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Abstract: Silicon nanowire field-effect transistors are promising devices used to detect minute
amounts of different biological species. We introduce the theoretical and computational aspects of
forward and backward modeling of biosensitive sensors. Firstly, we introduce a forward system of
partial differential equations to model the electrical behavior, and secondly, a backward Bayesian
Markov-chain Monte-Carlo method is used to identify the unknown parameters such as the concen-
tration of target molecules. Furthermore, we introduce a machine learning algorithm according to
multilayer feed-forward neural networks. The trained model makes it possible to predict the sensor
behavior based on the given parameters.

Keywords: field-effect sensors; biosensors; charge transport; neural networks; Bayesian inversion;
inverse modeling

1. Introduction

Silicon nanowire (SiNW) field-effect transistors (FETs) are typically used to detect
proteins [1], cancer cells [2], DNA and miRNA strands [3,4], enzymes [5], and toxic gases
such as carbon monoxide [6,7]. The sensors have several advantages including fast re-
sponse, very high sensitivity, and low power consumption; they do not need labeling
and can be used to detect subpicomolar concentrations of biological species [8–13]. The
functioning of the sensors is based on the field effect due to the (partial) charges of the
target molecules. When they are selectively bound to probe molecules and close enough to
the semiconducting transducer, they affect the charge concentration inside the nanowire,
which changes the current through the nanowire.

Using mathematical models based on partial differential equations (PDEs) enables us
to model physically relevant quantities such as electrostatic potential, electron and hole
current density, device sensitivity to the target molecule and signal-to-noise ratio [14–18].
The three-dimensional simulations give rise to more reliable models compared to two-
dimensional cross-sections, since all target molecules bound to bio-receptors will be in-
cluded [19,20]. We couple a charge transport model (the drift-diffusion equations) and the
nonlinear Poisson–Boltzmann equation (PBE) for fully self-consistent simulations. The sys-
tem of equations is a comprehensive model to compute the electrical current and study
the nonlinear effects of different semiconductor parameters (e.g., doping concentration)
and device parameters such as nanowire type (radial, trapezoidal, radial, or rectangular),
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its dimensions, contact voltages, and insulator thickness on device performance (output
and sensitivity).

Having an accurate model enables the rational design of field-effect sensors. However,
in the model equations, there are several material parameters that cannot be (easily) mea-
sured. The surface charge density of the insulator has an essential effect on the device and
also affects the probe and target molecules. The doping concentration has a crucial effect
on the device and the model. Due to the nonlinear effect of these parameters, an efficient
parameter estimation framework will enhance the accuracy and reliability of the model.

Markov-chain Monte-Carlo (MCMC) techniques are among the most efficient proba-
bilistic methods to extract information by comparison between measurements and simu-
lations by updating available prior knowledge and estimating the posterior densities of
unknown quantities of interest. Here, we use a forward model, and a backward, inverse
setting is used to determined the unknown parameters using the experiments. The classical
algorithm was introduced in 1970 and is called the Metropolis–Hastings (MH) algorithm [21].
There are several improvements in the algorithm, e.g., adaptive-proposal Metropolis [22],
delayed-rejection Metropolis [23], and delayed rejection adaptive Metropolis (DRAM) [24],
as well as using ensemble Kalman filters [25]. In all techniques, different candidates are
proposed based on a proposal distribution, and the algorithm decides whether they are
rejected or accepted. A review of the MCMC methods is given in [26]. For SiNW-FETs,
the DRAM algorithm has been used to identify the doping concentration and the amount
of target molecules [14]. Considering the selective functionalization of SiNW, the authors
of [1] used the MH algorithm to estimate the probe-target density at the surface.

