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Abstract

Reinforcement learning (RL) has significantly impacted the understanding and
identification of best practices for training Large Language Models (LLMs), espe-
cially with the recently released reasoning model R1 from Deepseek DeepSeek-AI
et al. [2025]. It is commonly believed in the industry that Reinforcement Learning
is more effective for teaching the model to generalize and enhance reasoning (Jin
et al. [2025]) compared to Supervised Fine-Tuning. There are numerous methods
for employing Reinforcement Learning in the training process, such as RLHF
(Reinforcement Learning with Human Feedback), RLAIF (RL with AI Feedback),
rule-based RL and reward model training. This paper provides a summary of the
methods, as well as the scalability analysis and research gaps at the end of the
paper.

1 Introduction

1.1 Motivation

Large Language Models have recently evolved into a basic component of modern AI systems, from
code generation, over solving complex math and logic puzzles to writing great articles and facing
creative problems, like writing poems. Alignment of LLMs with the human preferences and values,
reasoning before answering in order to solve complex riddles and achieve task-specific goals is one
of the big problems that the AI industry is currently focused on (Yu et al. [2025]). This has also
emerged the big boom in finding new, more effective, but at the same time more efficient training
techniques to get better results fast. Another problem, that I’m sure everybody currently is concerned
with is the AI ethics. The need of aligning models in a way that is not harmful for humanity, different
groups of people, or just individuals requires the engineer to find new methods how to train or even
lead the models in a way that is considered to be safe and non-harmful. Both of these problems could
not be solved just with Supervised Fine-Tuning, as it is in general not that well generalizable Chu
et al. [2025], which once again underlines the importance of trying out RL techniques on training the
Large Language Models.

1.2 Scope and Contributions

This paper presents a comprehensive overview of reinforcement learning techniques used to train and
align LLMs with a main focus on recent developments in the research industry. In the following you
can see the main last contributions that you can learn about in the following sections of the paper:

• A review of classic RL techniques, e.g. PPO and reward models

• An analysis on the new-emerging techniques based on the classic ones, including GRPO

• An exploration of rule-based RL paradigm, with a focus on constitutional AI



• A summary of practical challenges for the future and trade-offs for all the previously
mentioned paradigms.

• RLAIF, RLHF

1.3 Related Work

This section will provide some overview of the field, especially the quick analysis of the papers that
have been considered greatly in this work. One of the most impactful papers is the DeepSeek’s R1
model DeepSeek-AI et al. [2025] that has developed the reasoning capabilities with much less data
than would be needed for other techniques (e.g. Supervised Fine-Tuning). How this was achieved
was to "force" the LLM to create a reasoning block before the final answer. The prompt that was used
instructed the model to first reason and put it in between the "<think>", "</think>" tags, following
the "<answer>" and "</answer>" that actually provides the answer to the input prompt of the user.
Using rule-based Reinforcement Learning the LLM could "learn on its own" by training the policy to
maximize the reward model. The rules defined were:

1. following the formatting rules (think and answer blocks provided),
2. providing a correct answer (e.g. for math problems, the correct value at the end, for

programming problems similar to LeetCode the solution has to pass some tests etc.),
3. answering consistently in one language.

The last rule was introduced because a big problem that was discovered during training is that the
model mixed the languages in the response, which made the response quite unreadable. With adding
the additional rule to answer in one language, the performance decreased slightly. But because of the
importance to align with the human values of usability of Large Language Models, it was introduced.

Applying a rule-based reinforcement learning algorithm during the training of large language models
proved to be a sound choice, owing to its simplicity and computational efficiency.

Another new topic introduced in the DeepSeek’s R1 paper is the GRPO (Group Relative Policy
Optimization). In each modern LLM there must be a training stage to align the model’s responses
with the human preferences. This problem is also solved with reinforcement learning algorithms.
Using SFT (Supervised Fine-Tuning) for such purpose would not make sense, as SFT much rather
focuses on teaching the model what to say and not how. We would need a stage in the LLM training
to optimize for preference, use reward functions that are focused on more nuanced objectives (e.g.,
helpfulness, harmfulness, etc.) and generalize better to unseen examples.

