technique is not able to al-
low for the label-free and highly targeted detection of sub 10 pg/mL concentration of
troponin [32, 114].

Nowadays, several CVD marker detection sensors have been developed to overcome the
disadvantages of ELISA. The surface plasma resonance (SPR) based biosensors [97],
fluorescence-based sensors [130] and electrochemiluminescence-based biosensor [137] are
a few of the biomarker detection methods. These methods require labeling, which leads
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to increased detection time and complexity of the sensor device [90]. Therefore, the
development of accurate, inexpensive, fast response and high sensitive diagnostic device
to detect cTn in blood is necessary. Silicon nanowire (SiNW) field-effect transistors
(FETs) [26, 29, 120] have shown high sensitivity and a noticeable capability to detect
specific biological species.

The specificity of the biosensor system is given by the immobilized biomolecules. In fact,
the devices are fabricated by immobilizing biological receptor materials (in this case the
antibodies [32]) on the surface of a suitable transducer that converts the biochemical
signal into a quantifiable electronic signal [126]. Proteins are charged in the electrolyte
(in our case blood) and can be detected by the sensors when the suitable receptors
are linked to the nanowire surface [120]. As target molecules (here cTn) bind to the
immobilized probe molecules on the surface layer, the charge distribution changes and
modulates the conductance of the semiconductor transducer, similarly to the effect that
a change in gate voltage has on a MOSFET. In other words, the changes of the device
conductivity is the response of the sensor to the specific binding of cardiac troponins to
the anti-troponin probes [32] on the surface [87].

1.2 Multi-Gate FETs and FinFETs

The term metal–oxide–semiconductor field-effect transistor (MOSFET) [20, 34, 37, 144]
stands for Metal Oxide Semiconductor Field Effect Transistor, and the name gives a
clue to its construction. The devices had been known for several years but only became
important in mid and late 1960s. Initially, semiconductor research had focused on
developing the bipolar transistor, and problems had been experienced in fabricating
MOSFETs because of process problems, particularly with the insulating oxide layers.
Now this device is one of the most widely used semiconductor techniques, having become
one of the principle elements in integrated circuits (ICs) today. Their performance has
enabled power consumptions in ICs to be reduced. This has reduced the amount of
heat being dissipated and enabled the large ICs we take for granted today to become a
reality. As a result of this, the MOSFET is the most widely used form of transistors in
existence today.

A MOSFET has four terminals which are, gate, source, drain, and the substrate. The
MOS capacitance present in the device is the main part. The conduction and valence
bands position relative to the Fermi level at the surface is a function of MOS capacitor
voltage. Also, the oxide layer acts as the insulator of the state MOS capacitor. Between
the drain and source terminal an inversion layer is formed and due to the flow of carriers
in it, the current flows in MOSFET the inversion layer is controlled by the gate voltage.

Two basic types of MOSFET are n channel and p-channel MOSFETs. A P-channel
MOSFET is a type of MOSFET in which the channel of the MOSFET is composed
of a majority of holes as current carriers. When the MOSFET is activated and is on,
the majority of the current flowing are holes moving through the channels. This is
in contrast to the other type of MOSFET, which are N-channel MOSFETs, in which
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Figure 1.4: The 3D structure of the simulation geometry where the dopant atoms are
distributed in source and drain regions.

the majority of current carriers are electrons. Together they are the building blocks of
CMOS technology to fabricate integrated circuits.

In the past decades, the minimum transistor size has been down-scaled according to
Moore’s law and ITRS guidelines. However, scaling of conventional MOSFET devices
is limited due to short channel effects, gate insulator tunneling and limited control of
doping concentrations. FinFET, also known as Fin Field Effect Transistor [36, 124],
is a type of non-planar or 3D MOS transistor used in the design of modern CMOS
circuits to replace conventional transistors. The device is classified as a type of multi-
gate MOSFETs. A 3D schematic of a silicon on insulator (SOI) FinFET indicating its
different regions is shown in Figure 1.4. The characteristic of the FinFET is that the
conducting channel is wrapped around a thin silicon "fin", which forms the body of
the device. In the device, a gate wrapping around three sides of a narrow fin-shaped
channel as well. FinFETs have several advantages like higher transconductance, fully
depleted structure, reducing short-channel effects and lower power consumption. Due
to the structure of the device, i.e., the surrounding gate, better control over the channel
is obtained and therefore less channel doping is necessary. In other words, the threshold
voltage is set by the metal instead of the channel doping.

1.2.1 Random dopant fluctuation

Generally, there are two types of semiconductors that carry electric current: intrin-
sic (pure semiconductor) and extrinsic (impure semiconductor). Intrinsic by definition
means natural or inherent material and they do not have dopants or impurities. Silicon
and germanium are the two most commonly used examples of intrinsic semiconductors,
as they are elemental semiconductors. They were some of the first widely studied and
used semiconductors. The electronic structure of semiconductors is the foundation of
their unique properties. The mechanisms which make semiconductors their own class of
material is based on the electrical structure, which dictates their core properties.
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Figure 1.5: Schematic representation of the valence of silicon lattice where the phos-
phorous and boron atoms create an extra electron and hole, respectively.

Semiconductors are materials that possess the unique ability to control the flow of their
charge carriers. An extrinsic semiconductor is a semiconductor with impurities (dopants)
introduced into its crystal lattice. Doping is the process where semiconductors increase
their electrical conductivity by introducing atoms of different elements into their lattice.
A semiconductor can be doped e.g., by vapor phase epitaxy, where some concentration
of impurities in their gaseous phase is contacted with the semiconductor wafer or, with
the help of photolithography (microprocessing areas of a wafer), diffusion (gradient con-
trolled particle motion), and ion implantation (utilizing an electric field to contact an ion
with a solid) to increase the dopant concentration in certain parts of the wafer. Based
on whether the added impurities are electron donors or acceptors, the semiconductor’s
Fermi level moves either up or down from its original position in the center of the energy
band gap. Therefore, by adding a few amount of dopants e.g., boron, aluminum, indium
or arsenic, we can control or modulate the electrical properties such as conductivity
(Figure 1.5). In fact, even if the total number of impurity atoms is few (compared to
that lot of atoms), they change the conductivity considerably. The corresponding fluc-
tuation of device properties (known as RDF, random dopant fluctuation) is considerably
important in modern technologies.
In this thesis, we thus consider the discrete dopant fluctuation effect [133]. In fact, in-
stead of a continuum charge profile assumption, ionized impurities are treated discretely
and randomly in silicon structure. The potential and carrier density profile fluctuation
due to the discreteness and randomness of dopants are clearly captured. We will con-
sider the doping density (number of dopant atoms-per-unit volume) [30] according to the
dopant concentration of silicon. In Chapter 4, we will study the RDF effect on FinFETs
and SiNW-FETs. In fact, in transistors, we will consider the random position of the
dopants in source/drain regions (see Figure 1.4) and model the stochasticity by a multi-
level numerical technique. Similarly, in SiNW-FETs, the randomness of the dopants in
the transducer is considered with an advanced numerical method. The current variation
due to the randomness of the discrete atoms will be shown in Chapter 4.
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1.3 Ion channels

Ion channels are membrane protein complexes and their function is to facilitate the
diffusion of ions across biological membranes. Ion channels are located in the membrane
of most cells and of many intracellular organelles. They are often described as narrow,
water-filled tunnels that allow only ions of a certain size and/or charge to pass through.
Operation of cells in the nervous system, contraction of the heart and of skeletal muscle,
and secretion in the pancreas are examples of physiological processes that require ion
channels. In addition, ion channels in the membranes of intracellular organelles are
important for regulating cytoplasmic calcium concentration and acidification of specific
subcellular compartments (e.g., lysosomes).

Generally, ion channels allow ions to cross the hydrophobic barrier of the core membrane,
guaranteeing to the cell a controlled exchange of ionized particles. When ions flux
through the channels, they produce an electric current accompanied by changes of the
membrane potential [85]. Ion permeation is crucial for a variety of biological functions
such as nervous signal transmission and osmotic regulation. An important property of
channel in the open state is given by their selective permeability [39]. This is defined
as the ability to allow only a restricted class of ions to flow trough the channel pore in
large amounts.

In spite of considerable advantages of popular approaches in current calculation of ion
channels such as molecular dynamics (MD), Brownian dynamics or Monte Carlo they
need lots of computational effort. The obvious advantage of MD over Monte Carlo is
that it gives a route to dynamic properties, e.g., transport coefficients of the system.
However, MD needs 3D simulation of molecular behavior (and in some cases an X-ray
crystallography), which is computationally expensive in order to arrive at statistics that
yield a reliable current value. In practice, the diffusion of ion through the channels
is a random walk and in order to calculate the current precisely, stochastic numerical
methods should be used. Computationally speaking, using these techniques as well
as finite element method is prohibitive specifically for transmembrane proteins with
complicated geometries. The computational models allows us to calculate the random
movement of ions through the membrane and calculate the ionic current.

In this dissertation, due to the physiological importance of ion channels [106], the trans-
port model for confined structure described in Section (2.3) will be applied to three
transmembrane proteins here, namely the phosphate-specific channel OprP (an antibi-
otic), the Gramicidin A channel (another antibiotic), and the well-known KcsA ionic
channel.

The outer membrane porin OprP of Pseudomonas aeruginosa forms a highly specific
phosphate-selective channel. This channel is responsible for the high-affinity uptake of
phosphate ions into the periplasmic space of the bacteria.

Gramicidin channels are mini-proteins composed of two tryptophan-rich subunits. Gram-
icidin A forms univalent cation-selective channels of ≈ 4Å diameter in phospholipid
bilayer membranes. The transport of ions and water throughout most of the channel
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length is by a single file process; that is, cations and water molecules cannot pass each
other within the channel.

Potassium channels e.g. KcsA are a large subfamily of ionic channels. They possess the
capability to be highly selective of K+ over Na+ ions and other ionized particles. The
strong ability in selectivity is accompanied to speed and a high ionic throughput.

In all above-mentioned cases, the model will be validated by comparison with current
measurements of various ions. Then we elucidate physiological properties of the channels.
For example, the selectivity of potassium channels between sodium and potassium is
its primary physiological function and therefore it is investigated in the simulations.
The model reproduces selectivity as well. We also constructed virtual ion channels by
changing the length of the selectivity filter in order to answer the question if and in
which respect the natural KcsA channel is optimal.



Chapter 2

Stochastic PDE models

A stochastic partial differential equation (SPDE) is a partial differential equation con-
taining a random (noise) term. SPDEs serve as fundamental models of physical systems
subject to random inputs, interactions or environments. It is a particular challenge to
develop tools to construct solutions, prove the robustness of approximation schemes, and
study properties like ergodicity and fluctuation statistics for a wide variety of SPDEs.
In Chapter 3, we will describe considerably the efficient numerical techniques to solve
the SPDEs with the lower computational cost.
The Poisson-Boltzmann equation arising in the Debye-Hückel theory as a second order
nonlinear partial differential equation describes the electrostatic potential. It is used for
a wide range of applications, including the computation of the electrostatic potential
at the solvent-accessible molecular surface, the computation of encounter rates between
molecules in the solution, the computation of the free energy of association and its salt
dependence, and the combination of classical molecular mechanics and dynamics. In
this work, we extended the equation by adding the noise due to the stochasticity of
position and orientation of biomolecules. As the next step, we couple the equation with
drift-diffusion equations to obtain the electrical current and conductivity. It is obvious
that because of the randomness, expected value and variance of the parameters should
be considered. The existence and uniqueness of the solution were discussed in [13, 145].
In Chapter 3, we will consider these properties for the stochastic version of the coupled
equations and will use the numerical methods to solve the nonlinear coupled system of
equations. In Chapter 4, we will apply them to obtain electrical potential and current
in field effect sensors and transistors.
The transport equation for confined structures is used to calculate the ionic currents
through various transmembrane proteins [85]. The transport equation is a diffusion-
type equation where the concentration of the particles depends on the one-dimensional
position in the confined structure and on the local energy. The computational signifi-
cance of this continuum model is that the (6 + 1)-dimensional Boltzmann equation is
reduced to a (2 + 1)-dimensional diffusion-type equation that can be solved with small
computational effort so that ionic currents through confined structures can be calcu-
lated quickly [74, 75]. In Chapter 4, we verify the obtained conductivity and current
with experimental data for three ion channels, namely OprP, Gramicidin A, and KcsA.

14



Chapter 2. Stochastic PDE models 15

In this chapter, we use a comprehensive model of the devices that provides physical
and quantitative understanding. It is based on SPDEs coupled to a stochastic reaction
model for the association/dissociation process, and it has been extended to a system
of SPDEs in order make it possible to include noise and fluctuation [86]. The model
consists of the Poisson-Boltzmann equation to model the electrolyte, the drift-diffusion-
Poisson system to model the charge transport in the transducer, and a reaction equation
to model the association of target molecules at the sensor surface and their dissociation
[145]. The model enables us to calculate the sensitivity of the device with respect to the
target molecules and the signal-to-noise ratio due to the biological noise. In Chapter 4,
a realistic model for cardiac troponin sensors will be developed by using the system of
equations.

This chapter is a summary of the mathematical theorems and model equations that are
explained in [85, 86, 88, 145].

2.1 Charge transport in nanoelectronic devices

In drift-diffusion model, the current densities are expressed as a sum of two components:
the drift component which is driven by the electric field and the diffusion component
caused by the gradient of the electron concentration. In semiconductors, particles tend
to spread out or redistribute from areas of high concentration to areas of lower concen-
tration. Diffusion current is a current caused by the diffusion of charge carriers. By
contrast, the drift current is due to charged particle motion in response to an electric
field. Diffusion current can be in the same or opposite direction of a drift current. The
diffusion current and drift current together are described by the drift–diffusion model.

In drift current, on average the population of holes move in the direction of the electric
field (from + to − electrical potential) and electrons move in the opposite direction of
the electric field (from − to +). Motion of individual particles is highly non-directional
on a local scale, but has a net direction on a macroscopic scale. When an electric field
E is applied across a piece of material, the electrons (holes) respond by moving with an
average velocity called the drift velocity. The velocities are modeled at first order to be
proportional to electrical field as

vn = −µnE,
vp = µpE.

Electrons (holes) mobility is almost always specified in units of cm2/(Vs). This model is
called linear transport regime which breaks down at large fields (short channel devices).
However, in typical sensor applications long channel transistors are used at low chain
bias so the linear model may still suffice. The densities of the currents are the products
of the particle charges, the carrier concentration, and the average drift velocities. These
relations are true in semiconductor device, however, in electrochemistry (the mobility is
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defined as the ratio between velocity and force) are not true. Therefore, we have

Jdrift
n = −qnvn, (2.1)

Jdrift
p = qpvp. (2.2)

We should also note that drift current obeys Ohm’s law, i.e., Jn is proportional to
the electrical field (E), as the velocity model and the above relations. The random
motion of carriers can lead to a net flux of carriers if one particular region has a higher
concentration of carriers than another region (a concentration gradient between the
high carrier concentration region and the low carrier concentration region). The net
movement of carriers is therefore from areas of high concentration to low. Here, diffusion
means particle movement (flux) in response to the concentration gradient. In fact,
collisions between particles and medium (silicon crystal) send particles off in random
directions. Ficks’s first law describes diffusion with particle fluxes that are proportional
to the gradient in concentrations. Here, the flux is the number of particles crossing a
unit area per unit time [cm−2s

−1
]. Therefore, the fluxes are

Fn = −Dn∇n,
Fp = −Dp∇p.

The coefficients measure the ease of carrier diffusion in response to a concentration
gradient and are limited by many sources of scattering among which the vibration of
lattice atoms, surface roughness and ionized dopantsare often the dominant ones. The
current densities of the diffusion process are given by multiplying the diffusion fluxes
with the particle charges, i.e., with −q for electrons and +q for holes. This yields

Jdiff
n = qDn∇n, (2.3)

Jdiff
p = −qDp∇p, (2.4)

since the diffusion directions is opposite to the gradient concentration. In general, total
current can flow by drift and diffusion separately. Total current density is given by

Jn = Jdrift
n + Jdiff

n = −qnvn + qDn∇n, (2.5)

Jp = Jdrift
p + Jdiff

p = qpvp − qDp∇p. (2.6)

The total current density is Jn +Jp. Finally, the electrical current is obtained by taking
integral over a cross-section of the transducer.

Graded-channel approximation is a simplified model for current calculation and
in most of the cases is advantageous. Solving the stochastic Poisson-Boltzmann equa-
tion yields the electrostatic potential on a cross section of the structure, from which
the current through the sensor can be calculated by the graded-channel approximation
as in [72]. The graded-channel approximation can be derived from the drift-diffusion
equations, ((2.15)b)-((2.15)e). The concentration of electrons and holes are given by
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Boltzmann distribution as

p(x, ω) = ni exp

(
−qV (x, ω)− ΦF

kBT

)
, (2.7)

n(x, ω) = ni exp

(
qV (x, ω)− ΦF

kBT

)
. (2.8)

For sake of simplicity, two assumptions are necessary for the graded-channel approxima-
tion. The first assumption is that only the drift current, and not the diffusion current,
plays a role. This yields the current density as

Jdrift
n + Jdrift

p = −qµnn∇u− qµpp∇u.

The second assumption is that the electric field is constant along the z-axis of the sensor
(in source-to-drain direction), i.e., E = (u1−u2)/Z holds, where u2−u1 is the potential
difference between the two contacts a distance Z apart. Since E = −∂zu, we hence find

Jdrift
n + Jdrift

p = eE(µnn+ µpp).

Then, the conductivity due to electrons and holes can be calculated as

σ =
Jdrift
n + Jdrift

p

E
= e(µnn+ µpp).

The total electrical current is now obtained by taking the integral

I =

∫
DSi

(Jdrift
n + Jdrift

p )dxy = qE

∫
DSi

(µnn(x, y) + µpp(x, y))dxy (2.9)

over a cross section DSi of the semiconducting part of the device. As we have seen, the
graded-channel approximation is a simplification of the drift-diffusion-Poisson equations
and neglects diffusion. The MOSFET drain current model apparently neglects diffu-
sion currents and as such it is not suited to describe the subthreshold region. However,
the maximum transconductance-to-current ratio (gm/I) and therefore the maximum
sensitivity is often found exactly in that region. Hence, the full drift-diffusion is very
well-suited for current investigations from weak inversion (subthreshold) to strong inver-
sion (above-threshold) regime. Finally, we should note that in the international metric
system, the units: [n]=[p]=1/m3, [µn] = [µp] = m2/(Vs), [E] = V/m.

In this dissertation, the main noise source for us is biological noise which represents an
anticipated noise source for the biological applications. This is expected to be mostly due
to the random motion of immobilized DNA probes within the electrolyte. This motion
can couple to the semiconductor channel and cause random fluctuation in the carrier
concentration or mobility. Furthermore, it is also expected that this noise source would
depend on the potential across the DNA layer, since a higher potential could possibly
further immobilize the probes and cause less noise. We define the signal-to-noise
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ratio (SNR) as one of the most significant characteristics of a sensor as

SNR(I) :=
E[I]√
Var[I]

. (2.10)

The expected value of the current directly arises of the randomness of the solution, we
consider it as the signal of current and consequently, corresponding standard deviation
as the unavoidable noise. There are many device design and operating parameters which
affect the noise in the system. We will study the effect of them on signal as well as noise
and determine which one is the most effective in order to intensify SNR substantially.

2.2 Stochastic drift-diffusion-Poisson system

Semiconductors are one of the most important electrical materials and are the foundation
of every solid-state electronic device which is in use today. They are substances that only
conduct electricity under certain conditions and include silicon and germanium. There
are semiconductors that occur naturally and do not require any sort of chemical doping
and can often be recognized by characteristic crystal lattice structures that they form.
The semiconductor device equations can be used to describe the whole simulation domain
of a semiconductor device. They are applied to the bulk semiconductor, the doped
regions such as source and drain, and to dielectric regions such as the gate dielectric.

2.2.1 Stochastic Poisson-Boltzmann equation

We consider D as the domain where D ⊆ Rd is bounded, convex and d ≤ 3 with
boundary ∂D. The domain D ⊆ R3 is partitioned into four subdomains with different
physical properties. The first subdomain DSi consists of the (silicon) nanowire and acts
as the transducer of the sensor; in this subdomain, the Poisson-drift-diffusion equations
are used to model charge transport and electrostatics. The semiconductor is coated with
a dielectric layer (as an insulator) which comprises the second subdomain Dox, where
the Poisson equation holds. In Dliq, the aqueous solution (electrolyte e.g., salty water or
blood) containing cations and anions; therefore, the Poisson-Boltzmann equation holds
as well. The last subdomain is about the DNA molecules (DM). In summary, the
stochastic Poisson-Boltzmann equation can be summarized as

−∇ · (A(x, ω)∇V (x, ω)) =


q(Cdop(x, ω) + p(x, ω)− n(x, ω)) in DSi,

0 in Dox,

ρ(x, ω) in DM,

−2ϕ(x, ω) sinh(β(V (x, ω)− ΦF ) in Dliq,

(2.11a)

where A(x, ω) (the permittivity function) is a random field with x ∈ Rd and a random
parameter ω ∈ Ω in a probability space (Ω,A,P). Ω denotes the set of elementary
events, i.e., the sample space, A the σ-algebra of all possible events, and P : A→ [0, 1] is
a probability measure. ϕ is the ionic concentration (holds for a symmetric electrolyte of
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monovalent ions), ΦF is the Fermi level, ρ(x, ω) describes the fixed charges of molecules.
Cdop is the doping concentration, i.e., the concentration of dopants and can be negative
or positive. The relative permittivities of the subdomains are assumed constant and
equal to ASi = 11.7, Aox = 3.9, AM = 3.7 and Aliq = 78.4. In extrinsic semiconductors,
the sillicon crystal is doped with different elements, e.g., boron or phosphorus which
have their dielectric constants. Furthermore, the constant β is defined as β := q/(kBT )

in terms of the Boltzmann constant kB, the temperature T and the elementary charge
q > 0.

At the interface Γ between the silicon oxide and the liquid, the charge concentration
exhibits a rapidly oscillating spatial structure which leads to a multiscale problem [73].
The continuity conditions (2.12a) and (2.12b) are due to the jump in the permittivity
A between two different materials. Here, 0+ denotes the limit at the interface on the
side of the liquid, while 0− is the limit on the side of the silicon oxide layer. The two
interface condition mean that the rapidly oscillating charge concentration in the surface
layer is described by the macroscopic dipole moment density α and the macroscopic
surface-charge density γ.

V (0+, y, ω)− V (0−, y, ω) = α(y, ω) on Γ, (2.12a)

A(0+)∂xV (0+, y, ω)−A(0−)∂xV (0−, y, ω) = γ(y, ω) on Γ. (2.12b)

The boundary conditions are Dirichlet boundary conditions (∂DD) and Neumann bound-
ary condition (∂DN ). For nanowire sensors, a voltage across the simulation domain in
the vertical direction can be applied as well by an electrode in the liquid (solution volt-
age) and by a back-gate contact at the bottom of the structure (back-gate voltage).
These are also part of ∂D. Zero Neumann boundary conditions hold on the Neumann
part ∂DN of the boundary. Figure 4.1 illustrates the boundary conditions. In FET
devices, e.g., MOSFETs and FinFETs, contacts allow the current flow in and out of the
device. Precisely, ohmic contacts where only voltages can be applied are source, drain
and the gate. The Neumann boundary condition guarantees that the simulation domain
is self-contained and there are no fluxes across the boundary. At Ohmic contacts and the
interface between silicon and the insulators, Dirichlet boundary conditions are applied
and Neumann boundary conditions are applied at all other boundaries of the solution
domain.

We can also linearize the nonlinear term of (2.23) including an arbitrary Fermi level
ΦF . Taylor expansion of right-hand side (RHS) of the equation in V (x, ω) around an
arbitrary potential Φ0 yields

RHS = α(x, ω)− γ(x, ω)V (x, ω) +O((V (x, ω)− Φ0)2)

with

α(x, ω) := 2ϕ(x, ω) sinh
q(ΦF − Φ0)

kBT
+

2qΦ0κ(x, ω)

kBT
cosh

q(ΦF − Φ0)

kBT
, (2.13a)

γ(x, ω) :=
2qϕ(x, ω)

kBT
cosh

q(Φ0 − ΦF )

kBT
, (2.13b)
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where again κ(x, ω) is the bulk concentration of the ions [72]. Hence, the linearized
Poisson-Boltzmann equation for arbitrary Fermi level is the following equation

−∇ · (A(x, ω)∇V (x, ω)) + γ(x)V (x, ω) = f(x, ω) + α(x), in U (2.14a)

u = uD on ∂U (2.14b)

An approach to the proof is to use the Leray-Schauder fixed-point theorem and can
be found in [108]. In [72], the PDE is used to model the random movement (Brownian
motion) of the biomolecules in the boundary layer, i.e., the various orientations of the
molecules with respect to the surface. In this case, the solution (electrostatic potential)
can be obtained immediately, therefore, the ease of implementation can be mentioned as
the most important advantage of the model. However, due to using the Taylor expansion,
the exactness of the equation compared with the nonlinear equation is not sufficient. In
spite of this fact, since the Newton solver (for solving the PBE) needs a suitable initial
guess, the solution of the linearized equation can be used (as the guess) to converge the
solution more efficiently.

2.2.2 The stochastic drift-diffusion equations

In the subdomain DSi, the stochastic drift-diffusion-Poisson equations [145]:

−∇ · (A(x, ω)∇V (x, ω)) = q(Cdop(x, ω) + p(x, ω)− n(x, ω)), (2.15a)

∇ · Jn(x, ω) = qR(n(x, ω), p(x, ω)), (2.15b)

∇ · Jp(x, ω) = −qR(n(x, ω), p(x, ω)), (2.15c)

Jn(x, ω) = q(Dn∇n(x, ω)− µnn(x, ω)∇V (x, ω)), (2.15d)

Jp(x, ω) = q(−Dp∇p(x, ω)− µpp(x, ω)∇V (x, ω)), (2.15e)

are used to model charge transport. Here, n(x, ω) and p(x, ω) are the concentra-
tions of electrons and holes, respectively, Jn(x, ω) and Jp(x, ω) are current densities
of the carriers, Dn and Dp are diffusion coefficients, µn and µp are the mobilities and
R(n(x, ω), p(x, ω)) is the recombination rate. We use the Shockley-Read-Hall (SRH)
recombination rate which is defined as

R(n(x, ω), p(x, ω)) :=
n(x, ω)p(x, ω)− n2

i

τp(n(x, ω) + ni) + τn(p(x, ω) + ni)
, (2.16)

where ni (1.5× 1010cm−3) is the intrinsic charge density and τn and τp are the lifetimes
of the free carriers. In the Slotboom variables u(x, ω) and v(x, ω), which are defined by

n(x, ω) =: nie
V (x,ω)/UT u(x, ω), (2.17a)

p(x, ω) =: nie
−V (x,ω)/UT v(x, ω), (2.17b)
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the system (2.15) becomes

−∇ · (A∇V (x, ω)) = qni(e
−V (x,ω)/UT v(x, ω)− eV (x,ω)/UT u(x, ω)) + qCdop(x, ω),

(2.18a)

UTni∇.(µneV (x,ω)/UT∇u(x, ω)) = ni
u(x, ω)v(x, ω)− 1

τp(eV (x,ω)/UT u(x, ω) + 1) + τn(e−V (x,ω)/UT v(x, ω) + 1)
,

(2.18b)

UTni∇.(µpe−V (x,ω)/UT∇v(x, ω)) = ni
u(x, ω)v(x, ω)− 1

τp(eV (x,ω)/UT u(x, ω) + 1) + τn(e−V (x,ω)/UT v(x, ω) + 1)
.

(2.18c)

The boundary ∂DSi is partitioned into Dirichlet and Neumann boundaries. The Dirichlet
conditions

V (x, ω)|∂DD
= VD(x), u(x, ω)|∂DSi,D

= uD(x), v(x, ω)|∂DSi,D
= vD(x),

hold on the ∂DSi,D (source and drain contacts of semiconductor). For details about the
boundary conditions at the ohmic contacts the reader is referred to [108]. In the sensors,
Also, the boundary values uD(x) and vD(x) are defined by

uD(x) = n−1
i e−VD(x)/UT nD(x),

vD(x) = n−1
i eVD(x)/UT pD(x),

where

nD(x) =
1

2

(
Cdop +

√
C2
dop + 4n2

i

)
,

pD(x) =
1

2

(
−Cdop +

√
C2
dop + 4n2

i

)
.

The zero Neumann conditions

∇nV (x, ω)|∂DN
= 0, ∇nu(x, ω)|∂DSi,N

= 0, ∇nv(x, ω)|∂DSi,N
= 0,

hold on the Neumann part ∂DSi,N of the boundary, as well.

At Ohmic contacts the space charge vanishes i.e., Cdop − p + n = 0 on ∂DD, and the
system is in thermal eqilibrium i.e., np = n2

i on ∂DD. Therefore, the quasi Fermi levels
Φn and Φp are defined by

Φn = Ec − UT ln
n

ni
, (2.21)

Φp = Ev + UT ln
p

ni
, (2.22)

where and Ec and Ev are respectively conduction band and valance band in the semi-
conductor, UT is the thermal voltage and ni is again the intrinsic carrier concentration
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of silicon. In crystals of pure silicon, the number density of electrons in the conduc-
tion band and of holes in the valence band are equal and therefore the Fermi level as a
function of doping concentration can be calculated for electrons and holes as

ΦF = Ec + UT ln
n

ni
= Ev − UT ln

p

ni
.

In the subdomain Dox, there are no charge carriers and the Poisson equation is simply

−∇ · (A∇V (x, ω)) = 0.

In the subdomain Dliq, the nonlinear Poisson-Boltzmann equation

−∇ · (A(x, ω)∇V (x, ω)) + 2ϕ sinh(β(V (x, ω)− ΦF )) = 0

holds and models screening by free charges. Here ϕ is the ionic concentration, the con-
stant β equals β := q/(kBT ) in terms of the Boltzmann constant kB and the temperature
T , and ΦF is the Fermi level.

In summary, for all ω ∈ Ω, the model equations are the boundary-value problem

−∇ · (A(x, ω)∇V (x, ω)) (2.23a)

= qCdop(x, ω)− qni(eV (x,ω)/UT u(x, ω)− e−V (x,ω)/UT v(x, ω))in DSi,

−∇ · (A(x, ω)∇V (x, ω)) = 0 in Dox, (2.23b)

−∇ · (A(x, ω)∇V (x, ω)) = −2η sinh(β(V (x, ω)− Φ(x, ω))) in Dliq, (2.23c)

V (0+, y, ω)− V (0−, y, ω) = α(y, ω) on Γ, (2.23d)

A(0+)∂xV (0+, y, ω)−A(0−)∂xV (0−, y, ω) = γ(y, ω) on Γ, (2.23e)

UT∇ · (µneV (x,ω)/UT∇u(x, ω)) (2.23f)

=
u(x, ω)v(x, ω)− 1

τp(eV (x,ω)/UT u(x, ω) + 1) + τn(e−V (x,ω)/UT v(x, ω) + 1)
in DSi,

UT∇ · (µpe−V (x,ω)/UT∇v(x, ω)) (2.23g)

=
u(x, ω)v(x, ω)− 1

τp(eV (x,ω)/UT u(x, ω) + 1) + τn(e−V (x,ω)/UT v(x, ω) + 1)
in DSi,

α(y, ω) = Mα(V (y, ω)) in Γ, (2.23h)

γ(y, ω) = Mγ(V (y, ω)) in Γ, (2.23i)

V (x, ω) = VD(x) on ∂DD, (2.23j)

n · ∇V (x, ω) = 0 on ∂DN , (2.23k)

u(x, ω) = uD(x), v(x, ω) = vD(x) on ∂DD,Si, (2.23l)

n · ∇u(x, ω) = 0, n · ∇v(x, ω) = 0. on ∂DN,Si. (2.23m)

The structure of the MOSFETs is much simpler. The device only consists of the sili-
con (channel and source/drain regions) and the insulator. Therefore, for the FETs the
same system of equations can be applied neglecting the liquid (Dliq) and the molecule
(DM) subdomains. We should note that in the subsequent simulations, the molecule
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subdomain (binding of target molecules to immobilized receptor molecules at the sur-
face) is defined by assigning a finite volume of the electrolyte to molecules (volumetric
molecules). Regarding the interface condition, we should note that the existence of a
charge inside the insulator and at the semiconductor-insulator interface also induces a
semiconductor charge at zero bias:

V (0+, y,ω)− V (0−, y,ω) = 0 on Γ, (2.24)

A(0+)∂xV (0+, y,ω)−A(0−)∂xV (0−, y,ω) = 0 on Γ. (2.25)

It is defined as Γ = DSi ∩Dox where the jump of the permittivity function explains the
jump of electric field. Here, 0+ denotes the limit at the interface on the side of the
silicon oxide, while 0− is the limit on the side of the channel.

2.2.3 Existence and local uniqueness

In order to state the main theoretical results, we first record the assumptions on the
data of the system (2.23) [145]. The assumptions are moderate in the sense that similar
ones are necessary for the deterministic system of equations. Then weak solutions and
Bochner spaces are defined. Using the assumptions and definitions, existence and local
uniqueness are shown.

The following assumptions are required:

1. The bounded domain D ⊂ R3 has a C2 Dirichlet boundary ∂DD, the Neumann
boundary ∂DN consists of C2 segments, and the Lebesgue measure of the Dirichlet
boundary ∂DD is nonzero. The C2 manifold Γ ⊂ D splits the domain D into two
nonempty domains D+ and D− so that Γ ∩ ∂D = 0 and Γ ∩ ∂D ⊂ ∂DN hold.

2. (Ω,A,P) is a probability space, where Ω denotes the set of elementary events
(sample space), A the σ-algebra of all possible events, and P : A → [0, 1] is a
probability measure.

3. The diffusion coefficient A(x, ω) is assumed to be a strongly measurable mapping
from Ω into L∞(D). It is uniformly elliptic and bounded function of position x ∈ D
and the elementary event ω ∈ Ω, i.e., there exist constants 0 < A− < A+ < ∞
such that

0 < A− ≤ ess infx∈D A(x, ω) ≤ ‖A(·, ω)‖L∞(D) ≤ A+ <∞ ∀ω ∈ Ω.

Furthermore, A(x, ω)|D+×Ω ∈ C1(D+ × Ω,R3×3) and A(x, ω)|D−×Ω ∈ C1(D− ×
Ω,R3×3).

4. The doping concentration Cdop(x, ω) is bounded above and below with the bounds

C := inf
x∈D

Cdop(x, ω) ≤ Cdop(x, ω) ≤ sup
x∈D

Cdop(x, ω) =: C ∀ω ∈ Ω.
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5. There is a constant R 3 K ≥ 1 satisfying

1

K
≤ uD(x), vD(x) ≤ K ∀x ∈ ∂DSi,D.

6. The functionals Mα : L2(Ω;H1(D)) ∩L∞(D×Ω)→ L2(Ω;H1/2(Γ)) ∩L∞(Γ×Ω)

and Mγ : L2(Ω;H1(D)) ∩ L∞(D × Ω)→ L∞(Γ× Ω) are continuous.

