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Abstract In this investigation,we implement a numer-
ical approach employing Physics-Informed Neural
Networks (PINN) based on a shallow water waves
model described by the generalized equalwidth (GEW)
equation, a highly nonlinear partial differential equa-
tion (PDE) as well as an extremely difficult PDE that is
well-known for its stiffness. Utilizing amesh-free tech-
nique, we achieve a continuous solution and derive a
nonlinear function for the water waves solution using a
reduced number of points within the problem domain.
To insure the numerical procedure adheres to mass,
momentum, and energy conservation, we introduce a
new term in the loss function to insure the adher-
ence to these properties and we demonstrate that it
performs better compared to PINN. Furthermore, we
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closely monitor the conservation of mass, momentum,
and energy throughout the simulation and on the other
handweestimatedunknownparameters ofGEWmodel
using inverse PINN with high accuracy. To assess the
effectiveness of our proposedmethodology,we demon-
strate its effectiveness on three classic test scenarios:
the propagation of a single solitary wave, the interac-
tion of two solitary waves, and the Maxwellian initial
condition.

Keywords Shallow water waves · Generalized
equal width equation · Physics-informed neural
networks · Inverse physics-informed neural networks ·
Conservation law

1 Introduction

Nonlinear partial differential equations (PDEs) have
wide applications across diversefields, including applied
mathematics, mechanics, physics, and chemistry [72].
The analytical solutions of PDEs offer valuable insights
into the underlying physics of a problem. However,
obtaining analytical solutions is not always feasible for
certain PDEs, necessitating the utilization of numerical
methods to approximate solutions [56,57].

Numerical methods have experienced significant
growth, encompassing finite difference methods [58],
finite element methods [15], finite volume methods
[53], meshfree methods [51], and the emergence of
machine learning. The development of deep learning,
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driven by advancements in computer technology, data
science, and neural network theory [34], has led to the
rapid integration of machine learning in solving PDEs.
Initially explored by Lagaris et al. in 1998 [43], the
application of neural networks to solve ordinary and
partial differential equations gained momentum with
the introduction of Physics-Informed Neural Networks
(PINN) by Raissi et al. [59]. PINN embeds physical
laws described by nonlinear PDEs into a loss function,
enabling the solution of both forward and inverse prob-
lems. Authors of [38] reviewed some of the prevailing
trends in embedding physics into machine learning,
presented some of the current capabilities and limi-
tations and discussed diverse applications of physics-
informed learning both for forward and inverse prob-
lems, including discovering hidden physics and tack-
ling high-dimensional problems. A composite deep
operator network (DeepONet) is presented in [28]
for learning use two datasets with different levels of
fidelity to accurately learn complex operators when
sufficient high-fidelity data is not available. The Deep-
ONet approach is used in [27] to tain fast and accu-
rate predictions of the nonlinear evolution of insta-
bility waves in high-speed boundary layers. However,
the problem required specialized numerical algorithms,
and augmenting limited observations in this extreme
flow regime. The augmented physics-informed neu-
ral network (APINN), which adopts soft and trainable
domain decomposition and flexible parameter sharing
is proposed in [30] to further improve the extended
PINN (XPINN) as well as the vanilla PINN methods.
Furthermore, to handle PDEs with non-smooth solu-
tions, a variational formulation of PINNs based on the
Galerkin method (hp-VPINN) was suggested in [41]
and domain decomposition was taken into consider-
ation by the variational hp-VPINN, and comparable
pointwise variants have been investigated in cPINN
[32]. In [66], a general parallel implementation of
PINNs for flow issues using domain decomposition
is presented. Some other PNN studies concentrated
on training and neural network design construction,
for example, by employing multi-fidelity frameworks
[50], adaptive activation functions [31], dynamic loss
function weights [68] and network architectures based
on CNN [23], which can enhance PINN performance
across a range of problems. Shengze Cai and et al
in a review article [12] listed some developments of
PINN method. Additionally, [2] introduces a radial
basis function (RBF)-finite differencemethod designed

to solve the improved Boussinesq model, with a focus
on error estimation and the characterization of solitary
waves. The primary objective of [3] is to apply the com-
pact local integrated RBFs technique to numerically
solve the fourth-order time-fractional diffusion-wave
system. In [4], the rational RBFs (RRBFs) collocation
method, based on the partition of unity (PU) approach,
is utilized to obtain the numerical solution of the multi-
dimensional Ginzburg-Landau equation.