Neural networks (also known as artificial neural networks (ANNs)) as the subset of
machine learning are frameworks to analyze the available data and discover patterns that
can not be observed independently. The ANNs have been inspired by the human brain
and are suitable for complicated and nonlinear cases. Here, we split the prior data into two
categories, namely training and testing data. The training set (between 60% and 80%) is
used to extract useful information from the data, and the test set (between 20% and 40%) is
employed to monitor the algorithm performance. In SiNW-FETs, there are a large amount
of simulation and experimental data concerning different input (physical, chemical, and de-
vice) parameters that should be analyzed to ensure their accuracy and reliability. Of course,
this process is time consuming and reduces the efficiency. Furthermore, the sensors are
developed to detect specific biological species with the highest sensitivity. In the design
process, using neural networks enables us to optimize the design parameters to enhance
the sensor performance [27–32].

This article is structured as follows. In Section 2, we present the model equations and
explain how the electrical current is computed. In Section 3, we discuss the parameter
estimation methods and explain how MCMC can be used to determine the unknown
parameters. In Section 4, we introduce the developed neural networks algorithm for SiNW-
FETs. In Section 5, we first verify the model response with the experimental data; then,
Bayesian inversion is used to identify the material parameters. Afterward, the developed
machine-learning algorithm is employed in training and testing. Finally, the conclusions
are summarized in Section 6.

2. The Model Equations

The drift–diffusion–Poisson system is used to describe the electrochemical interactions
(Poisson–Boltzmann equation) and the charge transport (drift–diffusion equations) in field-
effect sensors. The convex and bounded domain Ω ⊂ R3 consists of four subdomains,
namely the insulator (SiO2, ΩSi), the silicon substrate and transducer (ΩSi), the aqueous
solution (Ωliq), and the charged molecules (Ωmol). To model the potential interactions, we
use the Poisson–Boltzmann equation
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−∇ · (A(x)∇V(x)) =


q(Cdop(x) + p(x)− n(x)) in ΩSi,
0 in Ωox,
ρ(x) in ΩM,
−2ϕ(x) sinh(β(V(x)−ΦF)) in Ωliq,

(1)

where A indicates the dielectric constant, which is a function of the material, V is the electro-
static potential, Cdop is the doping concentration, ρ is the surface charge of the molecules, φF
denotes the Fermi level, and ϕ is the ionic concentration. Regarding the electrical constants,
we use the relative values ASi = 11.7, Aox = 3.9, AM = 3.7, and Aliq = 78.4. Considering
the Boltzmann constant kB, the temperature T and the elementary charge q, we define
β = q/(kB T). In the simulations, a thermal voltage of 0.021 V will be used.

A two-dimensional cross-section of the device is given in Figure 1.

Figure 1. A schematic cross-section of a SiNW-FET depicting the subdomains, i.e., the transducer ΩSi,
SiO2 insulator (Ωox), the aqueous solution Ωliq, the binding of the target molecules to the immobilized
receptor molecules (Ωmol), and the boundary conditions.

At the interface between the insulator and the liquid (i.e., Γ := Ωox ∩Ωliq), we impose
the interface conditions

A(0+)(V(0+, y, z)−V(0−, y, z)) = α(y, z) on Γ, (2a)

A(0+)∂xV(0+, y, z)− A(0−)∂xV(0−, y, z) = γ(y, z) on Γ (2b)

for VI . Here, 0+ and 0− denote the limit at the interface on the side of liquid and insulator.
Furthermore, α is macroscopic dipole moment density, and γ is the macroscopic surface-
charge density.

In ΩSi, we solve the drift–diffusion system

−∇ · (A∇V) = q(p(x)− n(x) + Cdop(x)), (3a)

∇ · Jn = qR(n, p), (3b)

∇ · Jp = −qR(n, p), (3c)

Jn = q(Dn∇n− µnn∇V), (3d)

Jp = q(−Dp∇p− µp p∇V) (3e)
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to model the charges in the transistor, where Dn and Dp are the electron and hole diffusion
coefficients. The concentrations of electrons and holes are given by

p =: ni exp
(

q
KBT

(Φ1 −V)

)
, n =: ni exp

(
−q

KBT
(Φ2 −V)

)
, (4)

where ni is the intrinsic carrier density and Φ1 and Φ1 are the Fermi levels. In order to com-
pute the electron and hole current densities, we use the Shockley–Read–Hall recombination
rate, i.e.,