7. The mobilities µn(x, ω) and µp(x, ω) are uniformly bounded functions of x ∈ D
and ω ∈ Ω, i.e.,

0 < µ−n ≤ µn(x, ω) ≤ µ+
n <∞ ∀x ∈ D, ∀ω ∈ Ω,

0 < µ−p ≤ µp(x, ω) ≤ µ+
p <∞ ∀x ∈ D, ∀ω ∈ Ω,

where µp(x, ω), µn(x, ω) ∈ C1(DSi × Ω,R3×3).

Furthermore, the inclusions f(x, ω) ∈ L2(Ω;L2(D))∩L∞(D×Ω), VD(x) ∈ H1/2(∂D)∩
L∞(Γ), uD, vD(x) ∈ H1/2(∂DSi), α(x, ω) ∈ L2(Ω;H1/2(Γ)), and γ(x, ω) ∈ L2(Ω;L2(Γ))

hold.

Assumptions (3) and (7) guarantee the uniform ellipticity of the Poisson and the conti-
nuity equations, respectively.

2.2.4 Weak solution of the model equations

In order to define the weak formulation of the stochastic boundary-value problem (2.23),
it suffices to consider the semilinear boundary-value problem [145]

−∇ · (A∗(x, ω)∇w(x, ω)) + h(x,w(x, ω)) = f(x, ω) ∀x ∈ D \ Γ ∀ω ∈ Ω, (2.26a)

w(x, ω) = wD(x) ∀x ∈ ∂DD ∀ω ∈ Ω,

(2.26b)

n · ∇w(x, ω) = 0 ∀x ∈ ∂DN ∀ω ∈ Ω, (2.26c)

w(0+, y, ω)− w(0−, y, ω) = α(y, ω) ∀x ∈ Γ ∀ω ∈ Ω,

(2.26d)

A∗(0+)∂xw(0+, y, ω)−A∗(0−)∂xw(0−, y, ω) = γ(y, ω) ∀x ∈ Γ ∀ω ∈ Ω, (2.26e)

which is a semilinear Poisson equation with interface conditions. Here (2.26a) includes
(2.23a)–(2.23c) if A∗ is replaced by the permittivity A, and it includes (2.23f) and (2.23g)
if A∗ is replaced by µneV/UT and µpe

−V/UT , respectively. Uniform ellipticity holds in
each of these cases per Assumption (2.2.3).

For the weak formulation, we define the Hilbert space

X := H1
g (D) =

{
w ∈ H1(D) | Tw = g

}
(2.27)

as the solution space, where T is the trace operator defined such that Tw = g, where
g is Dirichlet lift of wD := w|∂DD

. The operator T is well-defined and continuous from
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H1(D) onto H1/2(∂D) for the Lipschitz domain D. For g = 0, we define the test space

X0 := H1
0 (D) =

{
w ∈ H1(D) | Tw = 0

}
. (2.28)

Definition 2.1 (Bochner spaces). Given a Banach space (X, ‖·‖X) and 1 ≤ p ≤ +∞, the
Bochner space Lp(Ω;X) is defined to be the space of all measurable functions w : Ω→ X

such that for every ω ∈ Ω the norm

‖w‖Lp(Ω;X) :=


(∫

Ω ‖w(·, ω)‖pXdP(ω)
)1/p

= E
[
‖w(·, ω)‖pX

]1/p
<∞, 1 ≤ p <∞,

ess supω∈Ω ‖w(·, ω)‖X <∞, p =∞
(2.29)

is finite.We should remind that the essential supremum of a function is the smallest
number a ∈ R̄ for which the function only exceeds a on a set of measure zero.

To derive the variational formulation of our model (2.26), we fix the event ω ∈ Ω at
first, multiply ((2.26a)) by a test function φ ∈ L2(Ω;X0), and integrate by parts in D
to obtain the relation∫

D
A∗∇w · ∇φ+

∫
D
h(w)φ =

∫
D
fφ+

∫
Γ
γφ ∀φ ∈ L2(Ω;X0).

Definition 2.2 (Weak solution onD×Ω). Suppose that A∗ satisfies Assumptions (2.2.3)
and that f(x, ω) ∈ L2(Ω;L2(D)), wD(x) ∈ H1/2(∂DD), and γ(x, ω) ∈ L2(Ω;L2(Γ))

holds. A function w ∈ L2(Ω;X) is called a weak solution of the boundary-value problem
((2.26)), if it satisfies

a(w, φ) = `(φ) ∀φ ∈ L2(Ω;X0), (2.30)

where a : L2(Ω;X)× L2(Ω;X0)→ R and ` : L2(Ω;X0)→ R are defined by

a(w, φ) := E
[∫

D
A∗∇w · ∇φdx

]
+ E

[∫
D
h (w)φdx

]
and

`(φ) := E
[∫

D
fφdx

]
+ E

[∫
Γ
γφdx

]
.

2.2.5 Scharfetter-Gummel iteration

Newton’s method is a coupled procedure which solves the equations (2.18) simultane-
ously, through a generalization of the Newton–Raphson method for determining the
roots of an equation. We rewrite the problem in the following residual form

WV (V, n, p) = 0, Wn(V, n, p) = 0, Wp(V, n, p) = 0. (2.31)
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Starting from an initial guess V0, n0, and p0, the corrections δV , δn, and δp, are
calculated from the Jacobian system

∂WV
∂V

∂WV
∂n

∂WV
∂p

∂Wn
∂V

∂Wp

∂n
∂Wn
∂p

∂Wp

∂V
∂Wp

∂n
∂Wp

∂p


∂V∂n
∂p

 =

∂WV

∂Wn

∂Wp

 , (2.32)

which is obtained by Taylor expansion. The solutions are then updated according to the
scheme

Vk+1 = Vk + ∂Vk

nk+1 = nk + ∂nk

pk+1 = pk + ∂pk

where k indicates the iteration number. The system (2.32) has 3 equations for each
mesh point on the grid. Denoting by Ndof the number of degrees of freedom (dofs),
each block of (2.32) is an Ndof×Ndof matrix size. This indicates the main disadvantage
of a full Newton iteration, related to the computational cost of matrix inversion (one
may estimate that a 3Ndof× 3Ndof matrix takes typically 20 times longer to invert than
an analogous Ndof × Ndof matrix. Moreover, it is important to provide a very good
initial guess vector (V0, n0, p0). Because the problem variables have different orders of
magnitude and the Jacobian matrix is often quite ill-conditioned, appropriate scaling
and balancing techniques are needed in order to avoid problems associated with round-off
error.

In 1964, H. K. Gummel proposed an original and alternative to (2.32) approach in order
to solve the system (2.18) in a semiconductor device in one spatial dimension [68]. The
main idea of the algorithm is to move the nonlinearity to the Poisson equation only,
and once obtained the electric potential profile, both continuity equations are solved
in linear form. This is possible if we consider the Maxwell-Boltzmann approximation
for electrons and holes. However, we should note that there are some limitations in
source/drain regions (since they are highly doped) and in the inversion layer.

2.2.6 Existence and local uniqueness of the solution

In the next step, we prove existence and local uniqueness of solutions of system of
stochastic elliptic boundary-value problems with interface conditions (2.23) [145] using
the Schauder fixed-point theorem and the implicit-function theorem similarly to [13,
Theorem 2.2 and 5.2].

Theorem 2.3 (Existence). Under Assumptions (2.2.3), for every f(x, ω) ∈ L2(Ω;L2(D))

and VD, uD, vD ∈ H1/2(∂D), there exists a weak solution [145]

(V (x, ω), u(x, ω), v(x, ω), α(x, ω), γ(x, ω)) ∈
(
L2(Ω;H1

VD
(D) ∩ L∞(D × Ω)

)
×
(
L2(Ω;H1

uD
(DSi)) ∩ L∞(DSi × Ω)

)
×
(
L2(Ω;H1

vD
(DSi)) ∩ L∞(DSi × Ω)

)
×
(
L2(Ω;H1(Γ)) ∩ L∞(Γ× Ω)

)2
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of the stochastic boundary-value problem (2.23), and for every ω ∈ Ω it satisfies the
L∞-estimate

V ≤ V (x, ω) ≤ V in D,
1

K
≤ u(x, ω) ≤ K in DSi,

1

K
≤ v(x, ω) ≤ K in DSi,

where

V := min( inf
∂DD

VD,Φ− sup
D
VL, UT ln(

1

2Kni
(C +

√
C2 + 4n2

i ))− sup
D
VL),

V := max(sup
∂DD

VD,Φ− inf
D
VL, UT ln(

K

2ni
(C +

√
C

2
+ 4n2

i ))− inf
D
VL).

Here VL(x, ω) is the solution of the linear problem (i.e., problem (2.26) with h ≡ 0), for
which the estimate

‖VL‖L2(Ω;H1
VD

(D)) ≤ C
(
‖f‖L2(Ω;L2(D)) + ‖VD‖H1/2(∂DD) + ‖α‖L2(Ω;H1/2(Γ)) + ‖γ‖L2(Ω;L2(Γ))

)
holds, where C is a positive constant.

Proof. The existence of the solution is proved using the Schauder fixed-point theorem
and the estimates are obtained from a maximum principle. First, we define a suitable
space

N :=
{

(V, u, v, α, γ) ∈ L2(Ω;H1(D))× L2(Ω;H1(DSi))
2 × L2(Ω;H1(Γ))2

∣∣
V ≤ V (x, ω) ≤ V a.e. in D × Ω,

1

K
≤ u(x, ω), v(x, ω) ≤ K a.e. in DSi × Ω,

α, γ bounded a.e. on Γ× Ω
}
,

which is closed and convex. Then we define a fixed-point map F : N → N by

F (V0, u0, v0, α0, γ0) := (V1, u1, v1, α1, γ1),

where the elements of the vector (V1, u1, v1, α1, γ1) are the solutions of the following
equations for given data (V0, u0, v0, α0, γ0).

1. Solve the elliptic equation

−∇ · (A∇V1) = qni(e
−V1/UT v0 − eV1/UT u0) + qCdop in D,

n · ∇V1 = 0 on ∂DN ,

V1 = VD on ∂DD

for V1.
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2. Solve the elliptic equation

UT∇ · (µneV1/UT∇u1)

− u1v0 − 1

τp(eV1/UT u0 + 1) + τn(e−V1/UT v0 + 1)
= 0 in DSi,

n · ∇u1 = 0 on ∂DSi,N ,

u1 = uD on ∂DSi,D

for u1.

3. Solve the elliptic equation

UT∇ · (µpe−V1/UT∇v1)

− u0v1 − 1

τp(eV1/UT u0 + 1) + τn(e−V1/UT v0 + 1)
= 0 in DSi

n · ∇v1 = 0 on ∂DSi,N ,

v1 = vD on ∂DSi,D,

for v1.

4. Update the surface-charge density and dipole-moment density according to the
microscopic model

α1(y, ω) := Mα(V0),

γ1(y, ω) := Mγ(V0).

Using lemmata on the existence and uniqueness of solutions of elliptic boundary-value
problems with interface conditions, every equation present in the model is uniquely
solvable. Therefore the map F is well-defined. Furthermore, continuity and the self-
mapping property of F as well as the precompactness of F (N) can be shown similarly
to [13, Theorem 2.2]. Therefore, applying the Schauder fixed-point theorem yields a
fixed-point of F , which is a weak solution of (2.23).

In general, the solution in Theorem (2.3) is not unique; uniqueness of the solution only
holds in a neighborhood around thermal equilibrium. The following theorem yields local
uniqueness of the solution of our system (2.23) of model equation. The proof is based
on the implicit-function theorem.

Theorem 2.4 (Local uniqueness). Under Assumption (2.2.3), for every f(x, ω) ∈
L2(Ω;L2(D)), VD, uD, vD ∈ H1/2(∂D), α ∈ L2(Ω;H1/2(Γ)), and γ ∈ L2(Ω;L2(Γ)),
there exists a sufficiently small σ ∈ R with |U | < σ such that the stochastic problem in
the existence theorem (2.3) has a locally unique solution [145](

V ∗(U), u∗(U), v∗(U), α∗(U), γ∗(U)
)
∈ L2(Ω;H2(D \ Γ))× L2(Ω;H2(DSi))

2

× L2(Ω;H1/2(Γ))× L2(Ω;L2(Γ)).
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The solution satisfies(
V ∗(0), u∗(0), v∗(0), α∗(0), γ∗(0)

)
= (Ve, 1, 1, αe, γe)

and it depends continuously differentiably on U as a map from {U ∈ Rk, |U | < σ} into
L2(Ω;H2(D \ Γ))× L2(Ω;H2(DSi))

2 × L2(Ω;H1/2(Γ))× L2(Ω;L2(Γ)).

Proof. We call the equilibrium potential Ve(x, ω) and the equilibrium surface densi-
ties αe(x, ω) and γe(x, ω). (Ve, 1, 1, αe, γe) is a solution of the stochastic equilibrium
boundary-value problem, which has a unique solution due to the existence and unique-
ness of solutions of stochastic semilinear elliptic boundary-value problems of the form

−∇ · (A(x, ω)∇Ve(x, ω)) = qCdop(x, ω)− qni(eVe(x,ω)/UT − e−Ve(x,ω)/UT ) in DSi,

−∇ · (A(x, ω)∇Ve(x, ω)) = 0 in Dox,

−∇ · (A(x, ω)∇Ve(x, ω)) = −2η sinh(β(Ve(x, ω)− Φ(x, ω))) in Dliq,

Ve(0+, y, ω)− Ve(0−, y, ω) = αe(y, ω) on Γ,

A(0+)∂xVe(0+, y, ω)−A(0−)∂xVe(0−, y, ω) = γe(y, ω) on Γ,

Ve(x, ω) = VD(x) on ∂DD,

n · ∇Ve(x, ω) = 0 on ∂DN .

To apply the implicit-function theorem, we define the map

G : B × Sσ1(0) → L2(Ω;L2(D))× L2(Ω;L2(DSi))
2 × L2(Ω;L2(Γ))2,

G(V, u, v, α, γ, U) = 0,

where G is given by the boundary-value problem (2.23) after substituting V := V −
VD(U), u := u − uD(U), and v := v − vD(U). B is an open subset of L2(Ω;H2

∂(D)) ×
L2(Ω;H2

∂(DSi))
2 × L2(Ω;L2(Γ))2 with

H2
∂(D) := {φ ∈ H2(D) | n · ∇φ = 0 on ∂DN , φ = 0 on ∂DD},

and the sphere Sσ1 with radius σ1 and center 0 is a subset of Rd. The equilibrium
solution (Ve − VD(0), 0, 0, αe, γe, 0) is a solution of the equation G = 0. One can show
that the Fréchet derivative D(V,u,v,α,γ)G(Ve−VD(0), 0, 0, αe, γe, 0) has a bounded inverse
(see, e.g., [13, Theorem 2.2]). Then the implicit-function theorem implies uniqueness of
the solution of (2.23).

2.3 Transport equation for confined structure

The fundamental transport equation for large-scale systems is the Boltzmann transport
equation [74, 75]. Its independent variables are time, three space, and three momen-
tum dimensions; therefore, calculating numerical approximations to its solutions is very
computationally expensive. Popular stochastic approaches for the calculation of cur-
rents through ion channels such as Monte Carlo or Brownian dynamics [79, 161] and
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molecular dynamics are valuable to elucidate various aspects, but also require a huge
computational effort when currents are calculated. However, only currents are measured
in experiments. In order to overcome this problem, we have derived a (2+1)-dimensional
transport equation from the (6 + 1)-dimensional Boltzmann transport equation to sim-
ulate geometrically complicated structures and to decrease the computational cost of
current calculations [74, 85].

Here confined structures are understood as long, narrow 3D geometries where the trans-
port of the particles occurs in one space dimension, namely the longitudinal direction,
due to the presence of potential wells in the two transverse dimensions. The potential
wells responsible for the confinement can vary along the transport direction and are
given as functions of position. The independent variables in the (2 + 1)-dimensional
transport equation are position along the longitudinal direction, local particle energy,
and time. In the case of harmonic confinement potentials, i.e., when they are quadratic
functions of position, it was even possible to find explicit expressions for the transport
coefficients [74].

This is an essential feature of the present model: the confinement potentials determine
the local fluxes and hence the transport coefficients [75]. This is an important improve-
ment compared to using bulk transport coefficients for the simulation of extremely small
structures and it means that the physical properties of the channels and especially their
selectivity filters are captured. Since the transport coefficients are given by explicit
expressions, the numerical solution of the transport equation is as computationally ex-
pensive as the solution of a diffusion equation with constant transport coefficients so
that currents are obtained with relatively small computational effort. Therefore this
transport equation for confined structures is ideally suited for the simulation of ion
channels.

Due to the physiological importance of ion channels [106], this transport model is applied
to three transmembrane proteins here, namely the phosphate-specific channel OprP (an
antibiotic), the Gramicidin A channel (another antibiotic), and the well-known KcsA
ionic channel. In each case, the model is validated by comparison with current mea-
surements of various ions. Then we elucidate physiological properties of the channels.
For example, the selectivity of potassium channels between sodium and potassium is its
primary physiological function and therefore it is investigated in the simulations. The
model reproduces selectivity. We also constructed virtual ion channels by changing the
length of the selectivity filter in order to answer the question if and in which respect the
natural KcsA channel is optimal.

We recapitulate the transport equation and its relation to the given confinement poten-
tial in this Section. Throughout [74], the calculations were performed using dimension-
less variables and the theoretical feasibility of this approach was demonstrated. In [75],
the derivation of the transport equation was extended so that all variables have physical
units and a complete discussion of all the units can be found there as well.

The starting point is the Boltzmann transport equation in the form

∂tf + {E , f}XP +Q[f ] = 0, (2.33)
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where the Poisson bracket is defined as

{g, f}XP := ∇P g · ∇Xf −∇Xg · ∇P f. (2.34)

Here f(X,P, t) is the kinetic particle density, X ∈ R3 is position, P ∈ R3 is momentum,
t is time, E(X,P ) is the energy, and Q is the scattering operator. The energy is defined
as

E(X,P ) := V (X) +
|P |2

2m
,

being the sum of the potential energy V of the confinement and the kinetic energy. m
denotes the mass of a particle.

The spatial multiscale problem arises, since the structures are much narrower than long.
We write the confinement potential as

V (x, y) = V0(x) + V1(x, y), (2.35)

where V0 is the applied potential, and we will rescale in (2.36a) below.

Here we consider 3D structures that are confined in two dimensions such that transport
occurs in one dimension. Therefore we split position X and momentum P into

X = (x, y) = (x, y1, y2),

P = (p, q) = (p, q1, q2),

where x is the longitudinal direction of charge transport and y1 and y2 are the two
transverse directions of confinement. Accordingly, p is the momentum in the longitudinal
direction and q1 and q2 are the momenta in the transverse directions. We also split
the energy E into two contributions Ex and Ey from the longitudinal and transverse
directions, respectively, i.e.,

E(X,P ) = Ex(x, p) + Ey(x, y, q),

Ex(x, p) := V0(x) +
|p|2

2m
,

Ey(x, y, q) := V1(x, y) +
|q|2

2m
.

The scattering operator Q is defined such that it describes the physical system correctly.
In the transport (longitudinal) x-direction, it relaxes the density towards a Maxwellian
distribution, whereas in the confinement (transverse) y-direction it conserves the local
energy so that the particles do not lose or gain energy on average by colliding with the
sidewalls of the structure, i.e., there is no net energy transfer between the particles and
the sidewalls. The scattering operator is a relaxation operator and it has the form

Q[f ](x, y, p, q, t) :=
1

τ

(
f −M(p)

uf (x,Ey(x, y, q), t)

N(x,Ey(x, y, q))

)
.

The details of the operator can be found in [74, Section 2.1]. Then, in [74, Section
2.2], all variables were scaled and transformed into a dimensionless formulation. Here,
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however, we only scale the confinement direction y and time t by setting

ys :=
y

ε
, (2.36a)

ts := εt. (2.36b)

We consider the limit ε → 0. Regarding the spatial multiscale problem, this means
that the width ε � 1 of the structure is very small corresponding to pores that are
much longer than wide. Regarding the temporal multiscale problems, this scaling in
conjunction with the scattering operators means that we are interested in time scales
where diffusion is the dominant mechanism. We now simplify notation by using the
same variable names as before the scaling; additionally, in order to be consistent with
the notation in [74], we set v := p and w := q, but note that v and w denote momenta.

Dramatic simplifications are possible when assumptions on the form of the confinement
potential, and especially in the form of V1(x, y), are made. We assume that V1(x, y) has
the quadratic form

V1(x, y) =
1

2

(
B1(y1 − b1)2 +B2(y2 − b2)2

)
, (2.37)

where y, b ∈ R2. In this case, the confinement potential is called harmonic. Of course,
it is required that B1(x) > 0 and B2(x) > 0 for all x so that the particles are indeed
confined.

Finally, a diffusion-type equation for transport through a confined structure can be
found. Its coefficients are given by the coefficients of the confinement potential. The
equation is the conservation law

∂tρ(x, η, t) + ∂xF
x(x, η, t) + ∂ηF

η(x, η, t) = 0, (2.38)

where ρ(x, η, t) is the charge concentration. Also, the three independent variables are x,
the longitudinal position, η, the local energy in the transverse direction, and time t.

The two fluxes F x and F η are

F x(x, η, t) = −4π2kTτη√
B1B2

T1 −
π2kTτη2

√
B1B2

(
∂x(lnB1) + ∂x(lnB2)

)
T2 (2.39)

and

F η(x, η, t) = −π
2kTτη2

√
B1B2

(
∂x(lnB1) + ∂x(lnB2)

)
T1

− π2kTτη2

6
√
B1B2

(
12mB1(∂xb1)2

m+ τ2B1
+

12mB2(∂xb2)2

m+ τ2B2
+ 2η∂x(lnB1)∂x(lnB2)

+
η(3m+ 8τ2B1)(∂x(lnB1))2

m+ 4τ2B1
+
η(3m+ 8τ2B2)(∂x(lnB2))2

m+ 4τ2B2

)
T2, (2.40)
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where

T1 := e−V0/kT∇x
(
eV0/kT

ρ

N

)
,

T2 := e−η/kT∇η
(
eη/kT

ρ

N

)
,

and τ is the relaxation time. Regarding the units, we have

[F x] =
s

kg ·m2
, [F η] =

1

m · s
, [τ ] = s,

and therefore

[∂tρ] = [∇x · F x] = [∂ηF
η] =

s
kg ·m3

.

The computational significance is that this (2 + 1)-dimensional equation can be solved
fast numerically in contrast to the original (6 + 1)-dimensional problem. For the details
of the derivation, the reader is referred to [74, 75].

2.3.1 Current calculation

Here the total current can immediately be found by integrating the flux F x in the
longitudinal direction over all local energies η, i.e., the total current I is

I =

∫ ∞
η=0

F x(x0, η)dη,

which does not depend on the particular cross section given by x0 and the ion charge is
included (using the potential of mean force, PMF (see Section 4.4.1)). In Chapter 4, we
apply this method to calculate the current due to the passage of different ions through
three particular channels, namely OprP, Gramicidin A, and the well-known KcsA ionic
channel.

2.4 Stochastic Langevin equation

The binding and unbinding events of target molecules are described as a stochastic pro-
cess that occurs in the boundary layer [152, 154]. It is crucial for the understanding of
the sensing principle of field-effect sensors devices. In the case of a DNA sensor, the
binding and unbinding events are the hybridization and dehybridization of mobile single
DNA strands to be detected with immobilized single DNA strands of known sequence
to form a double-helix. The overall double-helix formation, which depends on the rate
of DNA transport and on the rate of the hybridization reaction, has been studied by
many research groups. In fact, the binding and unbinding depends on different effects
including, e.g., specific and non-specific binding processes and the hybridization of mis-
matched and partially matched DNA strands. These processes, due to their stochastic
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nature, result in a random signal fluctuation and hence in noise. The transport of tar-
get molecules in the analyte solution to the active sensor surface must be taken into
account in order to calculate time-dependent simulations. The time until the number
of probe-target complexes has reached its chemical equilibrium (or until at least a de-
tectable quantity has bound to the probe molecules at the sensor surface) determines
the response time of the sensor. The chemical equilibrium is understood as a balance
between association and dissociation events [152].

In order to obtain a more realistic model of the sensing process, it is not sufficient to
consider the hybridization/dissociation dynamics at the surface. Rather, it is crucial
to take the limited transport of the DNA molecules through the liquid into account,
as especially in the case of low target molecule concentrations, the hybridization char-
acteristics are changed significantly by this process. A thorough investigation and a
quantification of the resulting effects are the objectives of this dissertation. Here, we
present a model describing the surface interactions as stochastic processes and including
a transport model for the biomolecules in the liquid.

2.4.1 Interaction processes

The dynamic process of binding and unbinding of the respective species, or hybridiza-
tion and dissociation, again changes the surface charge density and hence the electrical
characteristics of the nanowire, which allows detection of the binding processes in mea-
surements. The association and dissociation processes of target molecules at the surface
can be described by the reaction equations

T + P
ra−→ PT, (2.41a)

PT
rd−→ P + T. (2.41b)

Equation (2.41a) describes the binding of target molecules T at time t (probe-molecule
concentration), to probe molecules P (target-molecule concentration), thus forming the
probe-target complex PT (probe-target concentration). Furthermore, we should note
that [P] = [PT] = [cm−2] and [T] = M .

Analogously, equation (2.41b) describes a dissociation processes, in which probes and
target molecules are formed from a complex PT. Moreover, the constants ra and rb
are reaction constants regarding the association and dissociation constants respectively.
The stochastic Langevin equation is the most widely known mathematical model for
the phenomenon of Brownian motion. It is a first order differential equation (ODE)
which contains a stochastic term corresponding to a random force. We can rewrite this
equation in the form

dPT(t)

dt
(t) = raCT (CP −PT(t))− rdPT(t), (2.42)

PT(0) = 0. (2.43)

where CT and CP are respectively probe concentration (at the surface, [cm−2]) and
target concentration (in the liquid, [M] (molar)). The above initial condition indicates
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that there are no probe-target complexes presents at the surface in the beginning. From
that equation, the concentration at the surface can be computed at any time. This is a
kind of partial differential equation which can be easily solved, yielding

PT(t) =
raCPCT
raCT + rd

(1− exp−(raCT +rd)t). (2.44)

For more technical details about the introduced model we strongly recommend the in-
terested reader to [64, 77].

2.4.2 The stochastic process at the functionalized surface

To make the system of equations more realistic a we consider (2.43) as a stochastic
model. To this end, We consider a sensor surface that is immersed in an aqueous solution
containing target molecules. We continue to use the notation P for probe molecules,
T for target molecules, and PT for probe-target complexes. The reactive solid surface
with area A is functionalized with CP probe molecules per unit area, and the liquid
contains target molecules with the unit of mole per liter, and the initial concentration
of probe-target complexes at the surface is assumed to be zero. In order to quantify
the biological noise of the system, we treat the reaction at the surface as a stochastic
process, i.e., the binding of probe and target molecules occurs in an essentially random
manner. Langevin equations for chemical reactions in a fixed volume have been discussed
recently. Here we obtain the Langevin equation for an association/dissociation process
at a surface [152]. We consider a system of n probe molecules at time t = jτ , j ∈ 0, 1, ....
The variables ωji , j ∈ 1, 2, . . . , n, are independent random variables for the indicator
function. Here ωji := 1 if the ith probe molecule is bound at time t = jτ and is zero
otherwise. Using the indicator function, the number of probe-target complexes PT can
be written as

∑n
i=1 ω

j
i and the number of probe molecules PT at time t can be written

as n−
∑n

i=1 ω
j
i . Now we define a new random variable

Xt :=
1

A

n∑
i=1

ωji . (2.45)

Lemma 1. Let d[B1(t)]/[dt] and d[B2(t)]/[dt] be statistically independent Gaussian
white-noise processes describing the association and dissociation process, respectively.
The evolution of Xt from a given initial state X0 is governed by the stochastic process
equation

dXt(t)

dt
= ra(CP −Xt)CT − rdXt +

√
ra(CP −Xt)CT

dB1(t)

dt
−
√
rdXt

dB1(t)

dt
, (2.46)

where statistically independent Gaussian white noises are given by

dB1(t)

dt
=
Na(0, 1)√

dt
, (2.47)

dB2(t)

dt
=
Nd(0, 1)√

dt
. (2.48)
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Note that a sufficient number of events must occur during this time intervals of length
τ . See [1] for more details.

To calculate the uncertainty of the system i.e., random binding and unbinding pro-
cesses we should calculate expected value and standard deviation of Xt. More precisely
speaking Xt is the number PT of probe-target complexes at time t.

First, we calculate the expectation. We use the Langevin equation (2.46) and take the
expectation of both sides to find [152]

dE(Xt) = raCT (CP −E(Xt))dt−rdE(Xt)dt+E(
√
raCT (CP −Xt)dB1)−E(

√
rdXtdB2)

(2.49)
To calculate the expected value, we take expectation of the above equation. As a
result we have

dE(Xt) = raCT (CP − E(Xt))dt− raE(Xt)dt

+E(
√
raCT (CP −Xt)dB1)︸ ︷︷ ︸

=0

−E(
√
rdXtdB2)︸ ︷︷ ︸

=0

simplifying to

dE[Xt]

dt
= −E[Xt](rd + raCT ) + raCPCT . (2.50)

Using same procedure as (2.46), the solution is obtained by

E[Xt] =
raCTCP
rd + raCT

(1− exp(−(raCT + rd)t)). (2.51)

In addition to the initial condition E(Xt) = 0.

Second, we calculate the variance. We define the variable H(Xt) = X2
t and we note

that it does not explicitly depend on t. Applying Ito’s formula, we have

dH(Xt) = 2XtdXt + dXtdXt. (2.52)

Then, we obtain

d(X2
t ) = (raCTCP + (2raCTCP − raCT + rd)Xt)dt− 2(raCT + rd)X

2
t dt

+ 2Xt(
√
raCT (CP −Xt)dB1 −

√
rdXtdB2)

and further the stochastic differential equation

d(Xt)
2

dt
= X2

t (−2raCT − 2rd) +Xt(raCT (2CP − 1) + rd) + raCTCp

+
√

4ra(CP −Xt)X2
t CT

d[B1(t)]

dt
−
√

4rdX
3
t

d[B2(t)]

dt
.
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By taking the expectation, we have

dE[X2
t ]

dt
= −E[X2

t ](2raCT + 2rd) + E[Xt](raCT (2CP − 1) + rd) + raCTCP . (2.53)

For sake of simplicity, we define two variables to make the formulas simpler

α : = raCPCT , (2.54)

β : = raCT + rd. (2.55)

Then, (2.56) can be rewritten as

dE[X2
t ]

dt
= αdt+ (2α− raCT + rd)E(Xt)dt− 2βE(X2

t )dt. (2.56)

With the initial condition E(X2
t ) = 0 we have (by solving above ODE)

E[X2
t ] =

E[Xt](raCT (2CP − 1) + rd) + raCTCP
2(raCT + rd)

(1− exp(−2(raCT + rd)t)) (2.57)

In summary, we have found the variance as V[Xt] := E[X2
t ] − E[Xt]

2 which can be
summarized using the defined notations

V[Xt] =
α

β2
(1− exp (rd + raCT exp(−βt)) . (2.58)

As mentioned before, we calculate the SNR arising from biological noise in this work.
The expectation (E[Xt]) of the binding events occurring at time t is considered as the
signal and the standard deviation as the noise. We find

SNR(t) :=
E(Xt)√
V(Xt)

=
√
α

1− exp(−βt)
(1− exp(−βt)(rd + raCT exp(−βt)))

. (2.59)

We define X∞ as the number Xt of bound probe molecules when the system is in
equilibrium. In fact, SNR is bounded in time by the inequality

0 < SNR(t) <

√
ra
rd
CPCT . (2.60)

Therefore, we find that

lim
t→∞

SNR(t) =

√
ra
rd
CPCT . (2.61)

Since CT <∞, the SNR is bounded in time by the inequality

0 < SNR(t) <

√
ra
rd
CPCT ∀t > 0. (2.62)

Molecular binding is an attractive interaction between two molecules that results in a
stable association in which the molecules are in close proximity to each other. The
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binding efficiency (BE) of probe molecules at time t is the fraction of all probe
molecules that are bound to target molecules at time t. We can calculate its expected
value as

E[BE(t)] =
raCT

rd + raCT
(1− exp(−(raCT + rd)t)), (2.63)

as well as its value in equilibrium as

lim
t→∞

E[BE(t)] =
raCT

rd + raCT
. (2.64)

Furthermore, a lower bound for the limit of the standard deviation as t → ∞ is given
by

0 <

√
rardCPCT
raCT + rd

≤ σ[X∞] =
√
V[X∞]. (2.65)

In Section (4.2.2) we will use the stochastic Langevin equation to model the random
binding process of cardiac troponin target molecules to the receptors.

2.5 Conclusions

In this chapter, we considered the stochastic drift-diffusion-Poisson equations as the
main model equation for describing transport in random environments with many ap-
plications. We presented existence and local uniqueness theorems for the weak solution
of the system. The method can be used in several microelectronic devices. The model
describes how various stochastic processes propagate through a PDE model and result
in noise and fluctuations in a transport model. We explained the usefulness of the
Scharfetter-Gummel iteration. Also, we described the current calculation in the intro-
duced microelectronic devices in details.

We have used a continuum transport model for confined structures to investigate three
kinds of transmembrane channels. The main feature of this diffusion-type transport
equation is that the geometry of the confining protein directly determines the transport
coefficients in the equation. Its great advantage as a continuum model is the fact that
the currents are obtained immediately from the 2D numerical solution by integration
over local energy; the numerical solutions of this 2D equation can be calculated quickly.

We have treated the binding and unbinding reactions in the surface layers of field-effect
biosensors as a stochastic process and we have obtained the Langevin equation for the
association and the dissociation processes at the surface. This allows us to derive explicit
formulas for the expectation and the standard deviation of the number of probe-target
complexes at the sensor surface and, therefore, the signal-to-noise ratio.
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Stochastic numerical methods

In this chapter, we develop the stochastic numerical method to quantify noise and fluc-
tuation in nano-electronic devices. In many realistic situations, the probability space
is highly dimensional. For example, each probe molecule, each target molecule, and
each probe-target complex need to be modeled in sensors. In transistors, the number
of impurities and their positions are random. The large number of dimensions favors
the use of Monte Carlo methods because it is well-known that the convergence rate of
standard MC methods is independent of the number of dimensions. On the other hand,
it is inversely proportional to the square root of the number of evaluations and here each
evaluation requires solving a two- or three-dimensional system of elliptic equations.

These considerations motivate the development of a multilevel Monte Carlo (MLMC)
algorithm. In [61], after earlier work [71] on numerical quadrature, it was shown that
a multilevel approach and a geometric sequence of timesteps can reduce the order of
computational complexity of MC path simulations for estimating the expected value
of the solution of a stochastic ordinary differential equation. This is done by reducing
the variance and leaving the bias unchanged due to the Euler discretization used as
the ODE solver. In [63], the Milstein scheme was used as the ODE solver to improve
the convergence rate of the MLMC method for scalar stochastic ordinary differential
equations and the method was made more efficient. The new method has the same
weak order of convergence, but an improved first-order strong convergence, and it is the
strong order of convergence which is central to the efficiency of MLMC methods. In [62],
the MLMC method was combined with quasi-Monte Carlo (QMC) integration using a
randomized rank-1 lattice rule and the asymptotic order of convergence of MLMC was
improved and a lower computational cost was achieved as well.

