
Computational Mechanics
https://doi.org/10.1007/s00466-019-01688-1

ORIG INAL PAPER

Amultilevel Monte Carlo finite element method for the stochastic
Cahn–Hilliard–Cook equation

Amirreza Khodadadian1,2 ·Maryam Parvizi2 ·Mostafa Abbaszadeh3 ·Mehdi Dehghan3 · Clemens Heitzinger2,4

Received: 21 November 2018 / Accepted: 10 February 2019
© The Author(s) 2019

Abstract
In this paper, we employ the multilevel Monte Carlo finite element method to solve the stochastic Cahn–Hilliard–Cook
equation. The Ciarlet–Raviart mixed finite element method is applied to solve the fourth-order equation. In order to estimate
the mild solution, we use finite elements for space discretization and the semi-implicit Euler–Maruyama method in time.
For the stochastic scheme, we use the multilevel method to decrease the computational cost (compared to the Monte Carlo
method). We implement the method to solve three specific numerical examples (both two- and three dimensional) and study
the effect of different noise measures.

Keywords Multilevel Monte Carlo · Finite element · Cahn–Hilliard–Cook equation · Euler–Maruyama method ·
Time discretization
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1 Introduction

The Cahn–Hilliard equation is a robust mathematical model
for describing different phase separation phenomena, from
co-polymer systems to lipid membranes. The equation is
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used to model binary metal alloys [1], polymers [2] as well
as cell proliferation and adhesion [3]. In material science,
when a binary alloy is sufficiently cooled down, we observe a
partial nucleation or spinodal decomposition, i.e., the mate-
rial quickly becomes inhomogeneous. In fact, after a few
seconds, material coarsening will be happened [4]. In poly-
mer solutions and blends, the phase separation process is a
dynamic process that one phase stable solution separates into
two equilibrium phases upon changes in temperature, pres-
sure, concentration, or even flow fields [5]. In these cases, the
spinodal decomposition is described by the Cahn–Hilliard
model [6].

The equation is a nonlinear partial differential equation of
fourth-order in space and first order in time for which an ana-
lytical treatment is not possible. There are several numerical
techniques to solve the equation including the finite element
method (FEM) [7], isogeometric analysis based on finite ele-
ment method [8], multigrid finite element [9], conservative
nonlinear multigrid method [10], least squares spectral ele-
ment method [11], Monte Carlo methods [12], radial basis
functions (RBF) [13] andmeshless local collocationmethods
[14]. Afinite element error analysis of the equation is given in
[15]. Adaptive finite elements can also be applied to solve the
equation using residuals based a posteriori estimates [16,17].
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Adifficulty of the numerical analysis of the Cahn–Hilliard
equation is the discretization of the fourth-order operator.
Here, after converting the fourth-order equation into a system
of two second-order equations (by introducing an auxiliary
variable) andwriting the variational formulation, the Ciarlet–
Raviart mixed finite element method is used for the spatial
discretization. The method has been implemented for the
damped Boussinesq equation by the authors [18] and they
considered the convergence rate and the stability for the
semi-discretization scheme and the fully discretized method.
For the Cahn–Hilliard equation, the technique was used in
[19,20] for the space discretization.

The stochastic Cahn–Hilliard equation was first consid-
ered byCook [21]. The systemallows for considering thermal
fluctuations directly in terms of the Cahn–Hilliard–Cook
(CHC) equation by a conserved noise source term. The ther-
mal fluctuations play an essential role in the early stage
of phase dynamics such as initial dynamics of nucleation
[22,23]. Some authors, such as Binder [24] and Pego [25],
have expressed the belief that only the stochastic version
can correctly describe the whole decomposition process in a
binary alloy [26]. In [27], as another numerical approach, the
authors employed the direct meshless local Petrov–Galerkin
(DMLPG) to solve the stochastic Cahn-Hilliard-Cook and
stochastic Swift-Hohenberg equations.

