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Abstract

In this paper, an optimal multilevel randomized quasi-Monte-Carlo method to solve the stationary stochastic drift–diffusion-
Poisson system is developed. We calculate the optimal values of the parameters of the numerical method such as the mesh sizes of
the spatial discretization and the numbers of quasi-points in order to minimize the overall computational cost for solving this system
of stochastic partial differential equations. This system has a number of applications in various fields, wherever charged particles
move in a random environment. It is shown that the computational cost of the optimal multilevel randomized quasi-Monte-Carlo
method, which uses randomly shifted low-discrepancy sequences, is one order of magnitude smaller than that of the optimal
multilevel Monte-Carlo method and five orders of magnitude smaller than that of the standard Monte-Carlo method. The method
developed here is applied to a realistic transport problem, namely the calculation of random-dopant effects in nanoscale field-effect
transistors.
c⃝ 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Calculating the expected value of the solution of the stochastic drift–diffusion-Poisson system poses a computa-
tional challenge due to the large number of stochastic dimensions in realistic applications. In order to speed up the
convergence of the standard Monte-Carlo method, variance-reduction methods such as the multilevel Monte-Carlo
method have been developed [1–7] and have also been applied to the stochastic drift–diffusion-Poisson system [8].
In [8], the parameters of the numerical approach were also optimized such that the total computational work is
minimized, while an estimate of the total error is kept below a prescribed tolerance.
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Fig. 1. Schematic structure of a three-dimensional FinFET. The random dopants are distributed in the source and drain regions.

The idea, developed into an optimal numerical method here, is to improve the choice of samples or evaluation
points, meaning that random sequences are replaced by quasi-random sequences with better uniformity. Quasi-Monte-
Carlo methods with low discrepancy lead to faster convergence than the standard Monte-Carlo method, while – on
the other hand – the disadvantage of quasi-Monte-Carlo methods is that the low-discrepancy sequences used are
deterministic. Hence, a quasi-Monte-Carlo method is a deterministic algorithm with error bounds that are difficult to
estimate.

To overcome this problem, one can randomize the deterministic sequences by using a random shift, e.g., a
uniformly distributed vector. The idea of random shifting was first introduced in [9] in the context of good lattice
rules and later applied to the idea of general lattice rules in [10]. Later Tuffin [11] considered random shifting of any
low-discrepancy sequence and studied the discrepancy of the shifted sequence. If a randomized low-discrepancy
sequence such as a randomly shifted lattice rule is used, a new method called a randomized quasi-Monte-Carlo
(RQMC) method results. Using the idea of stratification, we can improve the single-level RQMC method to multilevel
randomized quasi-Monte-Carlo (MLRQMC) method.

The MLRQMC method was first introduced in [4] by combining the multilevel Monte-Carlo method with quasi-
Monte-Carlo integration using a randomized rank-1 lattice rule. In [12], the variance estimation of the method
and its convergence rate were investigated theoretically and numerically. In [7], the method was applied to elliptic
partial differential equations (PDE) with random coefficients and a finite-element discretization was used. The main
goal of the current work is to develop an optimal MLRQMC method for solving a system of stochastic PDE,
namely the stochastic drift–diffusion-Poisson (DDP) system. Here, we analyze the convergence of the numerical
method considering the discretization and statistical errors as the main sources of error. The system of PDE has
many applications including all situations where charge transport occurs in a random environment. We calculate
the computational cost of the MLRQMC approach applied to this system of equations. The function modeling the
computational work is minimized such that the estimated total error of the procedure is less than or equal to a
prescribed error tolerance. By solving this optimization problem, optimal values for parameters such as the mesh
sizes in the spatial discretization and the optimal number of quasi-points are obtained in a natural manner.

We apply this approach to a problem of large computational cost and of practical importance. The scaling of
conventional planar MOSFETs faced problems such as subthreshold swing degradation, significant drain-induced
barrier lowering (DIBL), fluctuation of device characteristics, and current leakage [13–15]. To solve these problems,
three-dimensional device structures were introduced. Fin field-effect transistors (FinFETs) are now state of the art in
nanoscale CMOS technology and high-density memory applications [16–18]. In these devices, the current variation
due to statistical fluctuations in the number and position of dopant atoms is the most serious problem when they
are scaled into the deca-nanometer regime. In fact, the randomness of the dopant position and number make the
fluctuation of device characteristics difficult to model and mitigate [19]. Here, we apply our numerical method to a
realistic numerical example, i.e., a FinFET with a random number of randomly positioned dopants in the source and
drain regions and we demonstrate its usefulness by comparing its computational effort to other methods. A schematic
diagram of a three-dimensional FinFET is shown in Fig. 1. We assume that the domain D ⊂ R3 is bounded and
convex, and it is partitioned into two main subdomains with different physical properties and consequently different
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model equations in each of them. The first subdomain DSi consists of the silicon channel (transducer), which is
connected to the doped source and drain regions. The drift–diffusion-Poisson system describes charge transport in
this region. The transducer is surrounded by the second subdomain Dox, which is the oxide layer. In this subdomain,
there are no charge carriers and hence just the Poisson equation is used. Dirichlet boundary conditions are applied at
the source, drain, and gate contacts, and zero Neumann boundary conditions are imposed everywhere else.

The rest of this work is organized as follows. In Section 2, the model equations are presented. A randomized
quasi-Monte-Carlo method including an error estimate is developed in Section 3. Based on this step, the multilevel
version including again an error estimate is developed in Section 4. Then Section 5 is devoted to finding the optimal
method. Finally, the numerical example is discussed in Section 6. Conclusions are drawn in Section 7.