The regularized-long wave (RLW) equation, pro-
posed by Benjamin et al. [8] and also they calculated
its precise expression while keeping in mind the lim-
itations of the initial and boundary conditions [10],
this equation serves as a model for small-amplitude
long waves on the channel water surface and finds
application in phenomena like plasma waves [5] and
shallow water waves [29,56]. The Equal-Width (EW)
model, proposed by Morrison et al. [52], presents an
alternative to RLW and the well-known Korteweg–de
Vries (KdV) equations. The EW equation is a spe-
cific case within the generalized equal width (GEW)
equation, for which various numerical methods have
been developed, including the Petrov–Galerkinmethod
[9,64], quadratic collocation method [22,35,63], δ-
shaped basis functions [55], compact local integrated
radial basis function method combined with adaptive
residual subsampling technique [20], quintic B-spline
collocation algorithm with two different linearization
techniques [79], a septic B-spline collocation method
[36], sextic B-spline Subdomain finite element method
[37], cubic B-spline base functions as element shape
functions and quadratic B-spline base functions as
the weight functions are used in a Petrov–Galerkin
finite element method [24], local meshless collocation
method [1] and sextic B-spline collocation technique
[54]. In [39] the primary problem is divided into lin-
ear and non-linear subequations, by using the cubic
B-spline and Galerkin finite element methods on each
sub-equation.

The finite volume frameworkwas extended tomodel
dispersive unidirectional water wave propagation in
one spatial dimension by Denys Dutykh et al. Specif-
ically, they considered it in the context of a KdV-
BBM type equation [19]. Additionally, in their work
[18], they demonstrated that geometrical methods are
particularly well-suited for modeling complex nonlin-
ear wave phenomena, offering accuracy and reliability
comparable to Fourier-type pseudospectral approaches
in capturing the long-term dynamics of KdV equations.
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Direct numerical simulation techniqueswere employed
to investigate the collective behavior of soliton ensem-
bles. Previously, this problem was mainly addressed
in the context of integrable models, such as the well-
known KdV equation. However, in [17], the anal-
ysis was extended to include non-integrable KdV-
BBM type models, using asymptotic methods along-
side Monte Carlo simulations. Craig et al. addressed a
fully nonlinear Hamiltonian system to investigate the
interactions of individual water waves [13].

The mix-training physics-informed neural networks
(MTPINNs) andprior informationmix-trainingphysics-
informed neural networks (PMTPINNs) are developed
in [67] to solve cmKdV equation. Authors of [46]
presented a systematic study of the soliton interac-
tion dynamics of the Maccari system. The main aim
of [73] is to introduce two extended (3 + 1)- and
(2 + 1)-dimensional Painlevé integrable Kadomtsev-
Petviashvili (KP) equations. Authors of [70] estab-
lished exact solutions for nonlinear wave equations.
The tanhmethod and the extended tanhmethod are used
in [71] for analytic treatment for solving theKuramoto-
Sivashinsky and the Kawahara equations.

Concurrently, the PINN method has gained promi-
nence through continuous advancements and appli-
cations, particularly in the field of fluid mechanics
[33,42,44,45,47,48,60,61,76,77]. It has been applied
to various scenarios, including compressibleflows [48],
turbulent convection flows [45], biomedical flows [42,
77], and free boundary and Stefan problems [6]. For
instance, Jin et al. [33] applied physics-informed neu-
ral networks (PINNs) to model incompressible flows,
ranging from laminar to turbulent regimes. Their simu-
lations utilized two distinct formulations of theNavier–
Stokes equations: the vorticity-velocity (VV) and the
velocity-pressure (VP) formulations. They also con-
ducted a comprehensive analysis of the weights used
in the data/physics components of the loss function
and explored a novel method for dynamically adjust-
ing these weights to enhance accuracy and speed up
training.

Raissi et al. [61] introduced a physics-informed
deep learning framework called Hidden FluidMechan-
ics (HFM), which can encode the Navier–Stokes
equations-a fundamental set of equations governing
fluid flows. Eivazi et al. [21] presented several prac-
tical examples in fluid mechanics, such as Burgers’
equation, two-dimensional vortex shedding behind a
circular cylinder, and minimal turbulent channel flow,

demonstrating the effectiveness of the PINN method
even with limited and noisy data.

