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ABSTRACT: We investigate possible connections between
two different implementations of the Poisson−Nernst−Planck
(PNP) anomalous models used to analyze the electrical
response of electrolytic cells. One of them is built in the
framework of the fractional calculus and considers integro-
differential boundary conditions also formulated by using
fractional derivatives; the other one is an extension of the
standard PNP model presented by Barsoukov and Macdonald,
which can also be related to equivalent circuits containing
constant phase elements (CPEs). Both extensions may be
related to an anomalous diffusion with subdiffusive character-
istics through the electrical conductivity and are able to
describe the experimental data presented here. Furthermore,
we apply the Bayesian inversion method to extract the parameter of interest in the analytical formulas of impedance. To resolve
the corresponding inverse problem, we use the delayed-rejection adaptive-Metropolis algorithm (DRAM) in the context of
Markov-chain Monte Carlo (MCMC) algorithms to find the posterior distributions of the parameter and the corresponding
confidence intervals.

■ INTRODUCTION

The impedance response of electrolytic cells gives a variety of
information, enabling comprehension of the complex diffusion
phenomena in liquid/solid interfaces, that are of crucial
importance for a vast number of technological applications, as
well as for life-sustaining processes. In this context, the AC
small-signal immittance (impedance or admittance) spectros-
copy (IS) represents a powerful method for characterization of
many electrical properties of materials and can be used to
investigate the dynamics of bound or mobile charge in the bulk
or interfacial regions.1,2 In addition, the electrical quantities
obtained by IS may also be related to physical parameters of
these systems, which are directly connected with the ion
motion. The models frequently used to analyze the data are
essentially based on diffusion-like equations for the ions,
satisfying the Poisson’s equation requirement for the electric
potential (this is the so-called Poisson−Nernst−Planck or
PNP model), or on equivalent circuits.1 In the context of the

diffusion equations, typical approaches use boundary con-
ditions such as perfect blocking electrodes,3 Chang−Jaffe ́
processes,4 and adsorption−desorption processes,3 among
others, to model the surface effects. However, these situations
can be worked out in a unified way, as particular cases, by
considering integral-differential boundary conditions as the
ones discussed in ref 5 and references therein. Such boundary
conditions aim at incorporating behaviors that may not be
well-described in terms of the standard formulation of the
diffusive PNP model, as is the emblematic case of anomalous
diffusion. On the other hand, an important extension used in
the framework of equivalent circuits is the introduction of a
constant phase element (CPE), whose presence can be
connected to the necessity to describe unusual effects in
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many solid electrode/electrolyte interfaces. For instance, Jorcin
et al.6 have pointed out that simple elements alone cannot
describe frequency dispersion often found in a solid electrode/
electrolyte interface, mainly in the low-frequency domain.
In this paper, we analyze the possible connections between

two different extensions of the PNP model for impedance
spectroscopy including anomalous diffusive behavior, which
have recently been proposed. We also focus on their relations
with equivalent circuits (mainly the ones involving CPEs) and
anomalous diffusion processes. One of the models was
formulated and applied in refs 7−11, being based on integro-
differential boundary conditions to be satisfied by the solutions
of the diffusion equations (usual and fractional). The other
extension was presented in refs 1, 2, and 12 and is also aimed
at extending the usual PNP model. These extensions have
proved to be powerful tools to reproduce the experimental
behavior of the impedance, ω∼ δi1/( ) (0 < δ < 1), in the
low-frequency limit. A peculiar behavior in this limit is found
in several different contexts, including liquid-crystalline
samples,13 fractal electrodes,14 nanostructured iridium ox-
ides,15 water systems,16 morphology and ion conductivity of
gelatin−LiClO4 films,17 and weak electrolytic solutions,1

among many others. In all these systems, the impedance
spectroscopy response exhibits very rich and complex
behaviors, thus requiring more sophisticated theoretical
models to interpret them properly. In the present paper, we
test both of the considered models by comparison to the
experimental data for Milli-Q water, which is a reference for
various investigations of ultrapure water and water systems,
applying Bayesian inversion to extract the model parameters.