2. The stochastic drift–diffusion-poisson system

The stationary drift–diffusion-Poisson system couples two elliptic transport equations for two charge carriers with
the Poisson equation to ensure electrostatic self-consistency. The basic equation for the electrostatic potential here is
the stochastic Poisson equation,

− ∇ · (A(x)∇V (x, ω)) = ρ(x, ω), (1)

which is solved on the Lipschitz and bounded domain D ⊂ Rn (n ∈ {2, 3}). Here, x ∈ D is the spatial variable and
ω ∈ Ω is a realization in the d-dimensional sample space Ω , which is part of the probability space (Ω ,A,P), where A
is the σ -algebra of events and P : A → [0, 1] is the probability measure. In (1), V denotes the electrostatic potential,
A is the permittivity, and ρ is the charge density.

If a semiconductor is modeled, the charge density ρ is given by the electron and hole densities n and p and the
doping concentration C , i.e.,

ρ = q(p − n + C), (2)

where q is the elementary charge.
The stochastic drift–diffusion-Poisson equations are the system

− ∇ · (A(x)∇V (x, ω)) = q (C(x, ω) + p(x, ω) − n(x, ω)) , (3a)

∇ · Jn(x, ω) = q R(x, ω), (3b)

− ∇ · Jp(x, ω) = q R(x, ω), (3c)

Jn(x, ω) = q(Dn∇n(x, ω) − µnn(x, ω)∇V (x, ω)), (3d)

Jp(x, ω) = q(−Dp∇ p(x, ω) − µp p(x, ω)∇V (x, ω)), (3e)

R =
np − n2

i

τn(p + ni ) + τp(n + ni )
, (3f)

where Jn and Jp are the current densities, µn and µp are the mobilities, and Dn and Dp are the diffusion coefficients.
We assume that they are related by the Einstein relations Dp = UT µp and Dn = UT µn . Furthermore, R
is the recombination rate, whose precise form is not important here. We use the common Shockley–Read–Hall
recombination rate where ni is the intrinsic carrier density and τn and τp are the lifetimes of the free carriers.

We use the Slotboom variables u and v, which are defined by

p(x) =: ni e−V/UT v, (4)

n(x) =: ni eV/UT u, (5)

where UT := K B T/q denotes the thermal voltage, which is roughly 26 mV at room temperature, K B is the Boltzmann
constant, and T is the absolute temperature.

Using Slotboom variables, the drift–diffusion equations take the form

UT ni∇ · (µpe−V/UT ∇u(x, ω)) = R(x, ω), (6a)

UT ni∇ · (µneV/UT ∇v(x, ω)) = R(x, ω) (6b)
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with the recombination rate

R(x, ω) = ni
u(x, ω)v(x, ω) − 1

τp(eV/UT u(x, ω) + 1) + τn(e−V/UT v(x, ω) + 1)
.

Existence and local uniqueness of the solution of (3) are discussed in detail in [20]. Finally, the total current is
found by integrating the current densities Jn and Jp along a cross section.

In certain applications such as field-effect sensors, the interface Γ between the device and a liquid can be
characterized by interface conditions such as

V (0+, y, ω) − V (0−, y, ω) = 0 on Γ ,

A(0+)∂x V (0+, y, ω) − A(0−)∂x V (0−, y, ω) = 0 on Γ ,

which are due to discontinuous material properties or a homogenization problem [21].
The boundary ∂ D of the domain D is partitioned into two main parts, namely the Dirichlet part ∂ DD and the

Neumann part ∂ DN . The conditions

V |∂ DD = VD, u|∂ DD,Si = uD, and v|∂ DD,Si = vD (7)

are employed on the Dirichlet boundary, where ∂ DD,Si denotes the Dirichlet boundary of DSi. These conditions are
used for the potential V at the source, drain, and gate contacts, i.e., V = VS , V = VD , and V = VG , respectively.
Zero Neumann boundary conditions are applied everywhere else, i.e.,

n · ∇V (x) = 0 for x ∈ ∂ DN ,

n · ∇u(x, ω) = 0 for x ∈ ∂ DN ,Si,

n · ∇v(x, ω) = 0 for x ∈ ∂ DN ,Si,

where ∂ DN ,Si denotes the Neumann boundary of DSi.
In summary, the stochastic transport model equations considered here with random input C(x, ω) are the system

− ∇ · (A(x)∇V (x, ω)) = q
(

C(x, ω) − ni

(
eV (x,ω)/UT u(x, ω) − e−V (x,ω)/UT v(x, ω)

))
in DSi, (8a)

− ∇ · (A(x)∇V (x, ω)) = 0 in Dox, (8b)

V (0+, y, ω) − V (0−, y, ω) = 0 on Γ , (8c)

A(0+)∂x V (0+, y, ω) − A(0−)∂x V (0−, y, ω) = 0 on Γ , (8d)

UT ∇ · (µneV (x,ω)/UT ∇u(x, ω)) = ni
u(x, ω)v(x, ω) − 1

τp(eV/UT u(x, ω) + 1) + τn(e−V/UT v(x, ω) + 1)
in DSi, (8e)

UT ∇ · (µpe−V (x,ω)/UT ∇v(x, ω)) = ni
u(x, ω)v(x, ω) − 1

τp(eV/UT u(x, ω) + 1) + τn(e−V/UT v(x, ω) + 1)
in DSi, (8f)

V (x, ω) = VD(x) on ∂ DD, (8g)

n · ∇V (x, ω) = 0 on ∂ DN , (8h)

u(x, ω) = u D(x), v(x, ω) = vD(x) on ∂ DD,Si, (8i)

n · ∇u(x, ω) = 0, n · ∇v(x, ω) = 0 on ∂ DN ,Si, (8j)

which is solved for V (x, ω), u(x, ω), and v(x, ω).