Yang et al. [76] discussed the benefits of a data-
driven approach for wall modeling, emphasizing the
importance of incorporating physical insights into
model inputs. They demonstrated that inputs inspired
by eddy population density scalings and vertically inte-
grated thin-boundary-layer equations enhance a neu-
ral network’s ability to extrapolate to flow conditions
beyond the training data.

Additionally, researchers have explored the efficacy
of PINNs in solving various KdV equations, including
the KdV-Burgers equation and the KdV equation [25],
coupled KdV equations [75], the fourth-order Boussi-
nesq equation and the fifth-order KdV equation [14],
and the nonlocal modified Korteweg–de Vries (mKdV)
equation for numerical solutions and parameter discov-
ery [81].

In this article, wewill evaluate numerical solution of
the GEW equation that has the following mathematical
model:

ut+ξuρux−ηuxxt =0, (x, t)∈D×(0, T ], ρ ≥1,

(1.1)

where D = [xmin, xmax ], ξ ,ρ and η are positive real
numbers, with the periodic boundary conditions given
by

u(xmin, t) = u(xmax , t), (1.2)

uxx(xmin, t) = uxx(xmax , t), (1.3)

and initial condition

u(x, 0) = u0(x), x ∈ D. (1.4)

In this context, a conservative scheme is proposed
for the focal model, specifically the shallow water
waves model characterized by the generalized equal
width (GEW) equation, utilizing physics-informed
neural networks (PINNs). The target model must sat-
isfy three essential conservation laws: mass, momen-
tum, and energy conservation. These principles are fun-
damental in describing the behavior of fluid flow.

The mass conservation law ensures that during the
wave’s propagation, the total quantity, such as the vol-
ume of water, remains constant, meaning the system’s
total mass is conserved over time. Themomentum con-
servation law in the GEW model relates to the bal-
ance of forces acting on the wave. Additionally, energy
conservation is maintained through the interaction of
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potential energy, related to wave elevation, and kinetic
energy, associated with wave motion. These conserva-
tion laws impose crucial constraints on the wave’s evo-
lution over time, ensuring that the solutions are both
physically accurate and realistic.

Conservation of invariants is a key quality for both
numerical and theoretical research, as it allows for
the validation of numerical schemes and the assess-
ment of the accuracy of the results [19]. To meet
this requirement, we introduce a new term in the loss
function, specifically targeting these critical conserva-
tion aspects. This approach results in a robust numeri-
cal formulation that ensures the conservation of mass,
momentum, and energy.

The ensuing sections of the paper unfold as fol-
lows: In Sect. 2, we elucidate the PINN approach. Sec-
tion3 delineates the numerical experiments conducted
through the PINN framework, and the paper culminates
in Section 4, where we articulate our findings and draw
conclusions.

2 An abstract framework for PINNs

In this section, first we explain deep neural networks
(DNN) and automatic differentiation, which are the
basic components of PINNsandnextwe introduceorig-
inal PINN framework.

2.1 DNNs and automatic differentiation

The training model in a Physics-Informed Neural Net-
work (PINN) frameworks is built on a fully connected
feedforward neural network. This architecture typically
comprises an input layer, an output layer, and N hid-
den layers. The interconnection between these layers
is defined as follows [16]:

yn = σ(Wn.yn−1 + bn), 1 ≤ n ≤ N, (2.1)

O = WN+1.yN + bN+1, (2.2)

where n = 1, 2, . . . ,N refers to the hidden layers, and
N+1 is the output layer. The output of the n-th layer is
denoted as yn, and the neural network’s overall output
is represented byO. The activation function, denoted as
σ(.), facilitates the neural network in capturing nonlin-
ear relationships. The parameters associated with the
n-th layer, namely the weight and bias, are expressed
as Wn and bn, respectively, and undergo adjustments
during the training process.