Multilevel Monte Carlo (MLMC) [28] is a simple and
efficient computational technique to estimate the expected
value of a random process. Using the method enables us
to decrease the computational costs noticeably. The multi-
level methodwas implemented to solve the stochastic elliptic
equations, e.g., the drift-diffusion-Poisson system with uni-
formly distributed random variables [29] and quasi-random
points [30]. In [31], the convergence and complexity of the
MLMC using Galerkin discretizations in space and a Euler–
Maruyama discretization in time for the parabolic equations
were explained in details. The technique was used in [32] for
solving parabolic (heat equation) and hyperbolic (advection
equation) driven by additive Wiener noise

Generally, for the time-dependent stochastic problems,
the total error consists of the spatial error (due to the finite
element method), the time discretization error (due to the
Euler–Maruyama technique) and the statistical error (number
of samples). We already know that for the space discretiza-
tion, fine meshes are needed (specifically for the curved
surfaces) which lead to the higher computational complex-
ity. The multilevel Monte Carlo method uses hierarchies of
meshes for time and space approximations in the sense that
the number of samples and mesh sizes (as well as time steps)
on the different levels are chosen such that the errors are equi-
librated. For the stochastic Cahn–Hilliard–Cook equation,
we strive to determine an optimal hierarchy of meshes, num-
ber of samples and time intervals which minimize the total
computational work. As a result, we give a-priori estimates

on the explained error contributions. In this paper, we use
the MLMC-FEM for the fourth-order stochastic equations
and calculate the mild solution of the Cahn–Hilliard–Cook
equation. In fact, we estimate the total computational error
according to the three error contributions. Then, we strive
to minimize the computational complexity with respect to
a given error tolerance. This procedure is compared to the
Monte Carlo method.

The rest of the paper is organized as follows. In Sect. 2,
we explain the Cahn–Hilliard and the Cahn–Hilliard–Cook
equations with their boundary conditions. Then, we describe
how the Ciarlet–Raviart mixed finite element can be used to
convert the stochastic equation to a system of second-order
equations. In Sect. 3, we demonstrate the implementation
of the MLMC-FEM for the time-dependent stochastic equa-
tions. In Sect. 4, we give three numerical examples according
to two different initial conditions. The solutions of the
stochastic equation (the concentration) and the optimization
(the optimal hierarchies) are given in this section. Finally, the
conclusions are drawn in Sect. 5.

2 Cahn–Hilliard–Cook equation

J. W. Cahn and J. E. Hilliard proposed the Cahn–Hilliard
(CH) equation. The equation is amathematical physicsmodel
that describes the process of phase separation. The CH equa-
tion is as follows

du

dt
= M�(F ′(u) − ε2�u) in � × [0, T ], (1)

with the Neumann boundary conditions

∂u

∂ν
= 0,

∂
(−ε2�u + F ′(u)

)

∂ν
= 0 on ∂� × [0, T ].

(2)

We consider the initial condition at t = 0 as

u(x, 0) = u0(x) for x ∈ �, (3)

where ν denotes the unit outward normal of the boundary
and � is a bounded domain in R

d (d = 1, 2, 3). The solu-
tion u is a rescaled density of atoms or concentration of one
of the material components where, in the most applications
u ∈ [−1, 1]. We should note that M is the mobility (here a
constant) and the variable ε is a positive constant. The equa-
tion arises from the Ginzburg–Landau free energy

L(u) =
∫

�

(
F(u) + ε2

2
|∇u|2

)
dx. (4)
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The above free energy includes the bulk energy F(u) and the
interfacial energy (the second term). A popular example of a
nonlinear function is

F(u) = 1

4
u2(1 − u)2. (5)

The Cahn–Hilliard–Cook equation presents a more realistic
model including the internal thermal fluctuations. It can be
derived from (1) by adding the thermal noise as

du

dt
= M�(F

′
(u) − ε2�u) + σ ξ in � × [0, T ],

(6a)

∂u

∂ν
= 0,

∂�u

∂ν
= 0 on ∂� × [0, T ],

(6b)

where ξ indicates the colored noise (here white noise) and σ

is the noise intensify measure.

