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Abstract

Graphene-based field-effect transistors (GFETSs) are rapidly gaining recognition as powerful tools for biochemical analysis
due to their exceptional sensitivity and specificity. In this study, we utilize a GFET system to explore the peroxidase-based
biocatalytic behavior of horseradish peroxidase (HRP) and the heme molecule, the latter serving as the core component
responsible for HRP’s enzymatic activity. Our primary objective is to evaluate the effectiveness of GFETs in analyzing the
peroxidase activity of these compounds. We highlight the superior sensitivity of graphene-based FETs in detecting subtle
variations in enzyme activity, which is critical for accurate biochemical analysis. Using the transconductance measurement
system of GFETs, we investigate the mechanisms of enzymatic reactions, focusing on suicide inactivation in HRP and
heme bleaching under two distinct scenarios. In the first scenario, we investigate the inactivation of HRP in the presence of
hydrogen peroxide and ascorbic acid as cosubstrate. In the second scenario, we explore the bleaching of the heme molecule
under conditions of hydrogen peroxide exposure, without the addition of any cosubstrate. Our findings demonstrate that this
advanced technique enables precise monitoring and comprehensive analysis of these enzymatic processes. Additionally, we
employed a machine learning algorithm based on a multilayer perceptron deep learning architecture to detect the enzyme
parameters under various chemical and environmental conditions. Integrating machine learning and probabilistic methods
significantly enhances the accuracy of enzyme behavior predictions.
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Introduction most of these metabolic processes, must be studied in detail

to understand how environmental perturbations affect com-

Organisms continuously adapt to genetic and environmental
changes, requiring a deep understanding of biochemical and
biophysical networks in metabolism. Enzymes, which drive
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plex metabolic reaction networks. Kinetic models have been
vital for over 50 years in exploring enzyme mechanisms and
metabolic networks, impacting fields like synthetic biology
and biotechnology [1]. Apart from this, enzymes, including
hydrolases and redox enzymes, are crucial in industrial pro-
cesses. Heme-iron oxidases, such as peroxidases, are used in
applications ranging from enzymatic scavenging to biofuel
production [2]. However, peroxidases often suffer from sui-
cide inactivation by hydrogen peroxide (H>O;), which can
lead to enzyme deactivation through biliverdin formation or
heme destruction [3, 4]. High H,O; concentrations compli-
cate enzyme activity assessments, and a variety of techniques
and different strategies have been applied to study this phe-
nomenon.

Morales-Urrea et al. used UV-Vis spectroscopy to study
HRP inactivation by H>O;, revealing enzyme deactivation
through heme degradation. They identified three states of
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HRP: resting (E;), low H,O» (E»), and high H>O; (E3), with
E3 decaying to Ep and forming a new inactive species with
an absorption band at 670 nm. External substrates prevent
E3 formation by accelerating HyO, consumption [2]. Khos-
raneh et al. studied microperoxidase-11 (MP-11) reacting
with H>O» to oxidize guaiacol using UV-Vis spectroscopy,
confirming first-order kinetics with respect to guaiacol. Their
results suggest MP-11 inactivation by suicide-peroxide is
similar to HRP, with inactivation occurring even at low H,O»
(0.4 mM) [5]. Savéant et al. explored HRP’s mechanisms
involving H,O; and an electron donor, finding a bell-shaped
calibration curve using the cyclic voltammetry method. This
was attributed to the formation of inactive oxyperoxidase,
and they demonstrated that at low H,O» concentrations, the
response is diffusion-controlled and proportional to H,O»
levels [6].

To address enzyme structural changes, molecular biolo-
gists employ techniques to enhance stability, such as protect-
ing oxidation-sensitive residues or optimizing free radical
pathways. These advances improve enzyme longevity and
utility across various applications [4]. However, challenges
like instability and high costs have driven interest in synthetic
enzyme mimics, such as nanozymes, which offer precise con-
trol over enzyme-driven reactions. These materials provide
tailored solutions for catalytic applications in biotechnology,
medicine, and environmental preservation [7-10].

Single-atom nanozymes have the potential to revolution-
ize artificial enzymes by precisely manipulating their active
site properties, offering a promising alternative to natural
enzymes. These nanozymes bridge heterogeneous, homoge-
neous, and enzymatic catalysis, advancing catalytic technol-
ogy [11]. Notably, the heme molecule is often emulated in
their design, with enzymatic activity typically assessed by
comparing their interaction with HyO,. However, the spe-
cific mechanism of suicide inactivation related to the heme
molecule remains unclear.

FETs as electronic devices offer exceptional real-time
responsiveness and sensitivity for studying enzymatic reac-
tions. GFETs excel in this domain due to their remarkable
sensitivity and ability to monitor enzyme activity in real
time. GFETs enable label-free detection by directly observ-
ing changes in electrical properties, providing quantitative
insights into reaction kinetics and mechanisms. Their adapt-
ability allows for selective interactions with specific enzymes
or reaction products, and when integrated with microfluidic
devices, they offer precise control over reaction conditions.
GFETs are particularly valuable for studying redox-active
enzymes like HRP and heme, optimizing substrate concentra-
tions, minimizing enzyme inactivation, and providing critical
insights into structural changes during enzymatic reactions.

In recent years, a variety of GFETs have been developed
for enzymatic biosensing, demonstrating their potential for
highly sensitive detection of small molecules. Wang et al.
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introduced a photoelectrochemical solution-gated graphene
FET (PEC-SGGT) that integrates enzyme cascade reactions
for organophosphorus detection, achieving a thousandfold
current gain and a low detection limit of 0.05pM [12].
Fenoy et al. developed a method for immobilizing acetyl-
cholinesterase on graphene FETs, enhancing pH sensitivity
and achieving a detection range for acetylcholine from 5 uM
to 1000 uM [13]. Piccini et al. demonstrated the construc-
tion of urea-sensing biosensors using reduced graphene oxide
FETs, with a low detection limit of 1 uM and the ability
to quantify Cu>* through urease inhibition [14]. You et al.
created a silk fibroin-encapsulated graphene FET biosen-
sor for glucose detection, demonstrating a linear detection
range from 0.1 mM to 10 mM [15]. Kwak et al. designed a
flexible glucose sensor using CVD-grown graphene FETs,
capable of real-time monitoring with a detection range of
3.3mM-10.9mM [16]. Furthermore, Wei et al. developed
a heat-denatured casein-modified graphene FET biosensor
for the ultrasensitive detection of B-galactosidase, achieving
an attomole sensitivity and a detection range of 1fg/mL-
100 ng/mL [17]. These studies underscore the versatility and
sensitivity of GFETSs for enzymatic biosensing applications.
However, to the best of our knowledge, none of these investi-
gations have utilized GFET systems for a detailed exploration
of enzymatic reaction mechanisms.

