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Abstract
Nanowire field-effect sensors have recently been developed for label-free detection of biomolecules. In this work, we intro-
duce a computational technique based on Bayesian estimation to determine the physical parameters of the sensor and, more 
importantly, the properties of the analyte molecules. To that end, we first propose a PDE-based model to simulate the device 
charge transport and electrochemical behavior. Then, the adaptive Metropolis algorithm with delayed rejection is applied 
to estimate the posterior distribution of unknown parameters, namely molecule charge density, molecule density, doping 
concentration, and electron and hole mobilities. We determine the device and molecules properties simultaneously, and we 
also calculate the molecule density as the only parameter after having determined the device parameters. This approach 
makes it possible not only to determine unknown parameters, but it also shows how well each parameter can be determined 
by yielding the probability density function (pdf).

Keywords Silicon nanowire sensors · Markov chain Monte Carlo · Adaptive Metropolis–Hastings algorithm · Stochastic 
drift–diffusion–Poisson–Boltzmann system

1 Introduction

Silicon nanowire sensors (SiNW) [1, 2] (see Fig. 1) are 
promising devices used to detect the presence or concen-
tration of different biological species, such as cancer cells 
[3], DNA and miRNA molecules [4, 5], and proteins [6]. 
The sensors are being developed for the early detection 
of cardiovascular diseases [7], prostate cancer [8], breast 
cancer [9], gastric cancer [10], flu [11], and uric acid in 
human blood [12]. In the sensors, the target molecules such 
as biomarkers bind selectively to the recognition elements, 

e.g., antibodies or aptamers. The semiconductor transducer 
converts the potential change due to the analyte molecules 
into a measurable electrical signal, i.e., a current or voltage 
change [13]. The biosensors are interesting candidates for 
biomarker detection since the sensors are reliable, label-free, 
inexpensive, highly sensitive, and have short operation time 
[14, 15].

The binding of target molecules to the receptors changes 
the charge concentration, which modulates the transducer. 
The drift–diffusion–Poisson–Boltzmann (DDPB) system is 
a comprehensive set of equations to model the device. The 
Poisson–Boltzmann equation enables us to calculate the 
charge concentrations around biomolecules and the effect 
of the charged target molecules on the nanowire, while the 
drift–diffusion equations as a transport equation (see, e.g., 
[16]) model the charge transport of the carriers through the 
nanowire [17]. In the biosensors, there are many sources 
of noises, e.g., random movement and binding of the target 
molecules [14, 18]. There are also random dopant fluctua-
tions (RDF) [19]. The stochastic version of the equation sys-
tem can be used to investigate these effects. Also, existence 
and uniqueness theorems for the stochastic equations are 
given in [19].

For solving the stochastic DDPB system, effi-
cient numerical methods are finite elements (for space 
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discretization) and the Monte Carlo technique (for the 
stochastic dimensions). In [19, 20], the authors developed 
a multilevel Monte Carlo finite element method (MLMC-
FEM) to solve the equation with little computational 
effort. A further complexity reduction has been achieved 
by replacing the random points by quasi-Monte Carlo 
points [21]. Also, by using three-dimensional simulations 
[8, 20] we can perform realistic simulations.

In order to obtain good agreement with experiments, 
a robust estimation of unknown model parameters, e.g., 
diffusion coefficients, the charge and density of mole-
cules, doping concentration, etc., is essential. In classical 
inversion methods, one strives to minimize the distance 
between measurement and simulation to estimate the 
unknown parameters. Minimizing the difference between 
measurement and simulation always yields a value, but 
its sensitivity must be assessed separately. This is not a 
trivial manner especially in the case of ill-posed nonlinear 
problems. The great advantage of the Bayesian approach 
followed here is that it yields the probability density of the 
unknown parameters.

In Bayesian inversion [22] the solution of the inverse 
problem is the posterior density giving the distribution of 
the unknown parameter values based on the sampled obser-
vations [23]. Markov-chain Monte Carlo (MCMC) is a popu-
lar method to calculate the distribution. In this method, a 

Markov chain is constructed whose stationary distribution is 
the sought posterior distribution in Bayes theorem.