3. Randomized quasi-Monte-Carlo method

In this section, a randomized quasi-Monte-Carlo method is developed and serves as a basic building block for
the multilevel method developed in the next section. As aforementioned, the MLRQMC method was first introduced
in [4] and developed for a PDE in [7]. Here, the multi-level and QMC ideas are applied to a system of equations, and
based thereon, an optimal method is developed.
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3.1. The Koksma–Hlawka inequality

In quasi-Monte-Carlo (QMC) methods, quasi-random sequences are used instead of random sequences. Correla-
tions between the points provide greater uniformity and speedup the computations and therefore the convergence rate,
which is generally of a higher order than that of the standard Monte-Carlo method. This approach avoids the problem
of clumping in the standard Monte-Carlo method; about

√
N out of N points lie in clumps in the standard Monte-

Carlo method [22]. The reason for clumping in the standard Monte-Carlo method is, of course, the independence of
the random points, while the points are correlated in quasi-Monte-Carlo methods and thus clumping is avoided. The
convergence rate of QMC methods is O((log N )d N−1), where d is the dimension of the random variable. Therefore,
QMC methods have a smaller error and converge faster than the standard Monte-Carlo method. Still, a large number
of dimensions limit the effectiveness of quasi-Monte-Carlo sequences [7,22].

It is convenient to describe QMC methods in the context of numerical quadrature rules. QMC methods approximate
an integral on a d-dimensional unit cube by an N -point equal-weight quadrature rule of the form∫

[0,1]d
f (ω)dω ≈

1
N

N∑
j=1

f (ω j ). (9)

Rather than choosing the points ω j uniformly from the unit cube, as is the case with the standard Monte-Carlo method,
QMC methods choose the points in a deterministic manner.

The basis for analyzing QMC quadrature error is the Koksma–Hlawka inequality.

Theorem 1 (Koksma–Hlawka Theorem). For any sequence {ω j } j≥1 and any function f with bounded variation, the
integration error due to (9) is bounded by⏐⏐⏐⏐ 1

N

N∑
j=1

f (ω j ) −

∫
[0,1]d

f (ω)dω

⏐⏐⏐⏐ ≤ VHK( f )D∗

N (ω), (10)

where VHK( f ) is the Hardy–Krause variation of f defined by

VHK( f ) :=

∫
[0,1]d

⏐⏐⏐⏐ ∂d f
∂ω1 · · · ∂ωd

⏐⏐⏐⏐dω (11)

for sufficiently differentiable f .

The first factor VHK( f ) in (10) is the variation of f in the sense of Hardy and Krause [23]. This term measures the
variability of the function values, whereas the discrepancy term D∗

N (ω j ), the second factor, measures the variability
of the underlying sequence, i.e., the quadrature nodes, from the ideal distribution.

Unfortunately, QMC methods have drawbacks as well. In fact, when the dimension d is too large, the calculation
of the integral in (9) is computationally extremely expensive. In other words, for large d, the number N of samples
has to be considerably large for (log N )d N−1 to be smaller than N−1/2. In [24], it is proved that there exist lattice rules
such that the optimal rate of convergence for QMC rules is O(N−α/2+δ) for any δ > 0 and with a parameter α > 1.
This convergence rate is independent of the dimension d. In [25], Kuo showed that there exist shifted rank-1 lattice
rules (constructed by the CBC algorithm) that achieve the optimal convergence of O(N−1+δ) for any δ > 0. The value
of δ depends on the problem and is estimated in Section 6.

Furthermore, VHK( f ) and D∗

N are difficult to compute. In order to overcome these difficulties, randomized QMC
(RQMC) methods have been developed [26].

The accuracy of a QMC method can be improved by rewriting the function so that the variation term is reduced [27]
or by constructing sequences that have smaller discrepancy [28]. Using RQMC methods with very low discrepancy
sequences such as rank-1 lattice rules helps to increase accuracy and gives a useful error bound.

3.2. Randomized Quasi-Monte-Carlo Finite-Element Method (RQMC-FE-M)

In order to analyze and estimate the variance and to find an error estimate, QMC methods can be randomized.
Randomized quasi-Monte-Carlo (RQMC) methods can also be considered as a variance reduction technique for the
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standard Monte-Carlo method. The simplest method of randomizing is to use a uniformly distributed d-dimensional
shift ∆ ∼ U [0, 1)d .

In particular, a randomized rank-1 lattice rule [29] can be constructed as

ω
(i)
j :=

j
N

λ + ∆(i) mod 1, j ∈ {1, . . . , N }, i ∈ {1, . . . , M}, (12)

where N is the number of quasi-random points, ∆ ∈ [0, 1]d is the random shift, which is uniformly distributed over
[0, 1]d , M is the number of random shifts, and λ ∈ Rd is a d-dimensional deterministic generating vector. Choosing
λ carefully is important in order to achieve uniformity. The quality of a randomly shifted lattice rule is determined by
the choice of the generating vector λ. This essential question is addressed, e.g., in [30, Section 4].

If the system (8) has a solution (V, u, v), we denote finite-element numerical approximations by (Vh(x, ω),
uh(x, ω), vh(x, ω)) for a given ω ∈ Ω . Since all three components of the solution are in H 1(D) for a given ω ∈ Ω , the
variable u may denote any of the three components from now on to simplify notation. We define the Hilbert space

X := H 1
g (D) = {u ∈ H 1(D) | T u = g} (13)

as the solution space, where T is the trace operator defined such that T u = g, where g is Dirichlet lift of u D := u|∂ DD .
The operator T is well-defined and continuous from H 1(D) onto H 1/2(∂ D) for the Lipschitz domain D.

Having chosen a finite-element mesh τh and having fixed k ∈ N with k ≥ 1, the space

Xh := Pk(τh) := {u ∈ X | u|K ∈ Pk(K ) ∀K ∈ τh} ⊂ X (14)

is the discretization space, where Pk(K ) := span{xα
| |α| ≤ k} is the space of polynomials of total degree less than

or equal to k. The expected value of the solution u is the integral

E[u] =

∫
[0,1]d

u(x, ω)dP(ω). (15)

The RQMC estimator to approximate E[uh] is then defined by

QN ,M (uh) :=
1
M

M∑
i=1

1
N

N∑
j=1

uh(x, ω
(i)
j ) (16)

using the quasi-random points defined in (12).