■ TWO PNPA MODELS AND THEIR CONNECTIONS

Let us recall the extension of the PNP model that takes into
account general boundary conditions expressed in terms of an
integro-differential equation, along the lines discussed in more
details in refs 18 and 19. This model considers for the bulk
densities of ions nα (α = + for positive and α = − for negative
ones) the dynamics given in terms of the standard diffusion
equation. It can be obtained from the continuity equations

∂
∂

= − ∂
∂α αt

n z t
z

z t( , ) ( , )
(1)

with the drift-diffusion current density given by

= − ∂
∂

∓ ∂
∂α α α

α
αz t D

z
n z t

qD
k T

n z t
V z t

z
( , ) ( , ) ( , )

( , )

B (2)

where, for simplicity, it will be assumed that D+ = D− = D; i.e.,
the diffusion coefficients for positive and negative ions are
alike. The quantities kB and T are the Boltzmann constant and
the absolute temperature, respectively. V(z, t) is the effective
electric potential across a typical sample of thickness d, with
the electrodes placed at the positions z = ±d/2. The potential,
in the drift term of eq 2, must satisfy Poisson’s equation
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in which ε is the dielectric constant of the medium (measured
in ε0 units). The solutions for n−(z, t) and n+(z, t), obtained
from the equations which emerge after substituting eqs 1 in 2,
have to satisfy the boundary condition
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In eq 4, the kernel, convoluted with the fractional derivative
(of order ν, with 0 < ν ≤ 1) of the bulk density of charges
calculated at the surfaces, may be chosen to describe, as
particular cases, many other physical situations (as previously
discussed) and considered elsewhere (see, e.g., refs 18,
20−22). One of them is the case characterized by perfectly
blocking electrodes, which corresponds to κα(t, ν) = 0 and
leads to an accumulation of charges on the surface of the
electrode. For κα(t, ν) = κe−t/τδ(ν − 1), which implies κ̅α(iω)
= κτ/(1 + iωτ), we have a standard situation characterized by
sorption−desorption processes, in which the parameter κ is
related to the sorption process and τ is related to the
desorption process. A similar case was essentially worked out
in refs 3, 5, and 21 by considering the processes on the surface
of the electrode governed by a kinetic equation of first order.
In the low-frequency limit, these cases lead to ω∼ 1/(i ),
which is different from the behavior ω∼ δ1/(i ) exhibited in
many experimental situations as mentioned before. Such
scenarios may be attributed to unusual relaxation processes
related to non-Debye relaxations, which may be handled in
terms of a fractional kinetic equation. Furthermore, the
asymptotic result for the impedance is related with the
behavior exhibited by CPEs, which in turn may be related to
differential operators of fractional order.5,23 Thus, in order to
cover a broad set of relevant experimental situations, we unify
and extend, from the formal point of view, the previous
boundary conditions to a fractional one with the possibility of
describing a wide range of scenarios depending on the choice
of the kernel κ(t, ν) and the fractional differential operator.
This extended approach is able to reproduce the behavior

ω∼ δi1/( ) exhibited by the experimental data and permits
one to consider the superposition of different surface
phenomena according to the choice of the kernel. The
effective electrical potential coming from eq 3 has to satisfy the
condition V(±d/2, t) = ± (V0/2)e

iωt on the electrode surfaces,
where ω is the frequency of the applied potential and V0 its
amplitude, Figure 1.

