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Kurzfassung

FEine frithzeitige Erkennung von Sepsis ist entscheidend, um rechtzeitige medizinische
Mafinahmen zu gewéhrleisten und dem Patienten eine schnelle Genesung zu erméglichen.
Diese Arbeit untersucht, ob ein dynamisches Bayes-Netz (DBN) Sepsis frither erkennen
kann als der etablierte Sequential Organ Failure Assessment Score (SOFA), und ob das
Ausma8 signifikant ist. Zusatzlich wird ein Value-of-Information-Ansatz (Vol) angewandst,
um den erwarteten Informationsgewinn jeder Laboruntersuchung zu berechnen und zu
priorisieren. Anschlieflend wird gepriift, ob sich durch diese Strategie die Sepsiserkennung
im DBN weiter beschleunigen und die diagnostische Unsicherheit verringern lasst.

Dafiir wurde eine optimale DBN-Struktur mit Hilfe eines Hill-Climbing Verfahrens erstellt.
Diese berticksichtigt wichtige medizinische Einschrankungen, um klinische Plausibilitét
zu gewahrleisten. Die Parametrisierung erfolgte anhand von Daten von Intensivstationen
aus der MIMIC-IV-Datenbank. Die Sepsisvorhersagen des DBN wurden anschlieffend
mit denen des SOFA-Scores verglichen. Der Vol-Ansatz priorisiert Laborparameter nach
ihrem Beitrag zur Reduktion diagnostischer Unsicherheit und erstellt damit fiir jede
Patientin und jeden Patienten eine optimierte Messzeitlinie.

Die Ergbnisse dieser Arbeit zeigen, dass der DBN Ansatz eine Sepsis Diagnose durch-
schnittlich 4,2 Stunden frither stellt als der SOFA-Score. Die Anwendung der Vol Labor-
priorisierungsmethode verbessert diesen zeitlichen Vorsprung auf 7,1 Stunden. Glecihzeitig
nimmt die diagnostische Unsicherheit signifikant ab. Die Arbeit unterstreicht damit das
Potenzial eines DBN und Vol Ansatzes fiir eine frithere und zuverlédssigere Sepsisdiagnose.
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Abstract

Early detection of sepsis is critical for effective clinical intervention and improving patient
outcomes. This thesis investigates whether a Dynamic Bayesian Network (DBN) can
identify sepsis earlier than the traditional Sequential Organ Failure Assessment (SOFA)
score and analyses the potential lead time of such a new method. Additionally, a Valueof
Information (Vol) approach is implemented for ordering laboratory tests. This method is
then evaluated within the DBN framework and weather it can further accelerate sepsis
detection and reduce diagnostic uncertainty.

To address these research questions, an optimal DBN structure is constructed with the
help of data driven hill climbing search algorithm, which incorporates some medicaldomain
constraints to ensure clinical plausibility. The DBN parameters are then trained on
conditional probability distributions from patient data in intensive care units sourced
from the MIMIC-IV database. The models sepsis predictions are compared to the
SOFA scoring method. Furthermore, the Vol approach systematically orders laboratory
tests by selecting those measurements providing the greatest reduction in diagnostic
uncertainty,thus constructing an alternative optimized timeline for each patient.

The results demonstrate that the DBN identifies sepsis significantly earlier than the
SOFA score, achieving a significant lead time advantage of approximately 4.2 hours.
Incorporating the Vol-guided strategy further improves the lead time of predictions,
increasing it to approximately 7.1 hours, while minimizing diagnostic uncertainty. These
findings show a clinical potential of integrating DBNs and Vol methods for earlier sepsis
diagnosis.
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CHAPTER

Datasets

1.1 The MIMIC-1IV Database

The Medical Information Mart for Intensive Care (MIMIC) project is a publicly accessible
repository of electronic health record data collected at the Beth Israel Deaconess Medical
Center in Boston, Massachusetts. The MIMIC-IV v3.1 dataset contains 364,627 unique
patients, 546,028 hospital admissions, and 94,458 intensive care unit (ICU) stays recorded
between 2008 and 2022. Additional admissions through 2022 have increased the dataset
by approximately 65,000 patients, 115,000 admissions, and 21,000 ICU stays [1]. The
database captures patient information such as demographics, admission and discharge
details, laboratory measurements, and high frequency vital signs among many other
essential information needed for treatment. All tables have standardized identifiers for
patients, admissions and events.
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1.1.1 Data Modules

MIMIC-1V is organized into two complementary modules, hosp and icu, containing
information about the stages of patient care. hosp contains data from the hospital’s
clinical information system, including patient demographics, admission and discharge
details, intra-hospital transfers, pharmacy orders, laboratory results, microbiology cul-
tures, and high-frequency vital-sign streams. Diagnoses and procedures were encoded
into their respective International Classification of Diseases (ICD) codes. In contrast,
icu captures information specific to intensive care stays documented in the MetaVision
bedside system. Each ICU stay is linked to a set of event tables (a subset of those in
hosp) but is limited to the ICU time frame. Both modules share standardized identifiers
for patients, admissions, and events, allowing joins and longitudinal analyzes between
modules [I].

Three main tables store relevant information about each hospital stay; patients
for personal and demographic details, admissions for general hospital visits, and
icustays for time spent in the intensive care unit. Medical events that contain
necessary information to accurately predict sepsis are stored in specific tables depending
on the type of data. Medication orders and records are found in prescriptions,
inputevents, and outputevents. Lab test results are stored in labevents, and
bedside observations are recorded in chartevents. Results from microbiology tests are
found in microbiologyevents. Diagnoses and procedures, coded using ICD-9-CM or
ICD-10-CM standards, are kept in the diagnoses_icd and procedures_icd tables
[2].

1.1.2 Structure of the ICU Module

An overview of the row counts for key tables within the i cu module of MIMIC-IV version
3.1 [1] is shown in Table 1.1. The icu module documents high resolution clinical and
measured laboratory data for ICU stays. This includes bedside observations, laboratory
measurements, medication administration, and procedures.

Table 1.1: Row counts for selected icu tables in MIMIC-IV v3.1. (as of July 2024)

Table Entries
chartevents 432997491
labevents 158 374764
inputevents 10953713
outputevents 5359 395
procedureevents 808 706




1.1. The MIMIC-IV Database

The chartevents table is the largest table in the icu module. With over 430 million
entries, it records time stamped clinical observations, include vital signs (such as heart rate,
blood pressure, and respiratory rate), medication infusion rates, and clinical assessments
like the Glasgow Coma Scale (GCS). Each observation is linked to an ICU stay through
the hospital admission identifier hadm_id and time stamped by a unique charttime.
Each observation and physiological measurement recorded in chartevents is identified
by an itemid identification number [IJ.

Another key table, labevents, contains approximately 158 million laboratory test
results from both ICU and non-ICU hospital stays. These include a wide range of bio-
chemical, hematological, and microbiological observations. Similar to the chartevents
table, all measurements are time stamped. Each result is referenced by hadm_id, and
charttime, with the specific test indicated by a unique itemid. There are over
1,650 distinct laboratory tests cataloged in the accompanying d_labitems dictionary,
covering measurements such as blood gas analyses, complete blood counts, etc. [I].

Intravenous fluids and medication administrations are recorded in the inputevents
table. For each entry it stores start time, total dose, infusion rate, and medication
label. The outputevents table documents patient outputs such as urine output, drain
volumes, and other fluid losses. Finally, procedureevents lists bedside procedures
(e.g. intubation, arterial-line insertion, dialysis initiation).