R(n, p) :=
np− n2

i
τn(p + ni) + τp(n + ni)

,

where τn and τp denote the lifetimes of the electrons and holes.
For solving the nonlinear system of equations, we use the Scharfetter–Gummel itera-

tion. For this, we write the concentrations n and p in terms of the two Slotboom variables u
and v as

n(x, ω) =: nieV(x,ω)/UT u(x, ω), (5a)

p(x, ω) =: nie−V(x,ω)/UT v(x, ω). (5b)

Therefore, the model problem (3) can be rewritten as

−∇ · (A(x)∇V(x)) = q
(

Cdop(x)− ni

(
eV(x)/UT u(x)− e−V(x)/UT v(x)

))
, (6a)

UTni∇ · (µneV/UT∇u(x)) = R(x), (6b)

UTni∇ · (µpe−V/UT∇v(x)) = R(x), (6c)

where UT is the thermal voltage and the Shockley–Read–Hall recombination rate takes
the form

RSRH(x) = ni
u(x)v(x)− 1

τp(eV/UT u(x) + 1) + τn(e−V/UT v(x) + 1)
.

At the ohmic contacts (backgate, source, and drain) and the solution gate, we have a
Dirichlet boundary condition V∂Ω = VD consisting of

V|∂ΩG = Vg V|∂ΩS = VS V|∂ΩD = VD V|∂Ωsol
= Vsolution. (7)

At the source and drain contacts (on ∂ΩSi), we apply

u(x) = uD(x), v(x) = vD(x). (8)

For the remaining part of the domain, we impose a zero Neumann boundary condition to
guarantee the self-isolation. We refer the interested reader to [15,19,33,34] for theoretical
discussions about the model including the Slotboom variables. The existence and unique-
ness of the solutions for deterministic and stochastic model problems are given in [15,35].
Finally, the computation of Jn and Jp enables us to calculate the electrical current as

I :=
∫ (

Jn + Jp
)

dx, (9)

where we take the integral on a cross-section of the transducing part.
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In this work, we use the finite element method (FEM) to solve the coupled system of
equations. We define the spaces

X1 =
{

V ∈ H1(Ω) | V|∂Ω = VD , V|Γ = VI

}
, (10a)

X2 =
{

u ∈ H1(ΩSi) | u|∂ΩSi = uD

}
, (10b)

X3 =
{

v ∈ H1(ΩSi) | v|∂ΩSi = vD

}
. (10c)

Therefore, we define the continuous solution space X := X1 × X2 × X3 for the DDP system.
Regarding the space discretization, we assume Th = {T1, T2, . . . , Tn} denotes a quasi-
uniform mesh defined on Ωh ≈ Ω with mesh width h := maxTj∈Th diam(Tj). We define

S1
V(Th) := {V ∈ H1(Ω) | V|T ∈ P1(T) ∀T ∈ Th},
S1

u(Th) := {u ∈ H1(Ω) | u|T ∈ P1(T) ∀T ∈ Th},
S1

v (Th) := {v ∈ H1(Ω) | v|T ∈ P1(T) ∀T ∈ Th},

where P1 is the space of first-order polynomials. Then, we have

X1
h :=

{
Vh ∈ S1

V(Th) | Vh|∂Ω = VD , Vh|Γ = VI

}
, (11a)

X2
h :=

{
uh ∈ S1

u(Th) | uh|∂ΩSi = uD

}
, (11b)

X3
h :=

{
vh ∈ S1

v (Th) | vh|∂ΩSi = vD

}
. (11c)

The discrete solution is defined as Xh := X1
h × X2

h × X3
h, which is a subset of X. The weak

form of the model equations can be found in [15,33]. The a prior and a posterior estimations
are proved in [33]. More theoretical works regarding the finite elements analysis are given
in [36–38].