Enzyme kinetic parameters (Michaelis-Menten (MM)
parameters), are fundamental for describing how enzymes
interact with substrates and catalyze reactions. They quanti-
tatively define substrate affinity and the maximum catalytic
rate, enabling precise modeling of enzymatic behavior under
various conditions. Accurately determining MM parame-
ters experimentally presents significant challenges. These
include the complexity of biological systems with poten-
tial for enzyme impurities and the presence of inhibitors,
stringent experimental requirements for maintaining con-
stant conditions and accurate measurements, and inherent
limitations of the MM model itself, such as the steady-state
assumption and its applicability to single-substrate reactions
[18]. Furthermore, environmental factors such as pH and tem-
perature can significantly influence enzyme activity, further
complicating the process [19].

Bayesian inversion and machine learning offer significant
advantages over traditional experimental methods for esti-
mating MM parameters. Bayesian inversion [20, 21] employs
a probabilistic framework to integrate prior knowledge and
experimental data, enabling robust parameter estimation
while effectively managing uncertainties and model discrep-
ancies [20, 22, 23]. For example, Choi et al. [24] demon-
strated its efficacy in identifying MM parameters (K, kcat)
using ODE-based models and MCMC methods. Machine
learning further enhances parameter prediction through
algorithms like regression and neural networks, offering
improved accuracy and efficiency for different environmen-
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tal and chemical conditions. Maeda et al. [25] successfully
applied global optimization-based machine learning to esti-
mate the MM parameters. Unlike labor-intensive experimen-
tal techniques, these computational methods reduce reliance
on extensive testing, handle complex biochemical scenarios,
and provide scalable and reliable parameter estimation. By
combining Bayesian rigor with machine learning’s predic-
tive capabilities, we can provide a more efficient and versatile
approach to enzyme kinetics.

Despite advancements in experimental enzymatic analy-
sis, challenges in accurately determining kinetic parameters
remain due to the complexity of biochemical systems, strict
experimental conditions, and model limitations. Factors like
pH and temperature add to the difficulty. Developing robust
computational models is beneficial for predicting enzyme
behavior and improving our understanding of enzymatic
processes under various conditions, complementing tradi-
tional experimental methods. Advancing the evaluation of
new machine learning methods [21] is crucial for analyzing
large datasets, identifying trends [23], and predicting enzyme
behavior. This progress enhances artificial enzyme discovery
and optimization in biotechnology and medicine. This study
focuses on understanding peroxidase activity, particularly
heme-based peroxidases, using a GFET system to monitor
reactions in two modes (see Fig. 1).

1. Transconductance measurement involves measuring
the drain-source current (I3s) while maintaining a con-
stant drain-source voltage (Vys) and varying the gate
voltage (V). In this configuration, the enzyme is immo-
bilized on the graphene surface, where enzyme-substrate
interactions induce changes in the graphene’s electronic

properties. By varying V,; and recording /g5, transfer char-
acteristic curves can be generated, revealing the influence
of enzymatic activity on the electronic environment of
the graphene layer. This technique offers high sensi-
tivity and real-time monitoring of enzymatic reactions,
with Dirac voltage reflecting changes in local electronic
properties due to enzymatic processes. Additionally, this
method facilitates the investigation of peroxidase activity
mechanisms, heme bleaching, and H> O, -induced suicide
inactivation by analyzing shifts in the Dirac voltage in
response to structural changes in the enzyme under vary-
ing H>O; concentrations.

2. In MM Kinetics estimation /45 is measured at constant
Vis and V, to determine enzymatic parameters based on
MM kinetics. The substrate concentration is varied while
maintaining fixed Vgs and V,, and the corresponding 45
is recorded. The relationship between I4s and substrate
concentration is analyzed to extract critical enzymatic
parameters, including the Michaelis constant (Ky,) and
the maximum reaction rate (Viax). By fitting the MM
equation, which characterizes the dependence of reaction
rate on substrate concentration, to the experimental data,
key insights into the enzyme’s catalytic efficiency and
substrate affinity are obtained.

In this work, we concentrate on monitoring the enzymatic
reactions using GFETs in the following aspects:

e The limitations of employing GFET systems for studying
enzymatic reactions, particularly for determining MM
constants, arise from the complexities of enzyme kinet-
ics, the non-specific and sensitive response of GFETsS,

ENZYMATIC REACTION

Enzyme
Cosubstrate+ H,0, —— by product + 2H,0

© (d)

Drain current
| Drain current|

Gate voltage

PBASE Heme

Fig.1 A graphical summary of the experimental procedures employed
in this study includes the following steps: a HRP immobilization on
graphene: HRP is immobilized on the graphene surface using PBASE
as a cross-linker; b heme immobilization on graphene. Enzymatic activ-

ity is assessed through two methods: ¢ transconductance measurement:
the Iy current is recorded while varying V, at a fixed Vys; and d con-
stant voltage mode: MM parameters are determined by measuring /s
at constant Vs and Vg
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and the challenges in directly correlating Dirac volt-
age shifts with enzymatic reaction rates. These factors
suggest that while GFETs offer powerful biosensing
capabilities, they may necessitate additional calibra-
tion, alternative measurement strategies, or complemen-
tary techniques to accurately investigate complex enzy-
matic systems, such as heme-containing peroxidases. We
explore these constraints within GFET systems and deter-
mine the MM constants for heme-containing peroxidase
enzymes, such as HRP. This analysis will clarify why
the traditional approach of linking Dirac voltage shifts
to enzymatic reaction rates may not be effective in this
context.