1.1.3 Use Cases and Research Applications

MIMIC-IV is an important data repository for machine learning and health services
research. Clinical prediction tasks, such as ICU mortality forecasting, length-of-stay
estimation, and readmission risk assessment take advantage of the timestamped vital
signs, laboratory values, and treatment interventions [3]. Phenotyping studies get use
of diagnosis codes, laboratory trajectories, and clinical notes to identify cohorts with
specific physiological conditions. Process mining approaches reconstruct care pathways
by sequencing event logs and building knowledge graphs [4]. Moreover, the data set is a
good benchmark for algorithms in temporal pattern recognition and decision support
based in reinforcement learning.
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1.1.4 Ethics, De-identification, and Access

The MIMIC-IV database is fully de-identified in accordance with the Health Insurance
Portability and Accountability Act (HIPAA) Safe Harbor provision [2]. All protected
health information has been removed and dates are randomly shifted by a consistent
offset per patient. Thus, it does not affect temporal relationships between events, while
it prevents reconstruction of actual dates. Direct identifiers such as names and addresses
are excluded to ensure patient privacy.

In order to maintain ethical standards for researchers using the MIMIC-IV data, every
person accessing the dataset is required to complete the Collaborative Institutional
Training Initiative (CITI Program) course titled Data or Specimens Only Research and
successfully pass associated quizzes. Furthermore, access to the database requires signing
the PhysioNet Data Use Agreement (DUA) [5].

For the purposes of this thesis, all necessary steps, including successful completion of the
CITI training and agreement to the terms of the DUA were fulfilled. Formal access to
the MIMIC-IV database has been requested and granted through PhysioNet. All data
handling and analysis procedures that are part of this work strictly adhere to the ethical
standards of using this medical data.

1.1.5 Limitations

Diagnoses of patients in MIMIC-IV are not time stamped, which means that the exact
time of a diagnosis must be inferred by combining ICD codes with blood culture results
and antibiotic order timestamps instead of a standard physiological definition [6]. For
example, the onset time of sepsis is often inferred from the available information provided
for the patient. For example, by the first hour in which the SOFA score increases by
> 2 points, or by the timestamp of an antibiotic order. Therefore, any model trained
to predict sepsis is prone to a biased learning of administrative actions instead of the
physiological onset. Additionally, labs and vitals are ordered as needed, leading to sparse
and irregular ICU records leaving many gaps in a patient’s laboratory image. This
patchiness requires careful handling of missing values and resampling to fixed intervals.
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1.2 Cohort Selection & Inclusion Criteria

Based on the available MIMIC-IV data, a data cohort was selected. First, all ICU stays
with implausible timestamps (for example, negative length of stay or intime > outtime)
were excluded. To minimize bias, only each patient’s first sepsis related ICU admission
was selected. This avoids patients that have chronic sepsis and patients that had multiple
transfers between the general ward and the ICU. The following sections outline the
criteria for selecting patients and laboratory values in detail, as well as the resulting data
distribution.

1.2.1 Identification of Sepsis Cases in MIMIC-IV

Sepsis cases were identified in the diagnoses_icd table by their International Classi-
fication of Diseases codes (ICD-9-CM and ICD-10-CM). The raw codes were grouped
with the Agency for Healthcare Research and Quality’s HCUP Clinical Classifications
Software (CCS) for ICD-9-CM [7] and its successor, Clinical Classifications Software
Refined (CCSR) for ICD-10-CM [8]. Filtering the CCS/CCSR output for the categories
Septicemia and Septicemia (except in labor) yielded 79 distinct ICD codes (Table 1.2).

ICD-9-CM ICD-10-CM

003.1 Salmonella septicemia A02.1 Salmonella sepsis

020.2 Septicemic plague
022.3 Anthrax septicemia
036.2 Meningococcemia

038.0 Streptococcal septicemia

449 Septic arterial embolism
771.81 Septicemia [sepsis] of newborn

790.7 Bacteremia NOS
995.91 SIRS due to infection w/o organ dysfunction
995.92 SIRS due to infection with organ dysfunction

A20.7 Septicemic plague

A22.7 Anthrax sepsis

A39.2 Acute meningococcemia

A39.3 Chronic meningococcemia

A39.4 Meningococcemia, unspecified
A40.0 Sepsis due to Streptococcus, group A
A40.1 Sepsis due to Streptococcus, group B

P36.0-P36.9 Sepsis of newborn (various)
(group B, Staphylococci, E. coli, etc.)

R65.20 Severe sepsis without septic shock
R65.21 Severe sepsis with septic shock

See Appendix |6.1] for the complete ICD-9-CM and ICD-10-CM mapping.

Table 1.2: CCS septicemia — ICD-9/10 code mapping — first five and last five rows

(downloaded July 15, 2024)
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Selecting all hospital admissions containing at least one of these codes produced 22,316
unique entries with a sepsis diagnosis. When these admissions were joined to icustays,
17,131 linked ICU stays were obtained (Algorithm 1.1). To ensure that each observation
represented an independent clinical episode, stays associated with repeat admissions
for the same sepsis event were removed. ICU stays that did not contain laboratory
values were deemed insufficient and not included as well due to a lack of a meaningful
information.

After these exclusions, the final sepsis cohort comprised 10,711 ICU stays. A second cohort
of 10,000 non-sepsis ICU stays was selected with identical selection criteria to preserve
consistency. Choosing non-sepsis patients is important to ensure dataset diversity and
enable the model to accurately distinguish between sepsis and non-sepsis cases. Although
ICD based definitions can miss true sepsis episodes, validation studies report positive
predictive values of 80-90% for septicemia codes compared with chart review [9].

Algorithm 1.1: SELECT SEPSIS AND NON-SEPSIS ICU STAYS
Input: Table _diagnoses_icd_sepsis (sepsis admissions), table icustays
Output: SepsisICU (10711 stays), ControlICU (10000 stays)
1 SELECT DISTINCT
2 d.subject_id,
3 d.hadm_ id,
4 i.stay_id,
5 i.intime,
6
7
8
9

i.outtime,
i.los
FROM _ diagnoses_icd_ sepsis d
JOIN icustays i ON d.hadm_ id = i.hadm__id
10 WHERE i.los >= INTERVAL ’3 hours’ — keep each patients first stay by intime

11 SELECT DISTINCT

12 i.subject_id,
13 i.hadm_id,
14 i.stay_ id,

15 i.intime,

16 i.outtime,

17 i.los

18 FROM icustays i
19 LEFT JOIN _ diagnoses_icd_sepsis d ON i.hadm_id = d.hadm__id
20 WHERE d.hadm _id IS NULL AND i.los >= INTERVAL ’3 hours’
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1.2.2 Extraction of SOFA-relevant Laboratory Test Values

First, each of the laboratory measurement contained in the SOFA score are identified by
their specific Ttem ID codes listed in Table 1.3. These are PaOs, FiOs, latelet count,
total bilirubin, mean arterial pressure, Norepinephrine rate, Glasgow Coma Scale (GCS),
and serum creatinine. These codes map to entries in the MIMIC-IV tables labevents,
chartevents, and inputevents. The individual measurements are then restricted
to only those values that belong to a previously selected hadm_id ICU stays.

The collected measurements are then sorted chronologically according to their timestamps.
Each laboratory result is checked for physiological implausibility, such as extremely high
or low values that are implausible. Measurements outside the possible range (e.g. platelet
counts below 1 x 10% or above 2 x 105 uL ™!, or PaOs values exceeding 760 mmHg) were
recoded as missing.