3. Parameter Estimation Based on Bayesian Inference

In different experimental situations, an accurate estimation of the effective parameters
and constants cannot be easily estimated. Bayesian inversion techniques based on Markov
chain Monte Carlo methods are efficient and straightforward probabilistic techniques to
estimate these unknowns. We initiate the algorithm using the available information, named
prior knowledge (which may not be sufficiently accurate), and during several iterations, we
can update the information and provide more reliable data (i.e., the posterior density). Then,
we can extract valuable information from the posterior density, and its mean/median can
be used as the solution of the interference. A very strong agreement with the experimental
values and the model response can be achieved. We start a statistical model

M = P(x, χ) + ε, (12)

where M is the experimental observation (normally n− dimensional), while P is the
solution of the model problem which depends on the set of parameters χ (i.e., χ =
(χ1, χ2, . . . , χk) and the Cartesian coordinates x. Here, ε is the measurement error, and
we assume that it is normally distributed, i.e., ε ∼ N (0, σ2 I), including the parameter σ2.
Having an experimental observation, for instance electrical current (i.e.,M = obs), we
define the probability function

π(obs) =
∫
Rn

π(obs|χ)π0(χ)dχ. (13)
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Our aim is to estimate the posterior density π(χ|m), considering the measured observation
m and the available prior information. For this, we compute the likelihood function

π(M|χ) = L(χ, σ2|M) =
1

(2πσ2)n/2 exp
(
−MP/2σ2

)
(14)

where

MP =
n

∑
j=1

[Mj −Pj(x, χ)]2 (15)

is the sum of square errors. Obviously, if the model response with respect to the (set of)
parameters χ will be closer to the measured value, the square error (15) will converge to
zero, and its relative probability (computed by the likelihood function) will converge to 1.
Inaccurate estimation of χ will increase the error term, and the probability will converge
to zero.

In the Metropolis algorithm, we initiate the process using an initial guess χ0 based on
the prior density. According to the proposal distribution, a new candidate χ? is proposed.
We compute the acceptance rate by

λ(χj−1, χ?) = min
(

1,
π(χ?)

π(χj−1)

)
. (16)

If the new candidate χ? is accepted, we continue the MCMC chain with that; otherwise,
(χj−1 has a higher probability concerning χ?), we follow the chain with the previous
candidate. Using a non-symmetric proposal density is a generalization of the Metropolis
algorithm, introduced by Hastings [21], where the probability of the forward jump is not
equal to the backward one. A summary of the algorithm is given in Algorithm 1.

Algorithm 1 The Metropolis–Hastings algorithm.

Initialization: Start the process with the initial guess χ0 and number of samples N.
while j < N

1. Propose a new sample according to the proposal density χ∗ ∼ T (χ∗| χj−1).

2. Compute the acceptance/rejection ratio

ζ(χ∗| θ j−1) = min

(
1,

π(χ∗|m)

π(χj−1|m)

T (χj−1| χ∗)
T (χ∗| χj−1))

)
.

3. SampleR ∼ Uniform (0, 1).

4. if R < ζ then

accept χ∗ and set χj := χ∗

else

reject χ∗ and set χj := χj−1

end if

5. Set j = j + 1.

The Metropolis–Hastings algorithm is a simple and versatile technique and has been
widely used for several problems in applied science. However, for the high-dimensional
cases (different parameters should be inferred simultaneously), the algorithm does not
work appropriately, since the rejection rate increases significantly. To improve its computa-
tional drawbacks, different improvements, such as the adaptive Metropolis algorithm [22],
delayed rejection Metropolis [23], and their combination, namely delayed rejection adaptive
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Metropolis (DRAM) [24]. We refer the interested readers to [26] as a review paper about
the methods.