In [11], an MLMC finite-element method was presented for elliptic partial differential
equations with stochastic coefficients. In this problem, the source of randomness lies
in the coefficients inside the operator and the coefficient fields are bounded uniformly
from above and away from zero. The MLMC error and work estimates are given both
for the mean of the solutions and for computation of higher moments. Also, in [33], the
same problem was considered and numerical results indicate that the MLMC estimator
is not limited to smooth problems. In [95], a multilevel quasi-Monte Carlo finite element

39
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method for a class of elliptic PDEs with random coefficients was presented. The error
analysis of QMC was generalized to a multilevel scheme with the number of QMC points
dependent on the discretization level and with a level-dependent dimension truncation
strategy.

In [27], uniform bounds on the finite-element error were shown in standard Bochner
spaces. These new bounds can be used to perform a rigorous analysis of the MLMC
method for elliptic problems, and a rigorous bound on the MLMC complexity in a more
general case was found. In [147], the finite-element error analysis was extended for the
same type of equations posed on non-smooth domains and with discontinuities in the
coefficient. In [70], a general optimization of the parameters in the MLMC discretization
hierarchy based on uniform discretization methods with general approximation orders
and computational costs was developed. In this chapter, we define a global optimization
problem which minimizes the computational complexity such that the error bound is
less or equal to a given tolerance level. This approach will be applied to both randomly
distributed point (Monte Carlo sampling) and quasi-random points.

To speed up the convergence of standard Monte Carlo method, one approach is to use
methods which reduce the variance such as the multilevel Monte Carlo method which we
applied to the stochastic drift-diffusion-Poisson system. Another approach is to change
the choice of applied sequences, meaning that instead of using random sequences, we
can replace them with quasi random sequences whose points have correlation and hence
better uniformity. Therefore, the quasi-Monte Carlo as a low-discrepancy method leads
to faster convergence than standard Monte Carlo method. On the other hand, the big
disadvantage of the quasi-Monte Carlo method is that the low-discrepancy sequence
applied in this method is deterministic due to correlation between points. Therefore,
the quasi-Monte Carlo method is considered as a deterministic algorithm with an error
bound which is difficult to estimate. To overcome this problem, one can randomize the
method by randomizing the applied sequences using a random shift which is a uniformly
distributed vector. The idea of random shifting was first introduced by Cranley and
Patterson [40] in the context of good lattice rules. Later, Joe [81] applied the idea of
general lattice rules. Then, Tuffin [150] elaborated on the shifted sequences and their
discrepancy.

If we use randomized low-discrepancy sequences such as randomly shifted lattice rule, a
new method is created which is called randomized quasi-Monte Carlo (RQMC) method.
Using the idea of stratification, we can improve the single level RQMC to multilevel ran-
domized quasi-Monte Carlo (MLRQMC) method which we are considering here. In this
paper, our main goal is to develop the MLRQMC to an optimal method in solving the
stochastic drift-diffusion-Poisson system which has many applications including model-
ing field-effect transistors. To this end, we define a work function for the MLRQMC
method, which calculates the computational cost of solving the stochastic model using
the aforementioned numerical method. We aim to minimize this work function such that
the estimated error of this method to be less than a given error tolerance. By solving
this optimization problem, optimal values such as optimal mesh size of discretization
and optimal number of quasi-points are obtained in order to develop an optimized nu-
merical method with the lowest cost of calculation. For this, we also need to calculate
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the variance of the MLRQMC method as well as estimation of error for this numerical
method in combination with the finite element as the discretization method.

A basis adaptation in homogeneous chaos expansions of random fields was introduced
in [148]. The homogeneous Wiener chaos [162] representation of random processes has
provided a convenient way to characterize solutions of systems of equations that describe
physical phenomena as was demonstrated in [60] and further applied to a wide range of
engineering problems. In 3.6.1, we introduce the polynomial chaos expansion (PCE). In
this chapter we develop the basis adaptation approach (using the PCE) to quantify the
biological noise in the field effect sensors. The numerical implementation and comparison
of the results with classical Monte Carlo and the experiments will be given in 4.1.1.

Finally, this chapter is a summary of the advanced numerical models that are explained
in [85, 86, 88, 89, 145].

3.1 Monte Carlo finite element method

In part, we first of all briefly recapitulate the Galerkin finite element approximation and
fix some notation. It provides the foundation for the following section.

We suppose that the domain D can be partitioned into quasi-uniform triangles or tetra-
hedra such that sequences {τh`}∞`=0 of regular meshes are obtained. For any ` ≥ 0, we
denote the mesh size of τh` by

h` := max
K∈τh`

{diamK},

where for all K ∈ τh` , it indicates the radius of the largest ball that can be inscribed. To
ensure that the mesh quality does not deteriorate as refinements are made, shape-regular
meshes can be used.

Definition 3.1 (Shape regular mesh). A sequence {τh`}∞l=0 of meshes is shape regular
if there exists a constant κ <∞ independent of ` such that

hK
ρK
≤ κ ∀K ∈ τh` .

Here ρK is the radius of the largest ball that can be inscribed into any K ∈ τh` .

Uniform refinement of the mesh can be achieved by regular subdivision. This results in
the mesh size

h` = r−`h0, (3.1)

where h0 denotes the mesh size of the coarsest triangulation and r > 1 is independent
of `. The nested family {τh`}∞`=0 of regular triangulations obtained in this way is shape
regular.

The Galerkin approximation is the discrete version of the weak formulation in (2.30)
of the stochastic elliptic boundary-value problem (2.23). We consider finite element
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discretizations with approximations uh ∈ Xh` of u ∈ X. Given a mesh τh` , X is the
solution space (2.27) and Xh` ⊂ X is the discretized space. For all k ≥ 1, it is defined
as

Xh` := Pk(τh`) := {u ∈ X | u|K ∈ Pk(K) ∀K ∈ τh`}, (3.2)

where Pk(K) := span{xα | |α| ≤ k} is the space of polynomials of total degree less
equal k. The space X0 is the space (2.28) of test functions. The discretized test space
X0h` ⊂ X0 is defined analogously to (3.2).

After introducing the finite element spaces, everything is ready to define the Galerkin
approximation.

Definition 3.2 (Galerkin approximation). Suppose Xh` ⊂ X and X0h` ⊂ X0. The
Galerkin approximation of (2.26) is the function

wh` ∈ L
2(Ω;Xh`)

that satisfies
B(wh` , φh`) = F (φh`) ∀φh` ∈ L

2(Ω;X0h`), (3.3)

where B and F are defined in (2.30).

3.1.1 Monte Carlo finite element approximation

The straightforward Monte Carlo method for a stochastic PDE approximates the ex-
pectation E[u] of the solution u by the sample mean of a (large) number of evaluations.
Since we use the same finite element mesh τ with the mesh size h for all samples, we
drop the index ` in this subsection for the MC-FEM. We approximate E[u] by E[uh],
where uh is again the FE approximation of u using a mesh of size h. The standard MC
estimator EMC for E[uh] is the sample mean

EMC[uh] := ûh :=
1

M

M∑
i=1

u
(i)
h , (3.4)

where u(i)
h = uh(x, ω(i)) is the ith sample of the solution.

The following lemma shows the error of the MC estimator for a random variable u which
is not discretized in space is of order O(M−1/2).

Lemma 3.3. For any number of samples M ∈ N and for a random variable u ∈
L2(Ω;X), we have [145]

‖E[u]− EMC[u]‖L2(Ω;X) = M−1/2σ[u] (3.5)

holds for the MC error, where σ[u] := ‖E[u]− u‖L2(Ω;X).
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Proof. The result follows from the calculation

‖E[u]− EMC[u]‖2L2(Ω;X) = E
[∥∥∥E[u]− 1

M

M∑
i=1

u(i)
∥∥∥2

X

]
=

1

M2

M∑
i=1

E
[
‖E[u]− u(i)‖2X

]
=

1

M
E
[
‖E[u]− u‖2X

]
= M−1σ2[u].

Therefore, the variance of the MC estimator is

σ2[EMC[u]] = ‖E[EMC[u]]− EMC[u]‖2L2(Ω;X) = M−1σ2[u]. (3.6)

Next, we generalize the result to the finite element solution by using the MC estimator
to approximate the expectation E[u] of a solution u of an SPDE, which is discretized in
space by the finite element method. In other words, if uh and ûh are the finite element
and MC solutions of the SPDE, respectively, then we have

E[u] ≈ E[uh] ≈ ûh.

Therefore, the MC-FEM method involves two approximations and hence there are two
sources of error.

Discretization error The approximation of E[u] by E[uh] gives to the discretization
error, which stems from the spatial discretization.

Statistical error The approximation of the expected value E[uh] by the sample mean
ûh gives rise to the statistical error, which is caused by the MC estimator.

Lemma (3.3) takes care of the statistical error. The order of the discretization error
depends on the order of the finite element method.

Recalling that ûh = EMC, we first obtain the mean square error of the Monte Carlo
FEM in the L2-norm in the following proposition. Later we also show a theorem for the
error in the H1-norm.

Proposition 3.4. Let ûh be the Monte Carlo estimator with M samples to approximate
the expectation E[u] of a solution u(·, ω) ∈ L2(D) of an SPDE by using a FE solution
uh(·, ω) with mesh size h. Then the mean square error of the Monte Carlo estimator
satisfies [145]

‖ûh − E[u]‖2L2(Ω;L2(D)) = M−1σ2[uh] + ‖E[uh]− E[u]‖2L2(Ω;L2(D)). (3.7)
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Proof. Starting from the mean square error, we calculate

MSE := ‖ûh − E[u]‖2L2(Ω;L2(D))

= E
[
‖ûh − E[u]‖2L2(D)

]
= E

[ ∫
D

(ûh − E[u])2dx
]

=

∫
D
E[(ûh − E[u])2]dx,

(3.8)

where the last equation holds due to Fubini’s Theorem. Add and subtracting the term
E[ûh], we find

MSE =

∫
D
E[(ûh − E[ûh] + E[ûh]− E[u])2]dx

=

∫
D
E[(ûh − E[ûh])]dx+

∫
D
E[(E[ûh]− E[u])2]dx

= ‖ûh − E[ûh]‖2L2(Ω;L2(D)) + ‖E[uh]− E[u]‖2L2(Ω;L2(D))

= σ2[ûh] + ‖E[uh]− E[u]‖2L2(Ω;L2(D))

= M−1σ2[uh] + ‖E[uh]− E[u]‖2L2(Ω;L2(D)),

(3.9)

where we used E[ûh] = E[uh], because the Monte Carlo estimator is unbiased, and
σ2[ûh] = M−1σ2[uh] due to equation (3.6).

Now we extend this result to H1. In the following theorems, the finite element space X
is H1 (see (2.27)).

Theorem 3.5. Suppose α,C0, C1 ∈ R+. Let ûh be the Monte Carlo estimator with M
samples to approximate the expectation E[u] of a solution u(·, ω) ∈ X of an SPDE by
using a FE solution uh(·, ω) ∈ Xh with mesh size h [145]. Suppose that the discretization
error converges with order α, i.e.,

‖E[uh − u]‖L2(Ω;X) ≤ C1h
α, (3.10)

and that the estimate
σ2[uh] ≤ C0 (3.11)

holds. Then the mean square error of the MC estimator satisfies

‖ûh − E[u]‖2L2(Ω;X) = O(h2α) +O(M−1). (3.12)
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Proof. We use the mean square error and calculate

MSE := ‖ûh − E[u]‖2L2(Ω;X)

= ‖ûh − E[u]‖2L2(Ω;L2(D)) + ‖∇ûh − E[∇u]‖2L2(Ω;L2(D))

= ‖ûh − E[ûh]‖2L2(Ω;L2(D)) + ‖E[ûh]− E[u]‖2L2(Ω;L2(D))

+ ‖∇ûh − E[∇ûh]‖2L2(Ω;L2(D)) + ‖E[∇ûh]− E[∇u]‖2L2(Ω;L2(D))

= ‖ûh − E[ûh]‖2L2(Ω;X) + ‖E[ûh]− E[u]‖2L2(Ω;X)

= σ2[ûh] + ‖E[ûh]− E[u]‖2L2(Ω;X)

= M−1σ2[uh] + ‖E[uh]− E[u]‖2L2(Ω;X).

(3.13)

In the last expression, E[ûh] = E[uh] holds again because the Monte Carlo estimator
is unbiased, and σ2[ûh] = M−1σ2[uh] holds due to (3.6). Therefore, using the assump-
tions (3.10) and (3.11), we have

MSE ≤ C0M
−1 + (C1h

α)2 = O(M−1) +O(h2α), (3.14)

which concludes the proof.

3.2 Multilevel Monte Carlo finite element method

In this section, we first present the MLMC FE method and an its error. In this method,
several levels of meshes are used and the MC estimator is employed to approximate the
solution on each level independently. We start by discretizing the variational formulation
(2.30) on the sequence

Xh0 ⊂ Xh1 ⊂ · · · ⊂ XhL ⊂ X

of finite-dimensional subspaces, where Xh` := P1(τh`) for all ` ∈ {0, 1, 2, . . . , L} (see Sec-
tion (3.1)). The finite element approximation at level L can be written as the telescopic
sum

uhL = uh0 +
L∑
`=1

(uh` − uh`−1
),

where each uh` is the solution on the mesh τh` at level `. Therefore, the expected value
of uhL is given by

E[uhL ] = E[uh0 ] + E

[
L∑
`=1

(uh` − uh`−1
)

]
= E[uh0 ] +

L∑
`=1

E[uh` − uh`−1
]. (3.15)

In the MLMC FEM, we estimate E[uh` − uh`−1
] by a level dependent number M` of

samples. The MLMC estimator E[u] is defined as

EMLMC[u] := ûhL := EMC[uh0 ] +

L∑
`=1

EMC[uh` − uh`−1
], (3.16)
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where EMC is the Monte Carlo estimator defined in (3.4). Therefore, we find

ûhL =
1

M0

M0∑
i=1

u
(i)
h0

+

L∑
`=1

1

M`

M∑̀
i=1

(u
(i)
h`
− u(i)

h`−1
). (3.17)

It is important to note that the approximate solutions u(i)
h`

and u(i)
h`−1

correspond to the
same sample i, but are computed on different levels of the mesh, i.e., on the meshes M`

and M`−1, respectively.

Recalling the two sources of error constituting the MC-FE error, the following result
holds for the MLMC-FEM error.

Theorem 3.6. Suppose α, β, C00, C0, C1 ∈ R+. Let ûhL be the multilevel Monte Carlo
estimator to approximate the expectation E[u] of a solution u(·, ω) ∈ X of an SPDE by
using a FE solution uh`(·, ω) ∈ Xh` with M` samples in level `, ` ∈ {0, 1, 2, . . . , L} and
with mesh size h`. Suppose that the convergence order α for the discretization error, i.e.
[145],

‖E[uh` ]− E[u]‖L2(Ω;X) ≤ C1h
α
` , (3.18)

the convergence order β for

σ2[uh` − uh`−1
] ≤ C0h

β
`−1, (3.19)

and assume that the estimate
σ2[uh0 ] ≤ C00 (3.20)

holds. Then the mean-square error of the MLMC estimator satisfies

‖E[u]− ûhL‖
2
L2(Ω;X) = O(h2α

L ) +O(M−1
0 ) +

L∑
`=1

O(M−1
` )O(hβ`−1). (3.21)

Proof. Analogously to the MC case, the MSE is used to assess the accuracy of the
MLMC FE estimator. We calculate

MSE := ‖ûhL − E[u]‖2L2(Ω;X)

= ‖ûhL − E[u]‖2L2(Ω;L2(D)) + ‖∇ûhL − E[∇u]‖2L2(Ω;L2(D))

= ‖ûhL − E[ûhL ]‖2L2(Ω;L2(D)) + ‖E[ûhL ]− E[u]‖2L2(Ω;L2(D))

+ ‖∇ûhL − E[∇ûhL ]‖2L2(Ω;L2(D)) + ‖E[∇ûhL ]− E[∇u]‖2L2(Ω;L2(D))

= ‖ûhL − E[ûhL ]‖2L2(Ω;X) + ‖E[ûhL ]− E[u]‖2L2(Ω;X)

= σ2[ûhL ] + ‖E[ûhL ]− E[u]‖2L2(Ω;X).

(3.22)

Expanding as in (3.13), using the relation σ2[ûhL ] =
∑L

`=0M
−1
` σ2[uh` − uh`−1

] [33],
and finally applying the assumptions (3.18)–(3.20), we obtain the asserted estimate by
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observing that

MSE = M−1
0 σ2[uh0 ] +

L∑
`=1

M−1
` σ2[uh` − uh`−1

] + ‖E[uhL ]− E[u]‖2L2(Ω;X)

≤ C00M
−1
0 + C0

L∑
`=1

M−1
` hβ`−1 + (C1h

α
L)2

= O(M−1
0 ) +

L∑
`=1

O(M−1
` )O(hβ`−1) +O(h2α

L ),

(3.23)

which concludes the proof.

3.3 The optimal Monte Carlo methods

In this section, we first estimate the computational cost of the MLMC FE method to
achieve a given accuracy and compare it with the MC FE method. Based on these
considerations, the computational work is then minimized for a given accuracy to be
achieved in order to find the optimal number of samples and the optimal mesh size.

As the model equations (2.23) are a system of PDEs, the work estimate consists of
the sum of the work for all equations, i.e., the Poisson equation for V and the two
drift-diffusion equations for u and v. Therefore, the total computational work is given
by

W := WP + 2WD = WP,a +WP,s + 2WD,a + 2WD,s, (3.24)

where the index P indicates the Poisson equation, the index D indicates the two drift-
diffusion equations, the index a denotes assembly of the system matrix, and the index s
denotes solving the system matrix. We assume that the necessary number of fixed-point
or Newton iterations to achieve numerical convergence is constant; this is supported by
the numerical results. For each of these four parts the work per sample in level ` is given
by

W`,P,a = µ1h
−γ1
` , (3.25a)

W`,P,s = µ2h
−γ2
` , (3.25b)

W`,D,a = µ3h
−γ3
` , (3.25c)

W`,D,s = µ4h
−γ4
` (3.25d)

with all µk > 0 and γk > 0. Here M` is the number of samples used at level `, and h` is
the corresponding mesh size. Therefore the work per sample is given by

W` = W`,P,a +W`,P,s + 2(W`,D,a +W`,D,s). (3.26)

Analogously, in the case of the standard Monte Carlo method, the computational work
is obtained without stratification, i.e., there is only one level. In this case, we will drop
the index `.
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The exponents (and constants) in equations (3.25) are determined by the algorithm used
for assembling the FE matrix in the case of WP,a and WD,a (see, e.g., [44] for an efficient
algorithm) and by the order of the FE discretization in the case of WP,s and WD,s (see
Section 3.1.1). The constants µi > 0 depend on the implementation.

Each of the four parts of the computational work has the form µkh
−γk
` , k ∈ {1, . . . , 4},

with µk > 0 and γk > 0, which are multiplied by the number M` of samples at level `.
Hence, the total work W is

W :=

L∑
`=0

M`W`

=
L∑
`=0

M`(W`,P,a +W`,P,s + 2W`,D,a + 2W`,D,s)

=
L∑
`=0

M`(µ1h
−γ1
` + µ2h

−γ2
` + µ3h

−γ3
` + µ4h

−γ4
` ),

(3.27)

where the exponents are determined by the algorithms and implementations used for
assembling the finite-element matrix and by the order of the finite-element discretization.
The typical values of the coefficients for the problems at hand are given in Chapter 4.

3.3.1 The optimal Monte Carlo finite element method

In the case of the Monte Carlo method, there is only one level so that the index ` will
be dropped. We will choose the optimal M and h such that the total computational
cost W is minimized given an error bound ε to be achieved. This optimization problem
with inequality constraints can be solved using the Karush-Kuhn-Tucker (KKT) condi-
tions, which are the generalization of Lagrange multipliers in the presence of inequality
constraints.

In view of (3.25) and (3.13), the most general problem is the following. We minimize
the computational work subject to the accuracy constraint MSE ≤ ε2 so that the root-
mean-square error RMSE ≤ ε. To this end, we solve the optimization problem

minimize
M,h

f(M,h) := MW

subject to g(M,h) :=
C0

M
+ (C1h

α)2 − ε2 ≤ 0,
(3.28)

where the optimization is over M > 1 and h > 0. To simplify the problem, we introduce
the new variable θ with 0 < θ < 1 such that

C0

M
= θε2 and (C1h

α)2 = (1− θ)ε2. (3.29)

By viewing h and M as functions of θ, (3.28) becomes a one-dimensional convex op-
timization problem. Due to the exponents of h and M , it is a nonlinear constraint
optimization problem. Our goal is to formulate the inequality constrained problem as
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an equality constrained problem to which Newton’s method can be applied. In order to
solve the optimization problem, we use the interior-point method [57, 163].

For each µ > 0, we replace the non-negativity constraints with logarithmic barrier terms
in the objective function

minimize
χ,s

fµ(χ, s) := f(χ)− µ
∑
i

ln(si)

subject to g(χ)− s = 0.

(3.30)

Here χ, a vector, denotes (M,h) and the vectors g and s represent the gi(x) and si,
respectively. The si are restricted to be positive away from zero to ensure that the ln(si)

are bounded. As µ decreases to zero, the minimum of fµ approaches the minimum of f .
After denoting the Lagrange multiplier for the system (3.30) by y, the system

∇f(χ)−∇g(χ)T y = 0,

SY e = µe,

g(χ)− s = 0

is obtained, where S is a diagonal matrix with elements si, e is a vector of all ones,
and ∇g denotes the Jacobian of the constraint g. Now we apply Newton’s method to
compute the search directions ∆χ, ∆s, ∆h viaH(χ, y) 0 −A(χ)T

0 Y S

A(x) −I 0


∆χ

∆s

∆h

 =

−∇f(χ) +A(χ)T y

µe− SY e
−g(χ) + s

 . (3.31)

The Hessian matrix is given by

H(χ, y) = ∇2f(χ)−
∑
i

yi∇2gi(χ)

and A(χ) is the Jacobian matrix of the constraint (3.28). The second equation is used
to calculate ∆s. By substituting into the third equation, we obtain the reduced KKT
system (

−H(χ, y) A(χ)T

A(χ) SY −1

)(
∆χ

∆s

)
=

(
∇f(χ)−A(χ)T y

−h(χ) + µY −1e

)
. (3.32)

Now we use iteration to update the solutions by

χ(k+1) := χ(k) + α(k)∆χ(k),

s(k+1) := s(k) + α(k)∆s(k),

y(k+1) := y(k) + α(k)∆y(k),

where (χ(0), s(0), y(0)) is the initial guess and α(k) is chosen to ensure both that s(k+1) > 0

and the objective function

Ψυ,µ(χ, s) = fµ(χ, s) +
υ

2
‖g(χ)− s‖,



Chapter 3. Stochastic numerical methods 50

is sufficiently reduced [16]. The parameter υ may increase with the iteration number to
force the solution toward feasibility.

3.3.2 The optimal multilevel Monte Carlo finite element method

For an optimal multilevel Monte Carlo finite element method, our goal is to determine the
optimal hierarchies (L, {M`}L`=0 , h0, r) which minimize the computational work subject
to the given accuracy constraint MSE ≤ ε2. The optimal number L of levels is also
unknown a priori. To this end, we solve the optimization problem

minimize
M`,h0,r

f(M`, h0, r, L) :=
L∑
`=0

M`W`

subject to g(M`, h0, r, L) :=
C00

M0
+ C0

L∑
`=1

hβ`−1

M`
+ (C1h

α
L)2 ≤ ε2.

(3.33)

Again, the problem is over M` > 1, h0 > 0, and r > 1. To obtain the optimal number
M` of samples for ` ∈ {0, . . . , L}, we calculate

∂

∂M`
(f + ξ2g) = 0, (3.34)

where ξ2 is the Lagrange multiplier. This leads to

M` = ξ
√
V`/W`, (3.35)

where V0 = C00 and V` = C0h
β
`−1. Similarly to (3.29), the equations

C00

M0
+ C0

L∑
`=1

hβ`−1

M`
= θε2 and (C1h

α
L)2 = (1− θ)ε2 (3.36)

hold. Hence, the Lagrange multiplier is given by

ξ =
(
θε2
)−1

L∑
`=0

√
V`W`. (3.37)

Additionally, according to (3.36), h0 is calculated by

h0 =

(√
1− θ ε
C1

)1/α

rL. (3.38)

Thus we arrive at a two-dimensional optimization problem for the unknowns θ and r.
Similarly to the standard Monte Carlo case, we use the interior-point method to solve
this nonlinear problem and optimize the hierarchies. In problems with two or three
physical/spatial dimensions, the optimal determination of the mesh sizes h` is a crucial
factor in the optimization problem specifically if the exponents γk are greater than 1.
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There are two options: one is to choose the h` as a geometric progression according to
(3.1). In this case, we solve the minimization problem (3.33). The other is to choose the
mesh sizes h` freely such that they only satisfy the natural condition

h0 ≥ h1 ≥ h2 ≥ · · · ≥ hL.

We will explore both options in Subsection 3.3.3.

In the second case, when the mesh sizes are freely chosen, we write them as

h` :=
h0

r`
, ` = 1, . . . , L,

where

r` :=
∏̀
i=1

ri and ri ≥ 1. (3.39)

It is clear that rL ≥ rL−1 · · · ≥ r1 ≥ 1. Here the optimization problem is an (L + 1)-
dimensional problem for the unknowns θ and r1, . . . , rL. The same procedure can be
applied to solve the problem.

3.3.3 A leading example

Random dopant effects are also called discrete dopant fluctuation effects [86, 133, 156].
In nanoscale semiconductor devices, the charge profile of the dopant atoms cannot be
validly modeled as a continuum anymore, but the random location of each dopant needs
to be taken into account. This means that each device is a realization of a random
process and corresponds to an event ω. In this manner, the potential and carrier density
fluctuations due to the discreteness and randomness of the dopants are clearly captured.

Here the silicon lattice is doped with boron as the impurity atoms (red circles in Figure
3.1). The domain D ⊂ R2 is depicted in Figure 3.1. The thickness of the oxide layer is
8 nm, the thickness of the nanowire is 40 nm, its width is 60 nm and the nanowire length
is 60 nm. Regarding the geometry, Dirichlet boundary conditions are used at the contacts
with a back-gate voltage of −1 V (at the bottom of the device) and an electrode voltage of
0 V (at the top of the device). Zero Neumann boundary conditions are used everywhere
else. The relative permittivities in the subdomains are ASi = 11.7, Aox = 3.9, Aliq = 78,
and Adop = 4.2. The number of dopants placed randomly in the device corresponds to
a doping concentration of 4 · 1016 cm−3. According to its volume, the silicon subdomain
hence contains 6 negative impurity atoms when Cdop = 5 · 1015 cm−3 and 600 dopants
when Cdop = 5 · 1017 cm−3. In this numerical example, the source and drain regions are
not included in the computational domain.
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Regarding the doping concentration Cdop, the discrete dopants are approximated by
Gaussian distributions

Cdop(x) :=
∑
j

Cj

(2πσ2)3/2
exp

(
−(x− xj)2

2σ2

)
,

where σ is the influence parameter, Cj is the charge of the j-th dopant atom, and xj its
position [80].

Figure 3.1 shows a cross section of the domain in the longitudinal direction. The lon-
gitudinal direction accounts for the transport of charge carriers through the nanowire
(black meshes) connecting the source and drain contacts. At least two spatial dimen-
sions are required for this type of problem: the potentials applied at the top and bottom
require one dimension and the transport between the source and drain contacts requires
another one. The drawback of 3D simulations is the large computational cost. In fact,
in a 2D simulation, the dopant atoms are cylindrical and the pounding fluctuation of
the potential can block or enhance the cement across the whole device width in the
third dimension. In a 3D case, the current could flow around the impurity in the third
dimension and the impact of the individual dopant atoms would be less. In order to
reduce the overall computational cost, a two-dimensional implementation was chosen
for the numerical results presented here. A three-dimensional implementation would, of
course, be a more faithful idealization of the three-dimensional reality, not leading to a
constant, infinite extension of the two dimensions into three. In other words, in order
to demonstrate the computational properties of the method a 2D test is sufficient.

In order to solve the system of equations, we use Scharfetter-Gummel iteration. In spite
of the quadratic convergence of Newton’s method for the system, Scharfetter-Gummel
iteration has advantages for the problem at hand. First of all, Scharfetter-Gummel
iteration is much less sensitive to the choice of the initial guess than Newton’s method.
Another important feature is the reduced computational effort and memory requirement,
since in each iteration, it requires the successive solution of three much smaller elliptic
problems.

The calculations are performed using MATLAB version 2015a on an Intel Core i5-4430
3.00GHz 4-core processor with 8GB of main memory.

As the first step, we calculate the coefficients in the expressions (3.25) for the compu-
tational work. To that end, we solve the system for various mesh sizes and measure
elapsed wall-clock time spent on matrix assembly and solving the resulting system, both
for the Poisson equation and the drift-diffusion equations. Figure 3.2 shows the results
for the coefficients in the expressions for the computational work.

The coefficients α and C1 in the FE discretization error

‖E[V − V̂h]‖X + ‖E[u− ûh]‖X + ‖E[v − v̂h]‖X ≤ C1h
α

of the system are given in Figure 3.3. The exponent α = 1.926 found here agrees very
well with the order of the discretization used here, i.e., P1 finite elements.
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Figure 3.1: Meshes for the random distribution of impurity atoms (red circles) in a
nanowire field-effect sensor for levels ` = 0 (left) and ` = 1 (right), where h0 = 4.02,
r = 2, and Cdop = 4 × 1016 cm−3. Additionally, oxide (Dox), transducer (DSi) and
the electrolyte (Dliq) subdomains are depicted with blue, black and green meshes,

respectively.
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Figure 3.2: Computational work for matrix assembly (top) and solving the system
(bottom), both for the Poisson equation (left) and the drift-diffusion-equations (right).

For the statistical error, we determine the coefficients in the inequality

(σ[∆Vh0 ] + σ[∆Vh` ]) + (σ[∆uh0 ] + σ[∆uh` ]) + (σ[∆vh0 ] + σ[∆vh` ]) ≤ C00 + C0h
β
`−1.

Here C00 = 0.07 and the rest of the coefficients are shown in Figure 3.3.

Having determined the coefficients in the expressions for the computational work, it is
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Figure 3.3: Discretization error (left) and statistical (right) error as a function of h.

now possible to numerically solve the optimization problems. As described in Section 3.3,
we apply an iterative interior-point method to optimize both the number of samples and
mesh sizes.

First of all, we solve the optimization problem (3.28) for the MC-FE method. Because
there is only one level, it is straightforward to solve. The optimal values for the MC FE
method are summarized in Table (3.1) for given ε.

ε 0.1 0.05 0.02 0.01 0.005 0.002 0.001
h 0.348 0.243 0.151 0.105 0.074 0.046 0.032
M 12 46 282 1 130 4 519 28 268 113 130

Table 3.1: Optimal MC FE method parameters for various given error tolerances.

In the MLMC-FE method, determining the optimal number of levels is an important part
of the calculation. This is achieved here by solving the optimization problem for several
levels starting with a single level and noting that the computational work increases above
a certain number of levels. More precisely, we solve the optimization problem (3.33) for
0 ≤ L ≤ 7 levels as well as for various given error bounds.

Since the number of samples in each level is a continuous variable in the optimization
problem, the optimal number of samples is – in general – not an integer and hence we
choose dM`e, ` = 0, . . . , L, as the final numbers of levels.

The results of the optimization problems provide insight into the MLMC procedure.
Figure 3.4 shows the minimized computational work as a function of the number of
levels and as a function of the given tolerance. It shows that for smaller tolerances ε, a
larger L is required.In other words, for smaller errors, using more levels leads to a better
distribution of the mesh sizes and number of samples among the levels. This fact can be
seen in the figure where in order to obtain lower computational complexity the minima is
shifted to higher levels. Also, in [27], indicated that in MLMC-FEM the computational
work is O(ε−2−γ/α) which agrees well with the left and right plots.

In Figure 3.5, the two approaches to multilevel Monte Carlo are compared, namely
choosing the h` as a geometric progressions or freely. Due to generality of the second
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Figure 3.4: The minimized computational work for the MLMC-FE method as a
function of the number of levels and as a function of the given error tolerance. The
results for a geometric progression for h (left) and general h (right) are shown. The
number of levels yielding the minimal overall computational work is indicated by red

circles.
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Figure 3.5: Comparison between the two different approaches to MLMC FE method
for ε = 0.015.

option, compared to the first option, choosing the h` freely gives rise to less computa-
tional work. However, only a small reduction in computational cost is achieved by the
choosing meshes freely. The results for both approaches to MLMC-FEM are summarized
in Tables 3.2 and 3.3 for various given error tolerances. Both figures show additionally
that more than two levels (i.e., L > 2) only yield a relatively small reduction in compu-
tational cost even for small tolerance levels. In practice, it should hence be considered
that the interior-point method requires more time as the number of levels increases.

Finally, as Figure 3.6 shows, the computational work for the multilevel Monte Carlo
method is approximately two times lower than the one for the Monte Carlo method
for larger tolerance levels such as ε = 0.1. The effectiveness of the MLMC-FE method
is more pronounced for smaller error bounds; for ε = 0.001, the computational work
is about a factor 102 lower than the Monte Carlo work. The results agree with Giles’
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ε h0 r M0 M1 M2 M3 M4

0.1 0.5171 1.7381 16 4 – – –
0.05 0.4433 2.1319 63 9 – – –
0.02 0.4620 2.0079 471 70 11 – –
0.01 0.4222 2.2940 1 882 207 22 – –
0.005 0.4515 2.0765 8 534 1 167 161 23 –
0.002 0.4549 2.0033 58 203 8 536 1296 197 30
0.001 0.4407 2.1669 232 299 29 141 3 575 438 54

Table 3.2: Optimal levels for the MLMC-FE method with h` chosen as a geometric
progression for given error tolerances ε.

ε h0 r1 r2 r3 r4

0.1 0.5171 1.738 – – –
0.05 0.4433 2.131 – – –
0.02 0.4618 2.020 1.990 – –
0.01 0.4201 2.270 2.320 – –
0.005 0.4507 2.080 2.070 2.060 –
0.002 0.4587 2.038 2.017 1.990 1.950
0.001 0.4412 2.140 2.157 2.170 2.196

ε M0 M1 M2 M3 M4

0.1 16 4 – – –
0.05 63 9 – – –
0.02 471 69 11 – –
0.01 1 884 210 22 – –
0.005 8 531 1 162 160 22 –
0.002 58 100 8 327 1 221 185 29
0.001 232 539 29 564 3701 455 55

Table 3.3: Optimal levels for the MLMC-FE method with general h` for given error
tolerances ε.

standard complexity theorem [33] in the sense that the estimated exponents α, β, and γ
satisfy the assumption of the theorem, i.e., α ≥ 1

2 min(β, γ). Therefore, according to the
theorem, the computational cost of the MLMC-FEM is O(ε−2). Additionally, according
to Figure 3.6, the total cost of the MC-FEM is O(ε−2−γ/α), which agrees with [27]. The
optimal distribution of the samples among the levels in the multilevel method leads to
more evaluations in the first levels (which are cheaper) and to fewer evaluations in the
higher levels. On the other hand, to satisfy the first constraint of (3.28), the Monte
Carlo method needs a smaller mesh size compared to the multilevel method, which
greatly increases the total computational work although the total number of samples is
lower.