Table 1.3: Mapping of SOFA-score components to MIMIC-IV item identifiers (v3.1)

SOFA component Variable (unit) Source table Item ID(s)
Respiratory PaOs (mm Hg) labevents 50821
FiOq (fraction) chartevents 223835
Coagulation Platelet count (x103/uL) labevents 51265
Liver Total bilirubin (mg/dL) labevents 50885
Cardiovascular Mean arterial pressure (mm Hg) chartevents 220045
Norepinephrine rate (pug/kg/min) inputevents 221906"
CNS Glasgow Coma Scale (E, V, M) chartevents 223900,
223901,
220739
Renal Serum creatinine (mg/dL) labevents 50912

*Including additional vasopressor IDs if multiple measurements are used (e.g. epinephrine 221289)

Once validated, each value is assigned an SOFA sub score from 0 to 4 by comparing it
against the thresholds in Table 1.4l This mapping is performed for each of the six SOFA
values (PaO2/FiO3), coagulation (platelet count), liver (bilirubin), cardiovascular mean
arterial pressure (MAP) and vasopressor use), neurological (GSC), and renal (creatinine).
Since ICU stays often have incomplete lab data (e.g. clinicians might stop ordering
additional tests once they have enough information), missing lab measurements were
treated explicitly as a separate feature, rather than using imputation methods. Lab
values were converted into ordinal SOFA subscores (0-4) to create a reference dataset,
which was then used to evaluate how well the DBN predicts changes in those scores.
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Component

Range / Condition

Score

Respiratory

Coagulation

Liver

Cardiovascular

CNS (GCS)

Renal

PaO3/FiOy > 400 mm Hg
PaO2/FiOy < 400 mm Hg
PaO3/FiOy < 300 mm Hg
PaO2/FiOy < 200 mm Hg and mechanically ventilated
Pa0O3/FiOy < 100 mm Hg and mechanically ventilated

Platelets > 150 x 103/uL
Platelets 100-149 x 103/uL
Platelets 50-99 x 103 /uL
Platelets 20-49 x 103 /uL
Platelets < 20 x 10%/uL

Bilirubin < 1.2mg/dL
Bilirubin 1.2-1.9mg/dL
Bilirubin 2.0-5.9 mg/dL
Bilirubin 6.0-11.9mg/dL
Bilirubin > 12.0mg/dL

MAP > 70mm Hg

MAP < 70mm Hg

Dopamine < 5 ug/kg/min or any-dose dobutamine
Dopamine > 5 pug/kg/min or epinephrine < 0.1 ug/kg/min or
norepinephrine < 0.1 ug/kg/min

Dopamine > 15 pg/kg/min or epinephrine > 0.1 ug/kg/min or
norepinephrine > 0.1 ug/kg/min

GCS =15
GCS 13-14
GCS 10-12
GCS 6-9
GCS <6

Creatinine < 1.2mg/dL

Creatinine 1.2-1.9mg/dL

Creatinine 2.0-3.4 mg/dL

Creatinine 3.5-4.9mg/dL or UO < 500 mL/day
Creatinine > 5.0 mg/dL or UO < 200 mL/day

)

WN O WP, O WO =W -

W

=W N~ O ke = O

Table 1.4: SOFA sub-score thresholds for laboratory components [10]
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1.3 Descriptive Analysis of the Study Cohort

1.3.1 Data Preprocessing and Temporal Coverage

All biologically impossible readings were removed. The filtering of implausible values
affected less than 0.01% of all rows, and were treated as missing. The continuous predictors
were discretized by binning them into equal frequency (quantile) bins. Specifically, for
every laboratory variable x the empirical distribution in the cohort was partitioned into
k = 3 intervals of identical sample size (tertiles) using scikit-learn’s KBinsDiscretizer.
Samples falling into the lowest, middle and highest tertiles were encoded with integer
labels 1, 2, and 3, respectively, while missing measurements were mapped to the dedicated
category 0. This quantile based ordinal encoding preserves the natural ordering of the
original variables and reduces their dynamic range.

Most ICU stays include multiple laboratory measurements recorded. Table 1.5/ shows the
number of timestamped lab events recorded during the patients stays. Each timestamp
represents the measurement of a relevant SOFA value. Analyzing the distribution of those
available timestamped lab events, it is evident that most ICU stays have a substantial
amount registered in the MIMIC dataset. The median is six per stay, providing adequate
temporal resolution to model sepsis progression.

Timestamps before SOFA Number of Stays
8

96
369
3,452
5,313
7,629
3,741
100
3

© 00 O Ui W

Table 1.5: Number of timestamps per ICU stay

1.3.2 Distribution of Predictors

Among the 20,711 ICU stays analyzed, FiO2 recordings were available in 12,098 cases
and PaOs in 15,490. To standardize FiOs, numeric entries < 1.0 were multiplied by 100%
to convert fractions to percentages. Measurements with value 0 were replaced by the
ambient 21%, and values exceeding 100% were discarded as clinically implausible. PaOo
readings were retained only if they fell within the physiologic range of 1-500 mmHg,
ensuring biologically realistic input. Figure 1.1/ shows the resulting PaOy/FiO2 ratio,
with the distribution heavily skewed toward 200-600 mmHg. The bin figure also shows
that besides having many missing value, the discretized values are equal in frequency.
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Figure 1.1: Distribution of the PaO2/FiOy values

Total bilirubin, indicative of hepatic function and potential organ dysfunction, was
available for analysis in 15,899 stays. Reviewing the distribution of bilirubin (see
Figure |1.2)) show a right skewed distribution, leaning in the expected range of 0-2 mg/dL.
Valus less than 0.1 mg/dL or greater than 30 mg/dL were categorized as erroneous
and treated as missing. Notably, only 87 bilirubin measurements were affected by this
criterion, underscoring the overall robustness and accuracy of the laboratory data.

Distribution of Total Bilirubin Bin Distribution for Total Bilirubin

1.0 7 12954

0.8 4

Density
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Total Bilirubin (in mg/dL) Count

Figure 1.2: Distribution of total Bilirubin measurements

Creatinine measurements, reflective of renal function status, were kept only if they fell
between 0.2 and 20 mg/dL. Although elevated creatinine values can occur in critically
ill patients, those beyond the established upper threshold of 20 mg/dL were considered
biologically implausible outliers. Only 11 measurements exceeded these predefined
limits and were recoded as missing. The resulting distribution of creatinine values (see
Figure 1.3) exhibit typical normal distribution characteristics, centered on the clinically
expected median value of approximately 1 mg/dL.
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Distribution of Creatinin

Density

0.2+

0.0 4

Mean arterial pressure (MAP), an essential cardiovascular indicator, was nearly universally
available across the study cohort, recorded in all 20,711 stays. MAP values underwent
plausibility checks, with acceptable physiological bounds set at 30 to 200 mmHg. Only
13 observations fell outside these clinical thresholds and were subsequently treated as
missing data. As depicted in Figure MAP demonstrated a normal distribution with

7 7 "
3 4 5 6 7
Creatinin (in mg/dL)

Bin Distribution for Creatinin

Creatinin Bin

) 10000 20000 30000 40000 50000 60000

Count

Figure 1.3: Distribution of Creatinin measurements

a peak around 80 mm Hg, consistent with typical ICU targets.
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Figure 1.4: Distribution of mean arterial pressure measurements

Platelet counts, crucial for assessing coagulation status and hematologic function, were
recorded in 20,393 stays. After imposing clinically justified boundaries of 10 to 1,000
thousand platelets per microliter (thousand/uL), 43 outlier observations were identified
and recoded as missing. Figure [1.5 illustrates the platelet count distribution, showcasing
a well-defined normal curve with a distinct peak at the typical normal range around 180

thousand /L.