2.1 Ciarlet–Raviart mixed finite element

To construct a mixed finite element approximation of the
Cahn–Hilliard–Cook equation, we first find its weak formu-
lation. For this purpose, we define the auxiliary variable

γ := −M�u + F ′(u). (7)

Therefore, the Cahn–Hilliard–Cook equation can be rewrit-
ten in the form

γ = −M�u + F ′(u), (8a)

du = ∇ · (M∇γ ) + σ dW , (8b)

∂u

∂ν
= ∂γ

∂ν
= 0. (8c)

The weak formulation of (8) is given by seeking (u, γ ) ∈
H1∗ (�) × H1∗ (�) such that

(γ, χ)� = (M∇u,∇χ)�

+ (
F ′(u), χ

)
�

∀χ ∈ H1∗ (�), (9a)

(du, ψ)� = − (M∇γ,∇ψ)�

+ σ (dW , ψ)� ∀ψ ∈ H1∗ (�), (9b)

where

H1∗ (�) =
{
u ∈ H1∗ (�) |

∫

�

u dx = 0

}
. (10)

Now let τh be a family of triangulations of � into a finite
number of elements (simplex) such that

h = max
k∈τh

diam(k). (11)

We assume that each element has at least one face on ∂� and
k1, k2 ∈ τh have only one common vertex or a whole edge.
Now we define

Mh := {v ∈ C(�)| v|k ∈ Pn, n ≥ 1 ∀kτh} , (12)

Nh := M ∩ H1∗ (�), (13)

and Pn is the space of all polynomials of degree at most
n ≥ 1.The semi-discreteGalerkin approximation of the solu-
tions (9a)–(9b) may be defined as a pair of approximations
(uh, γh) ∈ Nh × Mh for which the equalities

(γh, χh )� = (M∇uh,∇χh)�

+ (
F ′(uh), χh

)
�

∀χh ∈ Mh, (14a)

(duh, ψh)� = − (M∇γh,∇ψh)�

+ (dW , ψh)� ∀ψh ∈ Nh, (14b)

hold.

2.2 Full discretization scheme

In this section we apply a fully discretize scheme based the
mild solution of (8). In order to obtain the fully discretized
scheme, we first rewrite the variational formulation of (9) as
follows:

Find (u, γ ) ∈ H1∗ (�) × H1∗ (�) such that

(γ, χ)�

= (M∇u,∇χ)� + (F ′(u), χ)� ∀ χ ∈ H1∗ (�),

(15a)

(u(t), ψ)� − (u0(t), ψ)�

= −
∫ t

0
(M∇γ,∇ψ)�+σ(W (t), ψ)� ∀ ψ ∈ H1∗ (�).

(15b)

The mixed finite element formulation of (15) is defined by
(uh(t), γh(t)) ∈ Nh × Mh such that

(γh, χh)�

= (M∇uh,∇χh)� + (F ′(uh), χh)� ∀ χh ∈ Mh,

(16a)

(uh(t), ψh)� − (u0(t), ψh)�

= −
∫ t

0
(M∇γh,∇ψh)�

+ σ(W (t), ψh)� ∀ ψh ∈ Nh t ∈ (0, T ]. (16b)
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Now we can rewrite (8) in the following abstract evolution
equation

dX(t) +
(
A2X + AF(X)

)
dt = σdW (t) t ∈ (0, T ],

(17)

X(0) = X0, (18)

where A is the negative Neumann Laplacian considered as an
unbounded operator in the Hilbert space H = L2(�), which
is the generator of an analytic semigroup (S(t), t ≥ 0) on H
[33]. The initial value X0 is deterministic and W is a cylin-
drical Wiener process in H (i.e., the spatial derivative of a
space–time white noise) with respect to a filtered probability
space (,F ,P, {Ft }t≥0) defined as

W (t) =
∞∑

j,k=1

μ
1
2
j,k β j,k(t) sin( jπx) sin(kπ y). (19)

Here,
{
β j,k

}
j,k∈N indicates a family of real-valued, identi-

cally distributed independent Brownian motions and{
μ j,k

}
j,k∈N denote the eigenvalues (here, μ j,k = 1 since

W (t) is cylindrical) [34]. Therefore, the Cahn–Hilliard–
Cook equation has a continuous mild solution