The Metropolis–Hastings (MH) algorithm [24] is one 
of the most common techniques among the MCMC meth-
ods since it is simple and sufficiently powerful for many 
problems (specifically when the parameters are not strongly 
correlated). In order to estimate the posterior distribution, 
in each iteration, we propose a new candidate parameter 
value based on the current sample value according to a pro-
posal distribution [25]. Then, we calculate the acceptance 
ratio and decide whether the candidate value is accepted or 
rejected. The acceptance ratio points out how probable the 
new candidate value is with respect to the current sample.

The MH algorithm has some drawbacks, e.g., the pro-
posal covariance must be manually tuned and has high auto-
correlation [26]. To overcome these deficiencies, instead 
of using a fixed proposal distribution in each iteration, we 
update the distribution according to the available samples 
(adaptive Metropolis). This approach is useful since the 
posterior distribution is not sensitive to the proposal distri-
bution. The adaptive method can be modified additionally 
by combining it with delayed rejection yielding the DRAM 
algorithm. In this algorithm, an alternative for the rejected 
candidate is proposed and the probability of this condi-
tional acceptance is corrected [27]. Upon rejection in the 
MH algorithm, instead of retaining the current position, a 
second-stage move is proposed [28]. The method is notice-
ably advantageous when sampling from high-dimensional 
conditional distributions [29].

In the sensor design process, we use the PDE-based 
model to simulate the device characteristic. However, a 
very good estimation of the model parameters enables us 
to have a more efficient simulation and predict the sensor 
electrical behavior in different situations (e.g., subthreshold 
and linear regimes). In this work, the main aim is to pro-
pose an efficient computational method to estimate physical 
parameters of the sensors that cannot be measured directly 
or only with great experimental efforts [30]. For instance, 
regarding the target molecules, a reliable estimation of the 
surface charge (due to their binding to the receptors) or their 
reaction with the probe molecules cannot be achieved easily. 
Similarly, a reasonable estimation of the number of target 
molecules bound to the receptors cannot be achieved experi-
mentally. However, in order to have an exact simulation, 
these parameters are crucial. To that end, we use the DRAM 
algorithm to calculate the posterior distribution of various 
unknown parameters. The extracted information will help 
us to improve the simulation quality since as a biosensor 
and a transistor the necessary parameters are determined 
efficiently.

Fig. 1  A schematic diagram of a SiNW sensor. The device consists of 
three subdomains, i.e., silicon nanowire ( DSi ), silicon dioxide insula-
tor ( Dox ) and electrolyte ( Dliq ). The nanowire is coated with a thin 
oxide layer. The target molecules and their binding to the receptors is 
illustrated as well
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The outline of the paper is as follows. In Sect. 2, we intro-
duce the stochastic drift–diffusion–Poisson–Boltzmann model 
and explain how it can be used to model all charge interactions 
in the device. In Sect. 3, we present the MH algorithm and its 
modification by covariance adaption and delayed rejection. 
In Sect. 4, we use the PDE model and the DRAM technique 
to estimate the unknown parameters of a nanowire sensor. In 
order to do this, we first validate the transport model by com-
parison with experimental data and then use these experimen-
tal data in the Bayesian inversion. Finally, the conclusions are 
drawn in Sect. 5.

2  The macroscopic model equation

In this section, we review a complete mathematical model to 
understand the physical behavior of nanowire sensors where 
the details are explained in the authors previous papers, e.g., 
[8, 14, 21]. It consists of the Poisson–Boltzmann equation to 
model the electrolyte and the drift–diffusion–Poisson system 
to model the charge transport in the semiconducting part.

Here we assume D ⊆ ℝ
3 is the sensor domain (our com-

putational geometry) which is partitioned into three regions 
with their physical characteristics. The subdomain DSi (silicon 
nanowire) is the transducer insulated by SiO2 ( Dox ), the second 
subdomain. In Dliq , the electrolyte contains cations and anions; 
therefore, the Poisson–Boltzmann equation holds.