11



1. DATASETS
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Figure 1.5: Distribution of platelet counts measurements

Neurological status was summarized with the Central Nervous System Score(CNS),
derived from the three GCS subscores, eye, verbal, and motor. This score consists of
three distinct GCS components, namely the eye opening, verbal, and motor responses
with unified numeric indicators of neurologic impairment [10]. Missing data in any GCS
sub-component was imputed with the normal maximal scores (eye = 4, verbal = 5, motor
= 6). Each independent score of the three components is then summed to create the
CNS score. Figures |1.6al, [1.6b, [1.6¢ provide a summary of each GCS sub-component
distribution, while Figure shows the cumulative CNS score distribution.
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Figure 1.6: Distribution of GCS components and combined CNS score
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CHAPTER

Dynamic Bayesian Network
Architecture and Structure
Learning

2.0.1 Dynamic Bayesian Networks

A Dynamic Bayesian Network (DBN) is a probabilistic graphical model that represents
how a vector of random variables Xy = {X14,..., X4} changes over discrete time steps
t=1,2,...,T [II]. First, the process is assumed to be first order Markov, meaning that
the distribution of the next state depends only on the current state and is conditionally
independent of all earlier states [12], i.e.,

P(Xyp1 [ Xia) = P(Xyp | Xy), (2.1)

Second, stationarity is assumed, meaning that the way variables influence each other
from one time step to the next doesn’t change over time. This property implies that

P(Xyi1 | X)) = P(Xgp1 | X,) Vs,te{l,...,T—1}, (2.2)

so the transition rules between time steps are fixed and identical for all ¢, making the
reuse of a single set of conditional probability tables (CPTs) across all transitions from
timestep ¢ to t + 1 possible [I1]. These assumptions give a compact factorization

T-1

P(Xyr) = P(X1) [ P(Xey1 [ Xe) (2.3)
t=1

of the joint distribution.

13
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The initial distribution P(X) is itself an ordinary Bayesian Network with graph Gy, so

that
d

P(Xy) = [[ P(Xi1 | Pag?) (2.4)
=1

where Pagf denotes the parents of X;; in Go. A network with two time slices G_, is

used to model the change over time. Thus, for each X; ;i only its parents Pa?tjrl in X
determine its distribution, so that

d

P(Xpi1 | Xe) = [] P(Xiss1 | Paiy) (2.5)
=1

holds.

Because of stationarity, the directed graph structure G_, and its CPTs remain identical
for every timestep. This means that instead of estimating tables at each slice, one fixed
set of parent—child relationships and probability parameters for all transitions from ¢ to
t + 1 are used. This approach is also called parameter tying [11] and it reduces the total
number of parameters that need to be estimated.

Inference in a DBN primarily uses the filtering distribution which yields the posterior
of the hidden state at time ¢ given all observations up to that point [13]. Although a
smoothing distribution can incorporate future data, it is not required here because the
goal is continuous sepsis prediction on incoming lab values without insight into future
lab values. Therefore the focus of the inference will be exclusively on computing

P(Xpp | X9551), (2.6)

treating the binary sepsis indicator at timestep t (S;) as an unobserved variable whose
probability is updated as new lab values arrive.



2.1. Time Slice Construction of ICU Data

2.1 Time Slice Construction of ICU Data

Laboratory measurements usually arrive at irregular, patient specific timestamps. There-
fore each admission is unfolded into consecutive observation pairs (¢t — 1,¢). Let S; be
the binary sepsis indicator and Ly = {Ly4,..., Ly} the n laboratory values at time ¢.
After transformation, every training row contains

St—la Ll,t—la <o 7Ln,t—17 Sta Ll,ta v 7L7L,ta (27)

meaning that every data entry contains laboratory values from the previous timestep as
well as the current measurement. This is done by sorting all data entires chronologically
within each hadm_id. Afterwards, shifting the data by one timestep makes a copy of
every column, moved down by one row, so the value at ¢ — 1 sits next to the value at
t. First, admissions with a single record are discarded, because no (¢t — 1,¢) pair can be
formed. The temporal data table can go straight into a hill-climbing learner and still
keep it ordered, namely numbers from slice ¢t — 1 are used to predict slice t.

2.2 Structure Learning in Dynamic Bayesian Networks

2.2.1 Hill-Climbing Structure Learning

The dependency structure of the DBN is not known a priori and must be learned from
the available data. An exhaustive search for an appropriate Directed Acyclic Graphs
(DAGs) grows exponentially with the number of variables. Thus an approximation of an
optimal structure must be done. For this a greedy hill-climbing heuristic was used. The
algorithm is guided by a scoring function that balances data fit and model complexity,
while the search space is constrained by physiologically plausible edge constraints [14]
(see Section 2.2.2).

The Bayesian Information Criterion for discrete data (BIC-d) scores a DAG G by
balancing data fit against model complexity [I5]. For each variable X;, let r; be its
number of states and let its parent set PaiG have joint cardinality

X;€Paf
where N;j;, is the number of two-slice samples in which X; = k and its parents are
in configuration j. The maximum-likelihood estimate of the conditional probability
parameters is given by
Nijk

> w—1 Nijrr
With N being the total number of two-slice observations, the local log-likelihood factor
is factorized as

Oijic = (2.9)

4 T
log P(XVZ | PaZ-G,G) = Z Z Nijk: log Hijk:a (2.10)
J=1k=1
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and the global score is computed by summing the local contributions and subtracting
the penalty for parameters |0;| = (r; — 1)g;, so that

d
BIC-d(G) = Y [log P(X; | Paf’,d) — 1|04] log N|. (2.11)
=1

Because the score decomposes by node, updating a single edge takes O(g;r;) time for the
affected nodes. Consequently, each evaluation is fast and the overall search runs in time
roughly linear in the number of moves.

2.2.2 Domain-Guided Edge Constraints and Structure Search Method

The hill-climbing algorithm receives a blacklist of edges containing edges that are physio-
logically impossible. Within a single time ¢ slice the sepsis node .S; can influence every
laboratory value L;;, but no lab is allowed to point back to sepsis, leading to

P(Sy,Ly) = P(S;) P(L¢ | St), (2.12)

a factorization of the joint distribution:

This makes the labs conditionally independent once sepsis status is fixed. Another
constraint is that the causality only moves forward. Edges can run from variables at time
t to variables at time t + 1, but never the reverse, preserving the first order Markov form

T
P(X17) = P(X1) [T P(Xi | Xe-1),  Xi = {S;, L},
t=2

where each state X; consists of sepsis variable S; and the laboratory measurements L;.

With this blacklist in place, structure learning starts from an empty graph. The greedy
hill-climbing suggests single edge additions, deletions, or reversals and accepts a move
only when it raises the BIC-d score by at least ¢ = 10~%. In order for the search to not
get stuck in local optima, the edge of each accepted move is written to a tabu list. While
an edge is on that list any move that would lead to a creation of a graph similar to its
previous form is deemed taboo and skipped, even if it offers a modest score gain [106].
This usually affects the exact inverse of the last changed edge, preventing the search from
oscillating between nearly identical graphs and forces it to explore new neighborhoods.
Because every candidate move is still checked against the physiological blacklist, all
intermediate graphs remain plausible.

Algorithm 2.1 evaluates at most 3d(d — 1) moves per iteration. The three elementary
operations (add, delete, reverse) are applied to every ordered pair of vertices in a graph
with d nodes. First, any move that would create a directed cycle is rejected. Second, the
blacklist eliminates edges that contradict known physiology. Third, recently edited edges
are removed from the taboo queue, so the search cannot undo its last steps. If changes
pass those restrictions, they are scored with BIC-d, and the best one is accepted if it
improves the score by more than e = 107%.