Mcmc with Ensemble-Kalman Filter (EnKF-MCMC)

In EnKF-MCM [25], we use a Kalman gain employing the mean and the covariance of
the prior distribution and the cross-covariance between parameters and observations. It
will be used to compute the proposal distribution and make the convergence to the target
density faster. Here, the new candidate is computed as the jump of the Kalman-inspired
proposal ∆χ as

χ? = θ j−1 + ∆χ. (17)

In order to update the candidates, we compute ∆χ by

∆χ = K
(

yj−1 + sj−1
)

, (18)

where K denotes the so-called Kalman gain,

K = CχM(CMM +R)−1. (19)

Here, CθM indicates the covariance matrix between the identified unknowns and model
response, CMM points out the covariance matrix of the model response, and R denotes
the measurement noise covariance matrix [39]. In addition, yj−1 is the residual of the
proposed values concerning the model and sj−1 ∼ N (0,R) relates to the density of
measurement. A summary of the relative algorithm is given in Algorithm 2. Finally,
Figure 2 shows the implementation of EnKF-MCMC and Schafetter–Gummel iteration for
parameter estimation and solving the model equations.

Start with    

Compute the 
Kalman gain

Compute   
solve the PBE

to get V k

solve (6b) 

to get uk

solve (6c) 

to get v k

check 
 convergence

k=k+1

Scharfetter-Gummel iteration

compute the 
acceptance rate   ζ

if       R<ζ

χ0

χ

   
χ j−1 χ j

   χ χ j*

no

yes

no yes

j=j+1

*

Figure 2. Bayesian inversion using EnKF-MCMC to identify the unknown material parameters,
where the Scharfetter–Gummel iteration is used to solved the coupled system of equations.
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Algorithm 2 Bayesian inference using EnKF-MCMC

Initialization (j = 0): Start the process with the initial guess χ0 and number of samples N.
while j < N

1. Estimate the model response with respect to χj−1

2. Compute the Kalman gain K = CχM(CMM +R)−1

3. Produce the new proposal using the shift χ? = χj−1 +K
(
yj−1 + sj−1)

4. Accepted/rejected χ?

5. Set j = j + 1.

4. Multilayer Feed-Forward Neural Networks

Neural networks are efficient, flexible, and robust simulation tools specifically for
nonlinear and complicated problems. They consist of three effective components, including
neurons, structures, and weights, which all affect the response and behavior of the network.
Artificial neural networks (ANNs) are supervised machine learning algorithms consisting of
neurons and hidden layers. The input data are processed into the hidden layers, the output
is compared with the target trajectory, and the relative error is computed. The neural
networks strive to minimize this error.

Typically, there are two common classes of neural networks, namely feed-forward
neural networks (single or multilayers) and recurrent dynamics neural networks. Single-
layer neural networks [40] have less complexity; however, they are more suitable for linear
problems. In multilayer feed-forward neural networks (MFNNs) [41,42], more than one
layer of the artificial neurons will be used to enhance the capability to learn nonlinear
patterns, which is more appropriate for BIO-FETs. In MFNNs, the neurons are organized in
different non-recurrent layers, where in the first layer, we have the input vector (here are the
parameters of the sensor), and the output is given to the first hidden layer. After the data
processing, the data are transferred to the next layers using the weights; the procedure
is followed until the latest MFNNs layer. These networks are also named multilayer
perceptrons, and their structure is shown in Figure 3.

Figure 3. The structure of multilayer feed-forward neural networks (MFNNs).
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Let us assume d denotes the desired trajectory (i.e., the device output); for M-layer
neural networks, we have

∇ws
j (k)

(ns−1)×1

= ηs ∂E
∂ws

j
(k) = −ηsδs

i (k)∇ws
j (k)

(ns−1)×1

= −ηses
j (k) f s′

j

(
nets

j (k)
)

xs−1

(ns−1)×1
s = 1, 2, . . . , M, j = 1, 2, . . . , ns, (20)

δs
j (k) := − ∂E

∂nets
j
(k) = es

j (k) f s′
j

(
nets

j (k)
)

, (21)

es
j (k) =

ns+1

∑
l=1

δs+1
j (k)ws+1

l j (k), (22)

where w is the weights, η is the training rate, E is the network mean square error (MSE),
δ is the sensitivity function (here, δs indicates the network error in the jth layer), nets is the
weighted input, ns is the number of neurons in the sth layer, x0 is the network input, xs−1

is the output of the s− 1th layer, and it is also the input of the sth layer. We also have the
following initial conditions for the recurrent process