3.3. Error bound for the RQMC-FE method

As aforementioned, in order to overcome the difficulty of finding an error bound for the QMC approach, we use
a RQMC method. In this method, the standard assumption is that uh has bounded variation VHK(uh) in the sense of
Hardy and Krause and behaves like the variance [12]. Therefore, we assume that

VHK(uh) ≤ C0, (17)

where C0 is a positive constant. Similar to the standard MC method, the mean square error (MSE) can be written as
the sum of the variance of the estimator plus the square of the discretization error [8]. As in [8], a prescribed accuracy
is to be achieved, i.e., MSE ≤ ε2.

Using the Koksma–Hlawka inequality (10) by calculating

σ 2[QN ,M (uh)] = σ 2

⎡⎣ 1
M

M∑
i=1

1
N

N∑
j=1

uh(x, ω
(i)
j )

⎤⎦
=

1
M

σ 2

⎡⎣ 1
N

N∑
j=1

uh(x, ω j )

⎤⎦
=

1
M

∫
[0,1]d

(
1
N

N∑
j=1

uh(x, ω j ) − E[uh]
)2

dP(ω)

(18)
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≤
1
M

∫
[0,1]d

(
VHK(uh)D∗

N (ω j )
)2

dP(ω)

= O(V 2
HK(uh)N−2+δ) ∀δ > 0,

the variance of the RQMC estimator (16) is estimated following [12]. In fact, in rank-1 lattice rules, the discrepancy
satisfies

D∗

N (ω j ) = O(N−1+δ) ∀δ > 0 (19)

for any number of points N > 1, any shift of the lattice, and for any dimension d ≥ 1 [31]. The above result is
obtained by using component-by-component (CBC) construction, i.e., the components of the generating vector λ are
constructed one at a time to minimize the worst-case error in certain weighted function spaces [29].

Using the boundedness assumption (17) for VHK(uh) in (18), we obtain the estimate

σ 2[QN (uh)] ≤ C0 M−1 N−2+δ
∀δ > 0 (20)

for the variance of the RQMC method, where C0 is estimated using (17). Furthermore, δ is estimated in Section 6 (see
Fig. 3). The inequality (20) will be used later for an error estimate.

The variable u may represent any of the three components of the solution (V, u, v) of the system (8) in order to
simplify notation, since all three components are in H 1(D) for a given ω ∈ Ω .

Proposition 1. Suppose that QN ,M (uh) is the RQMC estimator to approximate the expectation E[u] of the solution
u(x, ω) ∈ X of (8). Assume further that the spatial discretization error converges with order α, i.e.,

∥E[u − uh]∥L2(Ω;X ) ≤ C1hα
∃C1 ∈ R+, (21)

where uh(x, ω) ∈ Xh is the FE approximation with mesh size h and it has bounded variation. Then the mean square
error of the RQMC estimator QN ,M satisfies

∥QN ,M (uh) − E[u]∥2
L2(Ω;X ) = O(M−1 N−2+δ) + O(h2α) ∀δ > 0. (22)

Proof. We estimate the mean square error (MSE). Using inequality (20) and assumption (21), we find that

MSE := ∥QN ,M (uh) − E[u]∥2
L2(Ω;X )

= ∥QN ,M (uh) − E[QN ,M (uh)]∥2
L2(Ω;X ) + ∥E[QN ,M (uh)] − E[u]∥2

L2(Ω;X )

= σ 2[QN ,M (uh)] + ∥E[u − uh]∥2
L2(Ω;X )

≤ C0 M−1 N−2+δ
+ C1h2α

= O(M−1 N−2+δ) + O(h2α)

(23)

for every δ > 0. □

This means that the error behaves like (20).

4. Multilevel Randomized Quasi-Monte-Carlo Finite-Element method (MLRQMC-FE method)

Based on the RQMC method in the previous section, a multilevel version is summarized here.

4.1. The levels

In a multilevel approach, several mesh levels are used, and on each level, the RQMC estimator (16) is employed
to approximate the solution. The domain D is partitioned into quasi-uniform triangles such that sequences {τhℓ

}
L
ℓ=0 of

regular meshes are obtained. For any ℓ ≥ 0, we denote the mesh size of τhℓ
by

hℓ := max
K∈τhℓ

diam(K ).
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Uniform refinement of the mesh to obtain a nested family {τhℓ
}
∞

ℓ=0 of regular triangulations can be achieved by regular
subdivision yielding the mesh size

hℓ = r−ℓh0, (24)

where h0 denotes the mesh size of the coarsest triangulation and r > 1 is independent of ℓ. In this method, the
finite-dimensional sequence Xh0 ⊂ Xh1 ⊂ · · · ⊂ XhL ⊂ X of discretization spaces are used, where Xhℓ

:= Pk(τhℓ
)

with ℓ ∈ {0, 1, 2, . . . , L} , and k ∈ N is fixed (cf. (14)).
The finite-element approximation at level L can be written as the telescoping sum

uhL = uh0 +

L∑
ℓ=1

(uhℓ
− uhℓ−1 ),

where uhℓ
is the approximation on the mesh τhℓ

at level ℓ. Furthermore, E[uhℓ
− uhℓ−1 ] can be estimated using Nℓ

quasi-random points and Mℓ random shifts on each level ℓ. Therefore the multilevel RQMC FE estimator with respect
to one or more random shift is defined as

QL ,Nℓ,Mℓ
(uhL ) :=

1
M0

M0∑
i=1

1
N0

N0∑
j=1

uh0 (x, ω
(i)
j ) +

L∑
ℓ=1

1
Mℓ

Mℓ∑
i=1

1
Nℓ

Nℓ∑
j=1

(
uhℓ

(x, ω
(i)
j ) − uhℓ−1 (x, ω

(i)
j )
)
. (25)

The sample points ω
(i)
j are obtained using (12), for example, and their total number is MℓNℓ.