A fully connected feedforward neural network inte-
grates differentiable activation functions, such as tanh,
relu, sin, etc., along with linear summations. The pro-
cess of automatic differentiation (also known as autod-
iff, algorithmic differentiation or AD), employed in the
backward chain, is utilized for computing derivatives.
[7,78]. Numerical and symbolic differentiation are not
the same as automatic differentiation. Symbolic differ-
entiationmight result in inefficient code since it is chal-
lenging to reduce a computer program to a mathemat-
ical equation. Numerical differentiation (the finite dif-
ferences approach), has the potential to cause round-off
errors during the discretization process. Higher-order
derivatives are more complex to calculate and result in
more errors when using any of these classical methods.
Lastly, gradient-based optimization algorithms require
the partial derivatives of a function to be computedwith
respect to numerous inputs, which is a computationally
demanding task for both of these classical methods. All
of these issues can be resolved using automatic dis-
tinction. See [7,11] for more details about calculating
automatic differentiation.

In this article, we use the components mentioned in
Tables 1 and 2 for the neural networks and also piece
wise constant decay function for learning rate scheduler
in Keras pachage:

2.2 Physics informed neural network (PINN)

In this method we consider the initial-boundary value
problem:

∂u
∂t

+ N (u(x, t)) = 0, x, t ∈ D × (0, T ], (2.3)

B(u(x, t)) = g(x, t), x, t ∈ ∂D,×(0, T ], (2.4)

u(x, 0) = h(x), x ∈ D, (2.5)

where N and B are nonlinear differential opera-
tors acting on u, for example in Eq. (1.1) and (1.2),
N (u(x, t)) = ξuρux − ηuxxt and B(u(x, t)) =
uxx(x, t), D ⊂ R

d a bounded domain, T denotes the
final time and h : D → R shows the prescribed initial
data and also ∂D denotes the boundary of the domain
D and g : ∂D × (0, T ] → R denotes the given bound-
ary data. The approach involves constructing a neural
network approximation

u�(x, t) ≈ u(x, t),
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Table 1 Artificial Neural Network parameters for forward problems

Hidden layers Neurons in each layers Optimizer Activation Number of epochs

9 50 Adam Tanh 80 k

Table 2 Artificial Neural Network parameters for inverse problems

Hidden layers Neurons in each layers Optimizer Activation Number of epochs

3 30 Adam Tanh 20 k

to represent the solution of a nonlinear partial differ-
ential equation (PDE), where u� : D × [0, T ] → R

denotes a function implemented by a neural network
(NN) with parameters �. The continuous-time strat-
egy for parabolic PDEs, as outlined in [59], revolves
around the residual of a given NN approximation
u� : D × [0, T ] → R with respect to the solution u.

r�(x, t) := ∂tu�(x, t) + N [u�](x, t). (2.6)

In order to integrate the PDE residual r� into a loss
function for minimization, Physics-Informed Neural
Networks (PINNs) necessitate additional differentia-
tion to compute the differential operators ∂tu� and
N [u�]. Consequently, the PINN term r� shares the
same parameters as the original network u�(t, x), but
adheres to the inherent “physics” encoded in the nonlin-
ear PDE. Both types of derivatives can be readily com-
puted using automatic differentiation present in mod-
ern machine learning libraries, such as TensorFlow and
PyTorch.

The PINN approach for the solution of the initial and
boundary value problem now proceeds by minimizing
the loss function:

	�(χ) := 	r
�(χr) + 	0

�(χ0) + 	b
�(χb), (2.7)

where χ denotes a collection of training data. Addi-
tionally, r, 0, and b represent residual points, initial
points, and boundary points, respectively. Furthermore,
the loss function 	� includes

1. Themean squared residual (MSR) loss correspond-
ing to the PDE:

	r
�(χr) := 1

Nr

Nr∑

i=1

∣∣r�

(
xri , t

r
i

)∣∣2 ,

where χr := {(xri , tri )}Nr
i=1 ⊂ D × (0, T ] is a set of

collocation points and r� is the residual caused by
the PDE.

2. The MSR related to the initial and boundary con-
ditions:

	0
�(χ0) := 1

N0

N0∑

i=1

∣∣∣u�

(
x0i , 0

)
− h

(
x0i

)∣∣∣
2
,

	b
�(χb) := 1

Nb

Nb∑

i=1

∣∣∣B(u(xbi , t
b
i )) − g(xbi , t

b
i ))

∣∣∣
2
,

in a number of pointsχ0 := {(x0i , 0)}N0
i=1 ⊂ D×{0}

and χb := {(xbi , tbi )}Nb
i=1 ⊂ ∂D × (0, T ]. Figure1

Shows a schematic of PINN.