X(t) = S(t)X0 +
∫ t

0
AS(t − s)F(X(s)) ds

+ σ

∫ t

0
S(t − s) dW (s), (20)

where t ∈ [0, T ], X : [0, T ] × � → H and S(t) = e−t A2

used as the analytic semigroup generated by −A2. The exis-
tence of the mild solution X was shown in [35]. Considering
‖X0‖L2(�,H) ≤ +∞, for all t ∈ [0, T ] the solution X satis-
fies [31]

‖X(t)‖L2(�,H) ≤ C(T )
(
1 + ‖X0‖L2(�,H)

)
, (21)

where C is a constant which depends on T . Also, for 0 ≤
s < t ≤ T , there exists a constant C(T ) such that the mild
solution satisfies the inequality [31]

‖X(t) − X(s)‖L2(�,H) ≤ C(T )
√
t − s

(
1 + ‖X0‖L2(�,H)

)
.

(22)

In order to estimate the mild solution we use finite ele-
ments for space discretization and the semi-implicit Euler–
Maruyama scheme in time direction. Let us assume that
V� (� ∈ N0) is a nested family of finite element subse-
quences of H with refinement level � > 0 and refinement size
h� (� ∈ N0). Defining the analytic semigroup S� = e−t A2

� ,
for t ∈ T , the semidiscrete problem (20) has the form

X�(t) = e−t A2
� X�(0) +

∫ t

0
A�e

−(t−s)A2
� F(X�(s)) ds

+ σ

∫ t

0
e−(t−s)A2

� dW (s). (23)

For the timedirection,we approximate the timediscretization
with step sizes δtζ = Tr−ζ where r > 1. Therefore, for
ζ ∈ N0, we define the sequence

�ζ :=
{
tζk = Tr−ζ k = δtζ k, k = 0, . . . , r ζ

}
(24)

of equidistant time discretization. In the computational
geometry (�), we estimate the mild solution X , with a finite
element discretization. In other words, we suppose that the
domain can be partitioned into quasi-uniform triangles or
tetrahedra such that sequences {τh�

}∞�=0 of regular meshes
are obtained. For any � ≥ 0, we denote the mesh size of τh�

by

h� := max
K∈τh�

diam K .

Uniform refinement of the mesh can be achieved by regular
subdivision. This results in the mesh sizes

h� := r−�h0, (25)

where h0 denotes the mesh size of the coarsest triangulation
and r > 1 is independent of �.

3 Multilevel Monte Carlo finite element
method

The Monte Carlo method is a simple and efficient compu-
tational technique to solve SPDEs. As already mentioned,
we use Euler–Maruyama to solve the equation on [0, T ]
and the finite element method for the space discretization.
In order to obtain the mean square error (MSE) of ε, we
require δt = O(ε) (for the time discretization). The Monte
Carlo error (statistical error) is O(1/

√
M) (where M is the

number of samples) which yields M−1 = O(ε2). Using a
finite element scheme also gives rise to O(ε−d/α), where α

is the convergence rate of the discretization error. Therefore,
by takingM samples, T /δt time steps and h as themesh size,
we have the following total cost

W = O
(
ε−(2+1+d/α)

)
. (26)

It is obvious that for high dimensional geometries (i.e., d =
2, 3), the computational cost increases noticeably.