4.2. Error bound for the MLRQMC-FE method

In order to state a proposition for the mean square error of the multilevel RQMC approximation, we first make the
following necessary assumptions.

Assumptions 1. The assumptions on the boundedness of the variations of the FEM approximation and on the
convergence order of the discretization error are

1. VHK(uh0 ) ≤ C00 ∃C00 ∈ R+,
2. VHK(uhℓ

− uhℓ−1 ) ≤ C0hβ

ℓ−1 ∃C0 ∈ R+, ∃β ∈ R+,
3. ∥E[u − uhℓ

]∥L2(Ω;X ) ≤ C1hα
ℓ ∃C1 ∈ R+, ∃α ∈ R+.

By using the multilevel approach, the difference between uhℓ
and uhℓ−1 decreases for higher levels and therefore

VHK(uhℓ
) is reduced. Hence, it is a decent assumption that the Hardy–Krause variation behaves similarly to the

variance of uhℓ
− uhℓ−1 .

Proposition 2. Suppose Assumptions 1 hold and QL ,Nℓ,M (uhL ) is the multilevel randomized quasi-Monte-Carlo
estimator with NℓMℓ sample points in level ℓ, ℓ ∈ {0, 1, 2, . . . , L}, to approximate the expectation E[u] of the solution
u(·, ω) ∈ X of (8) using FEM approximations uhℓ

(·, ω) ∈ Xhℓ
with mesh size hℓ.

Then the mean square error of the multilevel RQMC estimator satisfies

∥E[u] − QL ,Nℓ,Mℓ
(uhL )∥2

L2(Ω;X ) = O(h2α
L ) + O(M−1

0 N−2+δ
0 ) +

L∑
ℓ=1

O(h2β

ℓ−1 M−1
ℓ N−2+δ

ℓ ) ∀δ > 0. (26)

Proof. First, following [12], we estimate the variance of the multilevel RQMC estimator using inequality (10) by
calculating

σ 2[QL ,Nℓ,Mℓ
(uhL )] = σ 2

[ 1
M0

M0∑
i=1

1
N0

N0∑
j=1

uh0 (x, ω
(i)
j ) +

L∑
ℓ=1

1
Mℓ

Mℓ∑
i=1

1
Nℓ

Nℓ∑
j=1

(
uhℓ

(x, ω
(i)
j ) − uhℓ−1 (ω(i)

j )
)]

=
1

M0
σ 2
[

1
N0

N0∑
j=1

uh0 (x, ω j )
]

+

L∑
ℓ=1

1
Mℓ

σ 2
[ 1

Nℓ

Nℓ∑
j=1

(
uhℓ

(x, ω j ) − uhℓ−1 (x, ω j )
)] (27)
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=
1

M0

∫
[0,1]d

( 1
N0

N0∑
j=1

uh0 (x, ω j ) − E[uh0 ]
)2

dP(ω)

+

L∑
ℓ=1

1
Mℓ

∫
[0,1]d

(
1
Nℓ

Nℓ∑
j=1

(
uhℓ

(x, ω j )

− uhℓ−1 (x, ω j )
)
− E[uhℓ

(x, ω j ) − uhℓ−1 (x, ω j )]
)

2dP(ω)

≤
1

M0

∫
[0,1]d

(
VH K (uh0 )D∗

N0
(ω j )

)2

dP(ω)

+

L∑
ℓ=1

1
Mℓ

∫
[0,1]d

(
VH K

(
uhℓ

(x, ω j ) − uhℓ−1 (x, ω j )
)
D∗

Nℓ
(ω j )

)2

dP(ω)

= O(V 2
H K (uh0 )N−2+δ

0 ) + O(V 2
H K

(
uhℓ

(x, ω j ) − uhℓ−1 (x, ω j )
)
N−2+δ

ℓ ),

where we used the estimate (19).
Therefore, we have

σ 2[QL ,Nℓ,Mℓ
(uhL )] ≤ C00 M−1

0 N−2+δ
0 + C0

L∑
ℓ=1

h2β

ℓ−1 M−1
ℓ N−2+δ

ℓ (28)

using the assumptions of bounded variations, i.e., Assumptions 1.1 and 1.2 This estimate shows how the error of the
method behaves in terms of the number of samples (same as (20)), as we will see in the following.

Similarly to the RQMC estimator, the MSE assesses the accuracy of the MLRQMC-FE estimator. Using
Assumptions 1.3 and the variance estimate (27), we find

MSE := ∥QL ,Nℓ,Mℓ
(uhL ) − E[u]∥2

L2(Ω;X )

= ∥QL ,Nℓ,Mℓ
(uhL ) − E[QL ,Nℓ,Mℓ

(uhL )]∥2
L2(Ω;X ) + ∥E[QL ,Nℓ,Mℓ

(uhL )] − E[u]∥2
L2(Ω;X )

= σ 2[QL ,Nℓ,Mℓ
(uhL )] + ∥E[u − uhL ]∥2

L2(Ω;X )

≤ C00 M−1
0 N−2+δ

0 + C0

L∑
ℓ=1

h2β

ℓ−1 M−1
ℓ N−2+δ

ℓ + (C1hα
L )2

= O(M−1
0 N−2+δ

0 ) +

L∑
ℓ=1

O(h2β

ℓ−1)O(M−1
ℓ N−2+δ

ℓ ) + O(h2α
L )

(29)

for every δ > 0. □

5. Optimal multilevel randomized quasi-Monte-Carlo method

Since both the spatial and the stochastic dimensions are to be discretized, the question how to distribute the
computational work between the spatial and stochastic dimensions poses itself. In other words, various parameters
in the numerical approaches outlined so far must still be determined. These parameters include the mesh size of
the finite-element discretization, the number of levels in the multilevel approach, and the samples to be used on
each level. Because of the computational challenge of solving a system of stochastic partial differential equations,
efficient computational methods are crucial. Therefore, we develop an optimal method based on the previous section
here.