3.4 Optimal multilevel randomized quasi-Monte Carlo

One approach to accelerate the convergence rate of Monte Carlo method has been to
construct variance reduction methods. An alternative approach to this end is to change
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Figure 3.6: Comparison of total computational work for MC-FEM and the two ap-
proaches to MLMC-FEM for various given tolerances.

the choice of used sequence. In the quasi-Monte Carlo method, instead of a random
sequence, a quasi-random sequence is used. In this method, correlation between the
points to provide greater uniformity speeds up the computation and therefore its con-
vergence rate is of better order than Monte Carlo method. Uniformity of a sequence is
measured in terms of its discrepancy and thus quasi-random sequences are also called
low-discrepancy sequences. The problem for uniformity and consequently accuracy of
Monte Carlo method is the clumping as well as regions that have no points, which can
be seen in the random points used in this method. About

√
N out of N points lie in

clumps [24]. The reason of the clumping issue in the Monte Carlo method is the inde-
pendence of random points while in quasi-Monte Carlo method, the points are correlated
and this avoids clumping. Standard Monte Carlo methods provide a convergence rate of
O(N−1/2) for N samples or points, while quasi-Monte Carlo methods use quasi-random
sequences, which are deterministic with correlation between the points to eliminate
clumping. The resulting convergence rate of this method is O((logN)dN−1), where d
is the dimension of the sequence. Therefore, quasi-Monte Carlo method has a smaller
error and a faster convergence than Monte Carlo method. However, high dimensionality
can limit the effectiveness of quasi-Monte Carlo sequences [24, 96].

There are different kinds of sequences used as quasi-random sequences to make the
desired point sets. For instance, the simplest quasi-random sequence is the Van der
Corput sequence in one dimension which was introduced by Niederreiter in 1992. Halton
and Sobol sequences are also other examples of quasi-random sequences. A sequence
{ωj}Nj=1 is quasi-random if it has a discrepancy bound of the form

DN ≤ cd(logN)dN−1, (3.40)

where cd is a constant depending on the dimension of the sequence d. The more recent
sequences, of course, have much better constants cd. Formulating a quantitative measure
of uniformity is an important step in studying sequences. Uniformity of a sequence of
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points is measured in terms of its discrepancy which shows the variability of the sequence
(the nodes) from the ideal distribution. The constant cd plays an important role to make
much better sequences in the sense of low-discrepancy sequences [24].

It is convenient to describe quasi-Monte Carlo methods in the context of numerical
quadrature rules. QMC methods approximate an integral on a high-dimensional hyper-
cube with an N -point equal-weight quadrature rule of the form

∫
[0,1]d

f(ω)dω ≈ 1

N

N∑
j=1

f(ωj). (3.41)

This is the same form which is used in the Monte Carlo method. However, rather
than choosing the d-dimensional points ωj uniformly from the unit cube, as is the case
with the Monte Carlo method, QMC methods choose the points in some deterministic
manner; these points are the jth terms of a d-dimensional low-discrepancy sequence in
the quasi-Monte Carlo method.
The basis for analyzing quasi-Monte Carlo quadrature error is the Koksma–Hlawka
inequality [24]:

Theorem 3.7 (Koksma–Hlawka theorem). For any sequence {ωj}j≥1 and any func-
tion f with bounded variation, the integration error due to (3.41) is bounded by∣∣∣∣ 1

N

N∑
j=1

f(ωj)−
∫

[0,1]d
f(ω)dω

∣∣∣∣ ≤ VHK(f)D∗N (ω), (3.42)

where VHK(f) is the Hardy-Krause variation of f defined by

VHK(f) :=

∫
[0,1]d

∣∣∣∣ ∂df

∂ω1 · · · ∂ωd

∣∣∣∣dω (3.43)

for sufficiently differentiable f .

The first term, VHK(f), is the variation of f in the sense of Hardy and Krause [116].
This term measures the variability in the function values, whereas the discrepancy term
D∗N (ωj) measures the variability of the underlying sequence (the nodes) from the ideal
distribution.

The quasi-Monte Carlo method (using the quasi-random sequences) has some drawbacks;
if the dimension d is high, the order of convergence of the quasi-Monte Carlo method
i.e. O((logN)dN−1) will be less than that of Monte Carlo method i.e. O(N−1/2). To
avoid this, we need d to be small and N to be large. Furthermore, VHK(f) and D∗N are
difficult to compute. In order to overcome these difficulties, we can use a randomized
quasi-Monte Carlo method [149].

In practice, when the dimension d is too large, the calculation of the integral in (3.41) is
computationally extremely expensive. In other words, for large d, the number of samples
N has to be considerably large for (logN)dN−1 to be smaller than N−1/2. In [139], it
is proved that their exist lattice rules such that with the parameter α > 1, the optimal
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rate of convergence for QMC rules is O(N−α/2+δ) for any δ > 0. This convergence rate
is independent of the dimension d. In [94], Kuo showed that their exist shifted rank-1
lattice rules (constructed by the CBC algorithm) that achieve the optimal convergence
of O(N−1+δ) for any δ > 0. The value of δ depends on the implementation and in
Section 4.3.2 it will be estimated.

The accuracy of a quasi-Monte Carlo method can be improved by rewriting the function
so that the variation term is reduced [117], or by constructing sequences that have
smaller discrepancy [118]. Using randomized quasi-Monte Carlo method with very low
discrepancy sequences such as rank-1 lattice rules helps us to increase the accuracy of
the method.

3.4.1 Randomized quasi-Monte Carlo finite element methods

In order to analyze and estimate the variance to get a better estimate of the error, we
can randomize the method. This method is called the randomized quasi-Monte Carlo
(RQMC) method and can be also considered as a variance reduction technique for the
standard Monte Carlo method. The simplest method of randomizing is to use a d-
dimensional random shift ∆ ∼ U [0, 1)d, which is a uniformly distributed vector.

In particular, a randomized rank-1 lattice rule [38] can be constructed as

ω
(i)
j :=

j

N
λ+ ∆(i) mod 1, j ∈ {1, . . . , N}, i ∈ {1, . . . ,M}, (3.44)

where N is the number of quasi-random points, ∆ ∈ [0, 1]d is the random shift, which
is uniformly distributed over [0, 1]d, M is the number of random shifts, and λ ∈ Rd is
a d-dimensional deterministic generating vector. Choosing λ carefully is important in
order to achieve uniformity. The quality of a randomly shifted lattice rule is determined
by the choice of the generating vector λ. This essential question is addressed, e.g., in
[67, Section 4]. Particularly, it is called randomized rank-1 lattice rule, if the rank-1
lattice rule as the low-discrepancy sequence is applied. Here, again N is the number of
quasi-random points or number of quasi-random points realizations or samples. In this
method, choosing λ1, . . . , λd carefully is important in order to achieve uniformity. We
take the fractional part of each component of the argument and disregard the integer
part so that ωj lies within the half-open unit cube. In this method, we choose a number
of different random offsets ∆1, . . . ,∆M and consider a family of d-dimensional sequences.
Then, we calculate the estimate (3.41) for each family of sequences (which is made using
different random shifts ∆i, i = 1, . . . ,M) and take sample mean over the number of
shift realizations M .

If the system (2.23) has a solution (V, u, v), we denote finite-element numerical approx-
imations by (Vh(x, ω), uh(x, ω), vh(x, ω)) for a given ω ∈ Ω. Since all three components
of the solution are in H1(D) for a given ω ∈ Ω, the variable u may denote any of the
three components from now on to simplify notation.
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The RQMC estimator to approximate E[uh] is then defined by

QN,M (uh) :=
1

M

M∑
i=1

1

N

N∑
j=1

uh(x, ω
(i)
j ) (3.45)

using the quasi-random points defined in (3.44).

3.4.2 Error bound for RQMC-FEM

As aforementioned, in order to overcome the difficulty of finding an error bound for the
QMC approach, we use an RQMC method. In this method, the standard assumption is
that uh has bounded variation VHK(uh) in the sense of Hardy and Krause, and behaves
like the variance [59]. Therefore, we assume that

VHK(uh) ≤ C0, (3.46)

where ν0 is a positive constant. Similar to the standard MC method, the mean square
error (MSE) can be written as the sum of the variance of the estimator plus the square
of the discretization error [145]. As in [145], a prescribed accuracy is to be achieved, i.e.,
MSE ≤ ε2.

Using the Koksma-Hlawka inequality (3.42), we estimate the variance of the RQMC
estimator (3.45) by calculating

σ2[QN,M (uh)] = σ2

 1

M

M∑
i=1

1

N

N∑
j=1

uh(x, ω
(i)
j )


=

1

M
σ2

 1

N

N∑
j=1

uh(x, ωj)


=

1

M

∫
[0,1]d

(
1

N

N∑
j=1

uh(x, ωj)− E[uh]

)2

dω

≤ 1

M

∫
[0,1]d

(
VHK(uh)D∗N (ωj)

)2

dω

= O(V 2
HK(uh)N−2+δ) ∀δ > 0.

(3.47)

variance of the RQMC estimator (3.45). In fact, in rank-1 lattice rules, the discrepancy
satisfies

D∗N (ωj) = O(N−1+δ) ∀δ > 0 (3.48)

for any number of points N > 1, any shift of the lattice, and for any dimension d ≥ 1

[138]. The above result is obtained by using component-by-component (CBC) construc-
tion, i.e., the components of the generating vector λ are constructed one at a time to
minimize the worst-case error in certain weighted function spaces [38].
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Using the boundedness assumption (3.46) for VHK(uh) in (3.47), we obtain the estimate

σ2[QN (uh)] ≤ C0M
−1N−2+δ ∀δ > 0 (3.49)

for the variance of the RQMC method, where C0 is estimated using (3.46). Furthermore,
δ will be estimated in the numerical results (see Figure 4.36). The inequality (3.49) will
be used later for an error estimate.

We recall that the variable u may represent any of the three components of the solu-
tion (V, u, v) of the system (2.23) in order to simplify notation, since all three components
are in H1(D) for a given ω ∈ Ω.

Proposition 3.8. Suppose that QN,M (uh) is the RQMC estimator to approximate the
expectation E[u] of the solution u(x, ω) ∈ X of (2.23). Assume further that the spatial
discretization error converges with order α, i.e., [88]

‖E[u− uh]‖L2(Ω;X) ≤ C1h
α ∃C1 ∈ R+, (3.50)

where uh(x, ω) ∈ Xh is the FE approximation with mesh size h and it has bounded
variation. Then the mean square error of the RQMC estimator QN,M satisfies

‖QN,M (uh)− E[u]‖2L2(Ω;X) = O(M−1N−2+δ) +O(h2α) ∀δ > 0. (3.51)

Proof. We estimate the mean square error (MSE). Using inequality (3.49) and assump-
tion (3.50), we find that

MSE := ‖QN,M (uh)− E[u]‖2L2(Ω;X)

= ‖QN,M (uh)− E[QN,M (uh)]‖2L2(Ω;X) + ‖E[QN,M (uh)]− E[u]‖2L2(Ω;X)

= σ2[QN,M (uh)] + ‖E[u− uh]‖2L2(Ω;X)

≤ C0M
−1N−2+δ + C1h

2α

= O(M−1N−2+δ) +O(h2α)

(3.52)

for every δ > 0.

3.5 Multilevel randomized quasi-Monte Carlo finite ele-
ment method (MLRQMC-FEM)

Based on the RQMC method in the previous part, a multilevel version of these ideas is
developed now.

The finite element approximation at level L can be written as the telescoping sum

uhL = uh0 +
L∑
`=1

(uh` − uh`−1
),
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where uh` is the approximation on the mesh τh` at level `. Furthermore, E[uh` − uh`−1
]

can be estimated using N` quasi-random points and M` random shifts on each level `.
Therefore the multilevel RQMC FE estimator with respect to one or more random shift
is defined as

QL,N`,M`
(uhL) :=

1

M0

M0∑
i=1

1

N0

N0∑
j=1

uh0(x, ω
(i)
j )+

L∑
`=1

1

M`

M∑̀
i=1

1

N`

N∑̀
j=1

(
uh`(x, ω

(i)
j )−uh`−1

(x, ω
(i)
j )
)
.

(3.53)
The sample points ω(i)

j are obtained using (3.44), for example, and their total number
is M`N`.

Here again the standard assumption is that VHK is bounded. It is expected that the
strong convergence of the discretization method effects the variation. By using the
multilevel approach, for higher levels the difference between uh` and uh`−1

decreases and
therefore VHK reduces. Hence, it seems to be a decent assumption that the Hardy-Krause
variation works similar to the variance of uh` − uh`−1

, which gives rise to the following
necessary assumptions.

Assumptions 1. The assumptions on the boundedness of the variations of the FEM
approximation and on the convergence order of the discretization error are

1. VHK(uh0) ≤ C00 ∃C00 ∈ R+,

2. VHK(uh` − uh`−1
) ≤ C0h

β
`−1 ∃C0, β ∈ R+,

3. ‖E[u− uh` ]‖L2(Ω;X) ≤ C1h
α
` ∃C1, α ∈ R+,

Proposition 3.9. Suppose Assumptions 1 hold and QL,N`,M (uhL) is the multilevel ran-
domized quasi-Monte Carlo estimator with N`M` sample points in level `, ` ∈ {0, 1, 2, . . . , L},
to approximate the expectation E[u] of the solution u(·,ω) ∈ X of (2.23) using FEM
approximations uh`(·,ω) ∈ Xh` with mesh size h` [88].

Then the mean square error of the multilevel RQMC estimator satisfies

‖E[u]−QL,N`,M`
(uhL)‖2L2(Ω;X) = O(h2α

L )+O(M−1
0 N−2+δ

0 )+
L∑
`=1

O(h2β
`−1M

−1
` N−2+δ

` ) ∀δ > 0.

(3.54)
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Proof. We first estimate the variance of the multilevel RQMC estimator using inequality
(3.42) by calculating

σ2[QL,N`,M`
(uhL)] = σ2

[ 1

M0

M0∑
i=1

1

N0

N0∑
j=1

uh0(x, ω
(i)
j ) +

L∑
`=1

1

M`

M∑̀
i=1

1

N`

N∑̀
j=1

(
uh`(x, ω

(i)
j )− uh`−1

(ω
(i)
j )
)]

=
1

M0
σ2

[
1

N0

N0∑
j=1

uh0(x, ωj)
]

+

L∑
`=1

1

M`
σ2
[ 1

N`

N∑̀
j=1

(
uh`(x, ωj)− uh`−1

(x, ωj)
)]

=
1

M0

∫
[0,1]d

( 1

N0

N0∑
j=1

uh0(x, ωj)− E[uh0 ]
)2

dω

+
L∑
`=1

1

M`

∫
[0,1]d

(
1

N`

N∑̀
j=1

(
uh`(x, ωj)− uh`−1

(x, ωj)
)
− E[uh`(x, ωj)− uh`−1

(x, ωj)]

)2

dω

≤ 1

M0

∫
[0,1]d

(
VHK(uh0)D∗N0

(ωj)

)2

dω

+

L∑
`=1

1

M`

∫
[0,1]d

(
VHK

(
uh`(x, ωj)− uh`−1

(x, ωj)
)
D∗N`

(ωj)

)2

dω

= O(V 2
HK(uh0)N−2+δ

0 ) +O(V 2
HK

(
uh`(x, ωj)− uh`−1

(x, ωj)
)
N−2+δ
` ),

(3.55)

where we used the estimate (3.48).

Therefore, we have

σ2[QL,N`,M`
(uhL)] ≤ C00M

−1
0 N−2+δ

0 + C0

L∑
`=1

h2β
`−1M

−1
` N−2+δ

` , (3.56)

using the assumptions of bounded variations, i.e., Assumptions 1.1 and 1.2. This esti-
mate shows that how the error of the method behaves in terms of number of samples,
as we will see in the following.

Similarly to the RQMC estimator, the MSE assesses the accuracy of the MLRQMC-FE
estimator. Using Assumptions 1.3 and the variance estimate (3.55), we find

MSE := ‖QL,N`,M`
(uhL)− E[u]‖2L2(Ω;X)

= ‖QL,N`,M`
(uhL)− E[QL,N`,M`

(uhL)]‖2L2(Ω;X) + ‖E[QL,N`,M`
(uhL)]− E[u]‖2L2(Ω;X)

= σ2[QL,N`,M`
(uhL)] + ‖E[u− uhL ]‖2L2(Ω;X)

≤ C00M
−1
0 N−2+δ

0 + C0

L∑
`=1

h2β
`−1M

−1
` N−2+δ

` + (C1h
α
L)2

= O(M−1
0 N−2+δ

0 ) +

L∑
`=1

O(h2β
`−1)O(M−1

` N−2+δ
` ) +O(h2α

L )

(3.57)

for every δ > 0.
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3.5.1 Optimal multilevel randomized quasi-Monte Carlo

Having modeled the computational work, we can now state the optimization problem in
the sense that we want to minimize the total computational work for a prescribed error
tolerance ε [88]. The minimization problem is

minimize
M`,N`,h0,r

f(M`, N`, h0, r, L) :=
L∑
`=0

M`N`

4∑
k=1

µkh
−γk
0 rγk

subject to g(N`, h0, r, L) := C00M
−1
0 N−2+δ

0 + C0

L∑
`=1

h2β
`−1M

−1
` N−2+δ

` + (C1h
α
L)2 ≤ ε2

(3.58)
for every δ > 0, where h0 > 0, r > 1, M`, and N` ≥ 1. The given maximal total error ε2

is an upper bound for (3.57), i.e., MSE ≤ ε2. The goal is to determine optimal values
h` (by calculating optimal values for h0 and r and using their relation (3.1)) and N`,
` ∈ {0, 1, . . . , L}. For all levels, the number M` of shift realizations is an integer, i.e.,
M` ∈ N.

The nonlinear constraint problem can be solved numerically with iterative optimization
numerical techniques. In fact, the nonlinearity of the constraint (g) and the objective
function (f) due to the exponents motivates us to we use sequential quadratic program-
ming (SQP) [18] as a generalization of Newton’s method for unconstrained optimization.
The method generates steps by solving quadratic subproblems; it can be used both in
line search and trust-region frameworks. The SQP is appropriate for small and large
problems and it is well-suited to solving problems with significant nonlinearities. The
methods relies on a profound theoretical foundation and provides powerful algorithmic
tools for the solution of large-scale technologically relevant problems. Let the vector χ
denotes (N`, h0, r, L), the SQP as an iterative procedure can be used to optimize the
problem (3.58) for a given iterate χs, s ∈ N0 by a quadratic programming (QP) subprob-
lem, solves that QP subproblem, and then uses the solution to construct a new iterate
χ. This construction is done in such a way that the sequence χs for s ∈ N0 converges
to a local minimum χ as s→∞. Here, (3.58) resembles the Newton and quasi-Newton
methods for the numerical solution of nonlinear algebraic systems of equations. To this
end, the principal idea is the formulation of a QP subproblem based on a quadratic
approximation of the Lagrangian function:

L(χ, ζ) := f(χ) +
m∑
i=1

ζT gi(χ), (3.59)

where ζ ate the Lagrange multipliers. In order to solve the optimization problem (3.58)
because of the nonlinearity of the work function i.e.,the exponents γk, we replace the
objective function by its local quadratic approximation as

f(χ) ≈ f(χs) +∇f(χs)(χ− χs) +
1

2
(χ− χs)Hf(χs)(χ− χs), (3.60)
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where H is the Hessian matrix (the symmetric matrix of second derivatives). We should
note that the term (f(χs)) in the expression above can be eliminated for the minimiza-
tion problem, since it is constant. The nonlinearity of the first constraint (g), i.e., the
convergence order of discretization error and convergence order of variance function mo-
tivate us to replaces the constraint by its linear approximations. Therefore, the nonlinear
constraint function should be replaced by its local affine approximations as

g(χ) ≈ g(χs) +∇g(χs)(χ− χs). (3.61)

The optimization problem (3.58) can be rewritten to the following form of QP subproble

minimize
1

2
ν(χ)THf(χs)ν(χ) +∇f(χs)T ν(χ)

subject to ∇g (χs)T ν(χ) + g(χs) ≤ 0,
(3.62)

where ν(χ) = χ−χs. Here, to take nonlinearities of the constraints into account the SQP
method uses a quadratic model of the Lagrangian function as the objective. Therefore,
(3.62) is related to a local quadratic model of the Lagrangian L as the objective functional
which leads to the QP subproblem

minimize
1

2
ν(χ)THL(χs, ζs)ν(χ) +∇f(χs)T ν(χ)

subject to ∇g (χs)T ν(χ) + g(χs) ≤ 0.
(3.63)

The solution is used to form a new iterate

χs+1 = χs + αsνs, (3.64)

where νs is obtained by (3.62). The step length parameter αs is determined by an
appropriate line search procedure [115] i.e., choosing a step length that approximately
minimizes f along the search direction andH can be updated by any of the quasi-Newton
method, e.g., BFGS method [101].

Finally, as a summary of the simulation strategy (for MLMC-FEM) is given in the
subsequent algorithm. The simpler procedure can be implemented for Monte Carlo by
dropping the levels, i.e., using optimal (h,M).
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Algorithm 3.1 The algorithm for solving stochastic DDP system using MLMC-FEM

1. Solve the optimization problem (3.33) by estimated coefficient and exponents (see
3.3.3 as an example) and calculate the optimal hierarchies of (h0, r, M`, L).

2. For ` = 0, . . . , L:

(a) Produce the independent random samples (Monte Carlo) or quasi-points
(rank-1 lattice rule). It is a d×M` dimensional matrix where d is the dimen-
sion of randomness (e.g., number of dopants).

(b) For i = 1, . . . ,M`

i. Construct the device geometry considering h` and the random variables.
ii. Use the initial guess (V0, u0, v0, α0, γ0).
iii. Solve the coupled system of equations (2.23) using Scharfetter-Gummel

iteration (2.2.6)
iv. Estimate (V

(i)
h`
, v

(i)
h`
, u

(i)
h`

).

3. Estimate the expected value of (VhL , vhL , uhL) using the telescopic sum (3.16) and
the variance.

4. Calculate the current statistics.

3.6 Basis adaptation

In this section, a basis-adaptation method based on polynomial chaos expansion is ap-
plied to the stochastic nonlinear Poisson-Boltzmann equation. The method is based on
using the polynomial chaos expansion. Here we use the Hermite polynomials as the
bias functions and transfer random variables from uncorrelated to correlated variables.
The advantages of the method, i.e., exactness of the solution compared with the full
dimensional solution will be shown in Section (4.1).

3.6.1 Polynomial chaos expansion (PCE)

Generalized polynomial chaos (GPC) seeks to represent an approximation of a ran-
dom function by a set of random variables and orthogonal polynomials. It estimates
coefficients for known orthogonal polynomial basis functions based on a set of response-
function evaluations using sampling, tensor-product quadrature, or Smolyak sparse-grid
approaches [53].

The general idea of the expansion is to transfer randomness to the basis functions and
to use Hermite polynomials as basis functions. A stochastic function like u ∈ L2(D,Ω)

can be explained as its Wiener–Hermite polynomial chaos expansion [165] as

u(x,ω) :=
∑
β

uβ(x)Φβ(ω). (3.65)
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Here, Φβ is an orthonormal Hermite polynomials, β = (β1, β2, · · · , βn) is a vector of n
nonnegative integers describes the order of polynomials, x ∈ D and ω is a vector of
uncorrelated Gaussian random variables. In order to approximate the series (3.65), we
truncate it to a finite number of terms for the sake of computation

u(x,ω) :=
∑
β∈Mk

uβ(x)Φβ(ω), (3.66)

where the truncated index set

Mk = {β = (βi, i ≥ 1 | βi ∈ {0, 1, · · · , k}}

is used for the series. The function can be characterized by its expected value with
respect to the probability space as

E(u(x,ω)) =

∫
Ω
u(x,ω)µ(ω)dω, (3.67)

where µ(ω) is the probability density function (PDF) corresponding to random vari-
able ω. By the Cameron-Martin theorem [165], GPC approximation of (3.66) is fully
converged in L2 norm if

lim
k→∞

∫
Ω

 ∑
β∈Mk

uβ(x)Φβ(ω)− u(x,ω)

µ(ω)dω = 0. (3.68)

The general idea of our basis adaptation is rotating random variables and transferring
them from uncorrelated to correlated random variables. To this end, we define an
isometry L : Rn → Rn to define new basis. Therefore, the rotated random variables are
defined as

γ := Lω. (3.69)

The solution of (2.23) under this isometry can be obtained by

u(x,γ) =
∑
β∈Mk

uLβ (x)Φβ(Lω). (3.70)

The calculation of the coefficients of the series is the main point which can be defined
as [86]

uLβ (x) =
∑

β,δ∈Mk

uδ(x)〈Φβ(ω),ΦL
δ (ω)〉 =

∑
β,δ∈Mk

uδ(x)〈Φβ(ω),Φδ(γ)〉. (3.71)

The inner product in the Hilbert space is characterized by weight function as the prob-
ability density function relative to the Gaussian measure [165]. An important property
of the polynomials which will be used in the following estimations is their orthogonal-
ity with respect to the Gaussian probability measure. Therefore, the orthogonality of
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polynomial basis can be used to simplify (3.71) as

uLβ (x) =
∑
β∈Mk

uβ(x)〈Φβ(ω),Φβ(γ)〉. (3.72)

The isometry L still needs to be constructed in a suitable manner to transfer one basis
(ω) to other basis (γ). To construct the isometry L, we use quadratic adaptation [148].
As the first step, we define a multi-index qi = (0, . . . , 0, 1, 0, . . . , 0) where only the ith
point is 1 and other elements are zero. The matrix L is given by

LTDL = B, (3.73)

where the diagonal elements of B are bii =
u2qi√

2
and the rest of entries are bij =

uqij√
2
.

After this calculation, L and D which are respectively eigenvectors and eigenvalues
matrices of matrix B can be calculated.

3.6.2 Application to the stochastic nonlinear Poisson-Boltzmann equa-
tion

In the application considered here, the random process is localized near the manifold
that describes the surface of the sensor. Physically speaking, the free ions in the aqueous
solution screen the effect of the charges of the biomolecules, whose movement is random.
The distance where the field effect is still significant is given by (a multiple of) the Debye
length. Mathematically speaking, the semilinear term in (2.23) results in an exponential
decay of the solution away from a point charge. Therefore the important uncertainty
area of biomolecules is at the surface [86].

In Monte Carlo sampling the coefficients of (3.66) are estimated as

uβ(x) =
1

M

M∑
j=1

u(x,ω(j))Φβ(ω(j)), (3.74)

where M is the number of evaluations and β ∈ Mk. For the fluctuation of n target
molecules at the surface, we calculate (3.70) as an approximation of (2.23) by

uL(x,γ) = uL0 (x) +
n∑
i=1

uLi (x)γi +
n∑
i=1

uLii(x)
γ2
i − 1√

2
+
∑
β∈Mk
k≥3

n∑
i=1

uLβiΦβ(γi), (3.75)

where the rotated random variables are from (3.69) and the coefficients are calculated
by (3.72) and (3.74). The main advantage of the basis adaptation compared to full-
dimensional variables (ω) is that with transformation of the chaos to Gaussian process
cost of calculation decreases dramatically. In fact, in spite of a truncation of (3.75) e.g.
2nd order adapted series, very good estimation of (2.23) can be achieved. In this work,
the main goal is the calculation of electrical current (quantity of interest). Hence, with
respect to the transformation, it can finally be obtained by the equation

I(γ) = f(uLβ (x,γ)). (3.76)
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3.7 Conclusions

We balanced the various parameters in the numerical methods by viewing this problem
as a global optimization problem. The goal is to determine the numerical parameters
such that the computational work to achieve a total error, i.e., discretization error plus
statistical error, less than or equal to a given error tolerance is minimized. Although the
exponential terms in the constraints make the optimization problems nonlinear, the op-
timization problems can be solved by an interior-point method with sufficient iterations.
We applied the system of equation to a leading example, i.e., random dopant fluctuation
in the sensors and used MC-FEM and MLMC-FEM approach to obtain the solution.
The solution of the constrained optimization problem leads to optimal (M , h) in the
case of the standard MC method and to hierarchies consisting of (L, {M`}L`=0 , h0, r) in
the case of the MLMC method.

We investigated two different options to the mesh refinement in the multilevel method.
Although the less computational effort is needed by choosing the mesh sizes freely, the
difference is negligible. In the comparison of the MC with the MLMC method, the
MLMC method was found to decrease the total computational effort by four orders of
magnitude for small error tolerances. The speed-up becomes better as the error tolerance
decreases.

We also developed optimal multilevel randomized quasi-Monte Carlo to model the fluc-
tuation in the microelectronic device. Using quasi-random points instead of Gaussian
random points gives rise to faster convergence rate. In order to obtain the hierarchies
i.e., solving the optimization problem, we exploited SQP method as a generalization of
Newton’s method and linearized the nonlinear objective function by its local quadratic
approximation.



Chapter 4

Application of UQ in
nanotechnology

Uncertainty quantification (UQ) has become an important task and an emerging topic
in many engineering fields. Uncertainties can be caused by many factors, e.g., the
random nature of some design parameters, external environmental fluctuations, mea-
surement noise. Therefore, in order to enable robust engineering design and optimal
decision making, efficient stochastic solvers are highly desired to quantify the effects of
uncertainties on the performance of complex engineering designs.

As regards the main field of investigation of thesis, while previous mathematical mod-
eling [13, 14, 76, 153] has focused on the deterministic problem and stochastic surface
reactions, the current work describes how various stochastic processes propagate through
a PDE model and result in noise and fluctuations in a transport model. Quantifying
noise and fluctuations in sensors is important, since they determine the detection limit
and the signal-to-noise ratio. In this chapter, we also use the introduced PDE models in
Chapter 2 and the developed stochastic numerical techniques in Chapter 3 to quantify
noise and fluctuations in the introduced silicon nanowire sensors.

Nowadays, quantification of uncertainty due to noise and fluctuations is of great impor-
tance especially in nanometer-scale devices, as any random effect becomes proportionally
more important as devices dimensions are shrunk and power supply voltage is reduced.
Randomness due to the number and the location of impurity atomsis one of the most
important effects that all together limit the design of integrated circuits. Hence, intro-
ducing a stochastic model to quantify the randomness in the transistors is significantly
important. We should note that the popular methods e.g., Monte Carlo are computa-
tionally expensive (suffer from slow convergence rate). Therefore, the main aim of this
chapter is applying the introduced advanced stochastic numerical techniques in previous
chapters to model the randomness (the RDF effect) in field-effect transistors.

Finally, this chapter is a summary of the numerical results that are explained in [85–
89, 145].

70
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4.1 Silicon nanowire field-effect sensors

The concept of nanowire field-effect sensors is very general and has been applied to the
detection of DNA, proteins like tumor markers, and toxic gases such as carbon monoxide
[14, 86, 87, 151]. The sensors offer advantages like miniaturization, high sensitivity, fast
response, and low power consumption [50, 122, 142]. In this device, the target molecules
be labeled in contrast to the commonly used fluorescent or radioactive markers in other
detection methods.

As regards noise and fluctuation in such devices, there are various sources of randomness
to be considered. The distribution of the receptor molecules at the surface is random
and determined at the time of surface functionalization. In other words, in field-effect
sensors, target molecules bind to randomly placed probe molecules in a stochastic pro-
cess so that the detection mechanism is inherently stochastic. The Brownian motion of
the target molecules also results in changes in charge concentration and permittivity.
This randomness on the sensor surface propagates through the self-consistent transport
equations and finally results in noise in the sensor output. Also, diffusion in the liquid
and association and dissociation at the surface receptors are stochastic processes and
occur at the time of usage. The random distribution of the dopant atoms in the semi-
conductor is determined at fabrication time and leads to important device variation,
while charge transport obviously occurs at the time of usage.

4.1.1 Noise quantification in nanowire field-effect sensors

Biological macromolecules [86, 87, 89], such as proteins and nucleic acids are typically
charged in aqueous solution, as such, can be detected readily by nanowire sensors when
appropriate receptors are linked to the nanowire active sensor [120]. In this part, we
apply the already developed basis adaptation approach (3.6) to model the random distri-
bution of DNA molecules in the electrolyte. We use a 2D cross-section of the device (see
Figure 4.1), the stochastic nonlinear Poisson-Boltzmann equation (2.11) to model the
electrostatic potential and drift-diffusion equations (2.15) to model the charge transport.

When quantifying noise and fluctuations in sensors, various situations with different
types of molecules are relevant. Probe molecules are functionalized at the sensor surface
[125] when the sensor is manufactured and they are responsible for selectivity. In the
case of DNA sensors, the probe molecules may be single-stranded peptide-nucleic-acid
(PNA) oligomers, which are uncharged, or ssDNA oligomers, which are highly charged.
The probe molecules move randomly, although there are preferred orientations, which
have been calculated [72]. Target molecules bind to the probe molecules and are detected
by the field effect modeled here. In the case of a DNA sensor, ssDNA oligomers bind to
ssDNA or PNA oligomers. Binding and unbinding are stochastic processes [153]. Here we
consider the leading example of a DNA sensor with ssDNA oligomers as probe molecules
and ssDNA oligomers as target molecules. The double-stranded probe-target complex
carries twice the charge of a single strand. These considerations give the stochastic
coefficients in (2.11).
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Figure 4.1: Cross section through a field-effect nanowire sensor, showing subdo-
mains and boundary conditions. In the electrolyte (Dliq), the random binding of target
molecules to immobilized receptor molecules at the surface defines molecule subdomain

(DM).