In order to describe the sensor electrostatic interactions, we 
use the stochastic Poisson–Boltzmann equation

where A is the dielectric (permittivity) function with the rel-
ative permittivities of the materials assumed to be constant 
and equal to ASi = 11.7 , Aox = 3.9 , and Aliq = 78.4 . In this 
equation, x ∈ D and � belongs to Ω which is the probability 
space. Moreover, V is the electrical potential, q is the ele-
mentary charge, Cdop is the doping concentration, � considers 
the molecules charge, � is the ionic concentration (holds for 
a symmetric electrolyte of monovalent ions), � ∶= q∕KBT  , 
and ΦF is the Fermi level. The concentration of electrons and 
holes is given by a Boltzmann distribution as

(1)

− ∇ ⋅ (A(x)∇V(x,�))

=

⎧⎪⎨⎪⎩

q(Cdop(x,�) + p(x,�) − n(x,�)) in DSi,

0 in Dox,

−2�(x,�) sinh(�(V(x,�) − ΦF)) + �(x,�) in Dliq,

(2)p(x,�) = ni exp

(
−
qV(x,�) − ΦF

KBT

)
,

(3)n(x,�) = ni exp

(
qV(x,�) − ΦF

KBT

)
,

where KB is the Boltzmann constant and T is the temperature.
The interface conditions in the electrostatic potential arise 

from homogenization [31]. The interface conditions are

where the interface is Γ = Dliq ∩ Dox . Here, 0+ indicates 
the limit at the interface on the outside of the sensor, while 
0− is the limit on the inside. The two interface conditions 
contain the cumulative effect of a rapidly oscillating charge 
concentration in the surface or boundary layer at the surface 
of the sensor. The constant A+ is the permittivity outside the 
sensor, i.e., the permittivity of Dliq . The constant C is the 
macroscopic surface charge density of the boundary layer, 
and the constant D is its macroscopic dipole-moment density 
as defined in [31].

For this model, the boundary conditions are Dirichlet 
boundary conditions ( �DD ) and Neumann boundary condition 
( �DN ). A voltage across the simulation domain in the vertical 
direction can be applied by an electrode in the liquid (solu-
tion voltage) and by a back-gate contact at the bottom of the 
structure (back-gate voltage). At the source and drain contacts, 
the Dirichlet boundary conditions are, respectively, VS (source 
voltage) and VD (drain voltage). Additionally, zero Neumann 
boundary conditions hold on else everywhere (the Neumann 
part �DN of the boundary).

Next, we consider the drift–diffusion–Poisson equations 
to model the charge transport through the semiconducting 
nanowire. In the transducer DSi , the stochastic drift–diffu-
sion–Poisson system [19] 

 holds. Here, Jn(x,�) and Jp(x,�) indicate the current densi-
ties of the carriers, Dn and Dp are the diffusion coefficients, 
�n and �p are the mobilities, and R(n(x,�), p(x,�)) is the 
recombination rate. We use the Shockley–Read–Hall (SRH) 
recombination rate, which is defined as

(4)V(0+, y,�) − V(0−, y,�) =
D

A+
on Γ,

(5)
A(0+)�xV(0+, y,�) − A(0−)�xV(0−, y,�) = −C on Γ,

(6a)
− ∇ ⋅ (A(x)∇V(x,�)) = q(Cdop(x,�) + p(x,�) − n(x,�)),

(6b)∇ ⋅ Jn(x,�) = qR(n(x,�), p(x,�)),

(6c)∇ ⋅ Jp(x,�) = −qR(n(x,�), p(x,�)),

(6d)Jn(x,�) = q(Dn∇n(x,�) − �nn(x,�)∇V(x,�)),

(6e)Jp(x,�) = q(−Dp∇p(x,�) − �pp(x,�)∇V(x,�))
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where ni ∶= 1.5 × 1010cm−3 is the intrinsic charge density 
and �n and �p are the lifetimes of the free carriers. Finally, the 
total current density is Jn + Jp and the total electrical current

is obtained by calculating this integral over a cross section 
of the transducer.

In order to include the biological noise, we consider an 
association/dissociation process [32]. The association and 
dissociation processes of target molecules at the surface can 
be described by the reaction process 

 where (9) describes association and dissociation of the 
probe-target complex at the surface. In other words, the 
binding of target molecules T (target-molecule concentra-
tion) to probe molecules P (probe-molecule concentration), 
thus forming the probe-target complex PT (probe-target 
concentration). The reaction equations provide sufficient 
information about the number of bound molecules to the 
receptors ( PT-complex at the surface).