GRPO is an improved version of its predecessor PPO, which was one of the mostly used algorithms
for Reinforcement Learning pipeline. Its improvement focuses on making the algorithm more efficient
by updating the policy based within a batch rather than solely relying on absolute reward values. This
group-based approach results in a more stable training, even in presence of noisy data and improves
the efficiency of the training, making it an important step in scalable and reliable LLM alignment.

Another important work was done as improvements upon the newly introduced topics in the previous
paper. In the paper Xie et al. [2025] the rule-based algorithm was improved by adding additional
rules (e.g. having only reasoning in the "<think>"-block, and answer in the <answer> block and some
others) to guarantee actual holding up onto rules and to avoid shortcuts.

REINFORCE++ algorithm was introduced as well as an upgraded and better fitted version of the
GRPO algorithm. The author introduces the usage of KL-divergence in the reward model already (in
comparison: in GRPO KL-divergence was used in the loss model only) and fine-tuned its estimation
by ensuring non-negative values during training.

This suggests that the algorithms, despite their good work, can and should be still improved to get
better results.

2 Background

In this section I will show how natural language can be seen as a Reinforcement Learning problem
and will introduce the classic RL algorithms that emerged in the Large Language Model world that
are currently the base for all the current more advanced solutions.
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2.1 Fundamentals of Reinforcement Learning

Reinforcement Learning is a paradigm that focuses on teaching agent what is the best sequence of
steps to be taken over time, to maximize the reward (in other words, to achieve some goal). It takes
input from the environment and tries to predict what the next best step is, whilst always getting a
reward as feedback how well it performed. Just from the definition, it can be noticed that finding
a reward is an already challenging task, because in some cases (e.g. in predicting the next tokens,
aka LLM world, it is sometimes also not understandable for a human, what is a better response). In
order to come up with a decision the RL agent has to consider value-based methods (outcomes for the
state-action pairs) as well as it has to optimize the policy-based methods that maximize the reward
considering all possible scenarios.

Figure 1: Reinforcement Learning environment

2.2 Language Models as RL Agents

In this chapter, you can find a quick introduction on how Natural Language generation can be viewed
as a Reinforcement Learning problem.

The Language Models are responsible for predicting the next token. The environment has states
(in our case, prompts) that have the goal of generating a sequence of actions (tokens) that lead to a
comprehensive answer (result). The responsibility of an agent is to learn a policy that achieves the
goal of creating a coherent contextual answer.

Such a formulation of a problem enables us to view fine-tuning the LLM with Reinforcement Learning
not only as a model that tries to maximize the reward of choosing a correct next token, but also in
general, RL could be applied to achieve some bigger-scale goals (for instance, aligning it with ethical
values).

However, while calculating the cumulative reward is a challenging problem in natural language on
its own, the newer strategies focused on rather comparing signals, e.g. in RLHF (Reinforcement
Learning with Human Feedback) pipelines paired responses are provided to the feedback giver and
then based on preferred one, the policy is optimized and reward model is trained.

This has led to another improvement, to the existence of reward-free models that fully rely on
preference. The rise of the following methods has had a huge impact: Direct Policy Optimization
(DPO), Group Relative Policy Optimization (GRPO), and REINFORCE++, which have shifted apart
from costly and inefficient sampling and explicit reward model to a more efficient and stable training
method.
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2.3 Policy Optimization Techniques

Now let us take a deeper look at the policy optimization methods and the things that led to their
development.

• PPO (Proximal Policy Optimization): a technique that optimizes the reward model based
on feedback on each response. It became a very stabilized training technique, because it
included clipping the changes, so the model does not have drastic changes, which destroy
some things learned before. By taking the minimum between the unclipped and clipped
objectives, PPO algorithm penalizes updates that would extremely increase or decrease
action probabilities.