The error bound found in Proposition 2 is used as an estimate of the total error. The total error is prescribed and the
unknown parameters are chosen such that the computational work is minimized. Hence the computational work must
be modeled as a function of the unknown parameters. It consists of the sum of work necessary to solve each of three
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equations in the coupled system, i.e., the total computational work is given by

W := WP,a + WP,s + 2WD,a + 2WD,s, (30)

where the index P denotes the work due to the Poisson equation and the index D denotes the work due to the
two drift–diffusion equations. Furthermore, since the steps for solving each equation exhibit different scaling of the
computational cost, there are separate terms for the computational work for assembling the system matrices (index a)
and for solving the resulting systems (index s). Each of four work terms above has the form of µkh−γk

ℓ , where the
constants µk > 0 and γk > 0 depend on the implementation and will be measured. If an appropriate linear solver is
used to calculate the finite-element approximation uhℓ

, then we expect that γk ≈ n holds, where n is the number of
spatial dimension [32]. In Section 6, we will see that our numerical results agree with this estimate.

Using this model for the computational work for one sample, the total work for solving the system (8) is modeled
as

W :=

L∑
ℓ=0

MℓNℓWℓ

=

L∑
ℓ=0

MℓNℓ(Wℓ,P,a + Wℓ,P,s + 2Wℓ,D,a + 2Wℓ,D,s)

=

L∑
ℓ=0

MℓNℓ(µ1h−γ1
ℓ + µ2h−γ2

ℓ + µ3h−γ3
ℓ + µ4h−γ4

ℓ ).

(31)

Having modeled the computational work, we can now state the optimization problem in the sense that we want to
minimize the total computational work for a prescribed error tolerance ε. The minimization problem is

minimize
Mℓ,Nℓ,h0,r

f (Mℓ, Nℓ, h0, r, L) :=

L∑
ℓ=0

MℓNℓ

4∑
k=1

µkh−γk
0 rγk

subject to g(Nℓ, h0, r, L) := C00 M−1
0 N−2+δ

0 + C0

L∑
ℓ=1

h2β

ℓ−1 M−1
ℓ N−2+δ

ℓ + (C1hα
L )2

≤ ε2,

(32)

for every δ > 0, where h0 > 0, r > 1, Nℓ, and Nℓ ≥ 1. The given maximal total error ε2 is an upper bound for (29),
i.e., MSE ≤ ε2. The goal is to determine optimal values hℓ (by calculating optimal values for h0 and r and using their
relation (24)) and Nℓ, ℓ ∈ {0, 1, . . . , L}. For all levels, the number Mℓ of shift realizations is an integer, i.e., Mℓ ∈ N.

This nonlinear constrained optimization problem can be solved numerically; the nonlinearity of the constraints g
and the objective function f due to the exponents motivates the use of sequential quadratic programming (SQP) [33]
as a generalization of Newton’s method for unconstrained optimization. The method is iterative and solves quadratic
subproblems; it can be used in both the line-search and trust-region frameworks. SQP is well-suited for solving
problems with significant nonlinearities.

We denote the parameters found in step s, s ∈ N, by χs := (Nℓ,s, h0,s, rs, Ls). In each iteration, χs is found by
solving a quadratic programming (QP) subproblem, whose solution is then used in the next iteration. The subproblems
are of course constructed such that the sequence χs converges to a local minimum χ as s → ∞. The QP subproblems
are based on a quadratic approximation of the Lagrangian function

L(χ, ζ ) := f (χ ) +

m∑
i=1

ζ⊤gi (χ ),

where the vector ζ contains the Lagrange multipliers. In order to solve the optimization problem (32), the objective
function is replaced by its local quadratic approximation

f (χ ) ≈ f (χs) + ∇ f (χs)(χ − χs) +
1
2

(χ − χs)H f (χs)(χ − χs),

where H is the Hessian matrix. The term f (χ s) in the expression above can be eliminated from the minimization
problem since it is constant. The nonlinear constraint g is replaced by its linearization g(χ ) ≈ g(χs)+∇g(χs)(χ −χs).
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Fig. 2. The 3D meshes corresponding to the FinFET for ℓ = 0 (left) and ℓ = 1 (right).

Hence the minimization problem (32) yields the simplified, linearized QP subproblems

minimize
1
2
ν(χ )⊤ H f (χs)ν(χ ) + ∇ f (χs)⊤ν(χ )

subject to ∇g(χs)
⊤ν(χ ) + g(χs) ≤ 0,

(33)

where ν(χ ) = χ − χs . The next approximation is given by

χs+1 := χs + αsνs,

where νs is obtained by (33) and the step-length parameter αs is determined by line search [34]. Also, H can be
updated by any of the quasi-Newton methods, e.g., by the BFGS method [35].

6. Numerical example

A numerical example is presented here in order to illustrate the advantages of the method developed in Section 5.
The well-known deterministic version of the model equations, namely the drift–diffusion-Poisson system, describes
charge transport in many situations; the stochastic version makes it possible to describe charge transport in random
environments. In this section, by using the stochastic model, we study the effect of random-dopant fluctuations on the
current through a FinFET.

6.1. The leading example and random dopants

The basic structure of FinFET is a channel controlled on three sides. A typical FinFET is shown in Fig. 1 and the
3D corresponding meshes for two different levels are illustrated in Fig. 2. This FinFET structure consists of a thin
(vertical) silicon fin on a substrate, as mentioned in Section 1.

The numerical example discussed here is a realistic one: the dopant atoms in nanoscale transistors are distributed
randomly resulting in unavoidable device variations between the many transistors in an integrated circuit. These
random-dopant effects are of great importance in nanoscale devices.