e In GFET-based biosensing, the direct electron transfer
(DET) effect involves redox-active species in the envi-
ronment engaging in direct electron exchange with the
graphene surface. This interaction complicates the accu-
rate interpretation of Dirac voltage shifts, akey parameter
used to monitor enzymatic activity. The redox shift asso-
ciated with the Faradaic current, which resembles a
doping-like effect, is observed to be non-Nernstian and
influenced by factors well-known in electrode kinetics,
including electrode surface area, the standard potential of
redox probes, and the scan rate of gate voltage modula-
tion [26]. While this article does not explore the complex
interactions between these environmental parameters and
enzyme activity in detail, we recognize their signifi-
cance. To provide context, we reference prior studies and
recent findings that discuss structural changes in HRP
and its heme group. However, fully elucidating the extent
to which environmental redox species contribute to or
interfere with these changes is beyond the scope of this
discussion.

e Weinvestigate the complex mechanisms governing enzy-
matic reactions in heme-containing peroxidase enzymes,
with a particular emphasis on the impact of hydrogen
peroxide. Specifically, we examine the phenomenon of
suicide inactivation [4], a process in which hydrogen per-
oxide progressively inactivates the peroxidase enzyme,
ultimately disrupting the entire reaction pathway. By
analyzing this self-inactivation mechanism, we aim to
elucidate the effects of hydrogen peroxide on the catalytic
activity and stability of heme-containing peroxidases,
offering valuable insights for both biochemical applica-
tions and the modeling of enzyme kinetics.

e We ensure that the changes in Igs can be precisely cor-
related with enzyme activity rates, providing a more
reliable assessment of enzyme function in various bio-
chemical contexts.

e We strive to enhance the accuracy and efficiency of ana-
lyzing enzymatic activity in GFETs. By using machine
learning techniques, the methodology aims to overcome
the limitations of traditional calculation methods, provid-
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ing more precise estimates of MM constants and thereby
improving the overall understanding and application of
enzymatic kinetics in GFET-based biosensors.

Materials and methods
Materials

HRP (Type VI) was obtained from Sigma-Aldrich as a
lyophilized powder and used without further purification.
The specific activity of the enzyme, as reported by the man-
ufacturer, is 250 units/mg, where one unit is defined as the
amount of enzyme required to produce 1 mg of purpurogallin
from pyrogallol within 20s at pH 6 and 20 °C. Hydrogen per-
oxide (30 wt%) was also procured from Sigma-Aldrich. All
other reagents used in this study were of analytical grade and
sourced from Sigma-Aldrich.

Instruments

Atomic force microscopy (AFM) analysis was conducted
using an Agilent 5500 instrument in AC tapping mode.
SCOUT70 tips with an average radius of 15 nm were
employed, with a scan resolution of 512x512 pixels. Scans
were performed under dry conditions, and the resulting
images were analyzed using Gwyddion software to quantify
particle density on the graphene surface. X-ray photoelectron
spectroscopy (XPS) analysis was carried out using a Nexsa
G2 instrument from Thermo Fisher. The primary objective
of this analysis was to determine elemental concentrations
and the chemical composition of the samples. For UV-Vis
analysis, NanoDrop One/One Microvolume UV-Vis Spec-
trophotometers were employed.

The GFET S-20 chip, produced by Graphenea, is specif-
ically engineered for enzymatic reaction analysis within
a two-dimensional FET system. The chip comprises 12
graphene-based devices, each featuring encapsulated metal
pads to prevent degradation and reduce leakage currents.
Probe pads are strategically placed near the periphery for
convenient access. A key feature of the GFET S-20 chip is
the centrally located non-encapsulated gold (Au) electrode,
which facilitates liquid gating without the need for an external
gate electrode, thereby simplifying functionality and enhanc-
ing usability. The manufacturing process of the GFET S-20
chip involves several critical steps. It begins with the chem-
ical vapor deposition (CVD) of graphene on copper foil,
followed by the transfer of the graphene onto a Si/SiO, sub-
strate. The graphene is then patterned using photolithography
and O; plasma etching. Subsequent steps include gold met-
allization and Al, O3 passivation via atomic layer deposition,
culminating in the dicing of the chip into individual devices.
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The individual graphene FETs on the chip exhibit carrier
mobilities exceeding 1000 cm?V~'s~! on average, with the
Dirac point consistently below 1000mV across 10 batches
of devices. Quality control indicates an average yield of over
75% per wafer. In summary, the GFET S-20 chip delivers
high-performance graphene devices with exceptional yield
and functionality, making it a superior choice for enzymatic
reaction analysis in two-dimensional FET systems.

A commercial readout system was employed for effi-
cient and precise measurement of the electrical response of
GFETs. Voltage signals for both the drain and gate were gen-
erated using a Keithley SMU device model 2612B. Prior to
measurements, the graphene surface was cleaned of trace
metal impurities. This was achieved by cycling the gate volt-
age between —500 and 500mV in a 100 mM HCI solution
until the Dirac point stabilized. At the beginning and end of
each measurement series, the field effect was recorded in the
same blank buffer to identify and account for any potential
drifts introduced during the series. The same device con-
figuration was utilized for electrochemical experiments. In
three-electrode electrochemical measurements, a platinum
wire was introduced as the counter electrode, while both
graphene contacts served as the working electrode to ensure
complete contact across the graphene channel. A commercial
Ag/AgCl reference electrode was used for cyclic voltamme-
try.

For transconductance measurements in the FET system,
the gate potential was scanned from 0 to 1000mV at a
rate of 20mV/s, while the drain voltage was maintained at
20 mV. Measurements were performed using only a forward
scan, with no reverse scans. To minimize the risk of cross-
contamination, the solution was replaced for each test, and
the chip surface was thoroughly washed with buffer three
times before introducing a new solution. The test medium
consisted of a 1 mM phosphate buffer solution containing
1 mM KCI as the supporting electrolyte. To ensure that no
water electrolysis occurred within our applied voltage range,
we tested the chip using cyclic voltammetry in the range of
OmV to 1200mV. No increase in current was observed in the
blank solution, confirming the absence of electrolysis under
these conditions (Fig. S1).

HRP immobilization procedure

The immobilization of HRP on the graphene surface was
conducted according to a standardized protocol. The GFET
chip was submerged in a solution of 10mg/mL of PBASE
(1-pyrenebutanoic acid succinimidyl ester) dissolved in
dimethylformamide (DMF) for 2h. The pyrene groups in
PBASE facilitated non-covalent functionalization through
irreversible adsorption onto the intrinsically hydrophobic
graphene surface, as described by Chae et al. [27]. Following

immobilization, the chip underwent a series of washes with
DMF and phosphate buffer. Next, a solution of 25 mg/mL
HRP in phosphate buffer was applied to the graphene chip
for 2h. After this incubation, the chip was thoroughly rinsed
and immersed in Tris buffer at pH 9 for 5 min to promote the
hydrolysis of any unreacted PBASE, which could enhance
the graphene surface’s sensitivity to pH changes. The chip
was then rinsed three times with phosphate buffer at pH 7.
The amount of HRP immobilized on the graphene was quan-
tified by measuring the residual HRP concentration in the
original solution after adsorption.