2.2. Structure Learning in Dynamic Bayesian Networks

Algorithm 2.1: GREEDYHILLCLIMB(G(?), C, )

Input: Initial DAG G, whitelisted edge set C; BIC-d gain threshold & > 1074
Output: Locally optimal DAG G
1 ¢ < BIC-d(G©)

2k« 0
3 repeat
// AmaLx <e

4 | Apax — 05 G*+ GW

5 foreach operation m € {add,del,rev} do

6 foreach wvertex pair (u,v) allowed by C do
7 G’ + apply m on (u,v) in G*¥)

8 if G’ is acyclic then

9 A + BIC-d(G") — ¢

10 if A > Apax then

11 Apax — A

12 G* +— G

13 (u*,v*,m*) « (u,v,m)

14 end

15 end

16 end
17 end
18 if Apax > € then

19 Ght) « G* 0« 0+ Apax; k — k+1
20 end

21 until no admissible move improves the score
22 return G = G

2.2.3 Stability Selection and Pruning

To avoid overfitting, the learning phase is combined with a bootstrap approach to stability
selection [I7]. Ten bootstrap replicas of the training set are created, a DAG is learned on
each replica, and all edges are recorded. Only edges that occur in at least 80% of replicas
are kept as stable edges.

The resulting graph then undergoes backward pruning, computing any edge whose
removal worsens the BIC-d score by less than Agic = —100. Those edges that have
only a minimal impact on the BIC-d score are consequently removed in order to have a
confident but not overly complex graph structure.

The finished model is therefore (i) constrained by known physiology, (ii) discovered
through a tabu-guided BIC search, (iii) stabilized via bootstrapping, and (iv) trimmed

by BIC pruning, making it coherent, clinically viable network ready for sepsis prediction.
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2.3 Final DBN Structure

Intra-slice structure Figures 2.1a shows the causal dependencies within the first time
point t. Similarly, Figure [2.1b depicts the dependencies of time slice t+1. Consistent with
the medical constraints introduced earlier, sepsis status causally influences laboratory
measurements recorded at the same time. This pattern is the same for both slice ¢ and

slice t+1.
- ) >l t+1
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I S Ny Q \ |
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(a) Intra-slice network at time ¢ (b) Intra-slice Network at Time ¢+1

Figure 2.1: Causal dependencies between sepsis and lab variables at (a) ¢ and (b) ¢+1.

Inter-slice structure Figure 2.2/ depicts the temporal dependencies between both time
slice graphs t and t + 1. These dependencies respect the first order Markov assumption -
variables at time ¢t influence their own as well as states at time ¢ + 1. These links describe
how clinical measurements evolve over time and supply the information required for
sequential inference. The lone edge linking sepsis at ¢ to sepsis at ¢t + 1 shows that this
diagnostic variable is the prediction target and hence should not form connections across
timeslices. Instead, it only drives the laboratory measurements within each individual

slice.
pilirubin_total (1+1) cns_score (t+1) creatinin (t+1) mean_arterial_pressure (t+1) pf_ratio (t+1) platelet_count (t+1) sepsis (1+1)
~—_
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Figure 2.2: Inter-slice network showing directed temporal dependencies from slice t to
slice t+1
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2.3. Final DBN Structure

Full network structure Overlaying both the intra- and inter-slice edges, results in
a complete depiction of the DBN and giving a single view in Figure The diagram

illustrates all temporal causal pathways, providing a comprehensive graphical summary

suitable for clinical interpretation and predictive inference.
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Figure 2.3: Complete DBN integrating intra-slice and inter-slice edges; the graph visualises

the full set of temporal and contemporaneous relationships






CHAPTER

Dynamic Bayesian Network
Parameter Estimation

After determining the optimal structure of the DBN in Chapter 2, the next step is pa-
rameter estimation to compute the probability relationships represented by the network’s
edges. These relationships are expressed as Conditional Probability Distributions (CPDs).
This chapter explains the methodological details, and practical application of parameter
estimation using Maximum Likelihood Estimation (MLE).

3.1 Maximum Likelihood Estimation (MLE)

Maximum Likelihood Estimation (MLE) is a statistical approach used for estimating
parameters of probability distributions by maximizing the likelihood function L(6).
Given a dataset D = {XM), X® .. XM} consisting of N independent and identically
distributed samples, the likelihood function L(6) is defined as

N
L(9) = P(D]9) = J] P(X"™9), (3.1)
m=1
and MLE aims to find parameters 6 that maximize the likelihood above, by computing
0 = arg max L(6). (3.2)

In practice, the log-likelihood function is typically maximized for convenience [18], so
that

0(0) = log L(#) = f; log P(X (™). (3.3)
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For Bayesian networks, each node X; with parents Pa(X;) has parameters
D — Nijk
1] Zk_/ NZJk/ 9

represented as Conditional Probability Tables (CPTs) [I9] and Njjj, is the count of
occurrences where node X; is in state k given its parent configuration j.

(3.4)

3.2 Application to the DBN Model

In this work’s DBN, the parameters are estimated across both time slices, the initial slice
t = 0 and subsequent slices t > 1. Thus, the DBN parameters are classified into three
categories [13]:

o Initial CPDs P(Xj): Initial distributions without parents.
o Intra-slice CPDs P(Xj | Pa(Xj)): Dependencies within the initial time slice.

o Transition CPDs P(X;1 | Pa(X:) U Pa(X¢41)): Dependencies on variables from
slice t and contemporaneous parents in slice ¢ + 1.

MLE was applied to each CPD type separately using observed frequency counts from the
flattened dataset. In code the computation was performed by pgmpy’s implementation
of MaximumLikelihoodEstimator [20].

To prevent zero probabilities for rare or unseen parent—child configurations, we apply
Laplace smoothing to each row of the Conditional Probability Table [2I]. Concretely, a
small constant a = 107% was added to every count before normalization. This guarantees
that every possible state retains a non-zero probability, improving numerical stability
and making our estimates more robust.

After smoothing, the full set of CPDs was attached to the template network and verified
that every table sums to one and that cardinalities are consistent with the learned graph.
The log-likelihood

N
() = 3" log P(X™) | d),
m=1

of the fitted model was saved so later calculations of the BIC was possible and comparison
to different models was enabled. Once all CPDs have been fitted and validated, the
parameterized DBN was passed to DBNInference, which provides methods for exact
filtering, smoothing, and prediction on new patient records. This allows to perform
inference tasks with the learned model, and run prediction experiments described in the
evaluation chapter.



3.3. Prediction with DBN

3.3 Prediction with DBIN

The DBNs inference uses forward inference, allowing the incoming probabilities in ¢ + 1
to update based on sequentially observed data in t. Specifically, sepsis predictions at
time t are calculated as

P(sepsis,, evidenceg.;)

P(sepsis,|evidencep.:) = (3.5)

P(evidenceg.;)
posterior distributions given all observed lab evidence

The inner procedure PREDICTSEPSIS that processes one admission at a time can be
seen in Algorithm 3.1. At each timestamp t, it appends the new observed lab values to
the already existing evidence ev. The DBN'’s forward inference routine computes the
posterior P(sepsis, = 1 | ev). Since only |£| new entries are added per step and only the
sepsis node was queried, the cost of calculating each patient was O(T |L£|). The outer
loop then applies this procedure to every admission in the validation data, storing each
patient’s probability time series in the mapping Pred.