Multilevel Monte Carlo finite element method (MLMC-
FEM) is an efficient alternative to theMonte Carlo method to
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decrease the cost. In the time discretization, the general idea
of the technique is using a hierarchy of the time steps, i.e.,
δt� (� ∈ N0) at different levels (instead of a fixed time step).
For the space discretization, we use the mesh refinement (25)
to obtain the mesh size at level � which leads to

h0 > h1 > · · · > hL−1 > hL . (27)

In this section we strive to estimate the expectation of
the mild solution on level L . First, for a given Hilbert space
(H , ‖ · ‖H ) the space, L2(�; H) is defined to be the space
of all measurable functions Y :  → H such that

‖Y‖L p(�;H) = E

[
‖Y‖2H

]1/2
. (28)

For Y ∈ L2(�; H) the standard Monte Carlo estimator
EM [Y] can be defined as

EM [Y] := 1

M

M∑

i=1

Ŷ(i), (29)

where for i = 1, . . . , M , Y(i) indicated a sequence of i.i.d.
copies of Y. Let Y� (� ∈ N0) be a sequence of random
variables such that Y� ∈ V�, we can write YL as

YL = Y0 +
L∑

�=1

(Y� − Y�−1) , (30)

taking expected value of the above equality leads to

E[YL ] = E[Y0] + E

[
L∑

�=1

(Y� − Y�−1)

]

= E[Y0] +
L∑

�=1

E[Y� − Y�−1]. (31)

In order to approximateE[Y� −Y�−1]we can use theMonte
Carlo estimator EM�

[Y� − Y�−1] (i.e., expectation of the
difference ofY� andY�−1)with independent number of sam-
ples M� at level �. Therefore, (31) can be estimated as

EL [YL ] = EM0 [Y0] + EM�

[
L∑

�=1

(Y� − Y�−1)

]

, (32)

In this part,wefirst provide the error bound for the single level
Monte Carlo finite element. Then, using the obtained results,
we achieve the error bound of the multilevel Monte Carlo
considering the principal discretization error, i.e., spatial
discretization (using finite element method), time stepping
errors (due to the Euler–Maruyama technique) and statistical
(sampling) error.

Lemma 1 [29] For any number of samples M ∈ N and for
Y ∈ L2(�; H), the inequality

‖E[Y]−EM [Y]‖L2(�;H)=M−1/2σ [Y]≤M−1/2‖Y‖L2(�;H)

(33)

holds for theMC error, where σ [Y] := ‖E[Y]−Y ‖L2(�;H).

According to Lemma 1 for �, ζ ∈ N0 and t ∈ �ζ , we
have the inequality

∥∥∥E
[
X�,ζ (t)

] − EM
[
X�,ζ (t)

] ∥∥∥
L2(�;H)

≤ 1√
M

‖X�,ζ (t)‖L2(�;H), (34)

where X�,ζ (t) is the discrete mild solution at level � and time
interval ζ . In order to estimate the discretization error which
stems from the spatial discretization and time stepping we
define the following lemma.

Lemma 2 [31] Let X be the solution of (20) and X�,ζ be the
sequence of discrete mild solution (i.e., the solution of (23)).
Then, there is a constant C(T ) such that for all �, ζ ∈ N0,
we have

sup
t∈�ζ

‖X(t) − X�,ζ (t)‖L2(�;H)

≤ C(T )
(
h� +

√
δtζ

) (
1 + ‖X0‖L2(�;H)

)
. (35)

Hence, the total computational error is given by [31]

sup
t∈�ζ

∥∥E [X(t)] − EM
[
X�,ζ (t)

] ∥∥
L2(�;H)

≤ C(T )

(
h� +

√
δtζ + 1√

M

) (
1 + ‖X0‖L2(�;H)

)
.

(36)

In order to prove, we add and subtract the term E[X�,ζ (t)] to
the left side and use the triangle inequality, Lemma 1, Lemma
2 and (34) to obtain the error bound.Nowwe couple the space
and time errors and choose δtζ � h2� (i.e., δtζ = O(h2�) and
O(δtζ ) = h2�). Therefore, the total work W� for the given
spatial discretization level � ∈ N0 is estimated by

W� � h−d
� h−2

� M . (37)

After estimating the error bounds for single level Monte
Carlo, we provide the multilevel Monte Carlo error bounds.
By using ζ = 2� (due to δtζ � h2�), for � ∈ N0 we consider
h� � r−� and define δt� := Tr−2�. Therefore, for the full
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discretization in the multilevel setting, we redefine (24) as