Heme immobilization procedure

The immobilization of heme on the GFET was accomplished
by immersing the GFET in a 5mg/mL heme solution in
dimethyl sulfoxide (DMSO) for 2h. Following this incu-
bation, the GFET was thoroughly rinsed with DMSO and
phosphate buffer to remove any unbound material. The
7 — 7 stacking interactions between the porphyrin ring of
the heme molecule and the graphene surface are anticipated
to result in a robust and efficient immobilization of heme on
the graphene substrate, as reported by Xue et al. [28]. The
quantity of heme adsorbed onto the graphene was quantified
by calculating the difference between the initial concentra-
tion of heme in the solution and the residual concentration in
the supernatant post-immobilization.

GFET examination

In the investigation of the enzymatic mechanism following
the optimization process, Vgs was set to 20mV, while Vg5 was
scanned from 0 to +1000mV. Ascorbic acid (AA) was cho-
sen as a cosubstrate due to its ability to stabilize pH across
a wide range during the reaction. AA, a well-known cosub-
strate of HyO» in peroxidase-catalyzed reactions, undergoes
oxidation to form dehydroascorbic acid, a product signifi-
cantly less acidic than its precursor. This pH shift results
in a marked increase in pH, subsequently causing a signifi-
cant shift in the Dirac voltage of the GFET towards a more
positive value. This phenomenon is useful for studying the
electrochemical properties of enzymatic reactions [29].

Ascorbic Acid + HyO, — dehydroascorbic acid + H,O

To calculate the enzymatic parameters, 2,2’-azino-bis(3-et-
hylbenzothiazoline-6-sulfonic acid) (ABTS) was employed.
Enzyme activity parameters, as defined by MM kinetics, were
determined by measuring /s under fixed Vg5 and V, condi-
tions. Specifically, Vg was held constant at 500mV, while
Vgs was set to 500mV for HRP and 100mV for heme.

@ Springer
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Multi-layer perceptron deep neural
networks Bayesian inversion (MLP-DNN-BI)
for enzyme reactions

The MM equation describes the rate of enzymatic reac-
tions by relating the reaction rate to substrate concentration.
In terms of the substrate concentration (S), enzyme con-
centration (E), enzyme-substrate complex (C), and product
concentration (P), the reaction pathway can be represented
as follows:

keat

k
E+skéc—>E+P, (1)
1

where k¢ is the catalytic rate constant, and the MM constant
(Kwm) is given by Ky = (k2 + kcar) /k1. In order to compute
the MM parameters effectively, we use a mathematical mod-
eling based on ordinary differential equations (see Section
S1). Bayesian inversion for parameter estimation provides
a probabilistic framework that combines prior knowledge
with observed data to infer parameter distributions, offering
a more comprehensive alternative to single-point estimates
(see Section S2). This approach is applied to accurately esti-
mate the parameters of the MM Kkinetics.

We use a designed MLP-DNN-BI algorithm for identify-
ing MM parameters and predicting enzyme behavior. Using
Bayesian inversion we estimate posterior densities Ky and
Kwm. The model employs unsupervised learning to predict
MM parameters, linking enzyme reaction rates with features
like substrate concentration, pH, temperature, and enzyme
type. Trained models are saved for future predictions or fine-
tuning (see Section S3). Figure S2 provides an overview of
the algorithm, which combines deep learning (architecture
depicted in Fig. S3) with Bayesian inversion to enhance
predictive accuracy and effectively account for parameter
estimation.
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Surface modification examination

AFM

HRP was covalently attached to the graphene surface using
PBASE, a well-established bifunctional compound contain-
ing both a pyrene group and a succinimidyl ester. The
hydrophobic graphene thin film was noncovalently function-
alized via the strong w — & stacking interaction between
the pyrene group of PBASE and the basal plane of the
graphene. Simultaneously, the succinimidyl ester groups
of PBASE formed stable amide bonds with the amine
groups of HRP, ensuring covalent attachment. AFM was
employed for topographic analysis to confirm the modi-
fication of the graphene surface with HRP. Figure2(left)
shows the characteristic structure of the deposited graphene
sheet, which exhibits a root mean square roughness of
0.28£0.043nm in its pristine state. Subsequent analysis
using Gwyddion software revealed that the surface rough-
ness of the HRP/PBASE/Graphene interface increased to
0.45£0.065 nm, as depicted in Fig.2(right). These results
confirm the successful immobilization of HRP enzyme
molecules on the graphene surface via PBASE as a linker,
consistent with the findings of Chae et al. [27].

XPS

X-ray photoelectron spectroscopy (XPS) was utilized to con-
firm the functionalization of PBASE, HRP, and heme on
the graphene surface. Figure S4 presents the C1s XPS spectra
for (a) graphene, (b) PBASE-functionalized graphene, and (c)
HRP/PBASE-functionalized graphene, along with the Nls
XPS spectra for (d) PBASE/Graphene, (¢) HRP/PBASE/
Graphene, and (f) a comparison of the N1s peak intensities
between (d) and (e). The deconvolution of the Cls spec-
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Fig.2 AFM images of graphene (left) and graphene immobilized with PBASE as a cross-linker (right)
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trum for graphene revealed four types of carbon bonds: C-C
(284.6eV), C-0O (286.7¢V), C=0 (287.8eV), and O-C=0
(288.7¢eV). In the Cls spectrum of PBASE-functionalized
graphene (Fig. S4b), a new peak emerged at 286.5¢V, cor-
responding to C-N bonds in PBASE molecules conjugated
to the graphene sheets, alongside the presence of O-C=N
bonding in the high-resolution deconvoluted C1s spectra cen-
tered at 289.7eV. These observations confirm the effective
binding of PBASE to graphene. Upon HRP incubation, the
high-resolution Cls spectra exhibited increased peak inten-
sities at C-C (285.0eV), C-O/C-N (286.6eV), and O-C=N
(288.3eV), which can be attributed to the amine and amide
groups present in HRP [28]. The examination of the Nls
region revealed the appearance of an additional N1s peak
in PBASE-functionalized graphene compared to graphene,
confirming successful N-doping following PBASE function-
alization. The further increase in the N1s peak intensity after
HRP immobilization indicates the presence of amide nitro-
gen atoms derived from the peptide moieties of HRP.
Figure S5 shows (a) the XPS survey spectrum, (b) the
high-resolution Cls spectrum, and (c) the high-resolution
N1s spectrum of Heme/Graphene. The XPS survey spectrum
shows Fe2p signals, indicating the noncovalent functional-
ization of heme on the graphene surface. In comparison with
the XPS spectra of the Cls core level for bare graphene,
the deconvolution of the Cls spectrum for heme/Graphene
reveals a new peak at 285.7eV, corresponding to C-N
bonds in heme/Graphene [30, 31]. Examination of the XPS
Nls region further confirms successful immobilization of
heme by the appearance of an additional N1s peak in
heme/Graphene. The presence of N1s and Fe2p peaks, both
originating from heme, conclusively verifies the successful
noncovalent functionalization of graphene with heme [32].