L(θ) = Et

[
min

(
πθ(at|st)
πold(at|st)

At, clip
(

πθ(at|st)
πold(at|st)

, 1− ϵ, 1 + ϵ

)
At

)]
,
where:

– πθ(at|st) - probability of taking action at in state st recording to the new policy
– πold(at|st) - probability recording to the old policy
– At - advantage function, which represents how much better or worse the action at was

compared to the average action at state st.
– ϵ is a hyperparameter that limits how much the new policy can diverge from the old

one, preventing excessively large policy updates.

• REINFORCE: a classic reinforcement learning algorithm. The idea is to update the weights
to increase the probability of actions that lead to higher rewards.

• DPO (Direct Policy Optimization): This algorithm does not use a separate reward model.
Instead, it directly trains the language model to prefer better responses. The training method
is simple and based on inverse reinforcement learning. This makes DPO easier to use and
more stable than older methods like PPO. Nika et al. [2024]

• GRPO (Group Relative Policy Optimization): is an optimized version of DP. That means that
GRPO considers a couple of responses of the LLM and grades a set of those and bases on
relative quality towards other responses. In such a way it can analyze and train on multiple
answers at once, which makes the training process more stable and quality of the responses.
The comparison between the GRPO and PPO you can see in the [Figure 1] below.

J(θ) = Eq∼P (Q), {oi}G
i=1∼πθold (O|q)

 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min
(
ri,tÂi,t, clip(ri,t, 1− ϵ, 1 + ϵ)Âi,t

)
− βDKL(πθ∥πref)


– q ∼ P (Q): A question q is sampled from the question distribution P (Q).
– {oi}Gi=1 ∼ πθold(O|q): A group of G output sequences {o1, o2, . . . , oG} is sampled

from the old policy given the question.

– 1
G

∑G
i=1: The objective averages over all sampled outputs in the group.

– 1
|oi|

∑|oi|
t=1: Each sequence oi is averaged over its token positions t.

– ri,t =
πθ(oi,t|q,oi,<t)
πθold (oi,t|q,oi,<t)

: The probability ratio between the current and old policy at
token t in output oi.

– Âi,t: The estimated advantage at time step t for output oi, based on relative rewards
within the group.

– min
(
ri,tÂi,t, clip(ri,t, 1− ϵ, 1 + ϵ)Âi,t

)
: The clipped objective used to avoid large

policy updates.
– ϵ: A hyperparameter that controls how much the policy is allowed to change between

updates.
– βDKL(πθ∥πref): A KL-divergence penalty term that discourages the new policy from

deviating too far from a reference policy, scaled by hyperparameter β.
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Figure 2: Comparison between PPO and GRPO. Source: Shao et al. [2024].

• REINFORCE++: an advanced algorithm that combines the 2 strong points coming from its
predecessors: REINFORCE (reward function) and GRPO (group-wise comparisons). It is
“an enhanced variant of the classical REINFORCE algorithm that incorporates key optimiza-
tion techniques from PPO while eliminating the need for a critic network. REINFORCE++
achieves three primary objectives: (1) simplicity (2) enhanced training stability, and (3)
reduced computational overhead.” Hu et al. [2025]

Figure 3: Comparison of efficiency between GRPO, PPO and REINFORCE++. Source: Hu et al.
[2025].

3 Human and AI-Guided Reinforcement Learning Approaches

3.1 Background

In this section, the algorithms will be introduced that play a role of fine-tuning the model’s responses
to be better aligned with human preferences. An introduction will be provided to 2 most commonly
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used: RLHF (Reinforcement Learning with Human Feedback) and RLAIF (Reinforcement Learning
with AI feedback).

3.2 Reinforcement Learning with Human Feedback

RLHF involves training the Large Language Model based on feedback received from human annota-
tors. Their task is to judge the model’s responses and evaluate how good the answer is based on some
predefined factors (helpfulness, clarity etc.) This approach is mostly used together with some policy
optimization techniques (e.g. PPO) to update the policy based on the data received from human
annotators.