�� :=
{
t�k(�) = Tr−2�k(�) = δt�k(�), k(�) = 0, . . . , r2�

}
,

(38)

and we define the multilevel Monte Carlo estimator

EL [X(t Lk(L))] := EM0 [X0(t
L
k(L))]

+
L∑

�=1

EM�
[X�(t

L
k(L)) − X�−1(t

L
k(L))]. (39)

The computational error is given by

E = sup
t∈�L

∥∥∥E[X(t)] − EL [XL(t)]
∥∥∥
L2(�;H)

. (40)

For fixed L ∈ N and any chosen t Lk(L) ∈ �L , we split the
error into two parts, i.e., discretization error and statistical
error (see Theorem 4.5 in [31]), to obtain

‖E[X(t Lk(L))] − EL [XL(t Lk(L))]‖L2(�;H)

≤ ‖X(t Lk(L)) − XL(t Lk(L))‖L2(�;H)

+ 1√
M0

‖X0(t
L
k(L))‖L2(�;H)

+
L∑

�=1

1√
M�

‖X�(t
L
k(L)) − X�−1(t

L
k(L))‖L2(�;H) (41)

Nowwemake the following convergence assumptions for the
prescribed errors. The below assumption is used to estimate
the convergence rate of the discretization error

‖X(t Lk(L)) − XL(t Lk(L))‖L2(�;H) ≤ C1hα
L . (42)

0.0250.050.10.20.4

h

10-2

10-1

D
is

cr
et

iz
at

io
n 

er
ro

r

E[X(t
k(L)
L )] - E l[X(t

k(L)
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Fig. 1 The discretization error as a function of different mesh sizes
where α = 0.95 as the convergence rate is obtained

Regarding the statistical error, the next assumptions

‖X0(t
L
k(L))‖L2(�;H) ≤ C2, (43)

‖X�(t
L
k(L)) − X�−1(t

L
k(L))‖L2(�;H) ≤ C3h� (44)

are made. Hence, the total error can be estimated as

E ≤ C1h
α
L + C2√

M0
+ C3

L∑

�=1

h�√
M�

. (45)

The total work can be estimated by summing up the work of
each level, i.e.,

W =
L∑

�=0

W� =
L∑

�=0

μ�h
−d
� h−2

� M�. (46)

Table 1 The optimal hierarchies of MLMC-FEM with respect to dif-
ferent prescribed errors

ε h0 r M0 M1 M2 M3 M4

0.100 0.764 1.458 73 50 15 – –

0.050 0.615 1.568 280 138 31 – –

0.020 0.461 1.726 1672 524 85 – –

0.010 0.370 1.856 6474 1445 184 – –

0.005 0.580 1.990 187,700 46,448 4615 459 –

Table 2 The optimal values of MC-FEM with respect to different pre-
scribed errors

ε 0.1 0.05 0.02 0.01 0.005

h 0.108 0.052 0.020 0.010 0.005

M 3 12 73 289 1152

10-2 10-1
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1010
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C
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pu
ta
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l w
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k

MC-FEM

MLMC-FEM

Fig. 2 A comparison between the optimal work of MLMC-FEM and
MC-FEM showing the efficiency of the multilevel technique is pro-
nounced
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Fig. 3 The solution of the stochastic CHC equation at T = 0.1 (top left), T = 0.5 (top right), T = 3 (bottom left) and T = 15 (bottom right)

Nowwedefine an optimization problemwhichminimizes the
computational work (46) such that the error is less or equal
than a given error tolerance (ε). In other words, for estimat-
ing the mild solution on level L , we estimate the optimal
hierarchies of (h�, M�, L)�=L

�=0 such that

minimize
M�,h0,r

f (M�, h0, r , L) :=
L∑

�=0

W�

subject to g(M�, h0, r , L) := C1h
α
L + C2√

M0

+ C3

L∑

�=1

h�√
M�

≤ ε.

(47)

In the problem we have M� > 1, h0 > 0 and r > 1. The
exponent (α) as well as the coefficients (C1, C2, C3) must
be determined analogously. Finally, we should note that for
Monte Carlo method the optimization problem with respect
to (26) can be written as

minimize
M,h

f (M, h) := Mh−(d+1)

subject to g(M, h) := C1h
α + C2√

M
≤ ε,

(48)

where again the optimization problem is over M > 1 and
h > 0.