The set formed from eqs 1−4 represents the mathematical
statement of a very general PNPA (where “A” stands for
“anomalous”) diffusive model based on constitutive equations.
To obtain analytic solutions for this problem is always a
formidable task. However, for the investigation of electrical
impedance, one usually assumes that the applied periodic
potential has a very small amplitude, which corresponds to the
AC small-signal limit. Thus, an exact solution and, con-

Figure 1. Sketch of the electrolytic cell showing the effective thickness
of the sample between the two electrode surfaces.
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sequently, an analytic expression for the electrical impedance
(or admittance) can be determined. The details of the
calculation can be found elsewhere,18 but it is necessary to
underline here that, in this limit, one can assume nα(z, t) = N +
η(z)eiωt with N≫ |η(z)eiωt|, where N represents the number of
ions per unit volume. This allows one to assume also that V(z,
t) = ϕ(z)eiωt analyzes the impedance, since the stationary state
is reached. After performing some calculations, one is able to
show that the impedance is18

ω β
β λ β ω

κ ω ωλ β ωλ β
=

ϵ
+

+ ̅ +αS
d d

d
2

i
tanh( /2)/( ) ( /2 ) (i )

1 (i )(1 i / )tanh( /2)/(i )
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2
D
2

D
2

D
2 (5)

where S is the electrode area, β2 = iω/D + 1/λD
2 , with

ω ω β β κ ω= + α̅d(i ) i tanh( /2) (i ), and κ̅α(iω) = ∫ 0
∞ du∫ 0

1d

ν ̅(iω) νκ̅α(u, ν ̅)e−iωu. λ ε= k T Nq/(2 )D B
2 is the Debye

screening length. This is the impedance of model I.
Now, let us recall the final expression for the impedance of

model II, worked out in ref 2. It is defined as
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where =∞ ∞G1/ , G∞ is the high-frequency-limiting
conductance, τ ≡ ∞ ∞, ∞ is the high-frequency-limiting
bulk capacitance, ≡ L L/(2 )D , the number of Debye lengths
in half the cell length, qa = (1 + (iωτ)γ)1/2, and 0 < γ ≤ 1. For γ
= 1, eq 6 corresponds to the standard PNP model.24 For the
case where γ < 1, eq 6 can be considered an extension of the
PNP model, which involves CPE-like behavior at low
frequencies. It is also interesting to note that, in eq 6, the
parameter γ is also present in qa in contrast to the parameter β
of eq 5 related to the solution of the diffusion equation. This
model may also include, in its LEVM instantiation,25 arbitrary
mobilities of the two charge types and possible specific
adsorption,26 among others.27 It is worth mentioning that this
model has also been shown to fit experimental data sets of
several disparate ionically and electronically conducting
materials well.12,28 In this way as well, this model is able to
cover those experimental scenarios which are not suitably
described in terms of the standard approaches similar to model
I. In addition, this model can be further extended when
judicious choices for the kernel are performed, inspired by the
physical behavior of the systems being analyzed. In view of its
generality and mathematical robustness, it may be considered
as a fundamental framework to tackle the very rich complexity
of experimental data arising from many different systems.
To investigate a connection between eq 5 (model I) and the

well-established impedance given by eq 6 (model II), we first
analyze these equations in the limit of low frequency and, after
that, in the opposite limit. In the low-frequency limit, eq 5 can
be approximated by

λ
ε

λ
ε ω κ ω λ

≈ +
+ α̅

d
SD S

2 1
i (i )/PNPA,1

2

(7)

Equation 7 contains two terms, in which one is frequency
independent. This term is directly related to the bulk
properties and represents a resistance of the electrolytic cell
to the mobility of the ions. The second term, which depends

on the frequency, is related to surface effects; i.e., it is
connected to the properties of the electrode surface in contact
with the sample. In this context, an important issue is to know
how κ̅α(iω) is connected to , from which the information
about the surface of the electrode can be obtained, as discussed
in refs 29−31. In particular, from this term, one can deduce the
behavior ω∼ δ1/(i ) , with 0 < δ < 1, which has been
observed in several experimental scenarios.32−37