3  Metropolis–Hastings algorithm

In this section, we briefly introduce the Bayesian inversion 
approach and explain how this technique can be imple-
mented to estimate the unknown parameters. First we use 
the statistical model

where Mi , Ii, and �i are random variables representing the 
measurement, the estimated current by the model (here the 
drift–diffusion–Poisson system (8)), and the measurement 
error, respectively. The measurement error is a realization of 
N(0, �2I) , where N  indicates the normal distribution, I is the 
identity matrix, and �2 , its variance, is a fidelity parameter 
that corresponds to the measurement error. For a given value 
� of the parameter A and the corresponding observation � 
(the measurement) we assume that

� is a Lebesgue density. Then, we define the conditional 
density

(7)

R(n(x,�), p(x,�)) ∶=
n(x,�)p(x,�) − n2

i

�p(n(x,�) + ni) + �n(p(x,�) + ni)
,

(8)I ∶= ∫
(
Jn + Jp

)
dx

(9a)T + P⟶PT,

(9b)PT⟶P + T,

(10)Mi = Ii(A) + �i, i = 1,… , n,

such that

where �0(�) is the prior probability density [33]. Using the 
measured value � , Bayes Theorem yields the posteriori dis-
tribution as

In (12) the denominator is a normalization constant and its 
explicit calculation is computationally expensive. Therefore, 
we sample the posterior distribution without the knowledge 
of the normalization constant yielding

Now we assume that the errors are independent and identi-
cally distributed (iid) and that �i ∼ N(0, �2) . The likelihood 
function �(�| �) is therefore

where

indicates the simulation error with respect to the parameter 
� . Here (14) indicates the difference between the measure-
ment �i and the solution Ii of the forward model (i.e., the 
DDP system) for the proposed candidate � for the differ-
ent cases i ∈ {1,… , n} . Therefore, the likelihood function 
� expresses the plausibilities of different parameter values � 
given the observations �.

When we have enough information about the posterior 
distribution in the most straightforward situation, we can 
directly sample from it. However, in most cases, we do not 
have sufficient knowledge about the distribution or it is 
not possible to sample from it due to high-dimensionality 
or complexity. To overcome this problem, the MH algo-
rithm can be used. A summary of the algorithm is given 
in Algorithm 1.

�(�| �) = �(�, �)

�(�)

(11)�(�) = ∫
ℝ

d1

�(�, �) �0(�) d�,

(12)�(�| �) = �(�| �)�0(�)
�(�)

=
�(�| �)�0(�)

∫
ℝ

d1
�(�, �) �0(�) d�

.

�(�| �) ∝ �(�| �)�0(�).

(13)�(�| �) ∶= 1(
2��2

)n∕2 exp(−�(�)∕2�2),

(14)�(�) =

n∑
i=1

| �i − Ii(�) |2,
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In the algorithm, the proposal distribution � is fixed; 
therefore, the rejection rate can be very high. Using an 
updated covariance matrix for the proposal distribution 
(applying the learned information about the posterior) allows 
us to increase the acceptance ratios since they accelerate 
the rate at which information regarding the posterior is 
incorporated [23]. Also, to enhance efficiency, the adaptive 

algorithm is combined with a delayed rejection technique. 
To that end, using the information of the rejected proposal, a 
new candidate is proposed and is rejected or accepted based 
on a suitably computed probability [28]. A summary of the 
DRAM method is given in Algorithm 2.
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In Algorithm 2, Z
�
∼ Uniform (0, IN) where IN  is the 

N-dimensional identity matrix. In order to use a narrower 
proposal function (compared to the first proposal) we 
employ 𝜎 < 1 . The covariance function is calculated as

where �̂�� =
1

�+1

∑�

i=0
𝛼i . We refer the interested reader to 

[28] for more details.
The main aim of using Bayesian inversion in this work is 

matching the electrical current I  obtained by the drift–dif-
fusion model (8) by the experimental measurements at dif-
ferent gate voltages. To that end, we provide a list of desir-
able unknown parameters (with their relative equations) 
and explain why they should be determined precisely.

(15)

Cov(𝛼0, 𝛼1,… , 𝛼�) =
1

�

(
�∑
i=0

𝛼i
(
𝛼i
)T

− (� + 1) �̂��
(
�̂��

)T
)
,

• Surface charge density ( � ), in the stochastic Poisson–
Boltzmann equation, describes the charge due to binding 
the target molecules to the receptors at the sensor surface, 
i.e., −∇ ⋅ (A(x)∇V(x,�)) = �(x,�) . A reliable estimation 
due to the unknown area of probe-target molecule (there-
fore the surface charge estimation) cannot be easily esti-
mated.