This method has gained some popularity based on the fact that it is flexible across domains, improves
the output quality of the language model and alignment with human values. However, as it requires
huge amount of data it is not well scalable. Another negative factor is imperfections in the data
provided by the annotators, as it can, for instance, have limited consistency and potentially can still
propagate biases (unconscious flaws). These aspects should therefore be taken into account when
evaluating potential solutions.

3.3 Reinforcement Learning with AI Feedback

A notable development in RL is the Reinforcement Learning from AI Feedback (RLAIF). This
technique builds upon the principles of Reinforcement Learning from Human Feedback (RLHF).
Rather than relying only on human-generated feedback, RLAIF gets feedback provided by powerful
AI models to train and align other AI systems. This approach offers a scalable alternative to traditional
human-in-the-loop methods. It potentially reduces the cost and time associated with human annotation
while maintaining or even improving alignment quality. As the field seeks more efficient ways to
train Large Language Models and align them with desired behaviors, RLAIF provides both promising
opportunities and significant questions regarding reliability and control.

4 Rule-based Reinforcement Learning

4.1 Definition

Rule-based Reinforcement Learning is a paradigm built upon the traditional RL principles and
combined with some defined rules as a reward model. Traditional RL has an agent that explores the
environment and provides feedback and rule-based methods introduce a set of predefined rules to
follow, based on which the agent receives rewards as a signal.

An example of rule-based RL principles:

Consider an agent trained to assist in drafting official documents for legal professionals. In this
context, the use of slang is undesirable. Accordingly, the agent is penalized with a negative reward
(e.g., –1) if its output contains any slang expressions, and conversely, it receives a positive reward
(e.g., +1) when it produces output free of slang.

This paradigm also has had great success in improving the quality of the reasoning capabilities in Large
Language Models. In text generating tasks, such models often lack deeper understanding/analysis
of the problem and are rather "surface" responses with no reasoning behind it. This illustrates a
bigger problem, as it defines the limitations of LLMs. In such cases, rule-based methods can be used
to enforce the models to think before constructing the final answer (e.g. by introducing a rule of
formatting for a "think"-block - as mentioned in "1.4 - Related Works" section).

4.2 Constitutional AI: Embedding Human Values vie Rules

One of the areas that the rule-based paradigm can bring much success into, is the Constitutional
AI. It is a term introduces by Anthropic AI Bai et al. [2022]. Constitutional AI is an approach of
aligning human values and principles with the Large Language Models. It focuses on reducing
the human feedback through the whole learning process by only delegating the overview of the
"constitution" (predefined set of rules, aligned with human ethics) to the people and using self-
critique and supervision to learn how to apply those rules successfully.
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Introducing better ethics into AI models, especially into their reasoning, to be able to stay flexible not
relying on the cost of helpfulness could potentially bring a lot of benefits, especially when seeing
great success in other areas of aligning Large Language Models and their underlying principles (e.g.
in aligning language models to assist legal professionals).

Rule-based frameworks guide AI behavior using clear "if-then" logic with help of:

• Predefined ethical guidelines: A rule might state, "If a user asks for medical advice, the
model should check against peer-reviewed sources before answering."

• Penalty mechanisms: During training, responses that break these rules are given negative
feedback (e.g., lower rewards), which encourages the model to produce more appropriate
and rule-following outputs.

This approach might introduce a new perspective on how to bring ethics into AI models with
potentially small cost of helpfulness of the models. However, such approach still does not resolve
previous problems with constitutional AI, such as rules clash (when two rules in some way contradict
each other, e.g. "maximize truthfulness" and "avoid harmful facts").