The device parameters are the following. The permittivities are ASi = 11.7A0, Aox = 3.9A0, and the vacuum
permittivity (dielectric constant) is A0 = 8.85 · 10−12 F m−1. Moreover, the gate length is 60 nm, and it is separated
from the silicon channel by a 1.2 nm thick oxide layer. This channel is connected to the n-type doped source and drain
regions of lengths LSD = 15 nm and VSD = 0.1 V. Regarding the boundary conditions in (8), Dirichlet boundary
conditions are employed at the gate, source, and drain contacts. Zero Neumann boundary conditions are applied
everywhere else.

The main source of randomness inside the device is the random motion of dopant atoms through the semiconductor
during the fabrication steps of implantation and annealing resulting in their random locations. To define the
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microscopic doping profile of individual randomly distributed dopants, a point doping model such as

C(x, ω) =

∑
j=1

C jδ(x − x j (ω)) (34)

can be used, where x j and C j are the position and the charge of the j th dopant and δ(x − x j (ω)) is the Dirac delta
distribution at point x j (ω). The Gaussian model [36,37]

C(x, ω) :=

∑
j

C j(
2πσ 2

)3/2 exp

(
−

(
x − x j (ω)

)2

2σ 2

)
(35)

is a smoothed version of the point doping model (34), where σ is the so called influence parameter. Also, σ := 0.3 nm
relates to the diameter of the direct electrostatic influence of the dopant; the results are not very sensitive to the value
of σ . To make the results comparable between continuous and discrete doping models, the total doping must match.
Hence, the integrals over a continuous doping concentration Cdop and over a discrete doping concentration must agree
(for the fixed random variable ω∗), i.e.,∫

DSi

Cdop(x)dx =

∫
DSi

C(x, ω∗)dx .

In the simulations, a three-dimensional domain is used and therefore the dimension d of random variables is equal
to three times the number of dopants. In order to determine the location of each dopant, three random points are
used and a translation is applied such that the dopants are in the source and drain regions. As an example, for x-axis,
y-axis and z-axis, ω∗

= ( 1
2 , 1

2 , 1
2 ) indicates exactly the center of a region (source or drain). Also, we assume that the

numbers of dopants in the source and drain regions are equal. Finally, it is noted that the standard continuum model
is deterministic and that it cannot model any randomness; it is an important feature of the stochastic drift–diffusion-
Poisson system that it includes various kinds of randomness.

The source and drain regions contain n-type dopants corresponding to a uniform doping concentration of
1 · 1019 cm−3, and the doping concentration in the channel is 2 · 1016 cm−3.

The electron and hole mobilities have a similar dependence on doping. For low doping concentrations, the mobility
is almost constant and is primarily limited by phonon scattering. At higher doping concentrations the mobility
decreases due to ionized impurity scattering with the ionized doping atoms. The actual mobility also depends on
the type of dopant [38].

6.2. Computational cost

As discussed in Section 5, the optimal parameters are found by solving the minimization problem that minimizes
the computational work for a prescribed total error. This procedure yields the mesh sizes and numbers of samples in
the multilevel approach. Before the minimization problem can be solved, the constants and the exponents in (32) must
be measured.

As already mentioned, the statistical error depends on the mesh size h and the number N of samples. Fig. 3
(left) depicts the error for different mesh sizes (h0 = 5, r = 2, and N = 100) with a decay of variance of the
order β = 1.652. Shifted rank-1 lattice rules give rise to the convergence rate O(N−2+δ) for a δ > 0. However, the
value of δ is crucial for the optimization problem. As seen in the figure, the variance of MLRQMC-FEM decays as
O(N−1.88) (i.e., δ = 0.12), while in the case of MC-FEM a rate of O(N−1) is achieved. These values are obtained
using h = 5 with respect to different numbers of quasi points. Additionally, Fig. 4 illustrates the discretization error
for different mesh sizes, where the parameters were estimated using 100 samples by comparing the variance of the
multilevel estimator (25) for different mesh sizes. The numerically determined exponent α = 1.731 agrees very well
with the order of the P1 FE discretization used here. The coefficients in the model for the computational work were
also found numerically. For matrix assembly and solving the system, we recorded the CPU time used as a function
of different mesh sizes, and hence the values of µk and γk are found. A summary of the coefficients and exponents is
given in Table 1.

Since (32) is a continuous optimization problem, the solutions Nℓ are generally no integers. We therefore round the
values Nℓ up to the next integer. Regarding the number of shift realizations, the value Mℓ = 10 is used in all the QMC
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Fig. 3. The decay of variance of the solution as a function of different mesh sizes (left) and number of samples (right). The values C00 = 9.45,
C0 = 0.338, and δ = 0.12 are found.

Fig. 4. The expected value of the solution as a function of different mesh sizes with C1 = 1.304.

Table 1
The estimated coefficients and exponents in (31).

Coefficient µ1 γ1 µ2 γ2 µ3 γ3 µ4 γ4

Value 0.51 3.07 0.63 3.06 0.38 2.98 0.34 2.93

Table 2
Optimal mesh size h and number N of samples for the QMC-FE method for different prescribed total errors ε.

ε 0.100 0.050 0.030 0.020 0.010 0.005 0.003 0.001

h 0.427 0.208 0.154 0.122 0.081 0.054 0.071 0.041
N 65 135 231 356 744 1554 3844 9913

estimators. Summaries of the parameter values (h, N ), (h0, r, Nℓ) and (h0, r, Mℓ) for the QMC-FE and MLRQMC-FE
and MLMC-FE methods are given in Tables 2, 3 and 4 respectively.

We compare a previously developed optimal MLMC-FE method [8] with the optimal MLRQMC-FE method
developed in Section 5. Fig. 5 shows the computational work for the optimal quasi-Monte-Carlo method and the
multilevel methods. It shows that O(ε−2.75) is roughly constant for the standard QMC method. In the MLMC-FE
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Table 3
Optimal hierarchies in the MLRQMC-FE method for different prescribed total errors ε.