4 Numerical results

In this section, we present three numerical examples of the
stochastic Cahn–Hilliard–Cook equations where in all cases
the optimal MLMC-FEM is used to obtain the solution. Due
to the fact that the examples are real-world problems, their
exact solutions are not given. The simulations are performed
usingMATLAB 2017b software on an Intel Core i7 machine
with 32GB ofmemory. In all examples, ε = 0.01 is used and
the constant mobility M = 0.25 is applied. For the nonlinear
term (i.e., F ′(u)), we use Newton’s method where several
iterations are needed to reach the stopping tolerance (here
T OL = 1×10−8). In each iteration, the built-in direct solver
is employed to solve the linearized system.

4.1 A 2D example

As the first example, we take u0 = 0.25+ 0.1ω as the initial
condition. The random variable ω is uniformly distributed
between 0 and 1. The computational geometry (�) is a circle
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Fig. 4 The solution of the Cahn–Hilliard equation (σ = 0) at T = 0.1 (top left), T = 0.5 (top right), T = 3 (bottom left) and T = 15 (bottom
right)

with radius r = 2 and zero center point. As the first step, we
try to solve the optimization problems (forMLMC-FEM and
MC-FEM). This will enable us to find the optimal number of
samples andmesh sizes. As explained in Sect. 2.1, we use the
Ciarlet–Raviart mixed finite element with P1 elements. The
estimation of the exponent α is crucial, however, it relates
to the order of polynomials. Due to the fact that the exact
solution of the stochastic equation is not available, we cal-
culate the error between different mesh sizes and h = 0.01
(as the reference solution) at T = 5. Figure 1 depicts α with
respect to different mesh sizes (here uniform refinement).
The simulations show α = 0.952, C1 = 0.51, where the
exponent agrees very well with the order of P1 finite element
technique (linear elements). The rest of the coefficients is
estimated as C2 = 0.066, C3 = 0.223. Now we are ready
to solve the optimization problem (47) with respect to the
aforementioned parameters. In order to solve the optimiza-
tion problem, we apply interior method where the details of
the technique are given in [29]. The optimal hierarchies of
the MLMC-FEM are shown in Table 1.

As the next step, in order to compare the efficiency of
the multilevel setting with the Monte Carlo simulation, we
solve the optimization given in (48). Again, the optimal

mesh size and the optimal number of samples are given
in Table 2 where the same convergence rate (α) is used.
Finally, we draw a comparison between MLMC-FEM and
MC-FEM which is shown in Fig. 2. The results indicate that
the multilevel method costs approximatelyO(ε−3.27) and the
computational work of Monte Carlo sampling is O(ε−5.1).
The comparison indicates noticeably the efficiency of the
MLMC-FEM.

Finally, we compare the evolution of the concentration
E[u(T )] at different times (from T = 0.2 to T = 15) (with
σ = 0.1) where the obtained results are depicted in Fig. 3.
It is shown that from T = 0.2 to T = 1, a slow coarsening
happens. Here, we use ε = 0.05 in the sense that the solution
at the last level (here L = 2) is shown in the figure (see
Table 1 for the optimal mesh size and number of samples).
In order to study the noise effect we solve the deterministic
equation with the same mesh size as illustrated in Fig. 4.

4.2 The 3D examples

Here we choose a more complicated example and use
MLMC-FEM and CR-MFE to obtain the solution (expected
value) of CHC equation in a cubic geometry, i.e., � =
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Fig. 5 A comparison between
different noise intensify
measure, i.e., σ = 0 (top left),
σ = 0.1 (top right), σ = 0.2
(bottom left) and σ = 0.3
(bottom right) at T = 1

[0, 2] × [0, 2] × [0, 2]. The initial condition is

u0(x, y, z) := 0.5 + 0.17 cos(πx) cos(2π y) cos(π z)