• Doping concentration ( Cdop ) in the stochastic Poisson–
Boltzmann equation and drift–diffusion equations (in DSi ) 
is another influential parameter. Generally, it is an average 
number of dopants, and the precise concentration is not 
extracted usually. The exact doping density makes the simu-
lation more reliable.

• Electron mobility ( �n ) and hole density ( �p ) used in the sto-
chastic drift–diffusion equation. As we already know, the 
sensor acts as a transistor; therefore, its electrical behavior 
in the subthreshold and linear regime is crucial. Einstein 
relations, i.e., Dn = UT�n and Dp = UT�p ( UT is the thermal 
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voltage), give us good information about the diffusion coef-
ficients (used in the subthreshold conduction).

• ��-density presented in the reaction equations (9) which 
give us the density of the probe-target complex at the 
sensor surface. Considering the surface area, we can pre-
dict how many target molecules absorb precisely to the 
receptors.

It is noted that there is no correlation between � , Cdop , and 
the ��-density; however, a higher doping concentration 
reduces the electron and hole mobility. Parameter estimation 
using the DRAM algorithm and a set of back-gate voltages 
VG is summarized in Algorithm 3.

Fig. 2  The net charge of 2ZCH protein for different pH values Fig. 3  The probability density function (pdf) of posterior distribution 
(histogram) and prior distribution (red line) of the surface charge den-
sity using the DRAM algorithm (Color figure online)
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Fig. 4  The posterior (histogram) and prior (red line) distribution of the surface charge density (left) and the doping concentration (right) using 
the DRAM algorithm (marginal histograms) (Color figure online)

Fig. 5  The posterior distribution (histogram) and prior distribution (red line) of the surface charge density (top left), doping concentration (top 
right), electron mobility (bottom left) and hole mobility (bottom right) using the DRAM algorithm (Color figure online)
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Fig. 6  The posterior distribution (histogram) and prior distribution 
(red line) of the PT-density using the DRAM algorithm (Color figure 
online)

Fig. 7  The posterior distribution (histogram) and prior distribution (red line) of the surface charge density (top left), doping concentration (top 
right), electron mobility (bottom left) and hole mobility (bottom right) using the DRAM algorithm (Color figure online)

Fig. 8  The experimental data versus simulated currents. Here, we 
calculated the current according to the prior information and the 
extracted posterior knowledge. The I–V curve shows the significant 
advantage of the Bayesian inference where the simulations have a 
very good agreement with the measurements
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4  Parameter estimation and model 
verification

In this section, we use the DDPB system to model the elec-
trical behavior of the sensor whose 3D schematic diagram 
is shown in Fig. 1. Regarding the geometry, the nanowire 
length is 1000 nm , and its width and thickness are 50 nm and 
100 nm , respectively. The insulator (silicon dioxide) thick-
ness is 8 nm ; the distance between the nanowire and the 
boundary is 50 nm . In the simulations the thermal voltage 
(1∕�) is 0.021V and the source-to-drain voltage is 0.2V . The 
experimental data for the mentioned device are taken from 
[8] for the nanowire field-effect PSA sensor. Furthermore, 
we assume that the measurement has 1% error.

Prostate-specific antigen (PSA) is an important biomarker 
widely used to diagnose prostate cancer. Here we develop 
a sensor to detect the protein 2ZCH (https ://www.rcsb.org/
struc ture/2ZCH). The charge of PSA is a function of pH 
value, where the PROPKA algorithm [34] is applied to esti-
mate the net charge shown in Fig. 2. We perform the simula-
tions with measurements performed at a pH value of 9; we 
note a total PSA charge of −15 q at this pH value.

In P-type semiconductors, applying a positive gate volt-
age depletes carriers and reduces the conductance, while 
applying a negative gate voltage gives rise to an accumula-
tion of carriers and increases device conductivity. In field-
effect biosensors, the PSA target molecules carry negative 
charges (see Fig. 2) which act as a negative gate voltage. 
Since we use a P-type (boron-doped) semiconductor as the 
transducer, the accumulation of holes increases the conduct-
ance as well.

The doping concentration is another important physical 
parameter in semiconductor devices. In nanowire sensors, 
on the one hand, a higher concentration increases device 
conductivity, while, on the other hand, a higher concentra-
tion decreases the sensor sensitivity. In other words, when 

the doping concentration is high, the nanowire is mostly 
affected by the dopant atoms and the effect of the charged 
molecules on the sensor response decreases. Therefore, the 
optimal doping concentration in the device design process 
is essential.