4.3 Applicability and training efficiency analysis

Rule-based frameworks provide as some additional value the computational efficiency because of the
following factors:

1. Reduced parameter complexity - Rule-based reward models have far fewer trainable parame-
ters than standard RLHF (Reinforcement Learning with Human Feedback) reward models.
This allows for much faster fitting, since the optimization focuses on a small set of rule
weights rather than millions of reward model parameters.

2. Sample number efficiency - Because rules are explicit and interpretable, fewer training
examples are needed to achieve strong alignment. For instance, OpenAI reports that fitting
RBR (rule-based rewards) weights requires less data than training a full reward model. Mu
et al. [2024]

3. Automation and scalability - Rule-based frameworks help automatically check and enforce
good training practices, which cuts down on the need for constant human supervision.

4. Generalization - Rule-based RL has been shown to promote cross-domain generalization
and robust behavior, as models trained with verifiable, rule-based rewards can maintain or
even improve performance on unseen tasks or domains.

5 Open Problems and Future Developments

5.1 Scalable Reinforcement Learning

One of the very important things to consider when designing new training pipelines for Large
Language Models is scalability and computational limitations for training algorithms.

In this paragraph there is a simple comparison of the scalability of two of the most used training
techniques: RL (Reinforcement Learning) and SFT (Supervised Fine-Tuning). Each one of the
techniques provides some trade-offs regarding the scalability. RL offers great adaptability in dynamic
environments—it works by iterative self-improvement based on the reward, while SFT adapts very
quickly to specific tasks by using labeled data with a risk of overfitting and quite limited generalization.

Here are various aspects to consider when comparing the scalability of both techniques:

• Data Efficiency: RL scales via exploration, so there is no need for a static dataset, while
SFT requires intensive data labeling.

• Computational Demand: RL is extremely resource-intensive (can be mitigated using partial
rollouts), while applying SFT has lower cost and is more parameter-efficient (methods like
LoRA can optimize the costs).

• Performance Impact: RL achieves state-of-the-art reasoning capabilities, while SFT
provides a strong baseline through task-specific tuning.
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Based on the newest research in the area: the Kimi k1.5 model provided new techniques for making
RL training even more scalable Team et al. [2025]. It could be achieved by using the following
techniques:

• Context length extension: the maximum number of tokens was increased to 128,000 tokens.

• Partial rollouts: this technique optimizes the computational costs of handling long sequences
during training. It works by splitting a single reasoning task into smaller segments. After
each segment is generated, it is saved and be reused in later training steps. This allows
the model to incrementally complete long reasoning chains while updating its parameters
efficiently.

• Length penalty: prevents overthinking and excessive repetition.

• Curriculum sampling: the training focuses on gradually harder problems, making the model
perform better in low-success tasks.

Because of the great results of the Reinforcement Learning in NLP and LLMs areas, there is currently
a lot of research striving to build faster, better and more successful algorithms.

5.2 Research gaps

While the current research is impressive, this paragraph focuses on the still-existing research gaps in
the area that require some attention from the research field.

One such topic is the hybrid usage of SFT and RL, which could potentially result in even more
computationally cheap training specific to the exact use case. As partial rollouts are a new topic in
the field of reinforcement learning, it is important to explore which parameter optimizations are most
effective in this context. This includes the research on multi-modal models. The following topics
still need deeper exploration: intermediate feedback/rewards for long-sequence problems, evaluation
frameworks for reinforcement learning-aligned LLMs, and mechanisms to prevent reward hacking.

The research in this area clearly holds immense potential, and every contribution is recognized.

6 Conclusion

This paper introduced the topic of using reinforcement learning algorithms for training of Large
Language Models. As both of the areas gain popularity, separately and together, it’s crucial to
know how to leverage those technologies for even better performance of models. As Reinforcement
Learning provides so many diverse algorithms, this paper provided an structured way to get into the
topic, from the basics of Reinforcement Learning over some popular methods, like RLHF, RLAIF
and rule-based Reinforcement Learning to the scalability aspect of those as well as identification
of research gaps. The area provides great opportunities for researchers, as each singe days we can
observe contributions to the field.
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