δM
j (k) = eM

j (k) f M′
j

(
netM

j (k)
)

, (23)

eM
j (k)) , dj(k)−OM

j (k). (24)

Figure 4 shows the jth neuron in the ith layer in the learning algorithm. In the recurrent
process, in order to adjust the weights from the first layer, we follow as

δs
li (k) = −

∂E(k)
∂nets

li

nM

∑
lm=1

nM−1

∑
lm−1=1

· · ·
ni+2

∑
li+2=1

ni+1

∑
li+1=1

∂E
∂nets

lm

∂nets
lm

∂nets−1
lm−1

· · ·
∂nets+2

li+2

∂nets+1
li+1

∂nets+1
li+1

∂nets
li

(k) (25)

For i = 1, 2, . . . , M− 1 and s = 1, 2, . . . , M, the relation nets
li

and nets+1
li+1

takes

nets+1
li+1

(k) =
ni

∑
p=1

ws+1
li+1 p(k) f s

p

(
nets

p(k)
)

, (26)

therefore

∂nets+1
l

∂nets
li

(k) = ws+1
li+1li

(k) f s′
li

(
nets′

li (k)
)

. (27)

So, we can write δs
li

as

δs
li (k) =

(
ni+1

∑
l=1

δs+1
l (k)ws+1

l li
(k)

)
f s′
li

(
nets

li (k)
)
= es

li (k) f s′
li

(
nets

li (k)
)

, (28)

where

es
li (k) =

ni+1

∑
l=1

δs+1
l (k)ws+1

l li
(k). (29)

The gradient of E (the difference between desired trajectory and the neural networks’s
output) with respect to the weight vector is given by

∂E
∂ws

li

(k) =
n

∑
l=1

∂E
∂nets

li

(k)
∂nets

li
∂ws

li

(k), (30)
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where the second term depends only on the neurons features and takes

∂nets
l

∂ws
li

(k) =


xs−1(k) l = li,

0 otherwise,
(31)

∂E
∂ws

li

(k) = −δs
li (k)xs−1(k). (32)

Using the back-propagation error algorithm enables us to adjust the weight functions in
order to minimize the network error. This training process is also named the supervised
learning algorithm.

Figure 4. The back-propagation algorithm for the adjustment of neuron weights.

5. Numerical Experiments

As we already mentioned, the DDP system is a roust and reliable system of equations
to model the electrical behavior of the FET devices. We use a prostate-specific antigen
(PSA) sensitive sensor which is used to diagnose prostate cancer. For the simulations, we
use a sensor device with the nanowire length of 1000 nm, width of 100 nm and height of
50 nm, which is coated with SiO2 with 8 nm thickness. We use the P1 finite element to
solve the model problem, and tetrahedral meshes are employed to discretize the domain.
A schematic of the bio-FET including dimensions using 6622 nodes and 45,735 tetrahedra
is shown in Figure 5. The sensor is developed for the detection of 2ZCH (https://www.
rcsb.org/structure/2ZCH). The PROPKA algorithm predicts the pKa values of ionizable
groups in proteins and protein–ligand complexes based on the 3D structure. The values
are the basis for understanding the pH-dependent characteristics of proteins and catalytic
mechanisms of many enzymes [43]. To compute the net charge, we performed a PROPKA

https://www.rcsb.org/structure/2ZCH
https://www.rcsb.org/structure/2ZCH
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algorithm [44–46] to detect the net charge for different pH values. The simulations are
completed using a pH value of 9, giving rise to the net charge of −15 q [14]. In field-effect
sensors, surface reactions at the oxide surface depending on the pH value and the binding
of charged target molecules result in changes in the charge concentration at and near the
surface, and subsequently in changes in the electrostatic potential, which then modulates
the current through the transducer. Since the molecules are negatively charged, the binding
of the target molecules to the bio-receptors will enhance the charge conductance and
increase the response of the sensor (i.e., the electrical current).