ε h0 r N0 N1 N2 N3 N4 N5 N6

0.100 2.192 2.270 209 31 6 2 – – –
0.050 2.651 2.144 633 124 24 5 2 – –
0.030 2.174 2.204 1 015 154 28 5 2 – –
0.020 2.943 2.094 2 363 534 106 21 5 2 –
0.010 2.213 2.149 4 395 697 131 25 5 2 –
0.005 2.899 2.115 14 139 3107 603 117 25 5 2

Table 4
Optimal hierarchies in the MLMC-FE method for different prescribed total errors ε.

ε h0 r M0 M1 M2 M3 M4 M5 M6

0.100 1.303 2.151 3 920 363 33 3 – – –
0.050 1.370 2.020 18 046 1 993 215 24 3 – –
0.030 1.430 1.908 56 136 7 344 957 125 17 3 –
0.020 1.390 1.987 126 266 14 749 1688 193 23 3 –
0.010 1.459 1.9829 545 840 73 009 9182 1154 165 21 3

Fig. 5. Comparison of the total computational work required for the optimal MLRQMC and MLMC methods. For smaller total errors, the
effectiveness of the randomized method is more pronounced.

method, the assumptions of the standard complexity theorem [6] are satisfied, i.e., α ≥
1
2 min(β, γ ), so that the

computational cost is O(ε−2.2). The faster convergence rate of the RQMC points results in less computational work for
a given total error. In the MLRQMC-FE method, the RQMC aspect yields a computational complexity of O(ε−1.82),
which results in additional savings of a factor between 2 and 17 (relative to MLMC) and 2 and 500 (relative to QMC).
Therefore, the efficiency increase of the multilevel RQMC method is more pronounced for smaller prescribed total
errors.

Additionally, choosing the optimal number L of levels is another important consideration. Fig. 6 depicts the
optimal number of levels for three different prescribed total errors. Using only one level (L := 0) results in the
standard Monte-Carlo method. Distributing the samples among several levels ℓ ∈ {0, . . . , L} results in significant
savings in computational cost. For smaller error bounds, a larger number of levels is necessary to obtain the minimum
of computational cost.

6.3. Simulation of a FinFET

We focus on the subthreshold current, where the diffusion component of the current is larger than the drift
component. First of all, we study the effect of randomness in the position of the dopants, whose number is constant.
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Fig. 6. The comparison of the total work of MLRQMC for different levels (between L = 0 and L = 7) for three different total errors ε = 0.1,
ε = 0.05, and ε = 0.03. For each prescribed total error, the optimal number of levels is indicated by a red circle. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. The expected value of current as a function of different gate voltages calculated using continuum and discrete models.

Fig. 7 shows the comparison between the expected value of the current calculated using the discrete model (obtained
for ϵ = 0.05) and the continuum model for different gate voltages varying between Vg = −0.1 V and Vg = 0.3 V.
The fluctuation of the current in the discrete model for Vg = 0.1 V and Vg = 0.2 V is also shown in Fig. 8.

Next, we compare the expected value of the current for different numbers Ndop of dopants with the continuum
model. Fig. 9 shows the expected value of the current for different numbers of dopants, varying from 5 to 50, for
various gate voltages. The total charge of the dopants is kept constant to allow the comparison. According to the
figure, the presence of more than 10 atoms in the regions results in a higher current compared to the deterministic
model at the same gate voltage. In this figure, it is observed that the variation in the number of dopants (∆Ndop ̸= 0)
gives rise to a noticeable current fluctuation. In other words, the variations decrease gradually when there are more
dopants in the region, which is consistent with convergence to the continuum model as the number of dopants tends
to infinity. Here, a comparison between two numbers of dopants (Ndop = 5 and Ndop = 50) is made in Fig. 10, where
the histograms show that more dopants lead to less fluctuations. Finally, an interesting result of the simulations is that
considering the discrete nature of the dopants in the devices results in a decrease of the threshold voltage.

7. Conclusions

We have used the stochastic drift–diffusion-Poisson system to model and simulate charge transport in random
environments. We have developed an optimal multilevel randomized quasi-Monte-Carlo method to calculate the
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Fig. 8. Histogram of the current for Vg = 0.1 V (left) and Vg = 0.2 V (right), Ndop = 25 and 563 simulations. Here E(I ) = 1.49 · 10−7 A for the
lower gate voltage and E(I ) = 1.14 · 10−6 A for the higher gate voltage.

Fig. 9. The I –V characteristics for different numbers of dopants. The results for the continuum model are shown as well.

Fig. 10. Histogram of the current for Vg = 0.2 V and for 563 simulations. Left: Ndop = 5 resulting in E(I ) = 9.22 · 10−7 A. Right: Ndop = 50,
resulting in E(I ) = 9.66 · 10−7 A. The current obtained by the continuum model is I = 9.66 · 10−7 A.
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expected value of the solution. We have compared the new method with the optimal multilevel Monte-Carlo method,
where a reduction in the computational cost of the new method by more than one order of magnitude is found. In order
to obtain the parameters of the numerical method and to solve the resulting optimization problem, we have used an
SQP method as a generalization of Newton’s method and approximated the nonlinear objective function by its local
quadratic approximation. In summary, a computational complexity of O(ε−1.82) is achieved.

The numerical method developed here has also been applied to a realistic problem, namely the effects of random
dopants in a state-of-the-art transistor. Variations due to the location and the number of dopants have been considered
and compared to the continuum model. As the number of dopants in the discrete model goes to infinity, the continuum
model is obtained as the limit as expected. The variations are significant for a realistically small number of dopants,
which is consistent with random dopants being the main limiting factor in today’s transistor technology.
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