On the other hand, eq 6, in the limit of low frequency, yields

ωτ
≈ + γ∞ ∞

L
L

2
(i )PNPA,2

D

(8)

which, similarly to eq 7, may also manifest the behavior
ω∼ δ1/(i ) in the low-frequency limit. By performing a

simple comparison between eq 7 and eq 8, we obtain that

λ
ε

=∞
d

SD
D
2

(9)

and

κ ω
λ

ωτ ω̅ = [ ] −α
γD

L
(i )

2
(i ) i

D D (10)

Equation 9 connects the properties of resistance of the bulk
present in both models, and in particular, it shows that G∞ ∝
D; i.e., the conductance is proportional to the diffusion
coefficient of the ions. Equation 10 permits us to connect
parameter γ with parameter ν present in eq 4 and,
consequently, with surface effects. Equation 10 implies eq 4,
with κ(t, ν) = κ1δ(t)δ(ν − γ) − κ2δ(t)δ(ν − 1), where κ1 and
κ2 are constants.
To proceed further, we consider the high-frequency limit,

i.e., ω → ∞, of both models. For eq 5, we obtain

λ ω
≈

ϵ
dD

PNPA,1
D
2 2

(11)

whereas for eq 6

τ ω
≈ ∞

PNPA,2 2 2 (12)

From the above expressions, we conclude that τ = λD
2 /D. These

results were obtained by assuming d = L. The comparison
performed in these limits does not permit us to connect
directly the Debye length defined in eq 5 with the one
proposed in eq 6.
Figure 2 illustrates eqs 5 and 6 by taking into account the

connections performed in the low- and high-frequency limits
for both models. We observe that one impedance formula can
reproduce the other one in all limits of frequency for different
values of γ.
Figure 3 considers both models to describe the experimental

data obtained in the framework of the impedance spectroscopy
technique for Milli-Q deionized water (see, e.g., ref 38).
The previous discussion about the models based on eqs 5

and 6 has shown that they can be related to one another, and
both are able to describe experimental scenarios. Another
interesting point about these models is concerned with the
ionic motion within the electrolytic cell in the low-frequency
limit, where the diffusion plays an important role. This point
may be accessed through the electrical conductivity, which can
be connected to the mean square displacement, thus giving
information about the diffusion process. Following the

The Journal of Physical Chemistry B Article

DOI: 10.1021/acs.jpcb.9b06263
J. Phys. Chem. B 2019, 123, 7885−7892

7887

http://dx.doi.org/10.1021/acs.jpcb.9b06263


developments performed in refs 9, 39, and 40, it is possible to
relate the electrical conductivity with the mean square
displacement, i.e., σ(ω) ∝ D(ω), and investigate the behavior
of the system in the low-frequency limit. For the scenario
discussed here, after some calculation, it is possible to show

that the conductivity, in the low-frequency limit, can be
approximated to σ ≈ σ̅ωγ with σ κ λ πγ̅ = ̅( / ) cos( /2)D and

ε λ= S/(2 )D , where the effect of the surface on conductivity
is evident due to the presence of κ̅ in σ̅. By applying the
procedure described in refs 39 and 40, we can show that
⟨(Δz)2⟩ ∝ t1−γ, which is a characteristic of anomalous
diffusion. This result provides an important bridge between
an electrical measurement and the phenomenological
descriptions of ionic motion and can be also verified in other
contexts.9 Figure 4 depicts the dependence of the electrical
conductivity on the frequency of the applied electric field. Both
models fit the experimental curve well.