The system of equations is capable of modeling the surface charges at the surface. In a
previous work, we developed a Monte-Carlo approach to simulate the charges around a
charged biomolecule at a charged surface [47]. Furthermore, in [48], a nonlinear Poisson
model was used to calculate the free energies of various molecule orientations in depen-
dence of the surface charge. Based on the free energies, the probabilities of the orientations
were calculated, and hence, the biological noise was simulated.

8 10050 50

1000
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0
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Figure 5. A 3D schematic of the sensor device including the dimensions and tetrahedral meshes for
the discretization. All values are in nanometers.

5.1. Model Verification

As the first step, we verify the model accuracy with the experiments. We compute
the electrical current I with respect to different gate voltages VG where the source-to-drain
voltage VSD = 0.2 V, doping concentration Cdop = 1× 1016 cm−3, and the thermal voltage
UT = 0.021 V. The experimental data are taken form [20]. In order to solve the nonlinear
coupled system of equations, a Scharfetter–Gummel-type iteration is used. Figure 6 shows
the current as a function gate voltage varying between VG = −1 V and VG = −3.5 V for
experimental and simulation values. These results indicate that the DDP system is reliable
and will be used for the next simulations.
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Figure 6. A comparison between the experimental [20] and simulation current.

5.2. Bayesian Inversion

The molecules are negatively charged (here, −15 q is used); however, an accurate
estimation of the molecule charge density will be necessary. In semiconductor devices,
in order to enhance the conductivity, impurity atoms are added to the silicon lattice, namely
the doping process. Higher doping concentration will improve the transistor conductivity;
however, the device will be less sensitive to the charged molecules. Physically, doping
concentration (as a macroscopic quantity) denotes the average amount of the dopants. We
implemented a delayed rejection adaptive Metropolis (DRAM) [14] and the Metropolis–
Hastings algorithm [1] to infer doping concentration, molecule charge density, and probe–
target density. The efficiency of the EnKF-MCMC compared to these algorithms is studied
in [26]. Therefore, we employ the Kalman filter for the proposal adaptation. We performed
the MCMC algorithm with N = 10,000 iterations, and a uniform prior density is used.
The computational aspects are summarized in Table 1.

The back-propagation error is an efficient algorithm for the training of neural networks
where we compute the gradient of the loss function with respect to the weights of the network.

Table 1. The computational features and the results of the Bayesian inversion.

Parameter Min Max EnKF (Median) True Values Acceptance Rate

Cdop (cm3) 1 × 1015 5 × 1016 9.4 × 1015 1 × 1016 91%
ρ (q/nm2) −5 1 −1.55 −1.5 86%

Employing a footprint of 10 nm for the molecules [20,49] gives rise to a surface charge
of −1.5 q/nm2. In the experiments, a doping concentration of 1× 1016 is used in the
transducer (both values are selected as the true values). The posterior densities are shown
in Figure 7. As expected, the posterior densities are around the true values. Regarding the
surface charge, we have a normal distribution, and the charge cannot be positive (which is
reasonable due to using P-type FET). For the doping concentration, the distribution points
out that for Cdop more than 2× 1016, the sensitivity will reduce significantly, and almost all
of the candidates are rejected.
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Figure 7. The posterior density of doping concentration (left) and surface charge density (right)
using EnKF-MCMC. The units are Cdop (cm3) and ρ (q/nm2).

5.3. Machine Learning Based on MFNNs

In this section, we employ MFNNs to train the machine according to available in-
formation from the sensors. The effective physical/geometrical parameters will have a
nonlinear effect on the device output. For instance, for a doping concentration of more than
Cdop = 2× 1016, the current will increase sharply, which is compatible with the results in
Bayesian inversion (Figure 7). Due to this nonlinear behavior, the MFNNs algorithm is
chosen to monitor the data accuracy and reliability and predict the sensor behavior.