2.3 The physic-informed neural networks for inverse
problems

One of the useful applications of PINN, which is pro-
posed byRaissi et al. [59] is discovery parameters of the
partial differential equations using the provided data.
We formulate this problem as follows:

∂u
∂t

+ N (u(x, t), λ) = 0, x, t ∈ D × (0, T ] (2.8)

where λ is an unknown parameter. The inverse problem
estimates λ by setting it as a learning weight in the
DNN model and as well as find the optimal value with
minimizing the loss function like forward PINN.Also it
is considered that there are some additional information
on pointsD ⊂ D in problem domain and on boundary.

	�(χD, λ) = 	r
�(χD, λ) + 	D

� (χD), (2.9)
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Fig. 1 Schematics of a
PINN for solving the
diffusion equation

where

	D
� (χD) = 1

ND

ND∑

i=1

∣∣∣u�

(
xDi , tDi

)
− uexact

(
xDi , tDi

)∣∣∣
2
.

Now, we find an approximate value for λ by training
our model:

λ∗ = argmin
�,λ

	�(χ, λ). (2.10)

2.4 Weighting the loss function terms in PINN

While the baseline PINNapproach discussed in the pre-
ceding section is extremely effective in solving a large
number of linear and nonlinear PDEs, it may not con-
verge at all or result in inaccurate approximations when
solving some “stiff” PDEs. Gradient descent exhibits
a greedy nature, prioritizing certain components over
others, resulting in an uneven descent rate among vari-
ous loss components. This imbalance hinders the con-
vergence to the correct solution, which explains the
occurrence of this phenomenon. In the literature on
PINNs, adding weights to Eq. (2.7) is the traditional
method for attempting to fix the imbalance [65,68,69]:

	�(χ) := λr	
r
�(χr) + λ0	

0
�(χ0) + λb	

b
�(χb).

(2.11)

There are several ways to determine these weights’ val-
ues; a few are listed below:

1. Non-adaptive weighting: In [74], it was suggested
to use the adaptive concept in both space and time
variables, and a number of sampling techniques
that might raise the PINN’s accuracy and efficiency
were shown.Consequently, the following loss func-
tion was suggested:

	(θ) = 	r (θ) + 	b(θ) + C	0(θ) (2.12)

in which C >> 1 is a hyper-parameter.
2. Learning rate annealing: In [68], they suggested

utilizing weights that are adjusted during training
based on statistics from the loss function’s back-
propagated gradients. Notably, backpropagation is
not used to modify the weights directly. Instead,
they operate as learning rate coefficients that are
refreshed following every training epoch.

3. In the work of Wang et al. [69], the authors com-
puted the NTK kernel matrix for Physics-Informed
Neural Networks (PINNs) and, employed a heuris-
tic rationale, dynamically adjusted the weights
based on the evolving eigenvalues of the NTK
matrix during the training process.

4. Self-adaptiveweighting: InMcClenny’s study [49],
the adaptation weights are trained concurrently
with thenetworkweights.Consequently, the approx-
imation is compelled to enhance its performance
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Fig. 2 Schematic of a
conservative based PINN

at challenging locations of the solution, includ-
ing initial, boundary, or residue points, which
are accorded higher weights automatically in the
loss function. The core concept of Self-Adaptive
Physics-Informed Neural Networks (SA-PINNs)
involves training the network to simultaneously
minimize losses and maximize weights, aiming to
identify a saddle point in the cost surface. This
approach enables the weights to escalate in con-
junction with their associated losses.

2.5 The conservative scheme based PINN

In this part, we add three conditions to the basic PINN
so thatu� has conservative properties. Next, we rewrite
the loss function defined in Eq. (2.7) as follows:

	�(χ) := 	r
�(χr) + 	0

�(χ0) + 	b
�(χb) + λ(	

I1
�

+ 	
I2
� + 	

I3
� ), (2.13)

where λ << 1 is a non-adaptive weight, the loss terms
	

I1
� , 	I2

� and 	
I3
� are defined as:

	
I1
� = 1

Nt

∑

ti

|I1(ti ) − I1(t0)|2, (2.14)

	
I2
� = 1

Nt

∑

ti

|I2(ti ) − I2(t0)|2, (2.15)

	
I3
� = 1

Nt

∑

ti

|I3(ti ) − I3(t0)|2, (2.16)

whereNt is number of time discretization, ti is i th time
steps that ti ∈ [0, T ], I1(t), I2(t), I3(t) are conserva-
tive conditions to approximate the solution that will
define in next section. It is important to note that the
absolute values of	I1