The biological noise, i.e., the random movement of probe and target molecules at or near
the surface of any affinity based sensor, propagates through a PDE model of the sensor
and results in noise in the sensor output. Biological noise is one of the major sources
of noise and fluctuations in field-effect sensors; it is due to two effects: the random
association of target molecules to probe molecules functionalized at the sensor surface
and their random dissociation from the probe molecules as well as randomness in the
orientation of any molecule bound to a surface. In order to quantify biological noise,
the association and dissociation processes were modeled in [153], where the expected
number and variance of the number of target molecules bound to probe molecules were
calculated. The random orientations were modeled in [72], where the probabilities of
the orientations were determined.
When any affinity based sensor is manufactured, the probe molecules are functionalized
at the sensor surface [125] at random, but fixed locations. In other words, each probe
molecule is a binding site that is occupied by a target molecule with a certain probability
that can be determined [153]. Unspecific binding of target molecules to the sensor surface
in the absence of probe molecules is also possible. Since this effect is not important in
a well-designed sensor, it is not included here, although it can be taken into account in
the model in a straightforward manner.
The orientation of a charged molecule with respect to a charged surface is determined by
the electrostatic free energy of the system. A method for determining the free energies
of charged molecules as functions of various parameters was presented in [72]. First,
the electrostatic free energy E(η) is calculated as a function of the angle η := (η1, η2),
which represents the orientation of the molecule with respect to the surface. In general,
each molecule has two degrees of freedom, although in the case of DNA oligomers their
structure leads to a simplification and one angle η := η1 ∈ [0, π/2] is sufficient. Then a
Boltzmann distribution is used to find the probability of a configuration as a function
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Figure 4.2: The electrostatic free energies of various ssDNA and dsDNA oligomers
as a function of angle for a surface charge of −0.5 q/nm2 in a liquid with an ionic
concentration of 30 mM. The angles are defined with respect to the surface, where 0
means a molecule parallel to the surface and π/2 means a molecule perpendicular to

the surface (as indicated in Figure 4.1). Data from [72].

of the angle η. It is given by

P (η) =
exp(−E(η)/(kBT ))∫
exp(−E(η)/(kBT ))dη

∝ exp

(
−E(η)

kBT

)
. (4.1)

Figure 4.2 shows a concrete example and the data used in the numerical examples in
this paper. Electrostatic free energies for single- and double-stranded DNA oligomers of
different lengths are shown. Due to their twice as large intrinsic charges, the binding en-
ergies of double-stranded DNA (dsDNA) oligomers are higher than their single-stranded
(ssDNA) counterparts. The length of the oligomers decreases the free energy mostly
for lower angles, i.e., for horizontal configurations, where electrostatic interactions with
the surface are stronger. The orientations also depend on the ionic concentration of
the liquid, as the effect of Debye screening is significant. Figure 4.3 shows the proba-
bility density function (PDF) and cumulative distribution function (CDF) of random
orientation of various DNA oligomers bound to the nanowire surface. The figure in-
dicates the Gaussian distribution of random variables. In summary, the coefficients
A(x, y, .), ρ(x, y, .) and ϕ(x, y, .) in (2.23) are random variables, i.e., A(x, y,ω), ρ(x, y,ω)

and ϕ(x, y,ω) depend on an element ω = (ω1, ω2, . . . , ωn) of the underlying probability
space (Ω,Σ, P ). The sample space Ω describes the locations of the probe molecules, the
state of the probe molecules (bound to the target molecules or not), and the orienta-
tions of the probe molecules and probe-target complexes. The modeling and simulation
results in [72, 153] yield the probability measure P .

We assume that the number of probe molecules per unit area follows a Poisson distri-
bution. Once the number N of probe molecules or binding sites and their positions are
fixed, the sample space is

Ω =
(
{0, 1} × [0, π/2]

)N
,
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Figure 4.3: Probability density function (left) and cumulative distribution function
(right) of random orientation of 12 base pairs ssDNA oligomers in an aqueous solution
with different ionic concentration and surface charge. The proteins rotate between 0

(horizontal) and π/2 (vertical) degrees at the surface.

where 0 denotes the absence of any target molecule, 1 the presence of a target molecule,
and η ∈ [0, π/2] is the angle of molecule.

The sizes in the various subdomains in Figure 4.1 were determined by the following
considerations. As found in [14], the optimal width of the silicon transducer is certainly
smaller than 100 nm, while its precise value depends on other parameters such as the
applied back-gate voltage. Smaller geometries were found to have higher sensitivity.

In order to validate the basis-adaptation approach, several comparisons for two nanowires
with different widths are shown in Figure 4.4. The geometry of the sensor is shown in
Figure 4.1, where the thickness of oxide layer is 8 nm and the thickness of the nanowire is
50 nm. For the simulations, we define a reference structure, where the back-gate voltage
(VBG) is −3 V, the solution voltage is 0 V, VS − VD is 0.2 V, the length of the nanowire
is 1000 nm, the ionic concentration is 30 mM, the surface charge is −0.5 q · nm−2 [72],
the doping concentration is 1016 cm−3, the oligomers consist of 12 base pairs and the
thermal voltage is 0.021 V. The length of each base pair is 0.34 nm. Furthermore, the
electron mobility in silicon is 1000 cm2V−1s−1, the hole mobility is 100 cm2V−1s−1. The
model is validated by comparison with experimental data (using the same data as in
[14]).

The good agreement shows that the current calculated by the graded-channel approx-
imation works very well for this kind of device due to its long length and small VDS .
Secondly, the solutions obtained by basis adaptation are compared with full-dimensional
solutions.

The basis-adaptation approximation is obtained using a 2nd order polynomial chaos
expansion of (3.75). The full-dimensional solution is the benchmark and actually results
from Hermite polynomial chaos expansion up to order 2. Here the simulation are for
fluctuation of 10 target molecules (n = 10) and 1000 Monte Carlo replications (M =

1000). The agreement suggests that the implementation is correct. The differences
between the full dimensional solutions and the solutions obtained by basis adaptation
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become larger as the absolute value of the back-gate voltage increases; this is due to
the fact that small differences are amplified by the large applied potential. The results
are shown in Figure 4.4. In basis adaptation the difference between 2nd-order and 3rd-
order of PCE for both 60nm and 100nm wide nanowires were negligible so that 2nd
order is used for all expected value and noise calculation in subsequent simulations. The
results indicate the efficiency and the exactness of the basis adaptation against the full
solution. The agreement with experimental data is very good and again justifies the
model equations.
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Figure 4.4: The comparison of measured and simulated currents (expected value)
in respect of different back-gate voltages for 60 nm (left) and 100 nm (right) width of
transducer. The simulations are performed for the reference structure, where the back-
gate voltage was varied. Here, VSD = 0.2 V and for both devices the same threshold

voltage is used.
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Figure 4.5: Expected value of current and its signal-to-noise ratio as functions of
doping concentration for 60 nm and 100 nm wide devices. Here, the ionic concentration
is 30 mM, the surface charge is −0.5 q/nm2 [72], the oligomer length is 12 base pairs,

VBG = −3 V, and the thermal voltage is 0.021 V.

The stochastic equation (2.23) makes it possible to calculate higher-order moments and
in particular the signal-to-noise ratio, an important characteristic value. In the following,
we discuss how various important device parameters influence the quantity of interest,
i.e., the current, and the signal-to-noise ratio. These simulations cover a large part of the
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Figure 4.6: The comparison of expected value (top) and signal-to-noise ratio of current
(bottom) for 60 nm (left) and 100 nm (right) width as functions of ionic concentration.
Here, the doping concentration is 1016 cm−3, the surface charge is −0.5 q/nm2 [72], the
oligomer length is 12 base pairs, VBG = −3 V, and the thermal voltage is 0.021 V.

parameter space and hence answer the question whether basis adaptation is generally
useful or only for the choice of parameters in the previous figures.

The first parameter investigated here is doping concentration. Currents were calculated
for doping concentrations between 1015 cm−3 and 1017 cm−3 and are shown in Figure 4.5.
The results show that both the current and the signal-to-noise ratio increase for 60 nm

and 100 nm wide transducers as the doping concentration increases. This means that
higher doping concentrations not only increase the total current, but they also improve
the signal compared to the noise, yielding a better sensor.

The second parameter considered here is the ionic concentration. It plays a crucial
role, since a higher ionic concentration leads to higher screening and thus reduces the
effectiveness of field-effect sensing. On the other hand, a certain ionic concentration (at
least about 10 mM) is usually necessary – especially in the case of DNA – to enable
probe-target binding. A Monte-Carlo algorithm to find the concentration of (counter)
ions around biomolecules was developed in [22], and the ramifications of screening and
how to overcome them were discussed in [93, 102]. For a typical salt concentration of
100 mM, the Debye length is approximately 1 nm and any charge is completely screened
at a distance of only a few nanometers. The numerical results in Figure 4.10 show
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Figure 4.7: The comparison of expected value (top) and the signal-to-noise ratio of the
current (bottom) for 60 nm (left) and 100 nm (right) wide sensors as functions of surface
charge density. Here, the doping concentration is 1016 cm−3, the ionic concentration is
30 nm, the oligomer length is 12 base pairs, VBG = −3 V, and the thermal voltage is

0.021 V.

that the effect of the intrinsic charges of the target molecules on charge transport in
the transducer is still measurable. Furthermore, the wider nanowire is more affected by
screening within the semiconductor. Additionally, the signal-to-noise ratio in the 100 nm

wide transducer is increased by a factor of 10 compared to the 60 nm wide device. Here,
the ionic concentration varies between 10 mM and 150 mM.

The third parameter investigated here is the surface (fixed) charge of molecules. The
surface charge is important since it determines the operating point of the sensor, which
has a crucial influence on the sensitivity of the sensor [14]. Furthermore, a more neg-
ative surface charge repels target DNA oligomers, again emphasizing the necessity of
considering the system in a self-consistent manner. In Figure 4.7, the difference between
ssDNA and dsDNA oligomers is clearly seen in both 60 nm and 100 nm wide devices,
as expected. The width of the device has a strong influence on current and signal-to-
noise ratio. The current is about twenty times as large in the larger device, while the
signal-to-noise ratio is approximately twelve times as large.

The fourth and final parameter varied here is the length (and hence charge) of the
DNA oligomers. The oligomers in the reference structure considered here are 12 base
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Figure 4.8: The comparison of mean value (top) through the transducer and the
signal-to-noise ratio of the current (bottom) for 60 nm (left) and 100 nm (right) as
functions of oligomer length. Here, the doping concentration is 1016 cm−3, the ionic
concentration is 30 mM, the surface charge is−0.5 q/nm2, VBG = −3 V, and the thermal

voltage is 0.021 V.

pairs long. However, depending on the application, the length of the probe and target
oligomers may be varied. Figure 4.8 illustrates that increasing the oligomer length
increases the current as well as the signal-to-noise ratio.

4.1.2 Three-dimensional simulation of SiNW-FETs

The simulation capability developed here is general enough to include many situations
where charge transport occurs in a random environment. In the case of field-effect
sensors, understanding noise and fluctuations is essential to calculate detection limits
and signal-to-noise ratios. The main numerical challenge here is a large number of
stochastic dimensions. Each dopant and each receptor for target molecules result in
some stochastic dimensions. Therefore, the number of stochastic dimensions is at least
in the dozens but can be in the hundreds or thousands for larger devices. Here, the three-
dimensional stochastic drift-diffusion-Poisson system is used to model charge transport
through nanoscale devices in a random environment. The whole algorithm is optimal
in the sense that the total computational cost is minimized for prescribed total errors.
This comprehensive and efficient model makes it possible to study the effect of design
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parameters such as applied voltages and the geometry of the devices on the expected
value of the current [89].

The source of randomness inside the transducer is the random motion of dopant atoms
through the semiconductor during the fabrication steps of implantation and annealing,
resulting in their random locations.

Various models such as nearest-grid-point (NGP), cloud-in-cell (CIC) [78], and the Sano
method [136] may be used to describe randomly placed dopants in semiconducting de-
vices. In the simplest model, the charge concentration due to N ionized atoms is given
by

ξ1(x) := Cj

N∑
j=1

δ(x− xj), (4.2)

where Cj is the charge of the jth dopant atom, N is the number of dopant atoms, xj is
the position of jth dopant, and δ is the Dirac delta distribution.

In [80], Gaussian distributions for the individual dopant atoms were placed at random
positions. In [28], the standard deviation σ of the Gaussian or normal distributions was
used to adjust the size of the dopant atoms yielding the charge concentration

ξ2(x) :=
∑
j

Cj

(2πσ2)3/2
exp

(
−(x− xj)2

2σ2

)
. (4.3)

Here, σ := 0.25 nm is used to represent a dopant; the results are not very sensitive to
the value of σ.

To make the results comparable between continuous and discrete doping models, the
total doping must match. In other words, the integrals over a continuous doping con-
centration Cdop and over a discrete doping concentration must agree, i.e.,∫

DSi

Cdop(x)dx =

∫
DSi

ξ1(x)dx =

∫
DSi

ξ2(x)dx.

The association and dissociation processes of target molecules at the surface can be
described by the reaction equations (2.41). In [153], in order to optimize the sensor
design, a random-walk based model for diffusive transport to the association-dissociation
processes at the sensor surface was used. It was found in [153] that the number PT of
probe-target complexes satisfies the stochastic ordinary differential equation (2.46).

In the simulation, the reaction parameters are taken from [151]. The simulation was
performed for a receptor density of 3× 1012 cm−2 and 40 target molecules in the liquid
for a nanowire with 80 nm diameter. The surface was partitioned into three different
regions, called edge, middle, and corner regions as illustrated in Figure 4.9. In addition,
the average probe-target concentration at the surface is called the overall concentration.
Table 4.6 gives the equilibrium values of PT in these regions and Figure 4.10 shows the
probability density distributions; these values are used in the numerical experiments.
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Figure 4.9: A cross section of the field effect sensor indicating the three different
regions of the surface.

Region Mean Variance
Edge 1.3089 0.5816
Middle 0.9817 0.4732
Corner 0.6061 0.4743
Overall 1.0180 0.0862

Table 4.1: The expected values and variances of the probe-target concentration PT
at the nanowire sensor surface. All values are in the unit 1012 cm−2.

µ1 γ1 µ2 γ2 µ3 γ3 µ4 γ4

0.611 3.11 0.76 3.09 0.42 3.08 0.35 3.07

Table 4.2: The measured constants in (3.27).

The geometry of the device is shown in Figure 1.2 and the random binding of the
molecules at different regions of the device is illustrated in Figure 4.9. The corresponding
3D meshes for a nanowire sensor 50 nm thick, 60 nm wide, 500 nm long, and containing
15 dopants are depicted in Figure 4.11.

As aforementioned, solving the optimization problem (3.33) with respect to a given
error bound yields h` and M` on each level `. The optimization problem depends on the
constants µk and γk, k ∈ {1, . . . , 4}. They are measured by running three-dimensional
simulations and saving the CPU time needed for assembling the system matrices and
solving the three elliptic equations that constitute (2.23). The values are shown in
Table 4.2 and depend on the implementation and hardware used.

If there is only one level (L = 0), then the multi-level Monte-Carlo method simplifies
to the standard Monte-Carlo method. A comparison between the optimized Monte-
Carlo and the optimized multi-level Monte-Carlo methods is drawn in Figure 4.38. The
effectiveness of the MLMC method is more pronounced for smaller tolerance levels.
At the smallest error tolerance in this figure, the MLMC method is more efficient by
more than two orders of magnitude. The coefficients and the exponents, i.e., α and β
in (3.22), are shown in Figure 4.12, where C00 = 2.95. The estimated exponents (here
γ ≈ 3.0875) also agree well with the three-dimensional simulations. The optimal number
of samples and the mesh sizes for the optimized Monte Carlo and multilevel Monte-Carlo
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Figure 4.10: Histograms of the PT-complex density in equilibrium at the corners
(top left), in the middle (top right), at the edges (bottom left), and overall (bottom
right). The green lines show a Gaussian distribution with the parameters in Table 4.6.

X

Y

Z
X

Y

Z

Figure 4.11: The meshes for the nanowire field-effect sensor for ` = 0 (left) and ` = 1
(right). The subdomains are depicted with gray (substrate), golden (nanowire), and
green (electrolyte) meshes. The randomly distributed molecules and the dopants are

inside the electrolyte and the nanowire, respectively.
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Figure 4.12: Statistical and discretization errors for different mesh sizes. The coeffi-
cients α and β behave according to Assumption 1.

ε 0.100 0.050 0.020 0.010 0.005
h 0.918 0.600 0.350 0.231 0.153
M 578 2 309 14 431 57 725 230 902

Table 4.3: Optimal parameters for the Monte Carlo method.

ε h0 r M0 M1 M2 M3 M4 M5 M6

0.100 1.526 1.802 941 149 24 4 – – –
0.050 1.382 2.001 3 761 431 49 6 – – –
0.020 1.405 1.967 27 894 3 366 405 49 6 – –
0.010 1.608 1.749 146 482 26 249 792 156 27 5 –
0.005 1.608 1.749 584 957 87 555 12 603 1 814 296 42 6

Table 4.4: Optimal parameters for the MLMC method.

are summarized in Table 4.3 and 4.4, respectively. Finally, a comparison between MC-
FEM and MLMC-FEM is given in Figure 4.13. It points out the noticeable advantage of
the multilevel method where for the lowest tolerance (ε = 0.005); the work is reduced by
more than two orders of magnitude. The measured constants satisfy the assumptions of
the standard complexity theorem [33], i.e., α ≥ 1

2 min(β, γ). According to this theorem,
the computational cost of the MLMC method is O(ε−2) agreeing with the numerical
results. Furthermore, the total cost of the Monte-Carlo method is O(ε−3.5) according
to the figure, which agrees with [27].

As already mentioned, only the biological noise (random movement and random orienta-
tion) is taken into account in the continuum model, whereas the effect of random dopants
is also included in the discrete model. Figure 4.14 shows the expected value of the elec-
trical current as a function of different gate voltages for two devices that are 60 nm and
100 nm wide. The results are compared with experimental data [14]. In the simulation,
the thermal voltage UT is 21 mV. In the continuum model Cdop = 1 × 1016cm−3, the
thickness of the oxide layer is 8 nm, the source-to-drain voltage is VSD = 0.2 V, the
salt concentration is 30 mM, and the molecule surface charge is −0.8 q · nm−2 (fitting
parameter).
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Figure 4.13: A comparison of the total computational work necessary in the MC and
MLMC methods as a function of the prescribed total error.
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Figure 4.14: The expected value of the electrical current as a function of back-gate
voltage for 60 nm width (left) and 100 nm width (right) for continuum and discrete
models. Here, the discrete model points out the biological noise in addition to the RDF
and in continuum model only the RDF is considered. In the simulation, the results are
with the experimental data [14] with the same main parameters i.e., tox = 8 nm, Cdop =
1×1016cm−3, VSD = 0.2 V, the nanowire thickness of 50 nm and µp = 100 cm−2V−1s−1.

Very good agreement between the experiments and the simulations was found for both
the discrete and the continuum model. The results show that the discrete model agrees
better with the experiments than the continuum model. This is probably due to the
fact that including the effect of the random dopants is a better model for the current
compared to just taking the average doping as in the continuum model.

Figure 4.15 depicts the fluctuation of the current in the discrete model for two doping
concentrations, namely Cdop = 1×1016cm−3 and Cdop = 1×1017cm−3. Here, the effects
of random molecules and random dopants on the current are taken into account. For the
lower doping concentration, the expected value of the current is E(I) = 2.17 × 10−13 A

and its standard deviation is σ(I) = 2.38× 10−14 A. The simulation indicate that more
than 95% of the obtained currents are between 2 × 10−13 A and 2.5 × 10−13 A. The
expected value relatively agrees with the experiments [14] (I = 1.5× 10−13 A). Also, for
the higher doping concentration, the values are E(I) = 2.34×10−12 A and σ(I) = 2.90×
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Figure 4.15: Histograms of the electrical current calculated by the discrete model
(biological and RDF fluctuation) with 941 simulations for a doping concentration of

1× 1016 cm−3 (left) and for a doping concentration of 1× 1017 cm−3 (right).
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Figure 4.16: The expected value of the current for VSD = 0.4 V and VSD = 0.6 V for
both the continuum and discrete models where VT = −0.98 V (threshold voltage).

10−12 A. The simulations show that more dopants increase the variance of the current.
The figure shows that for Cdop = 1 × 1016cm−3 approximately 95% of the simulated
currents are between 2 × 10−13 A and 2.4 × 10−13 A, resulting in a small fluctuation.
On the other hand, the results obtained for the higher doping concentration fluctuate
between 1.80 × 10−13 A and 1.08 × 10−11 A, indicating a larger variation. Using the p-
type semiconductor (as well as negatively charged molecules) increase the conductivity
of the device and therefore, its variation. It is expected that positively charged molecules
decreases the fluctuations slightly.

Generally, applying a source-to-drain voltage VSD results in a low-resistance conducting
path between the source and drain contacts. Figure 4.16 shows the current for different
the source-to-drain voltages. Here, both models are used and the back-gate voltage
varies between VG = −1 V and VG = −2 V.
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Figure 4.17: The four principal regulatory components of the skeletal muscle, i.e.,
actin, tropomyosin, nebulin and the troponin complex [55].

4.2 Cardiac troponin sensitive sensors

The purpose of this section is the development and quantitative understanding of bi-
ological sensors for the detection of cardiac troponin in blood [87] starting just from
its known structure (PDB code 1MXL [99]). We determine the effective parameters
to design and fabricate more sensitive nanowire field-effect sensors to detect different
ranges of cTn. Here, the sensitivity indicates the response of the sensor to the binding
of target molecules (cTn) to the immobilized probe molecules (anti-troponin receptors)
at the sensor surface.

As for every sensor, a crucial question is how to achieve the best response of the SiNW-
FET. There are several substantial parameters which are effective in the conductivity
of the device. In other words, the sensor response is influenced by different physical
and geometric device properties. Here, we propose an array of silicon nanowire field-
effect biosensors optimized with regard to parameters such as length, width, doping
concentration, dopant type, type of the nanowire, backgate voltage, and the number
of parallel nanowires. Thus, by changing influential parameters, it is made possible
to optimize the electrical characteristics of devices and to fabricate the optimal field-
effect sensor to detect cTn concentration more accurately. Noise and fluctuations of
the device conductivity due to the random binding of cTn to the receptors are also
taken into account. The random binding of troponin molecules (target molecules) to the
anti-troponin molecules (antigens) is shown in Figure 4.18.

The troponin complex regulates the contraction of striated muscles. It consists of three
subunits, i.e., cTnC, cTnT, and cTnI (Figure 4.17). These protein subunits along with
tropomyosin are located on the actin filament and are essential for the calcium-mediated
regulation of skeletal and cardiac muscle contraction [146]. Cardiac TnT binds the tro-
ponin components to tropomyosin and TnI inhibits the interaction of myosin with actin
[110, 164]. Cardiac TnC contains the binding sites for Ca2+ and its interaction with
cTnI and cTnT is central to the regulation of skeletal and cardiac muscle contraction
[66]. TnT and TnI have been found to have excellent sensitivity and specificity, and are
superior to CK-MB as indicators of myocardial necrosis [109]. For the last twenty-five
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Figure 4.18: A longitudinal cross section of a troponin sensitive SiNW-FET. The
random binding of troponin molecules to the probe molecules (antigens) is depicted as

well.

years, isoforms of troponin I and T have been widely used for immunochemical diag-
nostics of pathologies associated with cardiomyocyte death, e.g. AMI, unstable angina,
post-surgery myocardial trauma, and other diseases related to cardiac muscle injury [82].

Cardiac TnI and TnT are released after AMI or other cardiacs disease [164] and their
clinical sensitivity and specificity improve with time. More precisely, for both troponins,
sensitivity raises from 10% to 45% within 1 hour of the onset of pain to more than 90%
after 8 or more hours [52]. Specificity does not change noticeably over time. It decreases
from 87% to 80% from 1 to 12 hours after the onset of chest pain for troponin T and
is approximately 95% for troponin I [52]. The diagnostic performance/accuracy of TnI
and TnT has been observed similarly and is very high [131].

Few studies have reported the 99th percentile of high-sensitive cardiac troponin I (hscTnI)
among different age groups and genders. Since 1995, the diagnostic cutoff has been
decreased from 1500 pg/mL to 10 pg/mL [107, 158]. As in [158], the 99th percentile
concentration of TnI was greater than 19 pg/mL for individuals older than 60 years and
10 pg/mL for individuals younger than 60 years. Therefore, concentrations greater than
10 pg/mL have been shown to have prognostic value. In other words, the upper limit for
a normal individual is 10 pg/mL, and for patients who have acute coronary syndromes
or AMI, rising troponin values greater than or equal to the diagnostic cutoff value result
in the diagnosis of cardiac injury. Also, decreasing values are indicative of recent cardiac
injury. We also consider that patients with low-level elevations (smaller than 20 pg/mL)
of TnI and diagnostic uncertainty for acute coronary syndrome should be evaluated by
repeated measurements.
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Figure 4.19: Schematic diagram of the nanowire field-effect sensor showing receptor
and target molecules. The subdomains, i.e., silicon nanowire ΩSi, insulator ΩOx, the
specific binding of target to probe molecules ΩM, and the electrolyte ΩEl are illustrated
with their dimensions and ranges. Additionally, d indicates the center-to-center distance
between the nanowires and d1 is the distance between a nanowire and the boundary.

Over the last fifteen years, new techniques and strategies for rapid detection of biomark-
ers, including cardiac troponin, have been utilized to shorten the diagnostic time and in-
crease the reliability of tests [120]. Quick determination of the concentration of biomark-
ers in the body has drawn attention in the past decade. New techniques are being in-
corporated into products [126]. As the medical diagnostic methods progress, therapies
with high specificity according to biomarkers determined in tests are continuously be-
ing targeted. High-throughput sensors and systems for the ultrasensitive detection of
biomolecular interactions are in high demand [90].

Here the main aim of the SiNW-FET is the detection of cardiac troponin in blood. For
this reason, the sensor must be able to determine the target protein concentration in the
meaningful range. In other words, the dynamic range of the sensor is to designed. The
range of cardiac troponin in human blood is between 3.4 pg/mL and 10 000 pg/mL as
the concentration rises from almost 20 pg/mL within one hour of myocardial infarction
to 10 000 pg/mL after 32 hours from the incidence [107, 134].

The basic structure of the device including its dimensions is shown in Figure 4.19. Here,
we consider four shapes or types of nanowires: rectangular, trapezoidal, radial, and
triangular, all with a cross-sectional area of 2500 nm2, a doping concentration (Cdop)

of 1017 cm−3 (p-type transducer), protected by a 5 nm thick silicon oxide (ΩOx), and a
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Figure 4.20: The net charge of the folded and unfolded states of protein 1MXL for
different pH values. The results are obtained by PDB2PQR simulation.

thermal voltage of 26 mV. The applied voltages are VG = 1 V at the back-gate contact
and VSD = 0.2 V as the source-to-drain voltage.

4.2.1 The charge of biomolecules

The most common and well-established continuum model for the description of ionic
concentrations and the electrostatic interactions of the biomolecules is the Poisson-
Boltzmann equation [104]. It can be used to calculate ionic concentrations around
molecules and the effect of the charged target molecules (cTn) on the transducer.

The modeling of the electrostatics of biomolecules is essential for the simulation of
nanowire field-effect sensors. The surface of dielectric materials such as SiO2, Si3N4,
Al2O3, and Ta2O5 is charged when it is in contact with an electrolyte and it is neutral
only at the isoelectric point. This surface charge provides an important baseline value
regarding the operating regime of the sensor since the surface charge is a function of pH
value [15]. There are several methods to describe the effect of charged molecules: the
atomistic approach, i.e., Monte-Carlo simulations [22], the continuum approach, i.e., the
Poisson-Boltzmann equation [104, 119], and the empirical PROPKA model [98].

The pKa values of the ionizable residues are the negative logarithm of the ratio of dis-
sociated acid and conjugated base over the concentration of the associated chemical.
They are the basis for understanding the pH-dependent characteristics of proteins and
catalytic mechanisms of many enzymes. Here, the program PDB2PQR [47] is used to
compute the charge distributions of proteins of known structure. Given a protein struc-
ture, it computes the pKa value of each ionizable amino acid. Based on the computed
pKa value, it is possible to determine the protonation state of each ionizable amino acid
based on pH value [47].

Figure 4.20 shows the troponin (PDB code 1MXL) charge of the folded and unfolded
states as a function of pH values between 0 and 14. Here the folded molecule carries
no net electrical charge at a pH value of 4.13, while for unfolded proteins the isoelectric
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point is a pH value of 4.08. Blood is normally slightly basic in a pH range of 7.35 to 7.45.
According to the simulation, the protein total charge is −13.58 q at blood pH (7.4 in this
work). The net charges of the target molecules are negative since the protein isoelectric
values are lower than pH 7.4. Finally, the negative charges of the target protein (cTn)
result in a carrier accumulation on the p-type silicon nanowire and consequently an
increase of conductance.

4.2.2 Troponin sensor response

By solving the system of stochastic drift-diffusion-Poisson equations (2.15), the current-
voltage characteristics and the sensor response are determined as functions of the target
molecule concentration. Hence the behavior of the nanowire sensors can be studied by
varying all influential device parameters [87].

In field-effect biosensors, the target molecules (cTn) carry negative (due to blood pH
value) charges and act as a negative gate voltage. Since we use a p-type (boron-doped)
semiconductor as the transducer, the accumulation of charge carriers increases the con-
ductance as well. The critical issue for the modeling of the sensitivity of nanowire
field-effect sensors is the screening of the partial charges of the target molecules by the
free ions.

Definition 1. The sensor response (sensitivity) is defined as

Imol − I0

I0
, (4.4)

where Imol and I0 are the currents through the device with and without molecules,
respectively.

In the subsequent simulations, we consider Imol as the signal. The difference (Imol − I0)
can be interpreted as the response of the sensor to the specific binding of cTn to the
anti-troponin receptors.

The limit of detection (LOD) of an individual analytical procedure is the lowest amount
of analyte in a sample which can be detected, but not necessarily quantified. In field-
effect sensors, surface reactions at the oxide surface depending on the pH value and the
binding of charged target molecules result in changes in the charge concentration at and
near the surface, and subsequently in changes in the electrostatic potential, which then
modulate the current through the transducer. In other words, the PROPKA algorithm
[12, 98, 119] is used to estimate the charge of biomolecule in the liquid. Also, the LOD is
defined as the minimum troponin concentration that induces a measurable difference in
output current. A signal-to-noise ratio larger than 5 is generally considered acceptable
for determining the detection limit.

First, we calculate the statistics of the PT-complex by solving the Langevin equation.
As mentioned already, the dynamic TnI range is between 3.4 pg/mL and 10 000 pg/mL.
To convert the troponin concentration to a number of molecules, the protein weight of
24 000 Da is used. In the simulations, we also used CP := 2 × 1012 cm−2 as the probe
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Figure 4.21: The expected value (top left), variance (top right), and binding efficiency
(bottom) of PT-complexes for different troponin concentrations.

density, and the association and dissociation constants ra = 3933 and rd = 0.0016 are
taken from [123, 152].

Figure 4.21 shows the results of the simulation for different concentrations of target
molecules. For the lower concentrations (less than 10 pg/mL), the ratio of hybridized
complexes at the surface to the total number of probe molecules is less than 10%. In this
range, the equilibrium time is also considerably larger than for higher concentrations.
On the other hand, for concentrations higher than 500 pg/mL, the binding efficiency
attains a very good value of nearly 100% and the equilibrium time is less than 200 s.
Moreover, a remarkable feature of such a field-effect sensors is that even if the binding
efficiency is lower for certain probe and target concentrations, the surface charge density
can be larger and therefore result in better detection by a field-effect sensor. Finally,
for all troponin concentrations, the binding time (of cTn to the antibodies) shows the
very fast response of the sensor. This reaction time indicates the significance of using
SiNW-FETs compared to traditional methods such as ELISA.

Here, we consider four shapes or types of nanowires: rectangular, trapezoidal, radial,
and triangular, all with a cross-sectional area of 2500 nm2, a doping concentration (Cdop)

of 1017 cm−3, protected by a 5 nm thick silicon oxide (ΩOx), and a thermal voltage of
26 mV. The applied voltages are VG = 1 V at the back-gate contact and VSD = 0.2 V

as the source-to-drain voltage. Also, all devices have aluminum gate (work function is
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Figure 4.22: Cross-section of radial (left) and triangular (left) nanowires with
nanowire area of 2500 nm. In the triangular device, the sidewall angels are ≈ 54.7◦.

4.1 V) and for all simulated devices same threshold voltage is employed. This structure
is used for all devices unless a parameter is changed. In order to compute the current,
a 2D simulation in addition to the graded channel approximation are used.

Using the 99th percentile among different age groups and genders, cTnI assay values are
more than 19 pg/mL in individuals older than 60 years and 10 pg/mL in the rest of the
individuals [135]. A sharp increase in the troponin concentration is observed after two
to three hours after the onset of symptoms, e.g., chest pain. For example, in [107], the
value raised from 60 pg/mL to 6.3 ng/mL six hours after the medical examination.

According to these concentrations mentioned in the literature, we define three different
concentration ranges and design three sensors, one for each concentration range.

For the first concentration range (low risk or healthy patients), the device is designed
for a concentration between 5 pg/mL and 50 pg/mL. The sensor is 300 nm wide and is
characterized by a 200 nm thick bulk oxide; the length of the nanowire is 1000 nm. A
schematic of the cross-section of the device is given in Figure 4.22.

In acute coronary syndrome, the concentration reaches 500 pg/mL after three hours
[107]. Therefore, the second concentration range is defined to be 50 pg/mL to 500 pg/mL.
Here, the width of this device is 1µm, the length of the nanowire is 5µm, the height
of the bulk oxide is 5 nm and the substrate is 300 nm. To consider the situation when
many molecules may bind, two parallel nanowires are used.

The cTnI value rises to its peak value of 10 ng/mL within twenty hours and then it
decreases gradually [107]. The third and highest concentration range is thus from
500 pg/mL to 10 ng/mL. For this range, the sensor is an array of four nanowires for
improved detection of high concentrations.

The first comparison discusses the effect of the four different cross sections of nanowires
in the first device. Figure 4.23 shows the results for the first device, the one for healthy
or low-risk concentration, for different cross sections, all with a cross-sectional area of
2500 nm2 and a length of 1000 nm (see Figure 4.22).
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Figure 4.23: Sensor response (left) and signal (right) as a function of troponin con-
centration varying from 5 pg/ml and 50 pg/ml for different nanowire cross sections.
The sensors are 300 nm wide and the bulk oxide is 200 nm thick. Each sensor has one
1000 nm long nanowire, a cross-sectional area of 2500 nm2, a doping concentration of

1017 cm−3, and they are protected by a 5 nm thick silicon oxide layer.
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Figure 4.24: Expected value and standard deviation of PT-complexes (left) and
signal-to-noise ratio (right) as a function of troponin concentration varying from 5 pg/ml
and 50 pg/ml for different nanowire cross sections. The sensors are 300 nm wide and
the bulk oxide is 200 nm thick. Each sensor has one 1000 nm long nanowire, a cross-
sectional area of 2500 nm2, a doping concentration of 1017 cm−3, and they are protected

by a 5 nm thick silicon oxide layer.

The figure shows that the triangular nanowire performs considerably better than the
other transducers, especially for concentrations higher than 10 pg/mL. The radial and
trapezoidal nanowires show approximately the same sensor response for most of the con-
centrations and perform better than the rectangular shape. However, the sensitivity of
the rectangular transducer at the diagnostic cutoff is slightly better than the trapezoidal
and radial ones.