More hidden layers will facilitate the convergence to the desired trajectory; however,
it will increase dramatically the computational costs (e.g., computational time). In this
work, we use two hidden layers for the MFNNs algorithm to strike a balance between
complexity and efficiency. The procedure is shown in Figure 8. We define five specific
scenarios according to the number of inputs. In Case 1, we only have one input (Vg) varying
between −1 V and −5 V, where other parameters including insulator thickness, nanowire
width (NW), doping concentration, and nanowire height (NH) are constant. In Case 5, we
have five inputs, and the output is the calculated electrical current. Table 2 shows the range
of the parameters used for different cases.

Figure 8. The structure of the MFNNs algorithm.
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Table 2. The range of parameters used to compute the electrical current in different cases.

Cases Inputs Vg [V] SiO2 [nm] NW [nm] Cdop [cm3] NH [nm]

Case 1 1 U (−1,−5) 8 100 1× 1016 50
Case 2 2 U (−1,−5) U (5, 15) 100 1× 1016 50
Case 3 3 U (−1,−5) U (5, 15) U (80, 120) 1× 1016 50
Case 4 4 U (−1,−5) U (5, 15) U (80, 120) U (1× 1015, 5× 1016) 50
Case 5 5 U (−1,−5) U (5, 15) U (80, 120) U (1× 1015, 5× 1016) U (40, 60)

The MFNNs algorithm is trained with two learning rates (i.e., η = 0.1 and η = 0.2) and
different numbers of epochs. Here, we use 75% of the samples for data training and 25%
of the samples for data testing. The numbers of epochs and neurons in the 1st and 2nd
hidden layers are given in Table 3. The sigmoid function is used as an activation function
in hidden and output layers. In order to verify the efficiency/accuracy of the MFNNs
structure algorithm, for different cases, we compare the output of the machine learning
algorithm with the desired trajectories (computed currents). We have the relative MSE for
the test and training process and performed a linear regression test to explain the relation
between the targets and MFNNs output. Figures 9 and 10 show the results for Cases 1–5,
where in all cases, there is a good agreement between the machine learning output and the
sensor data.

Figure 9. Cont.
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Figure 9. The performance of MFNNs algorithm for Case 1 (a), Case 2 (b), and Case 3 (c). In the first
column, the desired trajectories (shown in blue) are compared with the MFNN output (shown in red).
In the second column, we have the relative MSE, and the regression test is given in the third column.

Figure 10. The performance of the MFNNs algorithm for Case 4 (a) and Case 5 (b). In the first column,
the desired trajectories (shown in blue) are compared with the MFNN output (shown in red). In the
second column, we have the relative MSE, and the regression test is given in the third column.
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Table 3. The features of the MFNNs algorithm including the MSE of training and test processes.

Case No. Neurons in
1st Hidden Layer

No. Neurons in 2nd
Hidden Layer MSE-Train MSE-Test No. Epochs η

1 10 4 0.00057 0.00061 1000 0.1
2 20 7 0.00147 0.00184 2000 0.2
3 20 7 0.00181 0.000836 4 000 0.2
4 20 7 0.000842 0.000517 8 000 0.2
5 20 7 0.0011 0.000058 10 000 0.2

6. Conclusions

In this work, we introduced a computational framework for modeling charge transport
and electrostatic potential distribution in SiNW-FETs in order to enable the rational design
of this sensor technology. The PDE-based model has been verified with the experimental
data and showed its accuracy. Bayesian inversion can be used to determine quantities of
interest such as molecule concentrations, surface charges, and doping concentrations.

Our approach and results can be extended to different types of sensors including plasma
resonance-based biosensors, fluorescence-based sensors, and electrochemiluminescence-based
biosensors that are used to detect biomarkers.

Finally, machine learning algorithms based on MFNNs have been developed for
SiNW-FETs. Here, we use two hidden layers to deal with the nonlinear behavior of the
current (with respect to the input parameters), where the method shows its computational
efficiency. We used 75% of the data to train the machine and the remaining 25% for testing.
In both cases, the obtained MSE shows the convergence to the desired trajectory. The results
indicate that MFNNs are a suitable machine learning algorithm for SiNW-FETs and can be
used to predict the sensor output behavior as a compact model.
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