FET

To confirm the presence of PBASE on the graphene surface,
Iqs — Vg characteristics were measured before and after sur-
face modification. Figure S4a illustrates the Igs versus Vg
for bare graphene, following PBASE immobilization, and
subsequent HRP immobilization on the graphene FET. The
immobilization of PBASE resulted in a positive shift in the
Dirac voltage, indicating an increase in electron density on
the graphene surface. This shift was further observed after
HRP immobilization, which introduced additional negative
charges and caused a further shift in the Dirac voltage, as
reported by [33]. Additionally, the Iys versus V, characteris-
tics for heme immobilization on the graphene surface were
analyzed. The data presented in Fig. S6b show that heme
immobilization also led to a positive shift in the Dirac volt-
age, consistent with an increase in electron density on the
graphene surface.

Results and discussions
Examination of suicide inactivation effect

Heme-based peroxidases are prone to instability, particularly
through a process known as suicide inactivation, where the
enzyme is deactivated by its substrate, HyO,. This inacti-
vation is most severe in the absence of reducing substrates,
and its underlying mechanism has been partially understood.
Extensive research on classical peroxidases has established
a consensus catalytic network (Fig.3). This begins with the
formation of a sixth-coordination bond between hydrogen
peroxide and the heme iron, producing compound I, a high-
valent oxo-iron(IV) porphyrin-based 7 -free radical (pathway
1). In the presence of a two-electron reducing agent (e.g.,
an aromatic compound), compound II forms (pathway 2),
which then oxidizes another substrate molecule, reverting to
the resting-state iron(IIl) porphyrin (pathway 3). Without a
reducing substrate, HyO; addition leads to the formation of
compound III (pathway 5). Further HyO» exposure causes
compound III to undergo bleaching and irreversible inacti-
vation (pathway 6) [4].

Once compound III is formed, it may undergo various
decomposition pathways. Given the proximity of the bound
peroxy radical or compound III to the porphyrin ring, it is
plausible that this reactive species could oxidize the por-
phyrin moiety, leading to the release of Fe(Ill) (pathway
6). However, the addition of excess reducing substrate can
mitigate suicide inactivation by competing with HyO» for
compound II [4]. Electrochemical studies demonstrate that
graphene electrodes effectively facilitate electron transfer
with redox-active molecules in solution, resulting in faradaic
currents. Unlike bulk semiconductor-based ISFETs, which
include an insulating layer that impedes electron transport,
graphene enables these interactions [34].

We aim to investigate the peroxidase behavior of HRP
and the heme molecule using a GFET system. The standard
method for assessing enzyme activity with GFETs typically
involves monitoring the Dirac voltage shift resulting from
pH changes induced by enzymatic reactions [27, 35, 36].
However, our observations suggest that the Dirac voltage
shift in GFETSs cannot be solely attributed to pH changes. We
found that adding excess H, O leads to unexpected variations
in the Dirac voltage shift. We attribute this complexity to two
key factors: (1) DET within the GFET system influenced
by redox-active materials, and (2) structural modifications
induced by H,O; on HRP and heme.

Redox-active molecules in the analyte solution can facili-
tate heterogeneous electron transfer with graphene, generat-
ing a faradaic current in the FET configuration and shifting
the Dirac point. These shifts become significant when the
faradaic current is substantial, often due to a large graphene
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oOH

Ground state (Fe(lll)

RH

Compound | (Fe(Iv))

Compound Il (Fe(lil)

+Fe (lll)

Heme destruction

Fig.3 The key steps and reactions involved in the catalytic process of peroxidases

surface area. This redox shift, driven by the faradaic cur-
rent and resembling a doping effect, is non-Nernstian and
depends on factors familiar in electrode kinetics, such as elec-
trode area, the standard potential of the redox probes, and the
scan rate of gate voltage modulation. The heme molecule is
inherently redox-active, comprising an iron ion coordinated
within a porphyrin ring. This iron ion can transition between
various oxidation states, most commonly Fe(Il) and Fe(III),
enabling the heme molecule to participate in electron transfer
reactions. This redox capability is essential for the func-
tion of many heme-containing proteins and enzymes, such as
hemoglobin, myoglobin, cytochromes, and peroxidases like
HRP. These processes are crucial for oxygen transport, elec-
tron transfer in cellular respiration, and catalytic reactions

@ Springer

in peroxidases. While the interference of electron transfer
in Dirac shifts due to electroactive materials adds complex-
ity to enzymatic studies, it presents a valuable opportunity to
investigate enzymatic mechanisms, including H>O,-induced
suicide inactivation and heme bleaching.