■ BAYESIAN INVERSION
Motivation. Uncertainties between the real world and its

mathematical description occur in every physical model, on
one hand due to errors caused by limitations of measurement
accuracy and on the other hand because of additional
unavoidable inaccuracies due to the nature of the subject.
Whenever a realistic situation is to be described by a model,
there are certain parameters which are affected by these various
uncertainties. For this reason, we consider the problem at hand
in the context of probability theory.
The statistical model

= + ϵM f t Q( , )i i i (13)

is used. The function f is the mathematical description of the
model. The random variable M corresponds to the measure-
ments. Q is a random vector which denotes the parameters in
our model, and ti represents the independent variables. The
values ϵi summarize the errors and uncertainties in each
component. To use the results and methods below, there are

Figure 2. Behavior of real (R) and imaginary (X) parts of the
impedance given by eqs 5 (model I) and 6 (model II). We consider,
for simplicity, S = 3.14 × 10−4 m2, d = 10−3 m, D = 4.7 × 10−8 m2 s−1,
λD = 1.99 × 10−7 m, κ = 7.3 × 10−3 ms−1, and ϵ = 72ϵ0 (ϵ0 = 8.85 ×
10−12 C (V m)−1). Note the overlap between these curves showing
that for suitable conditions these models can be equivalent.

Figure 3. Behavior of real and imaginary parts of the impedance given
by eqs 5 and 6. We consider, for simplicity, S = 3.14 × 10−4 m2, d =
10−3 m, D = 3.4 × 10−8 m2 s−1, λD = 8.4 × 10−8 m, κ = 1.18 × 10−6

ms−1, ϵ = 80ϵ0 (ϵ0 = 8.85 × 10−12 C(V m)−1), and γ = 0.21.

Figure 4. Comparison of the behavior of the experimental electrical
conductivity data σ = dR/(S|Z|2) and the ones obtained from the real
and imaginary parts of the impedance given by eqs 5 and 6. We
consider, for simplicity, S = 3.14 × 10−4 m2, d = 10−3 m, D = 3.4 ×
10−8 m2 s−1, λD = 8.4 × 10−8 m, κ = 1.18 × 10−6 ms−1, ϵ = 80ϵ0 (ϵ0 =
8.85 × 10−12 C (V m)−1), and γ = 0.21. It shows complete agreement
between the theoretical predictions and the experimental data.
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some requirements to these errors: they are additive,
independent, identically distributed (IID), unbiased, and
mutually independent from the random variables Q.
Bayes’ Theorem. We use Bayes’ theorem for the inverse

problem (see refs 41 and 42), and we use the version
reformulated using density functions and extended with the
total probability theorem.
Bayes’ Theorem for Inverse Problems.42 Let π0(q) be the

prior probability density function for the realizations q of the
random parameters Q. Let m be a realization of measurement
M. Then, the posterior density of Q, given the measurements
m, is

∫
π

π π
π π

| =
|
|

Ω

q m
m q q

m q q q
( )

( ) ( )

( ) ( ) d
0

0
q (14)

where Ωq is the space of parameters q.
The prior probability π0 contains the information about the

parameters Q before information has flowed through the
known measurements m. The likelihood function depends on
the model and is responsible for updating the posterior density
with the new knowledge. It also contains information about the
distribution of known errors.
Now the aim is to calculate π(q), which denotes the

distribution of the random variable Q under the conditions
that the random variable M was realized by the concrete
measurements m. Then, the desired parameters q can be
calculated from the posterior distribution using special
estimators (e.g., the mean value) including confidence
intervals, etc.
Markov-Chain Monte Carlo Methods. In the imple-

mentation, the problem is that the calculation of the often
high-dimensional integral in the denominator is much too
expensive. This motivates the use of an alternative to
calculating the integral in the denominator directly. The
method we use is to construct a unique and stationary Markov
chain whose stationary distribution is the same as the
posteriori distribution of the unknown parameters.
Assuming an irreducible and aperiodic Markov chain, the

uniqueness of the distribution can be shown. The required
statistical properties are generated by the detailed balance
condition for the transition probabilities within the chain. The

chain can be constructed, and the necessary properties are
ensured by the classic Metropolis−Hastings algorithm.