Algorithm 3.1: DBN based sepsis prediction for a test cohort
Input: Test dataframe df, lab set £, DBN inference object Inf
Output: Mapping Pred from admission ID to time-stamped sepsis probabilities

1 Procedure PREDICTSEPSIS(patient, L, Inf):
2 ev « (;
3 fort+~ 0toT —1do
4 foreach 7 € £ do
5 ‘ ev[({,t)] < patient[l, t];
6 end
7 q < Inf.forward_inference({(sepsis, t)}, ev);
8 pr < q[(sepsis = 1)];
9 end
10 return {p;};
11 Pred « 0;
12 foreach admission ID h in df.index do
13 patient < dffh, L];
14 Pred[h] <~ PREDICTSEPSIS(patient, L, Inf);

15 end
16 return Pred;

23






CHAPTER

Evaluation of DBN and SOFA
Scoring

4.1 Evaluation Dataset

For the evaluation of how capable the DBN is of accurate predictions in comparison to
the traditional SOFA scoring method, 30% of the total dataset was reserved as test set,
consisting of around 2,700 non-septic ICU stays and 3,508 septic ICU stays. Particular
attention is given to early detection capabilities and lead time gains, as well as to accuracy,
precision, recall, and F1-Scores and adequately interpreted.

4.1.1 Classification Performance

Classification performance was assessed using a probability threshold of 0.5 for the DBN
and a severity threshold of SOFA scores equal to or greater than 2. The confusion
matrices for both methods are summarized in Table 4.1] and Table 4.2, providing a
comparison of accuracy, precision, recall, and F1-Scores.

Table 4.1: Confusion Matrix — DBN (Threshold = 0.5)

‘ Predicted Negative Predicted Positive
788 1912
290 3218

True Negative
True Positive

Table 4.2: Confusion Matrix — SOFA (Threshold > 2)

‘ Predicted Negative Predicted Positive
876 1824
403 3105

True Negative
True Positive
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Table 4.3 presents the performance metrics computed from these matrices.

Table 4.3: Performance metrics comparison (DBN vs. SOFA)

Metric DBN SOFA
Accuracy | 0.6454 0.6412
Precision | 0.6275 0.6301
Recall 0.9174 0.8850
F1 Score | 0.7457 0.7362

Both the DBN and SOFA methods show similar results of accuracy, precision, recall,
and F1-Scores, with the DBN having slightly improved recall (0.9174 vs. 0.8850) and
F1-Score (0.7457 vs. 0.7362). Looking at the confusion matrix, a similar ratio of false
positives, and false negatives appears. However, the DBN produces fewer false negatives
(290 versus 402). In a clinical setting, this reduction in missed cases can have a big impact
on patient outcomes and care effectiveness. The similarity in predictive performance
suggests that the underlying data distribution may limit improvements.

4.1.2 Lead Time Analysis

Since in clinical prediction, early diagnosis is crucial, this chapter provides a detailed
analysis of predictive lead time. When comparing the exact prediction timings by the
number of timestamped labs needed for the diagnosis between DBN and SOFA methods,
the DBN significantly outperformed SOFA in terms of early detection. Specifically, the
DBN predicted sepsis earlier than SOFA in 2,078 cases, compared to only 157 cases
where SOFA predicted it earlier, with 649 instances predicting it at the same timestamp.
Figure 6.1 shows the distribution of lead times. The median lead time in terms of lab
tests is approximately 2 tests earlier, and the mean is 1.6 labs, suggesting that the DBN
method can significantly accelerate the detection of sepsis.

A labs (DBN — SOFA)

Frequency
-
[=]
[=]

Figure 4.1: Distribution of DBN lead in number of lab tests



4.1. Evaluation Dataset

To approximate lead time in hours, the individual time differences between each times-
tamped lab value and the diagnosis onset were calculated as well. This measurement of
the lead times in hours revealed that the DBN predictions precede SOFA predictions by
a median of approximately 0.8 hours, while the mean is 4.2 hours as shown in Figure |6.2.
This lead time can be critically important in intensive care settings, potentially enabling
earlier clinical interventions.

A hours

Frequency

i T T
-17 —-14 -11 —8 -5 -2 1 4 7
Hours

Figure 4.2: Distribution of DBN lead in hours

4.1.3 Impact of Probability Thresholds

Since those scores only apply to predictions with a confidence of at least 0.5, it is difficult
to understand how confident the DBN is in its prediction. To better understand the
sensitivity of DBN’s predictive lead times to different probability thresholds, varying
threasholds were applied during the prediction process.

Figure |4.3| shows the change in accuracy, precission, recall and F1-Score with varying
threasholds set for both the DBN and SOFA score. Both panels show that model
behaviour depends strongly on the chosen threshold. For the DBN, thresholds below 0.60
keep recall close to 0.9, meaning almost every true case is detected, but precision stays
around 0.65, so many alarms are false. After that, recall falls faster than precision rises,

so both the Fl-score and accuracy drop. The SOFA curves display the same pattern.

With thresholds near 2 to 4 the score still identifies most true cases while keeping false
positives low. At about 7, recall and Fl-score decline even though precision continues to
improve. Raising the threshold to require more confidence leads to fewer positive calls,
so the model misses more true cases and overall accuracy decreases.
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DBN: metrics vs. threshold SOFA: metrics vs. threshold
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Figure 4.3: Comparison of DBN and SOFA Sepsis-Specific Metrics Across Thresholds.

Figure 4.4 shows how the proportion of cases where DBN predicts sepsis earlier varies
with increasing DBN prediction thresholds, while the SOFA threshold stays constant at
2. As the DBN threshold increases, the frequency of early predictions decreases. At a
confidence threshold around 0.71, SOFA begins to outperform DBN in terms of early
prediction frequency. This indicates a trade-off between the early prediction advantage
of the DBN and its prediction confidence, meaning while DBN detects sepsis earlier, it
does so at lower confidence levels.

Proportion of outcomes vs. DBN threshold

1.0

—— DBN earlier
DBN later

— Tie

0.8

Proportion

0.0

T — T T
0.5 0.6 0.7 0.8 0.9 1.0
DBN probability threshold

Figure 4.4: Proportion of outcomes relative to varying DBN thresholds



4.1. Evaluation Dataset

The SOFA score itself is adjustable as well and represents different severity of clinical
signals. Thus, an extended analysis across varying thresholds of both DBN and SOFA
scores was performed, resulting in the heatmap in (see Figure 4.5). It shows how DBN
leads in predicting sepsis at lower thresholds, especially for moderate clinical severity
indicators of SOFA scores between 2 and 5. However, with stricter diagnostic criteria as
both DBN and SOFA thresholds increases the advantage in early prediction diminishes
significantly. This highlights the DBN’s ability to predict moderate risk diagnosis, while
being less confident at early sepsis offset.

DBN fires earlier DBN fires later

1.0

SOFA threshold
Proportion

0.0

0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9
DBN probability threshold DBN probability threshold

Figure 4.5: Heatmap of proportions where DBN predicts sepsis earlier relative to varying
DBN and SOFA thresholds
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CHAPTER

Theory and Methodology of Value
of Information (Vol)

To improve early detection of sepsis using a DBN, a Value of Information (Vol) method
was applied [22H24]. Specifically, it determines which additional laboratory tests would
most effectively improve the predictive confidence of sepsis detection. Specifically, it
determines which additional laboratory tests would most effectively improve the predictive
confidence of sepsis detection.

Vol quantifies uncertainty by calculating the information gain [25]. Information gain
captures the reduction in entropy in the probability distribution of sepsis after observing
an additional laboratory measurement. Each sequential measurement selection aims to
maximize this reduction in uncertainty.