Figure4a and b show the I4s versus Vg curves at a Vs
of 20 mV for the HRP-modified GFET, with measurements
conducted in the presence of 50 M H»O» and either S00 uM
(sufficient) or 75 uM (insufficient) AA as a cosubstrate. The
V, was scanned at 5-second intervals (ith scans), beginning
with a reference scan. With sufficient cosubstrate, a gradual
shift in the Dirac potential toward more positive voltages was
observed. This shift is attributed to the consumption of AA
during the enzymatic reaction and its conversion to less acidic
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HRP modified GFET in the presence of sufficient AA

HRP modified GFET in the presence of insufficient AA
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Fig. 4 Iy versus V, obtained from curves of continuous scanning of
the GFET at 5-second intervals at Vy = 20 mV for a the HRP-modified
GFET, in the presence of 50 M H,O; with cosubstrate concentrations

products, resulting in an increase in pH and a corresponding
positive shift in the Dirac voltage until the reaction reached
a steady state. In the absence of adequate ascorbic acid, an
initial significant increase in the Dirac voltage to a more pos-
itive value is observed. This is subsequently followed by a
gradual decline of the Dirac voltage towards a more negative
potential, eventually stabilizing at a steady-state value.
Figure S7 presents the changes in Dirac voltage as a func-
tion of time under two distinct conditions: the presence of
sufficient and insufficient amounts of AA. These measure-
ments provide a direct comparison of the system’s response
to varying AA concentrations. To ensure the reliability of
the results, we also monitored the Dirac voltage of HRP-
modified graphene in the absence of both HyO; and AA. This
control experiment was conducted to rule out any potential
drift in the voltage over time, thereby confirming that the
observed changes are solely attributable to the interaction
between the analytes and the modified graphene surface.

—reference —2nd scan  4th scan —6th scan
—Ist scan —3rd scan —5th scan —7th scan

600 800 1000

of 500 uM(sufficient), b 75 uM (insufficient) AA, and ¢ heme- modi-
fied in the presence (solid lines) and absence (dashed lines) of 100 uM
H,0; in the absence of AA

In [2], HRP states under varying H>O, concentrations
were examined using UV-Vis spectroscopy. At low H,O»
levels, HRP mainly transitions between its ground state and
compound I. The UV-Vis spectra show that initial HyO;
additions shift the Soret band from 403 nm (ground state)
to 420nm (compound II), with additional bands at 527 and
555 nm, indicating reversible transformations between these
states. However, compound I formation was minimal, as evi-
denced by the absence of its characteristic bands. At higher
H;0O, concentrations, HRP advances to the compound III
state, marked by a Soret band shift to 417nm, along with
bands at 544 and 580nm. Over time, the enzyme degrades
into an inactive state, indicated by a reduction in the Soret
band and the emergence of a 670 nm band, corresponding to
biliverdin formation. This UV-Vis data from the Contreras
group demonstrates that HRP’s state and stability are strongly
influenced by H> O levels, with higher concentrations accel-
erating enzyme degradation and inactive species formation
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[2]. HRP is a heme-containing enzyme with an Fe(III) ion at
its core, essential for its catalytic activity. Under excessive
H>0; exposure, HRP undergoes oxidative stress, leading to
heme degradation and the release of free Fe(Ill) ions. This
occurs as HyO; reacts with the heme group, forming reactive
intermediates such as compound III (Fe(III)-O,), which can
further damage the porphyrin ring and cause Fe(III) dissocia-
tion from the enzyme. The release of free Fe(III) ions into the
solution significantly affects the electronic properties of the
graphene surface. As redox-active species, Fe(III) ions can
interact with graphene, leading to charge transfer that results
in a p-doping effect, increasing positive charge density and
shifting the Dirac voltage to a more positive value. This shift
is initially pronounced due to the large release of Fe(III) ions
following HRP degradation. However, as the system stabi-
lizes and the Fe(III) concentration near the graphene surface
equilibrates or diffuses away, the Dirac voltage may partially
return toward its original value.

In the absence of sufficient AA, free Fe(IIl) ions remain
in their oxidized state, sustaining their impact on graphene
and causing a sharp positive Dirac voltage shift. AA typ-
ically moderates this impact by stabilizing the graphene’s
electronic properties. With adequate AA, the Dirac voltage
shift is more controlled and gradual, as AA prevents exces-
sive Fe(Ill) release at the graphene surface, leading to a
slower, steadier shift in the Dirac point as AA is consumed.
Maintaining sufficient reducing substrate is thus crucial for
preserving HRP’s structural integrity and function during
reactions involving H> O and potential scanning. Insufficient
co-substrate leads to excessive heme iron oxidation in HRP,
causing structural changes, reduced enzymatic activity, and
influencing Dirac voltage in GFETs through DET.

We also analyzed the Soret band of HRP under three con-
ditions (Fig. S8): 100 M HRP in phosphate buffer, HRP in
the presence of 50 uM H,0; and 75 uM AA (insufficient
reducing agent), and HRP in the presence of 50 uM H;O,
and 500 uM AA (sufficient reducing agent). In the case of
free HRP, the Soret band was observed at 403 nm. However,
with insufficient AA, the Soret band shifted to 417 nm, indi-
cating the formation of Compound III. Interestingly, when
sufficient AA was present, the Soret band returned to 403
nm, demonstrating that the enzyme, in the presence of an
adequate reducing agent, follows pathway 3 and fully recov-
ers its original state. These UV-Vis results are in complete
agreement with our observations from the GFET system, fur-
ther validating the proposed mechanism.

To investigate DET of the heme molecule on the GFET
system, we employed a distinct approach. After immo-
bilizing heme on the graphene surface, the GFET was
continuously scanned at 5-second intervals, both with and
without 1 mM H»O; at pH 4 (Fig.4c). In both scenarios, a
positive shift in the Dirac voltage was observed, attributed
to DET from the iron within the heme. Notably, when scan-
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ning ceased, the Dirac voltage returned to its initial value.
However, in the presence of HyO;, the positive shift was
smaller, and even after washing the surface and repeating the
test without HyO», the Dirac voltage shift did not increase,
suggesting H>O, may have degraded some heme molecules
on the surface. To provide greater clarity, we illustrated the
variation in Dirac voltage over time in the absence and pres-
ence of HyO;, as shown in Fig. S7b. Additionally, the change
in Dirac voltage for bare graphene was measured in a blank
buffer to confirm the absence of any drift in voltage, ensuring
the reliability of the observed results. This positive Dirac volt-
age shift mirrors the cyclic voltammetry behavior observed
in heme-graphene composites, indicative of a single-electron
transfer process involving the iron core of the heme in the
heme,x/hemeyeq pair [30].