Delayed-Rejection Adaptive-Metropolis Algorithm.
The method used in this work is the Delayed-Rejection
Adaptive-Metropolis (DRAM) algorithm,43 which is a
modified version of the Metropolis−Hastings algorithm with
better convergence properties. The modifications consist of
essentially two parts: The adaptive component allows already
learned information about the posterior distribution to be
integrated into the running Markov chain. Delayed rejection
modifies the proposal function in a specific way to increase the
mixing of the chain.
DRAM Algorithm.42,43

Convergence. In general, there are two questions
regarding convergence: How to choose a proposal function
to ensure sufficiently good mixing of the chain and how to
check if the chain is long enough and reflects the desired

Figure 5. Marginal histograms for the parameter γ estimated from eqs 5 (left) and 6 (right) illustrating the corresponding posterior pdfs obtained
by the DRAM algorithm.
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statistical properties. In contrast to the classical approach using
the Metropolis−Hastings algorithm, the proposal function is
calculated by the algorithm itself in case of DRAM. The
remaining question can be checked by various statistical tests.
The method chosen here is the calculation of the
autocorrelation for subchains with length L and lag h. The
autocorrelation is defined as

≔
∑ − ̅ − ̅

∑ − ̅

=
−

+

=

L h
q q q q

q q
AC( , )

( )( )

( )
i
L j

i i h

i
L

i

1

1
2

(15)

In the equation, the qi are the elements of the chain and q̅ their
mean. It is a measure of how independent the samples are and
how well the mixing works. Low autocorrelation implies fast
convergence.
Implementation, Design Parameters, and Results.

The algorithm was implemented in the programming language
Julia44 and the following values were selected as design
parameters: We choose sp ≔ 2.38, γ2 ≔ 0.2, the adoption
interval k0 ≔ 100, the error σs

2 ≔ 0.01, and a chain length of
NSample = 100 000.
The Bayesian estimation technique was applied to the

physical model in order to extract the model parameter γ from
eqs 5 and 6. In Figure 5, the marginal histograms of the
parameter using the DRAM algorithm are illustrated, which
show the corresponding posterior probability distributions.
Figure 6 displays trace plots of the generated Markov chains

by means of DRAM algorithm showing the convergence of the
chains to their true values.
The autocorrelation plots for the parameter γ are displayed

in Figure 7 underlining the convergence of the MCMC
method by this statistical check.

■ CONCLUSIONS
We have analytically investigated a connection between two
different extensions of the PNP model used to analyze the
experimental data obtained with the technique of impedance
spectroscopy. The first model (model I) is based on fractional
calculus, and the second one (model II) was proposed in ref 2,
but both are aimed at also incorporating anomalous diffusive
behavior in their formulation. We demonstrate that these two
models can be analytically related in the low-frequency limit. In
addition, in this limit both models display a constant phase
element behavior found in several experimental contexts, i.e.,

ω∼ δ1/(i ) , when an equivalent circuit description is taken
into account.
We have also analytically related these two models in the

limit of high frequency and, finally, analyzed their predictions
for a prototypical experimental context. A very good agreement

between the models and the experimental data was obtained
for the impedance spectroscopy data regarding a sample of
Milli-Q water. Indeed, both models are shown to be suitable to
describe the experimental behavior in the whole frequency
range, in contrast to the standard formulations of PNP model.
We remark that, in view of its general formulation in terms

of fractional derivatives and integro-differential boundary
conditions, model I can be directly extended to other situations
just by choosing a different kernel in the boundary conditions.
This enables it to describe different processes on the surface of
the electrodes by simply adjusting the boundary conditions for
the specific system being considered. In addition, we have also
analyzed the behavior of electrical conductivity, which has
provided evidence that the models analyzed here may be useful
to better understand the ionic dynamics in different
experimental scenarios.
Furthermore, we could successfully apply the Bayesian

estimation method to determine the previously unknown
parameter γ in the two models. The Markov chains converge
very rapidly, which was confirmed by the associated
autocorrelation function.
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