Mathematically, the posterior probability of sepsis given the current evidence set E was
computed using Bayesian inference [I3] 26] as

P(sepsis =1 | E) = DBN Inference(F),

where the right side denotes inference in the trained DBN given evidence E. The concept
of information gain (IG) was mathematically defined as the reduction in entropy achieved
by observing a new piece of evidence ey, namely

IG(E, Enew) = H[P(sepsis = 1 | E)] — H[P(sepsis = 1 | E, Epew)]
where H (p) represents the binary entropy function [25] and is calculated as
H(p) = —plogy(p) — (1 = p) log(1 — p),

so that lower posterior uncertainty after adding ey yields higher information gain. To
avoid taking log, of exactly zero, which would produce undefined or infinite values, each
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probability p is clipped to
pel10712, 110712,

which guarantees that both logy(p) and logy(1 — p) remain finite while having a negligible
effect on the resulting entropy values.

The practical implementation of this theory involves a sequential greedy algorithm [23].
Initially, all candidate laboratory measurements are considered unobserved, represented
by placeholder values indicating no measurement. Only those laboratory measurements
that were taken for a given patient during the entire stay were considered. Algorithm 5.1
first sets every laboratory node at slice 0 to the value 0, thereby marking all tests as
unmeasured. From the patient record it keeps only those variables that contain at least
one non-zero entry as the candidate set. A baseline posterior probability of sepsis, ppase,
was obtained from the DBN under this empty evidence.

At each iteration of the initial loop every hidden candidate was replaced by its earliest
real measurement. Forward inference was performed, and the corresponding reduction
in binary entropy was recorded. The measurement that yields in the greatest reduction
was chosen, removed from the candidate list, and its posterior becomes the new baseline.
The loop ends when no remaining test provides positive information gain or when the
posterior exceeds the decision threshold .

Because the real measurements are revealed in an optimised order rather than in their
historical order, the procedure constructs an alternative timeline. Each step stores
the selected test, its information gain, and the updated posterior. By comparing the
timestamp Vol sepsis posterior first crosses a certain evaluation threshold with when the
original lab schedule does, the method shows how much earlier sepsis could be flagged by
reordering the tests.



Algorithm 5.1: Vol-based sequential measurement selection for early sepsis
prediction

Input: Patient dataframe patient df, lab set £, DBN inference object Inf,
prediction threshold 7
Output: Sequential steps with Vol analysis results
1 Procedure SIMULATEPATIENT(patient df, L, Inf, T):

2 ev+ {((,0):0]| ¢ e L};
3 results < (;
4 candidate_ labs «— {¢ | first non-zero measurement of ¢ exists};
5 Dbase <— Inf.forward_inference({(sepsis, 0) }, ev)[sepsis = 1];
6 append initial baseline step to results;
7 | while candidate_labs # () do
8 best_ gain + —o0;
9 best lab «+— None;
10 foreach ¢ € candidate_labs do
11 EViest < €V,
12 update eviest[(£, 0)] with earliest measurement of ¢;
13 Pnew < Inf.forward_inference({(sepsis, 0)}, eviest ) [sepsis = 1];
14 IG + H(ppase) — H(pnew);
15 if IG > best_gain then
16 best_ gain + IG;
17 best lab < /;
18 Pbest < Pnews
19 end
20 end
21 if best lab = None then
22 break
23 end
24 update ev with best_|lab measurement;
25 remove best_lab from candidate labs;
26 append step details to results;
27 Pbase € Pbest;
28 end
29 return results;
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CHAPTER

Evaluation of the DBN Model
Based on Value of Information
(Vol)

6.0.1 Evaluation Dataset

A 30% hold-out of the full cohort was reserved for testing the Vol-augmented DBN,
mirroring the previous evaluation. This test set comprised approximately 2,700 non-septic
ICU stays and 3,508 septic ICU stays. Emphasis was placed on comparing the lead time
for sepsis prediction between the Vol-enhanced DBN and the SOFA scoring method.

6.0.2 Lead-Time Analysis

When comparing the exact prediction timings by the number of timestamped labs required
for diagnosis, the Vol-enhanced DBN again outperformed the SOFA method in terms
of early detection. Specifically, sepsis was predicted earlier by the Vol approach in
2,606 cases, compared with 2,078 cases for the baseline DBN, indicating a substantial
improvement. Figure |6.1 shows the distribution of these lead times. The median lead
time in terms of lab tests remains 2 tests earlier, while the mean lead time increases to
2 labs, further demonstrating that the Vol method can significantly accelerate sepsis
detection beyond the original DBN’s average of 1.6 labs.
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Figure 6.1: Lead-time advantage measured in number of lab results required (DBN-Vol
vs. SOFA)

6.0.3 Lead Time in Hours

Lead time in hours was estimated to further quantify the early detection advantage.
Because the constructed timelines did not correspond to real clock times, the average
interval between consecutive lab tests was used to convert the lab-based lead times
into hours. Using this method, Vol-enhanced DBN predictions were found to precede
SOFA predictions by a median of 1.5 hours and a mean of 7.1 hours (see Figure 6.2). In
comparison, the standard DBN achieved a median lead time of approximately 0.8 hours
and a mean of 4.2 hours, indicating that the Vol approach yielded an almost double the
average early warning window. Such an increase in lead time could allow for significantly
earlier clinical intervention, potentially improving patient outcomes and reducing the risk
of sepsis progression.
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Figure 6.2: Lead-time advantage measured in hours (DBN-VolI vs. SOFA)



6.0.4 Prediction Curves

Figures [6.3| and [6.4] illustrate the patient sepsis probability over time for the SOFA
method and the Vol-enhanced DBN. It can be observed that the Vol approach reaches
diagnostic confidence thresholds significantly earlier than SOFA, showing a rapid increase
in confidence after a few lab values. In contrast, the SOFA score rises steadily with
each additional lab. This accelerated confidence gain results from selecting the most
informative labs, enabling the earliest possible diagnosis.

Figure [6.3 highlights the importance of selecting the most informative laboratory values.

The first chosen lab produced the largest increase in diagnostic confidence; if other labs
had been selected first, confidence would have stagnated and the diagnostic threshold
might have been reached too late. In the SOFA method, three lab values are required
to exceed a score of 2, resulting in delayed diagnosis. The Vol approach therefore
significantly reduces time to diagnosis and the number of lab tests needed.
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Figure 6.3: Trajectory comparison for patient hadm_id=21151580
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Figure 6.4: Trajectory comparison for patient hadm_1id=29679030
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6.0.5 Threshold Variation and Confidence Analysis

Since the performance metrics were based on predictions with confidence scores of at least
0.5, an analysis was conducted to assess whether the Vol approach improved prediction
confidence. Lead time and accuracy were measured across a range of thresholds for both
the Vol-enhanced DBN and the SOFA score.

Figure 6.5/ shows the change in accuracy, precision, recall, and F1-Score with varying
thresholds for both the Vol-enhanced DBN and the standard DBN. Compared to the
performance of the DBN, the Vol approach maintains consistently higher metrics at
elevated thresholds. When compared to SOFA scores, the Vol’s performance begins
to decline only above a threshold of 0.75, whereas the standard DBN metrics already
deteriorate from 0.63.

Vol: metrics vs. threshold DBN: metrics vs. threshold

Metric value
Metric value

—— Accuracy — Accuracy
0.2 4 Precision 0.2 4 Precision
—— Recall — Recall

—— Flscore —— F1 score

T T T T T T T T T T T T T T T T
0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
Threshold Threshold

(a) Vol performance metrics vs. threshold (b) Sepsis specific metrics vs. threshold

Figure 6.5: Comparison of Vol and DBN performance metrics across thresholds.