Excess H>O; induces irreversible structural changes in
the heme protein, potentially leading to iron release and
conversion of Fe(Il) to biliverdin. This disruption impacts
heme-graphene interactions, altering the electronic proper-
ties of the graphene surface and compromising the stabil-
ity and functionality of heme-immobilized GFETs, which
affects their performance in sensing applications. We used
our electrochemical setup to gain deeper insights into this
phenomenon, as depicted in Fig. S9. The device was tested
under three distinct conditions: unmodified GFET in phos-
phate buffer at pH 4 (red line), heme-modified GFET in the
absence of HyO, (green line), and heme-modified GFET
in the presence of 100 uM H;O; (blue line). All measure-
ments were conducted at a scan rate of 50 mV/s. In the
absence of HyO,, the CV profile exhibited well-defined
anodic and cathodic peaks characteristic of the redox activity
of the heme molecule. However, these peaks were signif-
icantly suppressed in the presence of H,O;, indicating a
marked reduction in redox-active species. This suppression is
attributed to the degradation of the heme molecule by H,O5.
The CV data strongly align with the results from GFET anal-
ysis, confirming the impact of H>O» on the redox behavior
of the heme-modified graphene system.

To accurately study HRP and heme enzyme parameters,
an adequate supply of co-substrate is crucial to prevent
irreversible inactivation, including heme bleaching. During
enzymatic studies, operating within a gate potential that min-
imizes unwanted redox reactions and DET [26] is essential.
Our findings indicate that maintaining a constant positive
voltage from 100 up to +1000 mV ensures minimal DET via
Fe(Ill) conversion, preserving the integrity of heme-based
sensors and enabling accurate enzyme activity measurements.

Enzymatic activity measurement

GFETs have highly sensitive surfaces capable of detecting
subtle changes, but translating FET-based nanosensors into
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practical biomedical applications remains challenging, espe-
cially with carbon-based materials like graphene as the FET
channel. These materials exhibit strong interactions with
biomolecules through 7 — 7 stacking, leading to significant
nonspecific adsorption and false signals, which can over-
whelm nanoscale FETs [37]. In liquid-gated FET setups, a
specific gate voltage is applied, either constant or swept over
a range, creating a potentiostatic situation. If the graphene
channel undergoes electron transfer and redox-active species
are present, an additional electrochemical current may flow,
depending on the formal potential of the redox species and the
gate voltage range [34] To prevent this, our detection method
tracks the product current over time during the enzymatic
reaction, maintaining constant gate and drain voltages. This
approach minimizes the effect of electron transfer from redox
materials within HRP or heme, ensuring accurate enzyme
activity measurements. To address this issue, our platform
detects enzyme activity by tracking the product current over
time during the enzymatic reaction, while maintaining con-

stant Vy; and Vys to minimize interference from electron
transfer within HRP or heme. The enzymatic reaction is illus-
trated as follows, with ABTS selected as the cosubstrate:

Hy05 + 2 ABTSreduced —> ABTS®™:

oxidized

+2H,0

To optimize sensitivity, it is essential to measure the sig-
nal at different constant Vj to identify the voltage at which
the system is most sensitive to ABTS® and least sensitive
to ABTS or H,O,. H>O» is known to decompose catalyti-
cally, forming HO® radicals [38], and ABTS addition causes
subtle current changes in the GFET reservoir. For HRP,
the optimal gate voltage was determined by measuring /4
versus V at constant concentrations of 100 uM for H,O5,
ABTS, and ABTS*". Based on the data in Fig. S10a, V, =
500mV was selected as the optimal voltage, yielding sig-
nificantly higher current for ABTS®*" compared to ABTS
and H>O;. Similarly, for the heme molecule, Vy = 100mV
was determined as optimal, as it produced a notably higher

80
950
70
900
60
850 =
< ‘ 250
25800 ‘ =
Z = 40
750 a
‘ 30
700 dat it
—10puM —30M —50pM —70uM 20 ¢ data points
650 —20uM  40uM —60uM —80uM § —f(z) = 0.796z + 7.767
10
4000 8000 12000 16000 0 10 20 30 40 50 60 70 80 90
time[S] ABTS** Conc[uM]
(a) (b)
320
25 uM—100 zM—500 zM—1000 M
—50 uM 250 pM —750 uM
300 & —
= ///
— =
3 \
2280 ‘
=5 |
260
S
240 Y S
0 200 400 600 800 1000

Fig. 5 a The real-time response of the HRP-modified GFET (/45 vs.
time) monitored as successive additions of ABTS®T added to a 1 mM
phosphate buffer containing 1 mM KCI (pH 7). V,; and Vys were both
maintained at a constant 500 mV. b Calibration curve derived from the
real-time data. The results are presented with error bars to indicate the

time([S]

(©

deviations from the expected values. ¢ Real-time response of the HRP-
modified GFET for various ABTS concentration in the presence of a
sufficient amount of H,O; (2.5 mM) in 1 mM phosphate contains 1 mM
KCI (pH= 7). The applied V; and Vg5 were both set to 500mV and held
constant
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current for ABTS®T than for ABTS and H,O, (Fig. S10b).
To determine enzymatic parameters, a calibration curve for
ABTS*" was established using the GFET system’s response
to varying ABTS®*" concentrations. ABTS®" was generated
via the reaction between ABTS and thiosulfate, a method
commonly employed in antioxidant capacity assays like
the Trolox Equivalent Antioxidant Capacity (TEAC) assay.
GFET current measurements were taken at different ABTS®™
concentrations for both HRP and heme. Figure 5b shows the
calibration curve of the absolute current variation (| A I45|) for
ABTS®™ in the HRP-modified GFET, demonstrating a linear
range from 10 uM to 70 uM, with each concentration mea-
sured three times. For enzymatic studies, ABTS was added
to the GFET reservoir in concentrations of 25 uM, 50 uM,
100 uM, 250 uM, 500 uM, 750 uM, and 1000 uM in the
presence of 10 m M H>O; at an optimized pH of 7. Figure 5S¢
shows the Iys versus time plot for the enzymatic analysis of
HRP with ABTS as the substrate.