The radial nanowire (see Figure 4.22) yields the lowest signal compared to the others,
while the triangular cross section again yields the highest current. As already men-
tioned, the device conductivity depends on the density of bound analytes. Figure 4.24
illustrates the variation in the number of probe-target complexes for cTn concentration
between 5 pg/mL and 50 pg/mL. The results indicate that from 5 pg/mL to 15 pg/mL
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Figure 4.26: Sensor response (top left), signal (top right), and SNR (bottom) as a
function of doping concentration for different nanowire cross sections. The sensors are
300 nm wide and the bulk oxide is 200 nm thick. Each sensor has one 1000 nm long
nanowire, a cross-sectional area of 2500 nm2 and they are protected by a 5 nm thick

silicon oxide layer.
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Figure 4.27: Sensor response (top left), signal (top right), and SNR (bottom) as a
function of troponin concentration varying from 50 pg/ml and 500 pg/ml for different
nanowire cross sections. The sensors are 1000 nm wide and the bulk oxide is 300 nm
thick. Each sensor has two parallel 5000 nm long nanowires, a cross-sectional area of
2500 nm2, a doping concentration of 1017 cm−3, and they are protected by a 5 nm thick

silicon oxide layer.

the variance increases sharper than the expected value. As a consequence, as shown
in Figure 4.24, for this range the SNR is sloped downward since the current variance
is sloped upward. For higher concentrations, more PT-complexes increase the signal,
which counteracts the increase in noise. Therefore, in all sensors, the SNR shows a grad-
ual upward trend. Furthermore, in spite of the fact that the triangular nanowire yields
a higher signal, the higher noise in this device compared to the rectangular and trape-
zoidal devices decreases the ratio. Again, due to a lower signal, the SNR for the radial
nanowire is significantly lower than the rest of the devices. For more than 40 pg/mL, the
PT-complex increase is pronounced compared to the variance. Therefore, as an inflec-
tion point, again the SNR shows an upward trend for the higher concentrations. Finally,
we should note that the variation in the density of bound analytes leads to threshold
voltage fluctuations since the threshold voltage variation depends only on the number
of absorbed molecules.

A higher sensor response of SiNW-FETs depends considerably on the size of the device
[54]. In [129, 166], SiNW-FETs were fabricated by using commercially available (100)
silicon-on-insulator wafers and anisotropic tetramethylammonium hydroxide (TMAH).
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Figure 4.28: The sensor response of different devices as a function of the nanowire
center-to-center distance at 75 pg/ml cTn concentration. The sensors are 1000 nm (d =
d1 = 333 nm) wide and the bulk oxide is 300 nm thick. Each sensor has two parallel
5000 nm long nanowires, a cross-sectional area of 2500 nm2, a doping concentration of

1017 cm−3, and they are protected by a 5 nm thick silicon oxide layer.

Thus, a smooth triangular SiNW-FET is produced with a sidewall angle of ≈ 54.7◦ to
the horizontal surface (see Figure 4.22) and (111) silicon sidewall plane. Again, the
cross-section of the device indicating the nanowire side angles and the area exposed to
the liquid are shown in Figure 4.22. In Figure 4.25, the sensor response for the mentioned
triangular device and for an equilateral cross section are given. The figure shows the
sensitivity and the signal for both triangular cross sections as functions of different
backgate voltages. The device performance, i.e., signal and the sensitivity of the (111)
planes compared to the equilateral transducer is noticeably better. Also, due to higher
obtained signal, the SNR is expected to be higher in the (111) sensor. Concerning the
voltage, the figure shows that the sensitivity is not considerably affected by the gate
voltage, although a slight increase is observed. On the other hand, the signal in both
devices rise noticeably as the backgate voltage increases.

The optimal doping concentration is a crucial design parameter. Figure 4.26 shows the
effect of the doping concentration varying between 1×1016 cm−3 and 8×1017 cm−3. Ac-
cording to the simulation results, although the sensor response shows a small fluctuation
from 1×1016 cm−3 to 4×1017 cm−3, the change in the sensitivity is negligible. This fact
indicates that this interval is a suitable range for the sensor. For higher doping concen-
trations, the sensitivity decreases considerably for all devices, since the nanowires are
mostly affected by the doping and the effect of charged molecules on the signal decreases.
As is seen, the doping concentration affects noticeably the sensitivity only at high dop-
ing levels (decreasing it). Thus, lower concentrations (i.e., less than 4× 1017 cm−3) are
more suitable for achieving a higher sensor response. This fact is shown by the signal
curve, where the increment is approximately five orders of magnitude. Regarding the
noise, it decreases when the doping concentration increases as already indicated since
the nanowires are not affected as much by the fluctuation of the molecules. This effect
causes a dramatic increase in SNR.
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Figure 4.29: Sensitivity (top left), signal (top right), and SNR (bottom) as a function
of troponin concentration varying from 500 pg/mL and 10 ng/mL for different nanowires
cross sections. The sensor is 1000 nm wide and the bulk oxide is 300 nm thick. Each
sensor has four parallel 5000 nm long nanowires, a cross-sectional area of 2500 nm2, a
doping concentration of 1017 cm−3, and they are protected by a 5 nm thick silicon oxide

layer.

Although absolute cTn elevations are seen in multiple chronic cardiac and noncardiac
conditions, a rise in serial cTn levels strongly support an acutely evolving cardiac injury
such as most commonly, acute myocardial infarction. As aforementioned, larger sensors
are used for higher concentrations. As Figure 4.27 shows, the triangular nanowire is
again the most sensitive device and the rectangular and trapezoidal show the same
performance. Also, higher concentration increases the sensitivity of the device. The
same holds for the signal, which doubles from 50 pg/ml to 500 pg/ml. The SNR increases
with higher concentrations, while the devices show small fluctuations. The peak SNR is
reached at 500 pg/ml.

This simulation capability makes it possible to study the arrangement of the nanowires.
More precisely, the distance between the nanowires is an important parameter for in-
creasing the sensitivity. Figure 4.19 depicts the arrangement of the nanowires indicat-
ing the center-to-center distance d between the nanowires and the distance d1 between
a nanowire and the boundary. Figure 4.28 shows the sensitivity of sensors with two
nanowires whose distance d varies between 150 nm and 850 nm. The sensor width d+2d1

is 1000 nm. For larger distances, i.e., d > 750 nm, the effect of charged molecules on the
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transducers decreases since the nanowires are closer to the boundaries. For distances
less than 250 nm, the competition between the transducers to bind the target molecules
gives rise to a decrease in the sensitivity. The simulations show that the maximum
sensitivity for all transducer shapes is obtained for a center-to-center distance of 350 nm

(symmetric arrangement).

In high-risk myocardial infarction patients, the cTn concentration reaches its peak ap-
proximately after six hours. In this time interval, the concentration rises sharply. For
the concentration range from 500 pg/mL to 10 ng/mL, we use a sensor with four parallel
nanowires. The results are shown in Figure 4.29. Similar to the previous ranges, the
triangular nanowire performs more efficiently. Due to the noticeably higher number of
target molecules, the sensitivity is considerably higher than in the first range. Most
of the receptors are bound to target molecules. This fact is more pronounced in the
SNR since the simultaneously high PT-concentration (close to CP ) and small variance
decrease the noise significantly.

4.3 Current variation in FinFETs

The scaling of conventional planar MOSFETs has been facing problems such as sub-
threshold swing degradation, significant drain-induced barrier lowering (DIBL), fluctu-
ation of device characteristics, and current leakage [8, 25, 35]. To solve the problems,
3-D device structures have been studied. Fin field-effect transistors (FinFETs) among
3-D devices are very promising candidate for future nano-scale CMOS technology and
high-density memory application [31, 36, 56]. In these devices, the current variation
due to statistical fluctuations in the number and position of dopant atoms becomes a
serious problem when they are scaled to sub 0.1 micron dimensions. In fact, the random-
ness of the dopant position and number in the device makes the fluctuation of device
characteristics difficult to model and mitigate [100].

The basic structure of FinFET is a channel controlled by more than one side of the
channel. Modern FinFETs are 3D structures as shown in Figure 1.4 and also called
tri-gate transistor. FinFETs can be implemented either on bulk silicon or SOI wafer.
This FinFET structure consists of a thin (vertical) fin of silicon body on a substrate.
The gate is wrapped around the channel providing excellent control from three sides of
the channel. This structure is called the FinFET because its silicon body resembles the
back fin of a fish.

The numerical example discussed here is a realistic one: the dopant atoms in nanoscale
transistors are distributed randomly resulting in unavoidable device variations between
the many transistors in an integrated circuit. These random-dopant effects are of great
importance in nanoscale devices. We apply the stochastic method to a realistic numerical
example, i.e., random position/number of dopants in source/drain regions of FinFETs
and demonstrate its usefulness by comparing its computational effort to other methods.
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Figure 4.30: The three-dimensional meshes for the SOI FinFET in Figure 1.4 for
levels ` = 0 (left) and ` = 1 (right). The subdomains are indicated by red for the
substrate, by yellow for the insulator, by black for the channel, by green for the source

and drain regions, and blue gate.

4.3.1 Three-dimensional simulation of SOI-FinFETs

In our simulations, as the first step, we use the optimal multilevel Monte Carlo to
quantify current variation in a Silicon on insulator (SOI)-FinFET (Figure 1.4). As the
next step, the developed randomized quasi-Monte Carlo will be implemented to model
the current fluctuations.

We consider a three-gate FinFET structure with a 20 nm thick and 20 nm high silicon
fin. In the simulations, we use VSD = 0.1 V and UT = 26 mV. The channel length is
50 nm with a doping concentration of 1016 cm−3. We assume that the acceptors and
donors are distributed identically and independently in source and drain regions. The
number of donors and acceptors is constant. In the continuum version of the model, a
doping concentration of 1019 cm−3 is used for these regions.

The silicon-on-insulator (SOI) FinFET considered here and its subdomains are shown in
Figure 1.4. Corresponding three-dimensional meshes for two different levels are shown
in Figure 4.30. The channel is surrounded by a 1 nm thick layer of silicon dioxide.

Here we simulate the subthreshold current. In the subthreshold regime, the gate voltage
is below the threshold voltage so that no inversion channel is formed. In this regime, the
diffusion component of the current is more pronounced than the drift component. The
numberNdop of dopants and the doping concentration Cdop are related byNdop = V ·Cdop

of course, where V is the volume of the subdomain. The occupation probability follows
a Poisson distribution with the parameter λ =

√
Ndop.

In the continuum model, both the doping in the source and drain regions and the doping
in the channel are uniform. In the discrete model, the random locations of the dopants
in the source and drain regions as well as randomness in the number of dopants result
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Figure 4.31: Histogram of the current in the discrete model with 482 simulations for
Vg = 0.1 V (left) and Vg = 0.2 V (right). The number of dopants is Ndop = 80.
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Figure 4.32: Histogram of the current in the discrete model with 482 simulations for
Vg = 0.1 V (left) and Vg = 0.2 V (right). The number of dopants is Ndop = 20.

in device variations. For Vg = 0.1 V and Vg = 0.2 V, these variations are shown in
Figure 4.31 and Figure 4.32, respectively, for Ndop = 20 and Ndop = 80 (number of
dopants the in source and drain regions). The results indicate that in the discrete
model, the higher number of dopants decreases current fluctuation. As an example, for
the lower gate voltage, the simulation for Ndop = 80 yields σ(I) = 8.99× 10−9 A, while
the simulation for Ndop = 20 yields σ(I) = 1.27× 10−8 A.

Figure 4.33 depicts the subthreshold current obtained by both models for different gate
voltages varying from Vg = −0.1 V to Vg = 0.4 V for three different numbers of dopants
(in the source/drain regions), namely Ndop = 20, Ndop = 40, and Ndop = 80. The
results show that for different gate voltages, the difference between the higher number of
dopants and the continuum model is not significant. However, a noticeable discrepancy
is obtained with Ndop = 20.
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Figure 4.33: The expected value of the current as a function of different gate voltages
calculated using the continuum and discrete models.

4.3.2 MLRQMC-FEM for FinFETs current variations

In this section, we implement the developed optimal MLRQMC finite element method
(3.5.1) to model the current variations in FinFETs. We calculate the computational
cost of the MLRQMC approach applied to drift-diffusion-Poisson system of equations.
In optimal point of view, the function modeling the computational work is minimized
such that the estimated total error of the procedure is less than or equal to a prescribed
error tolerance. By solving this optimization problem, optimal values for parameters
such as the mesh sizes in the spatial discretization and the optimal number of quasi-
points are obtained in a natural manner.

The FinFET device is shown in Figure 4.34 and the 3D corresponding meshes for two
different levels are illustrated in Figure 4.35. This FinFET structure consists of a thin
(vertical) silicon fin on a substrate. In the device, the gate length is 60 nm, and it is
separated from the silicon channel by a 1.2 nm thick oxide layer. This channel is con-
nected to the n-type doped source and drain regions of lengths LSD = 15 nm. Regarding
the boundary conditions in (2.23), Dirichlet boundary conditions are employed at the
gate, source, and drain contacts. Zero Neumann boundary condition are applied every-
where else. The main source of randomness inside the device is the random motion of
dopant atoms through the semiconductor during the fabrication steps of implantation
and annealing resulting in their random locations.

The electron and hole mobilities have a similar dependence on doping. For low doping
concentrations, the mobility is almost constant and is primarily limited by phonon scat-
tering. At higher doping concentrations the mobility decreases due to ionized impurity
scattering with the ionized doping atoms. The actual mobility also depends on the type
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Figure 4.34: Schematic structure of a three-dimensional FinFET. The random
dopants are distributed in the source and drain regions.

Y

X
Z

Y

Z
X

Figure 4.35: The 3D meshes corresponding to the FinFET for ` = 0 (left) and ` = 1
(right).

of dopant. Here we use the expressions

µp := 54.3T−0.57
1 +

1.36 · 108T−2.33

1 +
(

Cdop

2.35·1017T 2.546
1

)
0.88T−0.146

1

, (4.5)

µn := 88T−0.57
1 +

7.4 · 108T−2.33

1 +
(

Cdop

1.26·1017T 2.4
1

)
0.88T−0.146

1

, (4.6)

where T1 = T/300 and T is the temperature to model the electron and hole mobility in
silicon as a function of temperature and net doping concentration [7].

As discussed in Section 3.3.2, the optimal parameters are found by solving the minimiza-
tion problem that minimizes the computational work for a prescribed total error. This
procedure yields the mesh sizes and numbers of samples in the multilevel approach. Be-
fore the minimization problem can be solved, the constants and the exponents in (3.58)
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Coefficient µ1 γ1 µ2 γ2 µ3 γ3 µ4 γ4

Value 0.51 3.07 0.63 3.06 0.38 2.98 0.34 2.93

Table 4.5: The estimated coefficients and exponents in (3.27).

must be measured.

As we already mentioned, the statistical error depends on the mesh size (h) and number
of samples (N). Figure 4.36 (left) depicts the error for different mesh sizes (h0 = 5, r = 2

and N = 100) with decay of variance of order β = 1.652. We assumed that applying
shifted rank-1 lattice rules gives rise to the rate of convergence O(N−2+δ), for any δ > 0.
However, the estimation of δ is crucial to solve the optimization problem. As seen in the
figure, the variance of MLRQMC-FEM decays with O(N−1.88) (i.e., δ = 0.12), while for
MC-FEM the rate of O(N−1) is achieved. These values are obtained using h = 5 with
respect of differenet number of quasi points. Additionally, Figure 4.37 illustrates the
discretization error for different mesh sizes. where the parameters were estimated using
100 samples by comparing the variance of the multilevel estimator (3.53) for different
mesh sizes. The numerically determined exponent α = 1.731 agrees very well with
the order of the P1 FE discretization used here. The coefficients in the model for the
computational work were also found numerically. For matrix assembly and solving the
system, we recorded the CPU time used as a function of different mesh sizes, and hence
the values of µk and γk are found. A summary of the coefficients and exponents is given
in Table 4.5.
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Figure 4.36: The decay of variance of the solution as a function of different mesh
sizes (left) and number of samples (right). The values C00 = 9.45, C0 = 0.338, and

δ = 0.06 are found additionally.

Since (3.58) is a continuous optimization problem, the solutions N` are generally no
integers. We therefore round the values N` up to the next integer. Regarding the
number of shift realizations, the value M` = 10 is used in all the QMC estimators.
Summaries of the optimal parameter values (h,N), (h0, r,N`) and (h0, r,M`) for the
QMC-FE and MLRQMC-FE and MLMC-FE methods are given in Table 4.6, Table 4.7
and Table 4.8 respectively.
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Figure 4.37: The expected value of the solution as a function of different mesh sizes
with C1 = 1.304.

ε 0.100 0.050 0.030 0.020 0.010 0.005 0.003 0.001
h 0.427 0.208 0.154 0.122 0.081 0.054 0.071 0.041
N 65 135 231 356 744 1 554 3 844 9 913

Table 4.6: Optimal mesh size h and number N of samples for the QMC-FE method
for different prescribed total errors ε.

ε h0 r N0 N1 N2 N3 N4 N5 N6

0.100 2.192 2.270 209 31 6 2 – – –
0.050 2.651 2.144 633 124 24 5 2 – –
0.030 2.174 2.204 1 015 154 28 5 2 – –
0.020 2.943 2.094 2 363 534 106 21 5 2 –
0.010 2.213 2.149 4 395 697 131 25 5 2 –
0.005 2.899 2.115 14 139 3 107 603 117 25 5 2

Table 4.7: Optimal hierarchies in the MLRQMC-FE method for different prescribed
total errors ε.

ε h0 r M0 M1 M2 M3 M4 M5 M6

0.100 1.303 2.151 3 920 363 33 3 – – –
0.050 1.370 2.020 18 046 1 993 215 24 3 – –
0.030 1.430 1.908 56 136 7 344 957 125 17 3 –
0.020 1.390 1.987 126 266 14 749 1 688 193 23 3 –
0.010 1.459 1.9829 545 840 73 009 9 182 1 154 165 21 3

Table 4.8: Optimal hierarchies in the MLMC-FE method for different prescribed total
errors ε.

We compare a previously developed optimal MLMC-FE method [145] with the optimal
MLRQMC-FE method developed in Section 3.3.2. Figure 4.38 shows the computational
work for the optimal quasi-Monte-Carlo method and the multilevel methods. It shows
that O(ε−2.75) is roughly constant for the standard QMC method. In the MLMC-FE
method, the assumptions of the standard complexity theorem [33] are satisfied, i.e.,
α ≥ 1

2 min(β, γ), so that the computational cost is O(ε−2.2). The faster convergence
rate of the RQMC points results in less computational work for a given total error.
In the MLRQMC-FE method, the RQMC aspect yields a computational complexity of
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ε = 0.03. For each prescribed total error, the optimal number of levels is indicated by

a red circle.

O(ε−1.82), which results in additional savings of a factor between 2 and 17 (relative
to MLMC) and 2 and 500 (relative to QMC) Therefore, the efficiency increase of the
multilevel RQMC method is more pronounced for smaller prescribed total errors [88].

Additionally, choosing the optimal number L of levels is another important consideration.
Figure 4.39 depicts the optimal number of levels for three different prescribed total
errors. Using only one level (L := 0) results in the standard Monte-Carlo method.
Distributing the samples among several levels ` ∈ {0, . . . , L} results in significant savings
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in computational cost. For smaller error bounds, a larger number of levels is necessary
to obtain the minimum of computational cost.

Now, we focus on the simulation of the device using the above obtained computational
results. We use the subthreshold current, where the diffusion component of the current
is larger than the drift component. First of all, we study the effect of randomness in the
position of the dopants, whose number is constant. Figure 4.40 shows the comparison
between the expected value of the current calculated using the discrete model (obtained
for ε = 0.05) and the continuum model for different gate voltages varying between
Vg = −0.1 V and Vg = 0.3 V. The fluctuation of the current in the discrete model for
Vg = 0.1 V and Vg = 0.2 V is also shown in Figure 4.41. The results show approximately
10% of difference between the models.
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Figure 4.40: The expected value of current as a function of different gate voltages
calculated using continuum and discrete models with VSD = 0.1 V.
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Figure 4.41: Histogram of the current for Vg = 0.1 V (left) and Vg = 0.2 V (right)
and 563 simulations. Here E(I) = 1.49 · 10−7 A for the lower gate voltage and E(I) =

1.14 · 10−6 A for the higher gate voltage.

Next, we compare the expected value of the current for different numbersNdop of dopants
with the continuum model. Figure 4.42 shows the expected value of the current for
different numbers of dopants, varying from 5 to 50, for various gate voltages. The total
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Figure 4.42: The I-V characteristics for different numbers of dopants. The results
for the continuum model are shown as well.

charge of the dopants is kept constant to allow the comparison. According to the figure,
the presence of more than 10 atoms in the regions results in a higher current compared
to the deterministic model at same gate voltage.

An interesting result of the simulations is that considering the discrete nature of the
dopants in the devices results in a decrease of the threshold voltage. It is also seen
that the fluctuation due to the number of dopants is more significant than the effect of
random positions. The variations decrease gradually when there are more dopants in
the region, which is consistent with convergence to the continuum model as the number
of dopants tends to infinity.
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Figure 4.43: Histogram of the current for Vg = 0.2 V and for 563 simulations. Left:
Ndop = 5 resulting in E(I) = 9.22 · 10−7 A. Right: Ndop = 50, resulting in E(I) =

9.66 · 10−7 A. The current obtained by the continuum model is I = 9.66 · 10−7 A.
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4.4 Confined structure applied to the ion channels

Ion channels are of essential physiological importance, since they manage the concentra-
tion gradients of ions across cell membranes [75, 85]. They are located in cells membranes
and manage the concentration gradients of ions across the membranes. Hence, they are
the fundamental regulators, amplifiers, and transducers of the nervous system. Ion
channels are small enough that interactions between the ions and the channel protein
are important for their operation, while they are large enough that it is impossible to
calculate all such interactions at the atomistic level on realistic time scales where ionic
conductance occurs. Ion channels conduct electrical signals inside neurons, muscles, and
touch receptor cells, and they generate the electrical impulses underlying information
transfer in the nervous system.
All organisms have ion channels for Na+, K+ and Cl−. These are significant in osmoreg-
ulation and the transmission of signals via the transmembrane potential between the
inside (potassium) and the outside (sodium and chlorine) of the cell. Because of their
important role in physiology, we simulate currents through three different ion channels.
The channels considered are the phosphate selective OprP channel, the Gramicidin A
channel, and the Streptomyces lividans KcsA channel. In each case, the calculated cur-
rents are compared with measurements. We also discuss virtual KcsA channels in order
to elucidate if and how the structure of the natural channels is optimal with respect to
its selectivity [85].

4.4.1 Determination of the confinement potential

The confinement potential enters the transport model via equations 2.35 and 2.37. For
each channel type and each ionic species, the potential of mean force (PMF) and the
channel width completely determine the confinement potential, i.e., the PMF and the
channel width determine the functions V0, b and B in the confinement potential V in
2.35. In other words, the microscopic structure of the channel as it is experienced by
each ionic species is fully described by the PMF and the channel width.

Harmonic confinement potentials can always be constructed by calculating the best
approximation from given forces according to [74, Section 5.1]. Here the channels are
considered to be straight for simplicity so that b1(x) = b2(x) = 0 holds for all x. The
minimum energy, i.e., the minimum of each parabola, at each x along the channel is then
given by V (x, (0, 0)>) = V0(x). These energies are taken from the literature for each
structure considered here, e.g., they are potentials of mean force (PMF) [45]. Applied
potentials can be added to V0.

Finally, the coefficient function B is determined from the known width of the struc-
ture. For simplicity, we assume that the channels have a rotational symmetry so that
B := B1 = B2. The width r of the structure at x for the present purposes is the dis-
tance r(x) in y-direction from the center of the cross section where the confinement force
reaches a constant value F that may depend on channel type. In order to determine
the coefficient B from the known width r(x) i.e., the channel radius (distance from the
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center), we first calculate the gradient as

∇yV (x, y) = ∇y
(
V0(x) +

1

2
B(x)(y2

1 + y2
2)
)

=

(
B(x)y1

B(x)y2

)
.

Therefore, the confinement force F at x is

|F | = |∇yV (x, y)| = |B(x)|
√
y2

1 + y2
2 = B(x)r(x)

so that the sought coefficient is

B(x) =
|F |
r(x)

.

This procedure is used to determine the functions V0, b, and B in 2.35 and 2.37 from
the given structure in all of the following simulations. The channel width is known from
structures in the Protein Data Bank and the energy landscape along the channel from
data in the literature for the potential of mean force, where it has been calculated, e.g.,
from molecular-dynamics simulations.

4.4.2 Simulation of phosphate specific OprP channels

Pseudomonas aeruginosa is a versatile gram-negative outer membrane bacterium, which
can live in various environments and leads to diseases in humans and animals such as
pneumonia, osteomyelitis, and meningitis. OprP is a transmembrane beta-barrel protein
of this bacterium and forms a highly selective phosphate channel (see Figure 4.44). The
selectivity of the pore for molecular interactions and the permeability of OprP for small
anions or antibiotics in the absence of phosphate were studied in [111, 113].

We simulate the passage of potassium and chlorine ions through the OprP channel. The
potentials of mean force as well as the width of the channel were determined in [112]. The
potentials of mean forces are shown in 4.45. Figure illustrates that the potential barriers
have their extrema in the middle of the pore, between R226 and K121 for chlorine and
R59 and D94 for potassium, whereas the barriers are smaller and the pore is wider near
R220, K30, and K322. These areas are entrance funnels to OprP allowing chlorine and
potassium ions to move easily [112].

In 4.46, the measured and simulated K+ and Cl− conductance (I/V ) are shown as
functions of the applied voltage for an ionic bath concentration of 0.1M. The simulations
indicate that the conductance is fairly constant up to 100mV; however, the increases
show exponential behavior for larger applied voltages meaning that the currents become
voltage driven in this regime. Furthermore, the considerable difference between the
conductivities shows that the current in OprP is mostly chlorine. The simulations show
good agreement with the experimental data points in 4.46, although the potassium
current is overestimated.
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Figure 4.44: X-ray crystallography of Oprp phosphate channel. Periplasmic and
extracellular are shown.

4.4.3 Simulation of Gramicidin A Channels

More measurements are available for Gramicidin A channels. Gramicidin channels are
polypeptide antibiotics active against gram-positive bacteria such as, e.g., Escherichia
coli, Shigella, and Stenotrophomonas. They are selective for monovalent cations [5].
Their effect is to increase the cation flow through the target bacterial membrane due
to the formation of bilayer spanning channels. 4.47 shows the Gramicidin A channel
from the side with its alternating L-D amino-acid sequence. The structure of the bilayer
spanning channel is well known (Figure 4.49) and the ion permeability can be modulated
by defined chemical modifications whose influence on the structure can be specified
experimentally.

In order to validate the simulation approach, we compare the simulated sodium current
as a function of applied voltage and bath concentration with measurements [4, 105].
4.48 shows the results for various ionic concentrations from 10mM to 1000mM, and 4.50
shows the results for positive and negative applied voltages. In both figures, very good
agreement between the simulated and measured Na+ currents is observed.

The selectivity of Gramicidin channels with respect to different ion species is also an
important property. In order to investigate this effect, we calculated the potassium
current and compared the results with experimental data [4]. Very good agreement
was found and is shown in Figure 4.51. The potential barrier inside the channel leads
to higher selectivity for K+ ions compared to Na+ ions, and the current ratio varies
between 2.5 and 3 depending on applied potential. The similar results are obtained for
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Figure 4.46: The simulated potassium (left) and chlorine (right) conductivities versus
experimental data as functions of applied voltage for one of the monomers of the porin.

a salt concentration of 500mM as is depicted in 4.52 [84]. The PMFs are from [2] and
[103], respectively.
In order to model the transport of anions, we used the PMF of Cl− in Gramicidin A from
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Figure 4.47: Structure of the Gramicidin A channel (PDB code 1MIC).
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Figure 4.48: Comparison of experimental [105] and simulated Na+ currents through
the Gramicidin A channel as functions of applied potential for different bath concen-

trations.

[48, Figure 3]. The PMF in the channel is approximately two times larger than the PMF
of potassium, which greatly reduces the Cl− current. Using an ionic concentration of
0.1mM and an applied voltage of 0.1mV yields a negligible Cl− current of 1.5577·10−7pA,
which agrees well experimental data [48].

4.4.4 Simulation of KcsA channels

The transduction of potassium ions through transmembrane channels plays an important
role in cell metabolism. In contrast to sodium, potassium is intracellular. Potassium
channels enable and control the flux of potassium ions across cell membranes and are
found in most cell types. They regulate a wide variety of cell functions; for example,
the high selectivity of the KcsA channel with respect to potassium is fundamental for
signal conduction in nerve cells.
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Figure 4.49: Diffusion of ions through the Gramicidin A channel
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Figure 4.50: The measured [105] and simulated Na+ currents through the Grami-
cidin A channel for positive and negative applied voltages at1 M bath concentration.
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Figure 4.51: The simulated versus the experimental [4] K+ current for different ap-
plied voltages.
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Figure 4.52: The simulated versus the experimental [4] sodium and potassium cur-
rents for different applied voltages through the Gramicidin A channel at 2 M salt con-

centration.

Figure 4.53: The 1K4C potassium channel KcsA with a radius of 0.28nm and a length
of 12.4nm. The extracellular and cytoplasmic are illustrated with red and blue dotted

lines respectively.

The potassium channel of Streptomyces lividans, KcsA (PDB id 1K4C), is a membrane
protein with sequence similarity to all known potassium channels, implying that the
selectivity filter is highly conserved. The KcsA channel consists of four identical sub-
units that form an inverted pyramid surrounding a large central cavity and leading to
a narrow pore at the extracellular end. The pore region consists of an inner pore, a
large cavity near the middle of the pore, and the selectivity filter that separates the
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cavity from the extracellular liquid (see 4.53) [23, 49]. The inner pore and the internal
cavity are hydrophobic, while the selectivity filter is lined exclusively by chain atoms
belonging to the conserved sequence. Mutation experiments demonstrated that this sig-
nature sequence is responsible for potassium selectivity. The selectivity filter has four
binding sites which can be occupied by monovalent cations or water molecules. Geom-
etry of the KcsA channel is much more complicated than other transmembrane pores.
The coefficient functions were again determined as described in 4.4.1 according to the
geometry of the protein. Numerical investigations show that the current as a function
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Figure 4.54: Comparison of simulated and measured [17] K+ current through a KcsA
channel for bath concentrations of 100mM and 200mM.
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Figure 4.55: Current ratio of potassium over sodium for simulated and measured [41]
current through a KcsA channel for a bath concentration of 500mM.

of applied voltage is larger compared to the other pores underlining the selectivity of
the channel for potassium (see 4.54). In the next step, we simulate the transduction of
sodium ions through the channel. As is well-known, their conductivity is much smaller
and the sodium current is much lower even at high sodium concentrations. As Figure
4.55 shows, current ratio of potassium over sodium for both negative and positive ap-
plied voltages is more than 24, although there is a slight fluctuation in it. This is also
seen in the simulations in Figure 4.56 using the correct potential barrier for sodium ions



Chapter 4. Application of the UQ in Nanotechnology 115

[157]. Moreover, in order to simulate the transport of the ions, we used the experimental
data in [17] and the potential of mean force in [157].
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Figure 4.56: Comparison of simulated and measured [41] Na+ current through a
KcsA channel at 500 mM bath concentration.

Having validated the simulations in this manner, we can now discuss the selectivity of
the KcsA channel. We pose the question why the rings of oxygen atoms in the selectivity
filter are repeated four times. The oxygen atoms in the selectivity filter provide binding
sites for the cations and they imitate the hydration shells of cations in bulk water. In
the natural protein, the oxygen atoms are arranged in four rings with the coordination
distance varying from 0.27nm to 0.308nm [169]. The length of the selectivity filter in
the continuum model corresponds, of course, to the number of binding sites in the filter.

The natural selectivity filter is approximately 1.2nm long [23]. Since the length of the
natural selectivity filter cannot be changed in experiments (huge modifications of the
protein would be necessary) but can be changed quite easily in simulations, we have
investigated the effect of filter length here. In other words, we have simulated virtual
channels that have shorter and longer selectivity filters. An applied voltage of 100mV is
applied across the channel for bath concentration of 100mM and 200mM. The numerical
results for the ratio of potassium to sodium current, used here as a measure of selectivity,
are shown in Figure 4.58.

If there is only a selectivity filter shorter than the natural one, the selectivity decreases.
On the other hand, for filters longer than four oxygen rings, the selectivity remains
essentially constant. This behavior is observed independent of bath concentration. Be-
cause of the selectivity for potassium, the Na+ current is more than 20 times smaller
than the K+ current.

These results mean that a filter length of four oxygen rings is the optimal filter length:
Longer filters would not be advantageous compared to the natural selectivity filter, but
they would be harder to assemble and stabilize in a lipid bilayer and would be generally
wasteful, while shorter filters would have the disadvantage of allowing larger sodium
currents and reducing selectivity, diminishing the physiological purpose of the KcsA
channel.
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Figure 4.57: The selectivity filter of the KcsA channels, four oxygen rings are illus-
trated in the figure.

0 1 2 3 4 5 6 7 8 9 10
22

23

24

25

26

27

Number of Oxygen rings

 

 

100 mM

200 mM

Figure 4.58: The ratio of potassium to sodium currents as a function of the length
of the selectivity filter. For filters longer than four oxygen rings, the ratio is constant,

while it decreases as the filter length decreases below this length.

4.5 Conclusions

First, we used the stochastic Poisson-Boltzmann equation to quantify the biological
noise in nanowire field effect sensors. Here, we applied the drift-diffusion system to
model the charge transport of the carriers. The basis adaptation base on the polynomial
chaos expansion we implemented for noise quantification. In all the numerical results,
very good agreement between basis adaptation and the full solution was found. This is
true for a wide range of parameter values: doping concentration, ionic concentration,
surface charge, and size and charge of molecules were varied over large intervals. These
numerical results show the effectiveness of basis adaptation for the stochastic nonlinear
Poisson-Boltzmann equation.

The effectiveness of basis adaptation is due to the choice of uncertainty domain and the
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properties of solutions of the (stochastic) Poisson-Boltzmann equation. In particular, it
is known that pointwise estimates hold for this type of semilinear problem [108], [13,
Lemma 3.2], justifying the choice of uncertainty domain as a vicinity of the support of
the stochastic process.

Basis adaptation was compared to the multi-level Monte-Carlo method as an example
of another modern numerical approach for computing expected values of solutions of
stochastic partial differential equations. Multi-level Monte Carlo performs much better
than Monte Carlo, but not as well as basis adaptation. This is mainly due to the fact
that the particular multi-level Monte-Carlo method used here does not take into account
the special structure of the model equation, whereas the combination of basis adaptation
and suitable uncertainty domain does. Ideas from the multilevel Monte Carlo approach
adapted to the problem at hand may increase performance considerably.

Regarding the application of field-effect sensors, where the stochastic Poisson-Boltzmann
equation plays an important role as a fundamental model equation, very good agreement
of the basis-adaptation method with measurements was found. The stochastic Poisson-
Boltzmann equation makes it possible to include noise and fluctuations in the modeling,
and the numerical results show how the various parameters affect the signal-to-noise
ratio, an important characteristic value of sensors.

Second, we have developed an efficient three-dimensional multilevel Monte Carlo finite-
element method for the stochastic drift-diffusion-Poisson system to simulate randomness
and process variations due to target molecules (in biosensors) and dopant atoms (in
FinFET devices). The most noticeable advantage of this method compared to classical
methods such as Monte Carlo is the much reduced computational expense. An opti-
mization problem is solved for a given tolerance level to find the optimal parameters
(M`, h`, L).