As the diagnostic threshold increases, the Vol-enhanced DBN maintains higher confidence
than the standard DBN. The baseline DBN predicted sepsis earlier than SOFA only up
to a threshold of 0.72, whereas the Vol approach extends this advantage to 0.85 (see
Figure 6.6). This improved robustness under stricter criteria yields more significant
early-diagnosis benefits. Even at slightly lower thresholds, Vol predicts sepsis earlier in
approximately 70% of cases.
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Figure 6.6: Proportion of outcomes vs. DBN threshold (Vol approach)

Figure 6.7 presents a heatmap of early-prediction lead times across varying thresholds
for both the Vol-enhanced DBN and SOFA scores. It can be seen that even at a low
SOFA severity of 2, the Vol approach leads in early detection across most confidence
thresholds. Under stricter diagnostic criteria, Vol remains significantly earlier, and for

high-risk cases (SOFA scores 6-8), the VoIl method outperforms at nearly every threshold.

This demonstrates a robust advantage of Vol in achieving earlier sepsis diagnosis over a
wide range of operating points.
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Figure 6.7: Heat mMap of DBN vs. SOFA thresholds (VoI approach)
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6.1 Conclusion

This thesis explored whether a constrained Dynamic Bayesian Network can anticipate
sepsis earlier than the SOFA rule while preserving interpretability and accurate predictions.
Structure and conditional probability tables of the model are estimated from historical
data under clinical constraints (forward-only causality with sepsis as the latent parent
within each slice). After training, these fixed parameters are applied to incoming
laboratory results to compute posterior sepsis probabilities over time. On a balanced
evaluation data set the DBN matched SOFA on overall accuracy and F1, reduced missed
cases at comparable operating points, and issued sepsis alerts earlier. This indicates a
clinically meaningful advantage in the ICU, where hours can alter outcomes.

To complement the DBN’s sequential inference at prediction time, a Value-of-Information
framework was introduced to select the next laboratory test that is expected to increase
diagnostic confidence the most. Candidate measurements are ranked by their expected
reduction in posterior uncertainty given the current evidence, by computing the entropy.
This results in an ordering of tests that widen the early warning window while main-
taining calibration across decision thresholds. The contribution is therefore not only a
discriminative temporal model, but also an indicator selecting which test to draw next,
allowing clinicians to balance timeliness against certainty.

On the 30% hold out test set (about 2,700 non-septic and 3,508 septic ICU stays), the
DBN with a probability threshold of 0.5 achieved an accuracy of 0.645, precision of 0.628,
recall of 0.917, and an Fl-score of 0.746. SOFA (> 2) reached an accuracy of 0.641,
precision of 0.630, recall of 0.885, and an F1-score of 0.736. The confusion matrices show
that the DBN produced fewer false negatives than SOFA (290 vs. 403), which means
fewer missed septic patients. In terms of timing, the DBN predicted sepsis earlier in
2,078 cases (SOFA earlier in 157; tied in 649). The median lead was about two lab
results (mean 1.6 labs). Converted to time, this corresponds to a median lead of roughly
0.8 hours and a mean lead of about 4.2 hours. These gains are small in appearance
but material in practice, because even short advances can bring forward antibiotics and
monitoring.

Adding the Value-of-Information approach improved early detection further. With Vol,
sepsis was predicted earlier in 2,606 cases, the mean lead increased to about two labs
while the median stayed at two labs, and the time lead rose to a median of 1.5 hours and
a mean of 7.1 hours. Vol also made the model more robust under varying probability
thresholds. The DBN was earlier than SOFA up to a threshold of about 0.72 without
Vol, and up to about 0.85 with Vol. By selecting the most informative first lab, the Vol
approach raised diagnostic confidence quickly, often reaching the alert threshold after
fewer measurements than SOFA. Together, these results show that a fixed, offline-trained
DBN can deliver earlier warnings than SOFA, and that Vol can widen this early-warning
window while keeping probability estimates reliable across thresholds.
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Full ICD-9 to ICD-10 Sepsis Code

Mappings

Full ICD-9 to ICD-10 Sepsis Code Mappings

Table 1: Complete CCS Septicemia to ICD-9 and ICD-10 sepsis code mappings

ICD-9

ICD-10

0031 Salmonella septicemia
0202 Septicemic plague
0223 Anthrax septicemia
0362 Meningococcemia

0380  Streptococcal  sep-
ticemia

0381 Staphylococc septicemia
(pre-1997)

03810 Staph septicemia, un-
specified (°97+)

03811 Staph aureus sep-
ticemia ("97+)

03812 MRSA septicemia
(°08+)

03819 Other staphylococcal
septicemia

0382 Pneumococcal sep-
ticemia

0383 Anaerobic septicemia
03840 Gram-negative sep-
ticemia NOS
03841 H.
ticemia
03842 E. coli septicemia
03843 Pseudomonas
ticemia

influenzae sep-

sep-

A021 Salmonella sepsis

A207 Septicemic plague

A227 Anthrax sepsis

A392 Acute meningococcemia; A393 Chronic meningococcemia;
A394 Meningococcemia, unspecified

A400 Sepsis due to Streptococcus, group A; A401 Sepsis due to
Streptococcus, group B

A411 Sepsis due to other specified Staphylococcus

A412 Sepsis due to unspecified Staphylococcus

A4101 Sepsis due to MSSA

A4102 Sepsis due to MRSA

A411 Sepsis due to other specified Staphylococcus

A403 Sepsis due to Streptococcus pneumoniae; A408 Other strep-
tococcal sepsis

A414 Sepsis due to anaerobes

A4150 Gram-negative sepsis, unspecified

A413 Sepsis due to Haemophilus influenzae

A4151 Sepsis due to Escherichia coli
A4152 Sepsis due to Pseudomonas

Continued on next page
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Continued from previous page

ICD-9

ICD-10

03844 Serratia septicemia
03849 Gram-negative sep-
ticemia NEC

0388 Septicemia NEC

0389 Septicemia NOS

0545 Herpetic septicemia
449 Septic arterial embolism
(C07+)

77181 Neonatal septicemia
[sepsis] ('02+)

7907 Bacteremia NOS

99591 SIRS due to infection
w/o organ dysfunction
99592 SIRS due to infection
with organ dysfunction

A4153 Sepsis due to Serratia

A4154 Sepsis due to Acinetobacter baumannii; A4159 Other Gram-
negative sepsis

A4181 Sepsis due to Enterococcus; A4189 Other specified sepsis
A409 Streptococcal sepsis, unspecified; A419 Sepsis, unspecified
organism

B007 Disseminated herpesviral disease

P360-P369 Sepsis of newborn (group Bj; unspecified and other
streptococci; Staphylococci; E. coli; anaerobes; other)

R6520 Severe sepsis without septic shock
R6521 Severe sepsis with septic shock

A267 Erysipelothrix sepsis

A327 Listerial sepsis

A427 Actinomycotic sepsis

A5486 Gonococcal sepsis

B377 Candidal sepsis

00337 Sepsis following incomplete spontaneous abortion

00387 Sepsis following complete/unspecified spontaneous abortion
00487 Sepsis following (induced) termination of pregnancy
00737 Sepsis following failed attempted termination of pregnancy
00882 Sepsis following ectopic and molar pregnancy

085 Puerperal sepsis

08604 Sepsis following an obstetrical procedure

T8112XA Postprocedural septic shock, initial encounter
T8144XA Sepsis following a procedure, initial encounter
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