From now on, we use the DRAM algorithm to esti-
mate the important unknown parameters where in all cases 
N = 300 000 number of samples are used. The first study 
is the molecule charge density in the sense that the prior 
knowledge is � = −1.5 q/nm2 . Figure 3 shows the posterior 
distribution and prior distribution of the molecule charge 
density where the acceptance rate of 67.7% is achieved. Due 
to the obtained results by the PROPKA algorithm and using 
a P-type semiconductor, we employ the (Gaussian) pro-
posal distribution between � = 1 q/nm2 and � = −4 q/nm2 . 
The results point out that most of the accepted propos-
als are around the prior knowledge (its expected value is 
� = −1.71 q/nm2 ). The posterior distribution indicates that 
the probability of positive charges is negligible, which 
agrees very well with the transducer structure (P-type 
nanowire). Finally, the narrower shape of posterior distri-
bution (compared to the proposal) indicates the Bayesian 
inversion efficiency.    

In the next case, we simultaneously consider the effect 
of molecule charge density and doping concentration. In 
other words, the proposal �∗ consists of two suggestions for 
the parameters (two-dimensional Bayesian estimation). In 
order to obtain the posterior distribution, � = −1.5 q/nm2 
and Cdop = 1016 cm−3 as the prior knowledge are applied 
in the simulations. We study the effect of molecule charge 
density from 1 to −4 q/nm2 and of the doping concentra-
tion varying between 1 × 1015 and 5 × 1016 cm−3 . Figure 4 
shows the posterior and prior (again Gaussian) distribu-
tion of doping concentration and molecule charge density 
where the acceptance rate is 62.3%. Here, � = −1.33 q/nm2 
and Cdop = 1.18 × 1016 cm−3 as the expected values of the 

Fig. 9  The posterior (histogram) and prior (red line) distribution of the ��−complex density using � = −1.38 q/nm2 , Cdop = 1.91 × 1016 cm−3 , 
�n = 1175 cm−2 V−1 s−1 , and �p = 439 cm−2 V−1 s−1 with � = 0.5% (left) and � = 2% (right) (Color figure online)

https://www.rcsb.org/structure/2ZCH
https://www.rcsb.org/structure/2ZCH
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unknown parameters have been obtained. Similar to the first 
case, the probability of positive charge density is very low.

As we already mentioned, higher doping concentration 
increases the device conductivity; however, it decreases 
the sensor sensitivity. In other words, in high doping con-
centrations, I (current with molecule) tends to I0 [14] (cur-
rent without molecules) since the effect of doping of the 
transducer is much more pronounced than the charged mol-
ecules. Therefore, the chosen doping range strikes a balance 
between selectivity and conductivity. As the figure shows, 
the most of accepted candidates are between 5 × 1015 and 
2 × 1015 cm−6 and the probability of Cdop > 3 × 1016 cm−3 
is negligible, which confirms the doping effect on the 
sensitivity.

The electron and hole mobilities have a similar 
dependence on doping. For low doping concentrations, 
the mobility is almost constant and primarily limited 
by phonon scattering. At higher doping concentrations, 
the mobility decreases due to ionized impurity scatter-
ing with the ionized doping atoms. In [35], an analytic 
expression for electron and hole mobility in silicon as a 
function of doping concentration has been given. In the 
previous cases, we used the electron/hole mobility accord-
ing to the Arora formula, i.e., �p = 430 cm−2V−1s−1 and 
�n = 1170 cm−2V−1s−1 for Cdop = 1 × 1016 cm−3 . Now in 
order to validate this empirical formula, we consider the 
mobilities as the other unknown parameters. Figure 5 illus-
trates the posterior distribution of four physical param-
eters, where � = −1.38 q/nm2 , Cdop = 1.91 × 1016 cm−3 , 
�n = 1175 cm−2V−1s−1 and �p = 439 cm−2V−1s−1 are found 
as the expected values. The obtained mobilities also con-
firm the Arora formula. Again, the (Gaussian) prior dis-
tribution is shown, and for this estimation, the acceptance 
rate of 59.8 % achieved.