+ 0.2 cos(3πx) cos(π y) cos(π z), (49)

where (x, y, z) is a point on the cube. The same procedure for
solving the optimization problem can be used, however, due
to the three-dimensional structure we set d = 3. We should
note that as ζ = 2�, we define the optimal time interval as
δtζ � h2� . First, we consider the effect of the noise intensify
measure in the sense that the deterministic case (σ = 0) is
compared with the stochastic equation (σ = 0.1, 0.2, 0.3).
The results are shown in Fig. 5 at T = 1. Clearly, higher
σ affects the concentration mostly. Similar to the 2D exam-
ple, we consider the effect of time on the concentration. The
results are shown in Fig. 6 for different times from T = 0.1
to T = 10. It illustrates that the initial homogeneous phase
quickly segregates (at T = 0.1), however, after the segrega-
tion the domain starts to slowly coarsen in time.

In the next step, we use the Monte Carlo finite element
method to compare the effect of the number of grids. Here,
two mesh sizes, i.e., h = 0.5 (with 1373 nodes) and h = 0.1
(with 66513 nodes) are employed and the results are shown

in Figs. 7 and 8 for stochastic and deterministic cases, respec-
tively. We solved the CHC equation with σ = 0.15 and
compared its solution with the deterministic case (σ = 0)
at time T = 5. It shows that the mesh size does not consid-
erably affect the solution.

Finally, we consider the second 3D example (a torus). The
first comparison is regarding the evolution of the concentra-
tion which is illustrated in Fig. 9 where in the simulations
σ = 0.1 is used. In the second case, we study the effect of
different noise measures from deterministic case to stochas-
tic case with σ = 0.5 at T = 1. Here, the results are shown in
Fig. 10. The simulations point out that the effect of σ = 0.4
and σ = 0.5 on the concentrations are more tangible.

5 Conclusions

In this paper, we considered the Cahn–Hilliard and Cahn–
Hilliard–Cookequations as forth-order time-dependent equa-
tions. As the first step, after defining an auxiliary variable,
we converted the equation into a system of second-order
time-dependent problems. Then, we presented a variational
formulation for the system and used the Ciarlet–Raviart
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Fig. 6 The expected value of
the solution of CHC equation at
T = 0.1 (top left), T = 0.4 (top
right), T = 2 (bottom left) and
T = 10 (bottom right). Here,
h = 0.2 and σ = 0.1

Fig. 7 A comparison between
two mesh sizes h = 0.5 (left)
and h = 0.1 (right) at T = 5 for
the stochastic
Cahn–Hilliard–Cook equation

mixed finite element method. Afterwards, we rewrote the
equation as a stochastic ODE in order to estimate its mild
solution u(t).

We have already shown that for the stochastic time-
dependent problems, the computational cost of the Monte
Carlo finite elementmethod isO(ε−(2+1+d/α)). Applying the
multilevel technique for this problem reduces noticeably the
computational costs. In a two-dimensional problem, the opti-

mal hierarchies
(
h�, r�, M�, δt�

)�=L
�=0 reduce the complexity

to O(ε−3.27) as certified in numerical example.
We showed three numerical examples with two specific

initial conditions. We estimated the solution of stochas-
tic/deterministic Cahn–Hilliard equation for different time
intervals. As a result, we demonstrated distinctive coarsen-
ing and phase separation. For the stochastic equation, we
studied the effect of noise measure, for showing that more σ

intensifies the noisy concentration.
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Fig. 8 A comparison between
two mesh sizes, i.e., h = 0.5
(left) and h = 0.1 (right) at
T = 5 for the deterministic
Cahn–Hilliard equation

Fig. 9 The evolution of the
solution of the times T = 0.1
(top left), T = 0.5 (top right),
T = 3 (bottom left) and T = 20
(bottom right)
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Fig. 10 A comparison between
different noise intensify
measure, i.e., σ = 0 (top left),
σ = 0.1 (top right), σ = 0.2
(middle left) and σ = 0.3
(middle right), σ = 0.4 (bottom
left) and σ = 0.5 (bottom right)
at T = 1
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