We studied the effect of random-dopant fluctuation as a concrete example. In the (classi-
cal) continuum model, the doping concentration is considered as a macroscopic quantity
and the effect of the dopants is averaged out. In the discrete model, the dopant atoms
have microscopic structure and the device variation due to the individual dopants was
quantified. We calculated the fluctuation of the current in the subthreshold regime
in a FinFET for different gate voltages and compared the results with the continuum
model. In another example, namely in nanowire field-effect sensors, we used a fully three-
dimensional system of stochastic PDE, namely the stochastic drift-diffusion-Poisson sys-
tem, to model the effects of random DNA oligomers in a liquid on a semiconductor. We
first compared the simulation results with experimental data, where a very good agree-
ment was found. The results obtained by the discrete model, i.e., the stochastic PDE,
agree better with the experiments than the (classical, deterministic) continuum model.
The distributions of the molecules were obtained from a physical model, namely from a
random-walk based stochastic method to simulate the association/dissociation processes
of the molecules in three specific surface regions of the nanowire.

Third, the troponin sensitive sensors have shown recently their efficiencies to shorten
heart disease diagnostic time and increase the reliability of tests. We considered the
cardiac troponin dynamic range for healthy and risky individuals. To calculate the
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charge of molecules in the blood we used the PROPKA algorithm as well. Also, we
calculated the statistics i.e., expected value and the variance of the PT-concentration
of binding cTnI molecules to the receptors. The sensitivity of the device with respect
to the troponin molecules has been a crucial parameter in this paper. To that end, we
studied the effect of parameter e.g., doping concentration, the back-gate voltage, etc.
on the device sensing.

In the fabrication process of nanowire field effect sensors, the geometry of nanowire is
very important. We simulated the device with four types of the transducers. The sim-
ulations were done for the three different ranges of the troponin concentrations. The
triangular nanowires performed more efficient than other devices in the sense of sensi-
tivity and the signal. Furthermore, we obtained that the triangular transducers with a
sidewall angle of ≈ 54.7◦ to the horizontal surface and (111) silicon sidewall plane per-
forms better than the equilateral device. Finally, the arrangement of parallel nanowires
was studied in this work. According to the simulations, the symmetric arrangement i.e.,
the equal distance between the nanowires (center-to-center distance) and the boundaries
gives rise to the maximum of device sensing.

Fourth, we have developed an optimal multilevel randomized quasi-Monte Carlo method
to calculate the expected value of the solution. We have compared the new method with
the optimal multilevel Monte Carlo method, where a reduction in the computational
cost of the new method by more than one order of magnitude is found. In order to
obtain the parameters of the numerical method and to solve the resulting optimization
problem, we have used an SQP method as a generalization of Newton’s method and
approximated the nonlinear objective function by its local quadratic approximation. In
summary, a computational complexity of O(ε−1.82) is achieved.

The numerical method developed here has also been applied to a realistic problem,
namely the effects of random dopants in a state-of-the-art transistor. Variations due
to the location and the number of dopants have been considered and compared to the
continuum model. As the number of dopants in the discrete model goes to infinity, the
continuum model is obtained as the limit as expected. The variations are significant for
a realistically small number of dopants, which is consistent with random dopants being
the main limiting factor in today’s transistor technology.

Finally, we have used a continuum transport model for confined structures to investigate
three kinds of transmembrane channels. The main feature of this diffusion-type transport
equation is that the geometry of the confining protein directly determines the transport
coefficients in the equation. Its great advantage as a continuum model is the fact that the
currents are obtained immediately from the 2D numerical solution by integration over
local energy; the numerical solutions of this 2D equation can be calculated quickly. The
model was validated by the application to three kinds of channels. In all cases, very good
agreement between simulation and experiments was found, implying that the potential
barriers (PMFs) inside the channel and the widths of the channels already capture the
essential features of their functioning. In the case of the OprP porin and Gramicidin
A, this simulation capability can be used to further our quantitative understanding of
antibiotics. For example, mutations can be investigated by first calculating the potential
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barrier that ions experience and then calculating ionic currents through the proteins.
The KcsA channel was considered as the third example. The main physiological function
of the KcsA potassium channel is its selectivity between sodium and potassium ions.
Here the geometry of the protein is much more complicated than the geometry of other
pores. Nevertheless, the simulated sodium and potassium currents match the measured
data very well. The optimal selectivity filter length was determined by simulating virtual
channels and agrees well with the natural filter length. Hence it is possible to explain
why the KcsA channel has this particular geometry.



Chapter 5

Conclusions

The main objective of this dissertation was the development of advanced numerical
techniques and physical models to quantify noise in nanoelectronic devices.

First, we considered the stochastic drift–diffusion-Poisson equations as the main model
equation for describing transport in random environments with many applications. We
presented existence and local uniqueness theorems for the weak solution of the system.
Afterward, we define a global optimization problem which minimizes the computational
complexity such that the error bound is less than or equal to a given tolerance level.
MLMC-FE method was found to decrease the total computational effort by four or-
ders of magnitude for small error tolerances. The speed-up becomes better as the error
tolerance decreases. To further improve the computational efficiency, a randomized low-
discrepancy sequence such as a randomly shifted lattice were applied as well. Again,
compared with the optimal multilevel Monte Carlo method, a reduction in the compu-
tational cost of the new method by more than one order of magnitude is found. We
used a continuum transport model for confined structures to investigate three kinds of
transmembrane channels.

The methods developed here were applied to a realistic transport problem, namely the
calculation of random-dopant effects in nanoscale field-effect transistors. As another
example, namely, in SiNW-FETs, we used the fully three-dimensional system of the
stochastic drift-diffusion-Poisson system, to model the effects of random DNA oligomers
in a liquid on a semiconductor. We compared the simulation results with experimental
data, where a very good agreement was found. In ion channels, in spite of computa-
tional advantages of the transport model, the verification with the experiments shows
its exactness. These examples proved the efficiency of the developed models/techniques
for modeling the randomness in different nanoelectronic devices.

We used the PDE-based models to develop the cardiac troponin sensors. The efficiency
of SiNW-FETs compared with traditional methods such as ECG and popular tools
e.g., ELISA discussed in this dissertation in details. We proposed a design strategy
for affinity-based biosensors using nanowires for sensing and measuring biomarker con-
centration in biological samples. In other words, we explained the effect of influential
parameters, like sensor length, width, doping concentration, dopant type, type of the

120



Chapter 5. Conclusions 121

nanowire, backgate voltage, and the number of parallel nanowires on the sensor response.
Therefore, by varying the substantial parameters, it has been made possible to optimize
the electrical characteristics of devices and to fabricate the optimal field-effect sensor to
detect cTn concentration more accurately.



List of Figures

1.1 Schematic diagram of a nanowire field-effect sensor showing metal source
and drain electrodes with the NW and contacts on the surface of SiO2/Si
substrate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 A longitudinal cross section of nanowire field effect sensor indicating the
random binding of the target molecules to the receptors. Here, the Dirich-
let boundary conditions (Vg, Vsolution, VS and VD) and zeros Neumann
boundary condition (on left and right) are depicted. The geometry of the
device is shown additionally. . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 The orientation of a molecule in respect of oxide layer. The reference axes
are shown additionally. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 The 3D structure of the simulation geometry where the dopant atoms are
distributed in source and drain regions. . . . . . . . . . . . . . . . . . . . 10

1.5 Schematic representation of the valence of silicon lattice where the phos-
phorous and boron atoms create an extra electron and hole, respectively. . 11

3.1 Meshes for the random distribution of impurity atoms (red circles) in a
nanowire field-effect sensor for levels ` = 0 (left) and ` = 1 (right), where
h0 = 4.02, r = 2, and Cdop = 4 × 1016 cm−3. Additionally, oxide (Dox),
transducer (DSi) and the electrolyte (Dliq) subdomains are depicted with
blue, black and green meshes, respectively. . . . . . . . . . . . . . . . . . . 53

3.2 Computational work for matrix assembly (top) and solving the system
(bottom), both for the Poisson equation (left) and the drift-diffusion-
equations (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Discretization error (left) and statistical (right) error as a function of h. . 54
3.4 The minimized computational work for the MLMC-FE method as a func-

tion of the number of levels and as a function of the given error tolerance.
The results for a geometric progression for h (left) and general h (right)
are shown. The number of levels yielding the minimal overall computa-
tional work is indicated by red circles. . . . . . . . . . . . . . . . . . . . . 55

3.5 Comparison between the two different approaches to MLMC FE method
for ε = 0.015. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 Comparison of total computational work for MC-FEM and the two ap-
proaches to MLMC-FEM for various given tolerances. . . . . . . . . . . . 57

4.1 Cross section through a field-effect nanowire sensor, showing subdomains
and boundary conditions. In the electrolyte (Dliq), the random binding of
target molecules to immobilized receptor molecules at the surface defines
molecule subdomain (DM). . . . . . . . . . . . . . . . . . . . . . . . . . . 72

122



Chapter 5. Conclusions 123

4.2 The electrostatic free energies of various ssDNA and dsDNA oligomers as
a function of angle for a surface charge of −0.5 q/nm2 in a liquid with an
ionic concentration of 30 mM. The angles are defined with respect to the
surface, where 0 means a molecule parallel to the surface and π/2 means
a molecule perpendicular to the surface (as indicated in Figure 4.1). Data
from [72]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Probability density function (left) and cumulative distribution function
(right) of random orientation of 12 base pairs ssDNA oligomers in an
aqueous solution with different ionic concentration and surface charge.
The proteins rotate between 0 (horizontal) and π/2 (vertical) degrees at
the surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 The comparison of measured and simulated currents (expected value) in
respect of different back-gate voltages for 60 nm (left) and 100 nm (right)
width of transducer. The simulations are performed for the reference
structure, where the back-gate voltage was varied. Here, VSD = 0.2 V
and for both devices the same threshold voltage is used. . . . . . . . . . . 75

4.5 Expected value of current and its signal-to-noise ratio as functions of dop-
ing concentration for 60 nm and 100 nm wide devices. Here, the ionic con-
centration is 30 mM, the surface charge is −0.5 q/nm2 [72], the oligomer
length is 12 base pairs, VBG = −3 V, and the thermal voltage is 0.021 V. 75

4.6 The comparison of expected value (top) and signal-to-noise ratio of cur-
rent (bottom) for 60 nm (left) and 100 nm (right) width as functions of
ionic concentration. Here, the doping concentration is 1016 cm−3, the
surface charge is −0.5 q/nm2 [72], the oligomer length is 12 base pairs,
VBG = −3 V, and the thermal voltage is 0.021 V. . . . . . . . . . . . . . . 76

4.7 The comparison of expected value (top) and the signal-to-noise ratio of
the current (bottom) for 60 nm (left) and 100 nm (right) wide sensors
as functions of surface charge density. Here, the doping concentration is
1016 cm−3, the ionic concentration is 30 nm, the oligomer length is 12 base
pairs, VBG = −3 V, and the thermal voltage is 0.021 V. . . . . . . . . . . . 77

4.8 The comparison of mean value (top) through the transducer and the
signal-to-noise ratio of the current (bottom) for 60 nm (left) and 100 nm
(right) as functions of oligomer length. Here, the doping concentra-
tion is 1016 cm−3, the ionic concentration is 30 mM, the surface charge
is −0.5 q/nm2, VBG = −3 V, and the thermal voltage is 0.021 V. . . . . . . 78

4.9 A cross section of the field effect sensor indicating the three different
regions of the surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.10 Histograms of the PT-complex density in equilibrium at the corners (top
left), in the middle (top right), at the edges (bottom left), and overall
(bottom right). The green lines show a Gaussian distribution with the
parameters in Table 4.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.11 The meshes for the nanowire field-effect sensor for ` = 0 (left) and ` =
1 (right). The subdomains are depicted with gray (substrate), golden
(nanowire), and green (electrolyte) meshes. The randomly distributed
molecules and the dopants are inside the electrolyte and the nanowire,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.12 Statistical and discretization errors for different mesh sizes. The coeffi-
cients α and β behave according to Assumption 1. . . . . . . . . . . . . . 82



Chapter 5. Conclusions 124

4.13 A comparison of the total computational work necessary in the MC and
MLMC methods as a function of the prescribed total error. . . . . . . . . 83

4.14 The expected value of the electrical current as a function of back-gate
voltage for 60 nm width (left) and 100 nm width (right) for continuum
and discrete models. Here, the discrete model points out the biological
noise in addition to the RDF and in continuum model only the RDF is
considered. In the simulation, the results are with the experimental data
[14] with the same main parameters i.e., tox = 8 nm, Cdop = 1×1016cm−3,
VSD = 0.2 V, the nanowire thickness of 50 nm and µp = 100 cm−2V−1s−1. 83

4.15 Histograms of the electrical current calculated by the discrete model (bio-
logical and RDF fluctuation) with 941 simulations for a doping concentra-
tion of 1×1016 cm−3 (left) and for a doping concentration of 1×1017 cm−3

(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.16 The expected value of the current for VSD = 0.4 V and VSD = 0.6 V for

both the continuum and discrete models where VT = −0.98 V (threshold
voltage). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.17 The four principal regulatory components of the skeletal muscle, i.e.,
actin, tropomyosin, nebulin and the troponin complex [55]. . . . . . . . . 85

4.18 A longitudinal cross section of a troponin sensitive SiNW-FET. The ran-
dom binding of troponin molecules to the probe molecules (antigens) is
depicted as well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.19 Schematic diagram of the nanowire field-effect sensor showing receptor
and target molecules. The subdomains, i.e., silicon nanowire ΩSi, insu-
lator ΩOx, the specific binding of target to probe molecules ΩM, and the
electrolyte ΩEl are illustrated with their dimensions and ranges. Addi-
tionally, d indicates the center-to-center distance between the nanowires
and d1 is the distance between a nanowire and the boundary. . . . . . . . 87

4.20 The net charge of the folded and unfolded states of protein 1MXL for
different pH values. The results are obtained by PDB2PQR simulation. . 88

4.21 The expected value (top left), variance (top right), and binding efficiency
(bottom) of PT-complexes for different troponin concentrations. . . . . . 90

4.22 Cross-section of radial (left) and triangular (left) nanowires with nanowire
area of 2500 nm. In the triangular device, the sidewall angels are ≈ 54.7◦. 91

4.23 Sensor response (left) and signal (right) as a function of troponin concen-
tration varying from 5 pg/ml and 50 pg/ml for different nanowire cross
sections. The sensors are 300 nm wide and the bulk oxide is 200 nm thick.
Each sensor has one 1000 nm long nanowire, a cross-sectional area of
2500 nm2, a doping concentration of 1017 cm−3, and they are protected
by a 5 nm thick silicon oxide layer. . . . . . . . . . . . . . . . . . . . . . . 92

4.24 Expected value and standard deviation of PT-complexes (left) and signal-
to-noise ratio (right) as a function of troponin concentration varying from
5 pg/ml and 50 pg/ml for different nanowire cross sections. The sensors
are 300 nm wide and the bulk oxide is 200 nm thick. Each sensor has
one 1000 nm long nanowire, a cross-sectional area of 2500 nm2, a doping
concentration of 1017 cm−3, and they are protected by a 5 nm thick silicon
oxide layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



Chapter 5. Conclusions 125

4.25 Sensor response (left) and signal (right) of two triangular nanowires for
different backgate voltages at 10 pg/mL troponin concentration. The sen-
sors are 300 nm wide and the bulk oxide is 200 nm thick. Each sensor has
one 1000 nm long nanowire, a cross-sectional area of 2500 nm2, a doping
concentration of 1017 cm−3, and they are protected by a 5 nm thick silicon
oxide layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.26 Sensor response (top left), signal (top right), and SNR (bottom) as a
function of doping concentration for different nanowire cross sections.
The sensors are 300 nm wide and the bulk oxide is 200 nm thick. Each
sensor has one 1000 nm long nanowire, a cross-sectional area of 2500 nm2

and they are protected by a 5 nm thick silicon oxide layer. . . . . . . . . . 93
4.27 Sensor response (top left), signal (top right), and SNR (bottom) as a

function of troponin concentration varying from 50 pg/ml and 500 pg/ml
for different nanowire cross sections. The sensors are 1000 nm wide and
the bulk oxide is 300 nm thick. Each sensor has two parallel 5000 nm long
nanowires, a cross-sectional area of 2500 nm2, a doping concentration of
1017 cm−3, and they are protected by a 5 nm thick silicon oxide layer. . . . 94

4.28 The sensor response of different devices as a function of the nanowire
center-to-center distance at 75 pg/ml cTn concentration. The sensors are
1000 nm (d = d1 = 333 nm) wide and the bulk oxide is 300 nm thick. Each
sensor has two parallel 5000 nm long nanowires, a cross-sectional area of
2500 nm2, a doping concentration of 1017 cm−3, and they are protected
by a 5 nm thick silicon oxide layer. . . . . . . . . . . . . . . . . . . . . . . 95

4.29 Sensitivity (top left), signal (top right), and SNR (bottom) as a func-
tion of troponin concentration varying from 500 pg/mL and 10 ng/mL for
different nanowires cross sections. The sensor is 1000 nm wide and the
bulk oxide is 300 nm thick. Each sensor has four parallel 5000 nm long
nanowires, a cross-sectional area of 2500 nm2, a doping concentration of
1017 cm−3, and they are protected by a 5 nm thick silicon oxide layer. . . . 96

4.30 The three-dimensional meshes for the SOI FinFET in Figure 1.4 for levels
` = 0 (left) and ` = 1 (right). The subdomains are indicated by red for
the substrate, by yellow for the insulator, by black for the channel, by
green for the source and drain regions, and blue gate. . . . . . . . . . . . 98

4.31 Histogram of the current in the discrete model with 482 simulations for
Vg = 0.1 V (left) and Vg = 0.2 V (right). The number of dopants is
Ndop = 80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.32 Histogram of the current in the discrete model with 482 simulations for
Vg = 0.1 V (left) and Vg = 0.2 V (right). The number of dopants is
Ndop = 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.33 The expected value of the current as a function of different gate voltages
calculated using the continuum and discrete models. . . . . . . . . . . . . 100

4.34 Schematic structure of a three-dimensional FinFET. The random dopants
are distributed in the source and drain regions. . . . . . . . . . . . . . . . 101

4.35 The 3D meshes corresponding to the FinFET for ` = 0 (left) and ` = 1
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.36 The decay of variance of the solution as a function of different mesh sizes
(left) and number of samples (right). The values C00 = 9.45, C0 = 0.338,
and δ = 0.06 are found additionally. . . . . . . . . . . . . . . . . . . . . . 102



Chapter 5. Conclusions 126

4.37 The expected value of the solution as a function of different mesh sizes
with C1 = 1.304. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.38 Comparison of the total computational work required for the optimal
MLRQMC andMLMCmethods. For smaller total errors, the effectiveness
of the randomized method is more pronounced. . . . . . . . . . . . . . . . 104

4.39 The comparison of the total work of MLRQMC for different levels (be-
tween L = 0 and L = 7) for three different total errors ε = 0.1, ε = 0.05,
and ε = 0.03. For each prescribed total error, the optimal number of
levels is indicated by a red circle. . . . . . . . . . . . . . . . . . . . . . . . 104

4.40 The expected value of current as a function of different gate voltages
calculated using continuum and discrete models with VSD = 0.1 V. . . . . 105

4.41 Histogram of the current for Vg = 0.1 V (left) and Vg = 0.2 V (right) and
563 simulations. Here E(I) = 1.49 · 10−7 A for the lower gate voltage and
E(I) = 1.14 · 10−6 A for the higher gate voltage. . . . . . . . . . . . . . . . 105

4.42 The I-V characteristics for different numbers of dopants. The results for
the continuum model are shown as well. . . . . . . . . . . . . . . . . . . . 106

4.43 Histogram of the current for Vg = 0.2 V and for 563 simulations. Left:
Ndop = 5 resulting in E(I) = 9.22 · 10−7 A. Right: Ndop = 50, resulting
in E(I) = 9.66 · 10−7 A. The current obtained by the continuum model is
I = 9.66 · 10−7 A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.44 X-ray crystallography of Oprp phosphate channel. Periplasmic and ex-
tracellular are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.45 Potentials of mean force (top) of potassium (left) and chlorine (right) in
the OprP phosphate channel. At the bottom figure, the corresponding
channel radius (r(x)) are shown as the distance from the center. Arginine
ladders are additionally shown. . . . . . . . . . . . . . . . . . . . . . . . . 110

4.46 The simulated potassium (left) and chlorine (right) conductivities versus
experimental data as functions of applied voltage for one of the monomers
of the porin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.47 Structure of the Gramicidin A channel (PDB code 1MIC). . . . . . . . . . 111
4.48 Comparison of experimental [105] and simulated Na+ currents through

the Gramicidin A channel as functions of applied potential for different
bath concentrations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.49 Diffusion of ions through the Gramicidin A channel . . . . . . . . . . . . . 112
4.50 The measured [105] and simulated Na+ currents through the Grami-

cidin A channel for positive and negative applied voltages at1 M bath
concentration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.51 The simulated versus the experimental [4] K+ current for different applied
voltages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.52 The simulated versus the experimental [4] sodium and potassium currents
for different applied voltages through the Gramicidin A channel at 2 M
salt concentration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.53 The 1K4C potassium channel KcsA with a radius of 0.28nm and a length
of 12.4nm. The extracellular and cytoplasmic are illustrated with red and
blue dotted lines respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.54 Comparison of simulated and measured [17] K+ current through a KcsA
channel for bath concentrations of 100mM and 200mM. . . . . . . . . . . 114

4.55 Current ratio of potassium over sodium for simulated and measured [41]
current through a KcsA channel for a bath concentration of 500mM. . . . 114



Chapter 5. Conclusions 127

4.56 Comparison of simulated and measured [41] Na+ current through a KcsA
channel at 500 mM bath concentration. . . . . . . . . . . . . . . . . . . . 115

4.57 The selectivity filter of the KcsA channels, four oxygen rings are illus-
trated in the figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.58 The ratio of potassium to sodium currents as a function of the length of
the selectivity filter. For filters longer than four oxygen rings, the ratio is
constant, while it decreases as the filter length decreases below this length.116



Bibliography

[1] Edward Allen. Modeling with Itô Stochastic Differential Equations, volume 22.
Springer Science & Business Media, 2007.

[2] Toby W Allen, Olaf Sparre Andersen, and Benoit Roux. Ion permeation through
a narrow channel: using Gramicidin to ascertain all-atom molecular dynamics
potential of mean force methodology and biomolecular force fields. Biophysical
Journal, 90(10):3447–3468, 2006.

[3] Steven Allender, Peter Scarborough, Vito Peto, Mike Rayner, Jose Leal, Ramon
Luengo-Fernandez, and Alastair Gray. European cardiovascular disease statistics.
2008.

[4] Olaf Sparre Andersen. Ion movement through Gramicidin A channels: single-
channel measurements at very high potentials. Biophysical Journal, 41(2):119–133,
1983.

[5] Olaf Sparre Andersen, RE Koeppe, B Roux, et al. Gramicidin channels. IEEE
Transactions on NanoBioscience, 4(1):10–20, 2005.

[6] Jeffrey L Anderson, Cynthia D Adams, Elliott M Antman, Charles R Bridges,
Robert M Califf, Donald E Casey, William E Chavey, Francis M Fesmire, Judith S
Hochman, Thomas N Levin, et al. ACC/AHA 2007 guidelines for the management
of patients with unstable angina/non–ST-elevation myocardial infarction: a report
of the American College of Cardiology/American Heart Association Task Force on
Practice Guidelines (Writing Committee to Revise the 2002 Guidelines for the
Management of Patients With Unstable Angina/Non–ST-Elevation Myocardial
Infarction) developed in collaboration with the American College of Emergency
Physicians, the Society for Cardiovascular Angiography and Interventions, and the
Society of Thoracic Surgeons endorsed by the American Association of Cardiovas-
cular and Pulmonary Rehabilitation and the Society for Academic Emergency
Medicine. Journal of the American College of Cardiology, 50(7):e1–e157, 2007.

[7] Narain D Arora, John R Hauser, and David J Roulston. Electron and hole mobil-
ities in silicon as a function of concentration and temperature. IEEE Transactions
on Electron Devices, 29(2):292–295, 1982.

[8] Asen Asenov, Andrew R Brown, John H Davies, Savas Kaya, and Gabriela
Slavcheva. Simulation of intrinsic parameter fluctuations in decananometer and

128



Bibliography 129

nanometer-scale MOSFETs. IEEE transactions on electron devices, 50(9):1837–
1852, 2003.

[9] Luciano Babuin and Allan S Jaffe. Troponin: the biomarker of choice for the
detection of cardiac injury. Canadian Medical Association Journal, 173(10):1191–
1202, 2005.

[10] AJ Bakker, R Smits, FDM Hagen, JPMC Gorgels, B van Vlies, MJW Koelemay,
and JGP Tijssen. Failure of new biochemical markers to exclude acute myocardial
infarction at admission. The Lancet, 342(8881):1220–1222, 1993.

[11] Andrea Barth, Christoph Schwab, and Nathaniel Zollinger. Multi-level Monte
Carlo finite element method for elliptic PDEs with stochastic coefficients. Nu-
merische Mathematik, 119(1):123–161, 2011.

[12] Delphine C Bas, David M Rogers, and Jan H Jensen. Very fast prediction and
rationalization of pka values for protein–ligand complexes. Proteins: Structure,
Function, and Bioinformatics, 73(3):765–783, 2008.

[13] Stefan Baumgartner and Clemens Heitzinger. Existence and local uniqueness for
3D self-consistent multiscale models for field-effect sensors. Commun. Math. Sci,
10(2):693–716, 2012.

[14] Stefan Baumgartner, Clemens Heitzinger, Aleksandar Vacic, and Mark A Reed.
Predictive simulations and optimization of nanowire field-effect PSA sensors in-
cluding screening. Nanotechnology, 24(22):225503, 2013.

[15] Stefan Baumgartner, Martin Vasicek, and Clemens Heitzinger. Modeling and
simulation of nanowire based field-effect biosensors. Chemical Sensors: Simulation
and Modeling, 2:447–469, 2012.

[16] Hande Y Benson, David F Shanno, and Robert J Vanderbei. Interior-point meth-
ods for nonconvex nonlinear programming: Jamming and comparative numerical
testing. Operations Research and Financial Engineering, Princeton University,
ORFE-00-02, 2000.

[17] C Berti, S Furini, S Cavalcanti, E Sangiorgi, and C Fiegna. Particle-based sim-
ulation of conductance of solid-state nanopores and ion channels. In Proc. Inter-
national Conference on Simulation of Semiconductor Processes and Devices 2009
(SISPAD 2009), pages 1–4. IEEE, 2009.

[18] Paul T Boggs and Jon W Tolle. Sequential quadratic programming. Acta Numer-
ica, 4:1–51, 1995.

[19] Brian Bohunicky and Shaker A Mousa. Biosensors: the new wave in cancer diag-
nosis. Nanotechnology, science and applications, 4:1, 2011.

[20] M Bruel. Silicon on insulator material technology. Electronics Letters, 31(14):1201–
1202, 1995.



Bibliography 130

[21] E Brunet, T Maier, GC Mutinati, S Steinhauer, A Köck, C Gspan, and W Grogger.
Comparison of the gas sensing performance of SnO2 thin film and SnO2 nanowire
sensors. Sensors and Actuators B: Chemical, 165(1):110–118, 2012.

[22] Alena Bulyha and Clemens Heitzinger. An algorithm for three-dimensional Monte-
Carlo simulation of charge distribution at biofunctionalized surfaces. Nanoscale,
3(4):1608–1617, 2011.

[23] A Burykin, CN Schutz, J Villa, and A Warshel. Simulations of ion current in
realistic models of ion channels: the KcsA potassium channel. Proteins: Structure,
Function, and Bioinformatics, 47(3):265–280, 2002.

[24] Russel E Caflisch. Monte Carlo and quasi-Monte Carlo methods. Acta Numerica,
7:1–49, 1998.

[25] Leland Chang, Kevin J Yang, Yee-Chia Yeo, Igor Polishchuk, Tsu-Jae King, and
Chenming Hu. Direct-tunneling gate leakage current in double-gate and ultrathin
body mosfets. IEEE Transactions on Electron Devices, 49(12):2288–2295, 2002.

[26] Lingqian Chang, Jiaming Hu, Feng Chen, Zhou Chen, Junfeng Shi, Zhaogang
Yang, Yiwen Li, and Ly James Lee. Nanoscale bio-platforms for living cell in-
terrogation: current status and future perspectives. Nanoscale, 8(6):3181–3206,
2016.

[27] Julia Charrier, Robert Scheichl, and Aretha L Teckentrup. Finite element error
analysis of elliptic PDEs with random coefficients and its application to multilevel
Monte Carlo methods. SIAM Journal on Numerical Analysis, 51(1):322–352, 2013.

[28] Duan Chen and Guo-Wei Wei. Modeling and simulation of electronic structure,
material interface and random doping in nano-electronic devices. Journal of Com-
putational Physics, 229(12):4431–4460, 2010.

[29] Kuan-I Chen, Bor-Ran Li, and Yit-Tsong Chen. Silicon nanowire field-effect
transistor-based biosensors for biomedical diagnosis and cellular recording investi-
gation. Nano Today, 6(2):131–154, 2011.

[30] Meng-Hsueh Chiang, Jeng-Nan Lin, Keunwoo Kim, and Ching-Te Chuang. Ran-
dom dopant fluctuation in limited-width FinFET technologies. Electron Devices,
IEEE Transactions on, 54(8):2055–2060, 2007.

[31] Yang-Kyu Choi, Tsu-Jae King, and Chenming Hu. Nanoscale CMOS spacer Fin-
FET for the terabit era. IEEE Electron Device Letters, 23(1):25–27, 2002.

[32] Jay Huiyi Chua, Ru-Ern Chee, Ajay Agarwal, She Mein Wong, and Guo-Jun
Zhang. Label-free electrical detection of cardiac biomarker with complementary
metal-oxide semiconductor-compatible silicon nanowire sensor arrays. Analytical
Chemistry, 81(15):6266–6271, 2009.

[33] KA Cliffe, MB Giles, Robert Scheichl, and Aretha L Teckentrup. Multilevel Monte
Carlo methods and applications to elliptic PDEs with random coefficients. Com-
puting and Visualization in Science, 14(1):3–15, 2011.



Bibliography 131

[34] J-P Colinge. Silicon-on-Insulator Technology: Materials to VLSI: Materials to
Vlsi. Springer Science & Business Media, 2004.

[35] Jean-Pierre Colinge. Multiple-gate SOI MOSFETs. Solid-State Electronics,
48(6):897–905, 2004.

[36] Jean-Pierre Colinge et al. FinFETs and other multi-gate transistors. Springer,
2008.

[37] Jean-Pierre Colinge, MH Gao, A Romano-Rodriguez, H Maes, and C Claeys.
Silicon-on-insulator"gate-all-around device". In Electron Devices Meeting, 1990.
IEDM’90. Technical Digest., International, pages 595–598. IEEE, 1990.

[38] Ronald Cools, Frances Y Kuo, and Dirk Nuyens. Constructing embedded lat-
tice rules for multivariate integration. SIAM Journal on Scientific Computing,
28(6):2162–2188, 2006.

[39] Julio F Cordero-Morales, Luis G Cuello, Yanxiang Zhao, Vishwanath Jogini,
D Marien Cortes, Benoît Roux, and Eduardo Perozo. Molecular determinants of
gating at the potassium-channel selectivity filter. Nature Structural & Molecular
Biology, 13(4):311–318, 2006.

[40] R Cranley and TNL Patterson. Randomization of number theoretic methods for
multiple integration. SIAM Journal on Numerical Analysis, 13(6):904–914, 1976.

[41] Nora B Cronin, Andrias O’Reilly, Hervé Duclohier, and BA Wallace. Binding of
the anticonvulsant drug lamotrigine and the neurotoxin batrachotoxin to voltage-
gated sodium channels induces conformational changes associated with block and
steady-state activation. Journal of Biological Chemistry, 278(12):10675–10682,
2003.

[42] Yi Cui, Xiangfeng Duan, Jiangtao Hu, and Charles M Lieber. Doping and electrical
transport in silicon nanowires. The Journal of Physical Chemistry B, 104(22):5213–
5216, 2000.

[43] Yi Cui, Qingqiao Wei, Hongkun Park, and Charles M Lieber. Nanowire nanosen-
sors for highly sensitive and selective detection of biological and chemical species.
Science, 293(5533):1289–1292, 2001.

[44] F. Cuvelier, C. Japhet, and G. Scarella. An efficient way to perform the assembly
of finite element matrices in Matlab and Octave. Technical Report 8305, Université
Paris 13 and INRIA Paris-Rocquencourt, May 2013.

[45] Eric Darve and Andrew Pohorille. Calculating free energies using average force.
The Journal of Chemical Physics, 115(20):9169–9183, 2001.

[46] Roberto De La Rica and Molly M Stevens. Plasmonic ELISA for the ultrasensi-
tive detection of disease biomarkers with the naked eye. Nature Nanotechnology,
7(12):821–824, 2012.



Bibliography 132

[47] Todd J Dolinsky, Paul Czodrowski, Hui Li, Jens E Nielsen, Jan H Jensen, Gerhard
Klebe, and Nathan A Baker. PDB2PQR: expanding and upgrading automated
preparation of biomolecular structures for molecular simulations. Nucleic Acids
Research, 35(suppl 2):W522–W525, 2007.

[48] Vladimir L Dorman and Peter C Jordan. Ionic permeation free energy in Grami-
cidin: a semimicroscopic perspective. Biophysical Journal, 86(6):3529–3541, 2004.

[49] Declan A Doyle, Joao Morais Cabral, Richard A Pfuetzner, Anling Kuo, Jacque-
line M Gulbis, Steven L Cohen, Brian T Chait, and Roderick MacKinnon. The
structure of the potassium channel: molecular basis of K+ conduction and selec-
tivity. Science, 280(5360):69–77, 1998.

[50] Xuexin Duan, Yue Li, Nitin K Rajan, David A Routenberg, Yorgo Modis, and
Mark A Reed. Quantification of the affinities and kinetics of protein interactions
using silicon nanowire biosensors. Nature Nanotechnology, 7(6):401–407, 2012.

[51] FC Ebeling, UM Schmitt, M Untch, D Nagel, A Fateh-Moghadam, P Stieber,
and D Seidel. Tumour markers cea and ca 15-3 as prognostic factors in breast
cancer–univariate and multivariate analysis. Anticancer Research, 19(4A):2545–
2550, 1998.

[52] Mark H Ebell, Dan Flewelling, and Cheryl A Flynn. A systematic review of
troponin T and I for diagnosing acute myocardial infarction. Journal of Family
Practice, 49(6):550–550, 2000.

[53] MS Eldred and John Burkardt. Comparison of non-intrusive polynomial chaos
and stochastic collocation methods for uncertainty quantification. In Proc. 47th
AIAA Aerospace Sciences Meeting, volume 976, pages 1–20, 2009.

[54] Niklas Elfström, Robert Juhasz, Ilya Sychugov, Torun Engfeldt, Amelie Eriks-
son Karlström, and Jan Linnros. Surface charge sensitivity of silicon nanowires:
Size dependence. Nano Letters, 7(9):2608–2612, 2007.

[55] CS Farah and FC Reinach. The troponin complex and regulation of muscle con-
traction. The FASEB Journal, 9(9):755–767, 1995.