The same measurement procedure was applied to the
heme-modified GFET. As shown in Fig.6a, the Iy versus
time profile was recorded after adding ABTS®*™ to the heme-
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Fig.6 a Real-time response of the heme-modified GFET (/g vs. time)
upon incremental addition of ABTS®" to a 1 mM phosphate buffer
containing 1 mM KCI (pH = 4). b Calibration curve derived from the
real-time response data. ¢ Response of the heme-modified GFET in the
presence of a various ABTS concentration and a fixed concentration of
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modified GFET solution at an optimized pH of 4. Upon the
addition of ABTS®™, the Iy current increased significantly,
following a linear trend up to an ABTS®" concentration
of 80 uM. Notably, after washing the system, the Iys cur-
rent returned to baseline. Measurements were repeated three
times, and a calibration curve of (|Algs|) versus ABTS®™,
concentration was established (Fig. 6b). The peroxide activ-
ity of heme was subsequently evaluated with both ABTS
and H>O,. Figure 6¢ shows the enzymatic analysis of heme-
modified graphene with various ABTS concentrations in
the presence of 2.5mM H»O,. The Ijs current increased
with ABTS®*" production until plateauing at 750 uM ABTS.
The same procedure was used to examine the heme affinity
for HoO; in the presence of a sufficient amount of ABTS
(Fig.6d).

Based on the GFET surface dimensions and molecular
concentrations determined experimentally for immobilized
HRP and heme, it was estimated that approximately 1.08 x
10° HRP molecules and 2.7 x 10' heme molecules were
immobilized on the 90 um x 90 um graphene surface. The
notably higher density of heme molecules is attributed to their
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H,0, (2.5 mM) in a 1 mM phosphate buffer containing | mM KCl (pH=
4). d Response of the heme-modified GFET to different concentrations
of HyO, in the presence of a fixed amount of ABTS (5mM) in a 1 mM
phosphate buffer containing 1 mM KCI (pH= 4). For all measurements,
we maintain Vg = 100mV and Vg5 = 500 mV
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smaller molecular size compared to HRP. However, the HRP-
immobilized GFET exhibited greater sensitivity to ABTS®™
concentration, likely due to its enhanced capability to trap
and transfer charge to the graphene layer, thereby improving
the sensor’s sensitivity towards ABTS®*.

While the heme-immobilized GFET relies on the direct
interaction of heme molecules with the graphene surface,
the HRP-immobilized GFET benefits from the enzyme’s
structural properties that facilitate efficient charge transfer.
The differences in the observed current signal change upon
ABTS®T addition can be attributed to graphene’s bipolar
characteristics and the relative position of the applied poten-
tial with respect to the Dirac point. These findings underscore
the versatility and adaptability of graphene-based FETs for
studying and optimizing different catalytic systems. By lever-
aging the unique properties of immobilized molecules, this
work provides valuable insights into the development of
highly sensitive and selective biosensors, paving the way for
advancements in bioelectronics and enzymatic catalysis.

Machine learning for enzymatic reactions

We utilize our computational framework to determine key
enzymatic parameters, including K, and K. The architec-
ture of the fully connected deep neural networks is shown in
Fig. S3. The input features include critical variables such as
enzyme components (HRP and heme), temperature, substrate
concentration, and pH values, which collectively define the
biochemical environment of the enzymatic reactions. The
output layer provides predictions for the MM parameters,
K (the substrate affinity constant) and K.y (the catalytic
turnover rate), which are essential for understanding the
enzymatic kinetics.

The hidden layers consist of multiple fully connected neu-
rons that capture and model complex nonlinear relationships
between the inputs and outputs, with activation functions and
regularization techniques applied to enhance learning and
prevent overfitting. Activation functions were selected as fol-
lows: ReLU for the hidden layers, to ensure non-linearity and
efficient training, and a Sigmoid activation function for the
output layer, to appropriately map the outputs to the desired
range. The Adam optimizer was used to minimize the loss
function due to its adaptive learning capabilities and fast con-
vergence. This configuration was chosen based on extensive
parameter tuning and cross-validation, ensuring an optimal
balance between model complexity, accuracy, and computa-
tional efficiency.

The experimental data serving as input features for the
DNN includes the product formation rate measured over time
across a range of environmental and chemical conditions.
Specifically, data was collected at two pH values (4 and 7)
and temperatures ranging from 18 to 25°C. Substrate con-

centrations varied between 25 and 1000 M, with substrates
including H,O, and ABTS, tested for two enzyme compo-
nents (HRP and Heme). As an illustrative example, Fig. S11
presents the product formation rate of HRP at varying sub-
strate concentrations, measured ata pH of 7 and a temperature
of 22°C. The machine learning model was trained to predict
K and K,, under diverse environmental conditions (e.g.,
varying temperatures) and chemical scenarios (e.g., different
substrate concentrations). Approximately 100 experimental
cases were utilized to train the DNN algorithm, with the
dataset partitioned into 80% for training and 20% for testing,
ensuring robust performance evaluation and generalization
of the model.

Starting with the GFET response, we map the current to
product concentration. We then apply MLP-DNN-BI to cal-
culate the MM parameters (see Section S3). Then, Bayesian
inversion is used to identify the posterior density of the MM
parameters. For example, the posterior distribution for the
HRP production rate (depicted in Fig. S11) is shown in Fig.
S12. Our trained model allows for parameter computation
under various environmental (temperature) and chemical (pH
value) conditions. The regression plot (Fig. S13) compares
Bayesian inversion data with our neural network predictions,
demonstrating the model’s predictive accuracy. Additionally,
Fig. S13 highlights RMSE variations over training epochs,
underscoring the model’s efficiency and accuracy. Table S1
provides a comparison of the estimated MM parameters from
various references alongside our findings.

Conclusions

This study investigated the application of GFETS as a sophis-
ticated technique for biochemical analysis, focusing on the
peroxidase activity of HRP and heme molecules. The results
demonstrated that GFETs exhibited exceptional sensitivity
and specificity, making them highly effective for detecting
minute variations in enzyme activity—an essential factor for
precise biochemical evaluations. By using the transconduc-
tance capabilities of GFETs, significant enzymatic processes
such as HRP suicide inactivation and heme bleaching were
examined under controlled conditions, allowing for precise
quantification of peroxidase activity with minimal interfer-
ence. Additionally, a developed DNN parameter estimation
technique is applied to determine MM enzymatic parame-
ters. The integration of GFETs with unsupervised learning
produced promising results in enzyme analysis, highlight-
ing the potential of this combined approach to enhance the
precision and reliability of biochemical measurements. In
conclusion, this work validated the effectiveness of GFETs
for enzyme analysis and established a foundation for future
research that combines GFET technology with DNN. This
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integration holds promise for advancing our understanding of
enzyme kinetics and other complex biochemical phenomena,
offering new opportunities for exploration and potentially
transforming biochemical investigations.
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