We consider probe-target binding in the equilibrium 
and use a receptor concentration of CP = 3 × 1011 cm−2 . In 
practice, a good estimation of the number of bound target 
to the probe molecules cannot be achieved easily. Here we 
study the density between 1 × 109 and 2 × 1010 molecules 
per square centimeters (the Gaussian prior distribution). Fig-
ure 6 shows the density estimation where the rest of (four) 
unknown parameters are according to the extracted informa-
tion by the posterior distributions. As shown, the mean of 
��-density is 1.05 × 1010 mol/cm2 and 75.8% is the accept-
ance rate (Fig. 7).

As we already mentioned, using reliable prior knowledge 
(good guess) by employing PROPKA algorithm, Arora for-
mula and good approximation of doping density enables us 
to provide an efficient posterior distribution. This fact gives 
rise to uncertainty reduction of parameters and also a good 
acceptance rate is achieved. Now we study the effect of the 
prior distribution on the marginal posterior. To that end, 
for molecule charge density, we assume it varies between 

−3 and 2 q/nm2 (with the mean of −0.5 q/nm2 ), the dop-
ing concentration changes from 1 × 1016 to 5 × 1016 cm−3 
(the mean is 2.5 × 1016 cm−3 ) and regarding the mobili-
ties, �p = 480 cm−2V−1s−1 and �n = 1200 cm−2V−1s−1 are 
chosen. Using the mentioned proposals leads to the mean 
value of � = −0.9577 q/nm2 , Cdop = 2.235 × 1016 cm−3 , 
�p = 455 cm−2V−1s−1 and �n = 1190 cm−2V−1s−1 . As a 
noticeable difference with the previous estimation, in spite 
of the convergence, the acceptance rate reduced to 32.3 %.

Now we employ the parameters estimated by taking the 
mean values of their posterior distributions to calculate the 
electrical current. We have obtained two posterior distri-
butions first based on the empirical formulas and second 
according to not good guesses. Figure 8 shows the simulated 
current as a function of different gate voltages for both pos-
terior distributions and compared it with the experiments. 
These results validate the effectiveness and usefulness of the 
Bayesian inference since using the DRAM algorithm leads 
to an excellent agreement between the measurement and the 
simulation. However, the posterior distribution with a rea-
sonable guess gives rise to a more exact electrical current.

The measurement error � affects the Bayesian inversion as 
well. We note that in addition to the measurement error, the 
spatial discretization error (finite element discretization) and 
the statistical error (Monte Carlo sampling) might be part of 
� . Here, we study the influence of � on the ��-complex den-
sity. Figure 9 shows the posterior distribution for two more 
measurement errors, namely � = 0.5% and � = 2% . Also, the 
distribution for � = 1% is already illustrated in Fig. 6. The 
results point out that a smaller error gives rise to a narrower 
distribution, while a larger error makes it wider, as expected.

5  Conclusions

In sensor design, reliable information about different device 
parameters is crucial. The stochastic DDPB system is a use-
ful computational system to model the electrical/electro-
chemical behavior of nanowire sensors. The model enables 
us to study the effect of different influential parameters, 
e.g., molecule charge density, diffusion coefficients, dop-
ing concentration, gate voltage, etc. We have used Bayesian 
inversion to provide a reliable estimation of the parameters. 
More precisely, the MCMC method (DRAM algorithm) has 
been used to obtain the posterior distribution of the physical 
device parameters.

In this paper, we have first validated the DDPB system 
with the experimental data and then applied the DRAM 
algorithm to estimate the parameters. In order to study the 
effect of charged molecules on the nanowire, we estimated 
the molecule charge density. Then, we considered the effect 
of doping concentration (in a two-dimensional Bayesian 
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inversion). Here, due to the narrow probability density for 
each parameter, reliable information can be extracted. In 
addition to the mentioned physical parameters, we studied 
the effect of electron and hole mobilities in addition to the 
previous unknowns (in a four-dimensional Bayesian esti-
mation) and provided their posterior distributions simul-
taneously. In the most complicated simulation, we have 
estimated the probability density of the ��-concentration. 
The results enable us to determine the device and molecule 
properties at the same time.

Finally, we have applied the results obtained by Bayes-
ian inference to the DDPB system and again simulated the 
device current. The results point out that compared to the 
previous simulations, the agreement with the experimental 
data has improved, which indicates the effectiveness of the 
DRAM technique. The results show that Bayesian inversion 
is a promising technique and has significant capabilities in 
the design of various sensors and nanoscale devices as well 
as in interpreting measurement data and assessing its quality.
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