[56] Isabelle Ferain, Cynthia A Colinge, and Jean-Pierre Colinge. Multigate transistors
as the future of classical metal-oxide-semiconductor field-effect transistors. Nature,
479(7373):310–316, 2011.

[57] Anders Forsgren, Philip E Gill, and Margaret H Wright. Interior methods for
nonlinear optimization. SIAM Review, 44(4):525–597, 2002.

[58] Daniel Gallego-Perez, Lingqian Chang, Junfeng Shi, Junyu Ma, Sung-Hak Kim,
Xi Zhao, Veysi Malkoc, Xinmei Wang, Mutsuko Minata, Kwang J Kwak, et al.
On-chip clonal analysis of glioma-stem-cell motility and therapy resistance. Nano
Letters, 16(9):5326–5332, 2016.

[59] Thomas Gerstner and Marco Noll. Randomized multilevel quasi-Monte Carlo
path simulation. In Recent Developments in Computational Finance: Foundations,
Algorithms and Applications, pages 349–369. World Scientific, 2013.



Bibliography 133

[60] Roger G Ghanem and Pol D Spanos. Stochastic Finite Element: a Spectral Ap-
proach.

[61] Michael B Giles. Multilevel Monte Carlo path simulation. Operations Research,
56(3):607–617, 2008.

[62] Michael B Giles and Ben J Waterhouse. Multilevel quasi-Monte Carlo path simula-
tion. Advanced Financial Modelling, Radon Series on Computational and Applied
Mathematics, pages 165–181, 2009.

[63] Mike Giles. Improved multilevel Monte Carlo convergence using the Milstein
scheme. In Monte Carlo and quasi-Monte Carlo methods 2006, pages 343–358.
Springer, 2008.

[64] Daniel T Gillespie. The chemical Langevin equation. The Journal of Chemical
Physics, 113(1):297–306, 2000.

[65] Alan S Go, Dariush Mozaffarian, Véronique L Roger, Emelia J Benjamin, Jarett D
Berry, Michael J Blaha, Shifan Dai, Earl S Ford, Caroline S Fox, Sheila Franco,
et al. Heart disease and stroke statistics-2014 update. Circulation, 129(3), 2014.

[66] Aldrin V Gomes, James D Potter, and Danuta Szczesna-Cordary. The role of
troponins in muscle contraction. IUBMB life, 54(6):323–333, 2002.

[67] Ivan G Graham, Frances Y Kuo, James A Nichols, Robert Scheichl, Ch Schwab,
and Ian H Sloan. Quasi-Monte Carlo finite element methods for elliptic PDEs with
lognormal random coefficients. Numerische Mathematik, 131(2):329–368, 2015.

[68] HK Gummel. A self-consistent iterative scheme for one-dimensional steady state
transistor calculations. Electron Devices, IEEE Transactions on, 11(10):455–465,
1964.

[69] Jong-in Hahm and Charles M Lieber. Direct ultrasensitive electrical detection of
DNA and DNA sequence variations using nanowire nanosensors. Nano Letters,
4(1):51–54, 2004.

[70] Abdul-Lateef Haji-Ali, Fabio Nobile, Erik von Schwerin, and Raúl Tempone. Op-
timization of mesh hierarchies in multilevel Monte Carlo samplers. Stochastics and
Partial Differential Equations Analysis and Computations, 4(1):76–112, 2016.

[71] Stefan Heinrich. Multilevel Monte Carlo methods. In Large-scale scientific com-
puting, pages 58–67. Springer, 2001.

[72] Clemens Heitzinger, Yang Liu, Norbert J Mauser, Christian Ringhofer, and
Robert W Dutton. Calculation of fluctuations in boundary layers of nanowire
field-effect biosensors. Journal of Computational and Theoretical Nanoscience,
7(12):2574–2580, 2010.

[73] Clemens Heitzinger, Norbert J Mauser, and Christian Ringhofer. Multiscale mod-
eling of planar and nanowire field-effect biosensors. SIAM Journal on Applied
Mathematics, 70(5):1634–1654, 2010.



Bibliography 134

[74] Clemens Heitzinger and Christian Ringhofer. A transport equation for confined
structures derived from the Boltzmann equation. Comm. Math. Sci., 9(3):829–857,
2011.

[75] Clemens Heitzinger and Christian Ringhofer. Hierarchies of transport equations
for nanopores. Journal of Computational Electronics, 13(4):801–817, 2014.

[76] Clemens Heitzinger and Christian Ringhofer. Multiscale modeling of fluctuations
in stochastic elliptic PDE models of nanosensors. Commun. Math. Sci, 12(3):401–
421, 2014.

[77] Desmond J Higham. Modeling and simulating chemical reactions. SIAM Review,
50(2):347–368, 2008.

[78] Roger W Hockney and James W Eastwood. Computer simulation using particles.
CRC Press, 1988.

[79] Matthew Hoyles, Vikram Krishnamurthy, May Siksik, and Shin-Ho Chung. Brow-
nian dynamics theory for predicting internal and external blockages of tetraethy-
lammonium in the KcsA potassium channel. Biophysical Journal, 94(2):366–378,
2008.

[80] Xiang-Wei Jiang, Hui-Xiong Deng, Jun-Wei Luo, Shu-Shen Li, and Lin-Wang
Wang. A fully three-dimensional atomistic quantum mechanical study on random
dopant-induced effects in 25-nm MOSFETs. Electron Devices, IEEE Transactions
on, 55(7):1720–1726, 2008.

[81] Stephen Joe. Randomization of lattice rules for numerical multiple integration.
Journal of Computational and Applied Mathematics, 31(2):299–304, 1990.

[82] IA Katrukha. Human cardiac troponin complex. structure and functions. Bio-
chemistry (Moscow), 78(13):1447–1465, 2013.

[83] Mahin Keshavarz, Mohsen Behpour, and Hossain-Ali Rafiee-pour. Recent trends in
electrochemical microrna biosensors for early detection of cancer. RSC Advances,
5(45):35651–35660, 2015.

[84] Amirreza Khodadadian and Clemens Heitzinger. Ionic currents through trans-
membrane proteins calculated by a transport equation for confined structures. In
Proc. 4th International Conference on Computational and Mathematical Biomed-
ical Engineering (CMBE 2015), Cachan, France, 29 June – 1 July 2015.

[85] Amirreza Khodadadian and Clemens Heitzinger. A transport equation for confined
structures applied to the OprP, Gramicidin A, and KcsA channels. Journal of
Computational Electronics, 14(2):524–532, 2015.

[86] Amirreza Khodadadian and Clemens Heitzinger. Basis adaptation for the stochas-
tic nonlinear Poisson–Boltzmann equation. Journal of Computational Electronics,
15(4):1393–1406, 2016.



Bibliography 135

[87] Amirreza Khodadadian, Kiarash Hosseini, Ali Manzour-ol Ajdad, Marjan Heday-
ati, Reza Kalantarinejad, and Clemens Heitzinger. Optimal design of nanowire
field-effect troponin sensors. Computers in Biology and Medicine, 87:46–56, 2017.

[88] Amirreza Khodadadian, Leila Taghizadeh, and Clemens Heitzinger. Optimal mul-
tilevel randomized quasi-Monte-Carlo method for the stochastic drift-diffusion-
Poisson system. Computer Methods in Applied Mechanics and Engineering
(CMAME), pages 1–22, 2017. DOI: 10.1016/j.cma.2017.10.015.

[89] Amirreza Khodadadian, Leila Taghizadeh, and Clemens Heitzinger. Three-
dimensional optimal multi-level Monte-Carlo approximation of the stochastic drift-
diffusion-Poisson system. Journal of Computational Electronics, pages 1–18, 2017.
in print.

[90] Kihyun Kim, Chanoh Park, Donghoon Kwon, Donghoon Kim, M Meyyappan,
Sangmin Jeon, and Jeong-Soo Lee. Silicon nanowire biosensors for detection of
cardiac troponin I (ctni) with high sensitivity. Biosensors and Bioelectronics,
77:695–701, 2016.

[91] Anton Köck, Alexandra Tischner, Thomas Maier, Michael Kast, Christian Edt-
maier, Christian Gspan, and Gerald Kothleitner. Atmospheric pressure fabrication
of SnO2-nanowires for highly sensitive CO and CH4 detection. Sensors and Actu-
ators B: Chemical, 138(1):160–167, 2009.

[92] Tairong Kuang, Lingqian Chang, Xiangfang Peng, Xianglong Hu, and Daniel
Gallego-Perez. Molecular beacon nano-sensors for probing living cancer cells.
Trends in Biotechnology, 2016.

[93] Girish S Kulkarni and Zhaohui Zhong. Detection beyond the Debye screening
length in a high-frequency nanoelectronic biosensor. Nano Letters, 12(2):719–723,
2012.

[94] Frances Y Kuo. Component-by-component constructions achieve the optimal rate
of convergence for multivariate integration in weighted korobov and sobolev spaces.
Journal of Complexity, 19(3):301–320, 2003.

[95] Frances Y Kuo, Christoph Schwab, and Ian H Sloan. Quasi-Monte Carlo finite
element methods for a class of elliptic partial differential equations with random
coefficients. SIAM Journal on Numerical Analysis, 50(6):3351–3374, 2012.

[96] Frances Y Kuo, Christoph Schwab, and Ian H Sloan. Multi-level quasi-Monte
Carlo finite element methods for a class of elliptic PDEs with random coefficients.
Foundations of Computational Mathematics, 15(2):411–449, 2015.

[97] Wing-Cheung Law, Ken-Tye Yong, Alexander Baev, and Paras N Prasad. Sensitiv-
ity improved surface plasmon resonance biosensor for cancer biomarker detection
based on plasmonic enhancement. ACS Nano, 5(6):4858–4864, 2011.

[98] Hui Li, Andrew D Robertson, and Jan H Jensen. Very fast empirical prediction
and rationalization of protein pka values. Proteins: Structure, Function, and
Bioinformatics, 61(4):704–721, 2005.



Bibliography 136

[99] Monica X Li, Leo Spyracopoulos, and Brian D Sykes. Binding of cardiac troponin-
i147-163 induces a structural opening in human cardiac troponin-c. Biochemistry,
38(26):8289–8298, 1999.

[100] Yiming Li, Chih-Hong Hwang, and Tien-Yeh Li. Random-dopant-induced vari-
ability in nano-CMOS devices and digital circuits. IEEE Transactions on Electron
Devices, 56(8):1588–1597, 2009.

[101] Dong C Liu and Jorge Nocedal. On the limited memory BFGS method for large
scale optimization. Mathematical Programming, 45(1):503–528, 1989.

[102] Yang Liu, Klas Lilja, Clemens Heitzinger, and Robert W. Dutton. Overcoming
the screening-induced performance limits of nanowire biosensors: a simulation
study on the effect of electro-diffusion flow. In IEDM 2008 Technical Digest, pages
491–494, San Francisco, CA, USA, December 2008.

[103] Zhanwu Liu, Yan Xu, and Pei Tang. Steered molecular dynamics simulations
of Na+ permeation across the Gramicidin A channel. The Journal of Physical
Chemistry B, 110(25):12789–12795, 2006.

[104] BZ Lu, YC Zhou, MJ Holst, and JA McCammon. Recent progress in numerical
methods for the Poisson-Boltzmann equation in biophysical applications. Commun
Comput Phys, 3(5):973–1009, 2008.

[105] DG Luchinsky, R Tindjong, I Kaufman, PVE McClintock, and RS Eisenberg. Self-
consistent analytic solution for the current and the access resistance in open ion
channels. Physical Review E, 80(2):021925, 2009.

[106] Roderick MacKinnon. Potassium channels and the atomic basis of selective ion con-
duction (Nobel Lecture). Angewandte Chemie International Edition, 43(33):4265–
4277, 2004.

[107] Vinay S Mahajan and Petr Jarolim. How to interpret elevated cardiac troponin
levels. Circulation, 124(21):2350–2354, 2011.

[108] P.A. Markowich, C.A. Ringhofer, and C. Schmeiser. Semiconductor Equations.
Springer, 1990.

[109] SJ Maynard, IBA Menown, and AAJ Adgey. Troponin T or troponin I as cardiac
markers in ischaemic heart disease, 2000.

[110] Jason L McDonough and Jennifer E Van Eyk. Developing the next generation of
cardiac markers: disease-induced modifications of troponin I. Progress in Cardio-
vascular Diseases, 47(3):207–216, 2004.

[111] Niraj Modi, Ivan Barcena-Uribarri, Manjeet Bains, Roland Benz, Robert EW
Hancock, and Ulrich Kleinekathöfer. Role of the central arginine R133 toward
the ion selectivity of the phosphate specific channel OprP: Effects of charge and
solvation. Biochemistry, 52(33):5522–5532, 2013.



Bibliography 137

[112] Niraj Modi, Roland Benz, Robert EW Hancock, and Ulrich Kleinekathöfer. Mod-
eling the ion selectivity of the phosphate specific channel OprP. The Journal of
Physical Chemistry Letters, 3(23):3639–3645, 2012.

[113] Trevor F Moraes, Manjeet Bains, Robert EW Hancock, and Natalie CJ Strynadka.
An arginine ladder in OprP mediates phosphate-specific transfer across the outer
membrane. Nature Structural & Molecular Biology, 14(1):85–87, 2007.

[114] Margit Müller-Bardorff, Klaus Hallermayer, Angelika Schröder, Christoph Ebert,
Anneliese Borgya, Willie Gerhardt, Andrew Remppis, Jörg Zehelein, and Hugo A
Katus. Improved troponin T ELISA specific for cardiac troponin T isoform: assay
development and analytical and clinical validation. Clinical Chemistry, 43(3):458–
466, 1997.

[115] Pu-yan Nie. An SQP approach with line search for a system of nonlinear equations.
Mathematical and Computer Modelling, 43(3):368–373, 2006.

[116] Harald Niederreiter and NSF-CBMS Regional Conference on Random Num-
ber Generation. Random number generation and quasi-Monte Carlo methods,
volume 63. SIAM, 1992.

[117] Giray Ökten. Error reduction techniques in quasi-Monte Carlo integration. Math-
ematical and Computer Modelling, 30(7):61–69, 1999.

[118] Giray Ökten and Warren Eastman. Randomized quasi-Monte Carlo methods in
pricing securities. Journal of Economic Dynamics and Control, 28(12):2399–2426,
2004.

[119] Mats HM Olsson, Chresten R Søndergaard, Michal Rostkowski, and Jan H Jensen.
PROPKA3: consistent treatment of internal and surface residues in empirical pKa
predictions. Journal of Chemical Theory and Computation, 7(2):525–537, 2011.

[120] Fernando Patolsky and Charles M Lieber. Nanowire nanosensors. Materials Today,
8(4):20–28, 2005.

[121] Fernando Patolsky, Brian P Timko, Guihua Yu, Ying Fang, Andrew B Grey-
tak, Gengfeng Zheng, and Charles M Lieber. Detection, stimulation, and inhi-
bition of neuronal signals with high-density nanowire transistor arrays. Science,
313(5790):1100–1104, 2006.

[122] Fernando Patolsky, Gengfeng Zheng, and Charles M Lieber. Fabrication of silicon
nanowire devices for ultrasensitive, label-free, real-time detection of biological and
chemical species. Nature Protocols, 1(4):1711–1724, 2006.

[123] Alexander W Peterson, Richard J Heaton, and Rosina M Georgiadis. The effect of
surface probe density on DNA hybridization. Nucleic Acids Research, 29(24):5163–
5168, 2001.

[124] T Poiroux, M Vinet, O Faynot, J Widiez, J Lolivier, T Ernst, B Previtali, and
S Deleonibus. Multiple gate devices: advantages and challenges. Microelectronic
Engineering, 80:378–385, 2005.



Bibliography 138

[125] Manuel Punzet, Dieter Baurecht, Franz Varga, Heidrun Karlic, and Clemens
Heitzinger. Determination of surface concentrations of individual molecule-layers
used in nanoscale biosensors by in situ atr-ftir spectroscopy. Nanoscale, 4(7):2431–
2438, 2012.

[126] Anjum Qureshi, Yasar Gurbuz, and Javed H Niazi. Biosensors for cardiac biomark-
ers detection: A review. Sensors and Actuators B: Chemical, 171:62–76, 2012.

[127] Nitin K Rajan, Xuexin Duan, and Mark A Reed. Performance limitations for
nanowire/nanoribbon biosensors. Wiley Interdisciplinary Reviews: Nanomedicine
and Nanobiotechnology, 5(6):629–645, 2013.

[128] Nitin K Rajan, David A Routenberg, and Mark A Reed. Optimal signal-to-
noise ratio for silicon nanowire biochemical sensors. Applied Physics Letters,
98(26):264107, 2011.

[129] Sami Ramadan, Kelvin Kwa, Peter King, and Anthony O’Neill. Reliable fabri-
cation of sub-10 nm silicon nanowires by optical lithography. Nanotechnology,
27(42):425302, 2016.

[130] Subinoy Rana, Arvind K Singla, Avinash Bajaj, S Gokhan Elci, Oscar R Miranda,
Rubul Mout, Bo Yan, Frank R Jirik, and Vincent M Rotello. Array-based sensing
of metastatic cells and tissues using nanoparticle-fluorescent protein conjugates.
ACS Nano, 6(9):8233, 2012.

[131] Tobias Reichlin, Willibald Hochholzer, Stefano Bassetti, Stephan Steuer, Claudia
Stelzig, Sabine Hartwiger, Stefan Biedert, Nora Schaub, Christine Buerge, Mihael
Potocki, et al. Early diagnosis of myocardial infarction with sensitive cardiac
troponin assays. New England Journal of Medicine, 361(9):858–867, 2009.

[132] Kim R Rogers. Principles of affinity-based biosensors. Molecular Biotechnology,
14(2):109–129, 2000.

[133] Scott Roy and Asen Asenov. Where do the dopants go? Science, 309(5733):388–
390, 2005.

[134] AK Saenger, R Beyrau, S Braun, Ruby Cooray, A Dolci, H Freidank, E Giannitsis,
S Gustafson, B Handy, H Katus, et al. Multicenter analytical evaluation of a high-
sensitivity troponin T assay. Clinica Chimica Acta, 412(9):748–754, 2011.

[135] Yader Sandoval and Fred S Apple. The global need to define normality: the 99th
percentile value of cardiac troponin. Clinical Chemistry, 60(3):455–462, 2014.

[136] Nobuyuki Sano, Kazuya Matsuzawa, Mikio Mukai, and Noriaki Nakayama. On
discrete random dopant modeling in drift-diffusion simulations: physical meaning
of datomistic’dopants. Microelectronics Reliability, 42(2):189–199, 2002.

[137] Wen Shen, Dayong Tian, Hua Cui, Di Yang, and Zhiping Bian. Nanoparticle-based
electrochemiluminescence immunosensor with enhanced sensitivity for cardiac tro-
ponin I using N-(aminobutyl)-N-(ethylisoluminol)-functionalized gold nanoparti-
cles as labels. Biosensors and Bioelectronics, 27(1):18–24, 2011.



Bibliography 139

[138] Vasile Sinescu and Pierre L’Ecuyer. Existence and construction of shifted lattice
rules with an arbitrary number of points and bounded weighted star discrepancy
for general decreasing weights. Journal of Complexity, 27(5):449–465, 2011.

[139] Ian H Sloan and Henryk Woźniakowski. Tractability of multivariate integration
for weighted korobov classes. Journal of Complexity, 17(4):697–721, 2001.

[140] Eric Stern, James F Klemic, David A Routenberg, Pauline N Wyrembak, Daniel B
Turner-Evans, Andrew D Hamilton, David A LaVan, Tarek M Fahmy, and
Mark A Reed. Label-free immunodetection with CMOS-compatible semiconduct-
ing nanowires. Nature, 445(7127):519–522, 2007.

[141] Eric Stern, Aleksandar Vacic, Nitin K Rajan, Jason M Criscione, Jason Park,
Bojan R Ilic, David J Mooney, Mark A Reed, and Tarek M Fahmy. Label-
free biomarker detection from whole blood. Nature Nanotechnology, 5(2):138–142,
2010.

[142] Eric Stern, Aleksandar Vacic, Nitin K Rajan, Jason M Criscione, Jason Park,
Bojan R Ilic, David J Mooney, Mark A Reed, and Tarek M Fahmy. Label-
free biomarker detection from whole blood. Nature Nanotechnology, 5(2):138–142,
2010.

[143] Peter Stubbs and Paul O Collinson. Point-of-care testing: a cardiologist’s view.
Clinica Chimica Acta, 311(1):57–61, 2001.

[144] Simon M Sze and Kwok K Ng. Physics of Semiconductor Devices. John Wiley &
Sons, 2006.

[145] Leila Taghizadeh, Amirreza Khodadadian, and Clemens Heitzinger. The opti-
mal multilevel monte-carlo approximation of the stochastic drift–diffusion-poisson
system. Computer Methods in Applied Mechanics and Engineering, 318:739–761,
2017.

[146] Soichi Takeda, Atsuko Yamashita, Kayo Maeda, and Yuichiro Maeda. Structure of
the core domain of human cardiac troponin in the Ca2+-saturated form. Nature,
424(6944):35–41, 2003.

[147] AL Teckentrup, R Scheichl, MB Giles, and E Ullmann. Further analysis of multi-
level Monte Carlo methods for elliptic PDEs with random coefficients. Numerische
Mathematik, 125(3):569–600, 2013.

[148] Ramakrishna Tipireddy and Roger Ghanem. Basis adaptation in homogeneous
chaos spaces. Journal of Computational Physics, 259:304–317, 2014.

[149] Bruno Tuffin. Randomization of quasi-Monte Carlo methods for error estima-
tion: Survey and normal approximation. Monte Carlo Methods and Applications
MCMA, 10(3-4):617–628, 2004.

[150] Bruno Tuffin et al. On the use of low discrepancy sequences in Monte Carlo
methods. Monte Carlo Methods and Applications, 2:295–320, 1996.



Bibliography 140

[151] Gerhard Tulzer, Stefan Baumgartner, Elise Brunet, Giorgio C Mutinati, Stephan
Steinhauer, Anton Köck, Paolo E Barbano, and Clemens Heitzinger. Kinetic pa-
rameter estimation and fluctuation analysis of co at SnO2 single nanowires. Nan-
otechnology, 24(31):315501, 2013.

[152] Gerhard Tulzer and Clemens Heitzinger. Fluctuations due to association and
dissociation processes at nanowire-biosensor surfaces and their optimal design.
Nanotechnology, 26(2):025502, 2014.

[153] Gerhard Tulzer and Clemens Heitzinger. Fluctuations due to association and
dissociation processes at nanowire-biosensor surfaces and their optimal design.
Nanotechnology, 26(2):025502, 2015.

[154] Gerhard Tulzer and Clemens Heitzinger. Brownian-motion based simulation of
stochastic reaction–diffusion systems for affinity based sensors. Nanotechnology,
27(16):165501, 2016.

[155] Aleksandar Vacic, Jason M Criscione, Nitin K Rajan, Eric Stern, Tarek M Fahmy,
and Mark A Reed. Determination of molecular configuration by debye length
modulation. Journal of the American Chemical Society, 133(35):13886–13889,
2011.

[156] Bart Van Zeghbroeck. Principles of semiconductor devices. Colarado University,
2004.

[157] Sameer Varma and Susan B Rempe. Structural transitions in ion coordination
driven by changes in competition for ligand binding. Journal of the American
Chemical Society, 130(46):15405–15419, 2008.

[158] Per Venge, Nina Johnston, Bertil Lindahl, and Stefan James. Normal plasma levels
of cardiac troponin I measured by the high-sensitivity cardiac troponin I access
prototype assay and the impact on the diagnosis of myocardial ischemia. Journal
of the American College of Cardiology, 54(13):1165–1172, 2009.

[159] Joseph Wang. Electrochemical glucose biosensors. Chemical Reviews, 108(2):814–
825, 2008.

[160] Kyuhyun Wang, Richard W Asinger, and Henry JL Marriott. St-segment elevation
in conditions other than acute myocardial infarction. New England Journal of
Medicine, 349(22):2128–2135, 2003.

[161] Fang Wei, Dongping Yang, Ronny Straube, and Jianwei Shuai. Brownian diffu-
sion of ion channels in different membrane patch geometries. Physical Review E,
83(2):021919, 2011.

[162] Norbert Wiener. The homogeneous chaos. American Journal of Mathematics,
60(4):897–936, 1938.

[163] Margaret Wright. The interior-point revolution in optimization: history, recent
developments, and lasting consequences. Bulletin of the American mathematical
Society, 42(1):39–56, 2005.



Bibliography 141

[164] Alan HB Wu. The role of cardiac troponin in the recent redefinition of acute
myocardial infarction. Clinical Laboratory Science, 17(1):50, 2004.

[165] Dongbin Xiu and George Em Karniadakis. The Wiener–Askey polynomial chaos
for stochastic differential equations. SIAM Journal on Scientific Computing,
24(2):619–644, 2002.

[166] Nor F Za’bah, Kelvin SK Kwa, Leon Bowen, Budhika Mendis, and Anthony
O’Neill. Top-down fabrication of single crystal silicon nanowire using optical lithog-
raphy. Journal of Applied Physics, 112(2):024309, 2012.

[167] Bailin Zhang, Andres W Morales, Ralph Peterson, Liang Tang, and Jing Yong
Ye. Label-free detection of cardiac troponin I with a photonic crystal biosensor.
Biosensors and Bioelectronics, 58:107–113, 2014.

[168] Guo-Jun Zhang, Jay Huiyi Chua, Ru-Ern Chee, Ajay Agarwal, and She Mein
Wong. Label-free direct detection of MiRNAs with silicon nanowire biosensors.
Biosensors and Bioelectronics, 24(8):2504–2508, 2009.

[169] Yufeng Zhou, Joao H Morais-Cabral, Amelia Kaufman, and Roderick MacKinnon.
Chemistry of ion coordination and hydration revealed by a K+ channel-fab complex
at 2.0Å resolution. Nature, 414(6859):43–48, 2001.



Curriculum Vitae

Personal Information

Name Amirreza Khodadadian

Date of Birth 28.08.1984

Place of Birth Tehran, Iran

Nationality Iran

Education

Since 10/2012 University of Vienna

Doctoral studies in mathematics

08/2009-12/2010 Military Service

09/2006-10/2008 University of Isfahan

Master studies in mathematics

09/2002-09/2006 Shahid Chamran University of Ahvaz

Bachelor studies in mathematics

09/1995-09/2002 NODET (Iranian exceptionally talented students schools)

High school

Middle school

Academic Employment

Since 11/2013 Vienna University of Technology

FWF (Austrian Science Fund) START prize project No.

Y660 PDE models for Nanotechnology

11/2012-10/2013 AIT Austrian Institute of Technology

WWTF (Viennese Science and Technology Fund) project

No. MA09-028

142



Curriculum Vitae 143

Visiting Program

03/2014-04/2014 Arizona State University

School of Mathematical and Statistical Sciences

Journal Publications

1. Amirreza Khodadadian and Clemens Heitzinger. A transport equation for confined

structures applied to the OprP, Gramicidin A, and KcsA channels. Journal of

Computational Electronics., 14(2):524–532, 2015.

2. Amirreza Khodadadian and Clemens Heitzinger, Basis adaptation for the stochas-

tic nonlinear Poisson-Boltzmann equation. Journal of Computational Electronics.

2016, 15(4):1393–1406, 2016.

3. Leila Taghizadeh, Amirreza Khodadadian, and Clemens Heitzinger. The opti-

mal multilevel Monte-Carlo approximation of the stochastic drift-diffusion-Poisson

system. Computer Methods in Applied Mechanics and Engineering (CMAME),

318:739–761, 2017.

4. Amirreza Khodadadian, Kiarash Hosseini, Ali Manzour ol Ajdad, Marjan Heday-

ati, Reza Kalantarinjead, and Clemens Heitzinger. Optimal design of nanowire

field-effect troponin sensors, Computers in Biology and Medicine (2017), 87: 46–

56, 2017, DOI: 10.1016/j.compbiomed.2017.05.008.

5. Amirreza Khodadadian, Leila Taghizadeh, and Clemens Heitzinger. Three-dimensional

optimal multi-level Monte-Carlo approximation of the stochastic drift-diffusion-

Poisson system, Computer Methods in Applied Mechanics and Engineering (CMAME),

329:480–497, February 2018.

6. Amirreza Khodadadian, Leila Taghizadeh, and Clemens Heitzinger. Optimal

multi-level randomized quasi-Monte Carlo method for the stochastic drift-diffusion-

Poisson system, Journal of Computational Electronics, 2017, in print.

7. Amirreza Khodadadian, Maryam Parvizi, and Clemens Heitzinger. An Adaptive

multilevel Monte Carlo Algorithm for Stochastic Drift-Diffusion-Poisson System,

2017, in preparation.

8. Amirreza Khodadadian, Leila Taghizadeh, and Clemens Heitzinger. The Stochas-

tic Drift-Diffusion-Poisson System and Applications in Nanoscale Sensors, 2017,

invited review paper, in preparation.



Curriculum Vitae 144

Contributions to Conferences and Proceeding

1. Amirreza Khodadadian and Clemens Heitzinger. Simulation of nanowire sensors

using the stochastic Poisson-Boltzmann equation. In Proceeding of 2nd Interna-

tional Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE

2013), Prague, Czech Republic, 1–5 September 2013.

2. Amirreza Khodadadian and Clemens Heitzinger. Uncertainty quantification in

nanowire sensors using the stochastic nonlinear Poisson-Boltzmann equation. In

Proceeding of SIAM Conference on Uncertainty Quantification, Savannah, Georgia,

USA, 31 March – 3 April 2014.

3. Amirreza Khodadadian and Clemens Heitzinger. Uncertainty quantification in

nanowire sensors using the stochastic nonlinear Poisson-Boltzmann equation. In

Proceeding of 11th International Conference on Monte Carlo and Quasi-Monte

Carlo Methods in Scientific Computing (MCQMC2014), Leuven, Belgium, 6–11

April 2014.

4. Amirreza Khodadadian and Clemens Heitzinger. Using the stochastic Poisson-

Boltzmann equation to quantify noise in nanowire bio- and gas sensors. In Pro-

ceeding of 11th World Congress on Computational Mechanics, Barcelona, Spain,

20–25 July 2014.

5. Amirreza Khodadadian and Clemens Heitzinger. Ionic currents through trans-

membrane proteins calculated by a transport equation for confined structure. In

Proceeding of 4th International Conference on Computational and Mathematical

Biomedical Engineering (CMBE 2015), Cachan, France, 29 June–1 July 2015.

6. Amirreza Khodadadian and Clemens Heitzinger. The signal-to-noise ratio due

to biological noise in field-effect sensor. calculated using the stochastic Poisson

equation and polynomial-chaos expansion. In Proceeding of 13th U.S national

congress on computational mechanics, San Diego, California, July 26–30, 2015.

7. Leila Taghizadeh, Amirreza Khodadadian, Caroline Geiersbach, and Clemens Heitzinger.

Optimal multi-level Monte-Carlo method for a system of stochastic PDEs. SIAM

Conference on the Analysis of Partial Differential Equations (SIAM PD15), Scotts-

dale, AZ, USA, 7–10 December 2015.

8. Amirreza Khodadadian, Leila Taghizadeh and Clemens Heitzinger. Stochastic

modeling of dopant atoms in nanowire sensors with multi-level Monte Carlo SIAM

conference on uncertainty quantification, Lausanne, Switzerland, April 8–10, 2016.



Curriculum Vitae 145

9. Clemens Heitzinger, Amirreza Khodadadian, Gudmund Pammer, Leila Taghizadeh,

Gerhard Tulzer. Stochastic partial differential equations for the modeling of nanowire

and nanopore sensors, 19th European Conference on Mathematics for Industry,

Santiago de Compostela, June 13–17 2016.

10. Clemens Heitzinger , Amirreza Khodadadian, Stefan Rigger, and Leila Taghizadeh.

Optimal multi-level Monte-Carlo methods for the stochastic drift-diffusion-Poisson

System and for stochastic homogenization, USNCMM 14 th U.S. National Congress

on Computational Mechanics, Canada, 17–20 July 2017.

11. Leila Taghizadeh, Amirreza Khodadadian, and Clemens Heitzinger. Optimal

multi-level randomized-quasi-Monte-Carlo methods for the stochastic drift-diffusion-

poisson system and for stochastic homogenization. In Proc. International Confer-

ence on Scientific Computation and Differential Equations 2017 (SciCADE 2017),

Bath, UK, 11–15 Sep 2017.


	Zusammenfassung
	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 Silicon nanowire field-effect sensors
	1.1.1 Biological noise in SiNW-FETs
	1.1.2 Application of the biosensors in medicine

	1.2 Multi-Gate FETs and FinFETs
	1.2.1 Random dopant fluctuation

	1.3 Ion channels

	2 Stochastic PDE models
	2.1 Charge transport in nanoelectronic devices
	2.2 Stochastic drift-diffusion-Poisson system
	2.2.1 Stochastic Poisson-Boltzmann equation
	2.2.2 The stochastic drift-diffusion equations
	2.2.3 Existence and local uniqueness
	2.2.4 Weak solution of the model equations
	2.2.5 Scharfetter-Gummel iteration
	2.2.6 Existence and local uniqueness of the solution

	2.3 Transport equation for confined structure
	2.3.1 Current calculation

	2.4 Stochastic Langevin equation
	2.4.1 Interaction processes
	2.4.2 The stochastic process at the functionalized surface

	2.5 Conclusions

	3 Stochastic numerical methods
	3.1 Monte Carlo finite element method
	3.1.1 Monte Carlo finite element approximation

	3.2 Multilevel Monte Carlo finite element method
	3.3 The optimal Monte Carlo methods
	3.3.1 The optimal Monte Carlo finite element method
	3.3.2 The optimal multilevel Monte Carlo finite element method
	3.3.3 A leading example

	3.4 Optimal multilevel randomized quasi-Monte Carlo
	3.4.1 Randomized quasi-Monte Carlo finite element methods
	3.4.2 Error bound for RQMC-FEM

	3.5 Multilevel randomized quasi-Monte Carlo finite element method (MLRQMC-FEM)
	3.5.1 Optimal multilevel randomized quasi-Monte Carlo

	3.6 Basis adaptation 
	3.6.1 Polynomial chaos expansion (PCE)
	3.6.2 Application to the stochastic nonlinear Poisson-Boltzmann equation

	3.7 Conclusions

	4 Application of UQ in nanotechnology
	4.1 Silicon nanowire field-effect sensors
	4.1.1 Noise quantification in nanowire field-effect sensors
	4.1.2 Three-dimensional simulation of SiNW-FETs 

	4.2 Cardiac troponin sensitive sensors
	4.2.1 The charge of biomolecules
	4.2.2 Troponin sensor response

	4.3 Current variation in FinFETs
	4.3.1 Three-dimensional simulation of SOI-FinFETs
	4.3.2 MLRQMC-FEM for FinFETs current variations

	4.4 Confined structure applied to the ion channels
	4.4.1 Determination of the confinement potential
	4.4.2 Simulation of phosphate specific OprP channels
	4.4.3 Simulation of Gramicidin A Channels
	4.4.4 Simulation of KcsA channels

	4.5 Conclusions

	5 Conclusions
	List of Figures
	Curriculum Vitae