� ,	I2
� , and	

I3
� depend on the val-

ues of I1, I2, and I3. Since I3 is much smaller compared
to I1, the PINN tends to focus more on minimizing	

I1
�

than 	
I3
� . While this issue is not particularly severe,

Eq. 2.13 can be reformulated as follows to address this
concern:

	�(χ) := 	r
�(χr) + 	0

�(χ0) + 	b
�(χb) + λ1	

I1
�

+ λ2	
I2
� + λ3	

I3
� , (2.17)

where λ1 < λ2 < λ3 << 1 are non-adaptive weights.
However, in this paper, Eq. (2.13) is used as the loss
function for the neural network. Figure2 shows a
schematic diagram of a conservative PINN.

PINNs methods have some advantage over tradi-
tionalmethods like Finite difference, Finite valume etc:

• It is possible to solve PDEs over all entire spatial-
temporal domains at once.

• It is a meshfree method so solve PDE using irreg-
ularly mesh training points on the domain.
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Fig. 3 the value of loss in
each epoch

Table 3 Numerical results for Example 1 with η = 1, ξ = 3, ρ = 4, x0 = 30, ν = 1/32,�t = 0.001 and T = 1

Present method Method in [55]

N L2 L∞ L2 L∞
40 0.00227 0.00035 0.01963 0.01135

80 0.00155 0.00021 0.01994 0.01273

160 0.00187 0.00032 0.00111 0.00144

Table 4 Comparison of results for Example 1 on [0, 80] with η = 1, ξ = 3, ρ = 2, x0 = 32, ν = 1/32 and T = 1

Article I1 I2 I3 L2 L∞

Present 0.78521 0.16665 0.00520 1.7229 × 10−4 1.5427 × 10−4

[22] 0.78528 0.16658 0.00520 1.5695 × 10−4 2.0214 × 10−4

[62] 0.78466 0.16666 0.00519 1.9588 × 10−4 1.7443 × 10−4

[35] 0.78539 0.16666 0.00520 7.8337 × 10−5 4.4485 × 10−5

[64] 0.78539 0.16666 0.00520 2.5017 × 10−6 2.7551 × 10−6

Table 5 Comparison of results for Example 1 on [0, 80] with η = 1, ξ = 3, ρ = 4, x0 = 32, ν = 0.2 and T = 1

Article I1 I2 I3 L2 L∞

Present 2.62277 2.35527 0.78547 2.74448 × 10−3 5.31315 × 10−4

[55] 2.62205 2.35582 0.78502 7.89400 × 10−3 5.60170 × 10−3

[64] 2.62206 2.35615 0.78534 2.30500 × 10−3 1.88282 × 10−3

[35] 2.63278 2.37300 0.80233 8.90620 × 10−3 8.21994 × 10−3

[9] 2.62209 2.35989 0.78547 1.96050 × 10−3 1.33420 × 10−3
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Fig. 4 Value of I1, I2, I3 and L∞ with ν = 1/32, ρ = 3, x0 = 32, η = 1 and ξ = 3 for Example 1

• Also, solution of PINNs is continuous on domain.

On the other side we forced PINN to keep mass,
momentum, and energy conservation in conservative
based version of PINN by adding new terms in loss
function.

3 Numerical analysis

In this section, we evaluate the efficacy of the pro-
posed method in solving the primary mathematical
model. The simulations and parameters recovery are
conducted utilizing Anaconda(Jupyter Notebook) soft-
ware on an Intel Core i9 machine equipped with 64 GB
of memory and 24GB 3090 of GPU.We assess the effi-
cacy of the recent numerical method through multiple
examples, evaluating its performance using both L∞
and L2 error metrics

L2 = ||uexact − uapproximated ||2, (3.1)

L∞ = ||uexact − uapproximated ||∞, (3.2)

Additionally, we verify the conservation of three
attributes:

• Conservation of Mass:

I1 =
∫ xmax

xmin

u(x, t)dx, (3.3)

• Conservation of Momentum:

I2 =
∫ xmax

xmin

[u2(x, t) + ηu2x(x, t)]dx, (3.4)

• Conservation of Energy:

I3 =
∫ xmax

xmin

u(x, t)ρ+2dx, (3.5)

The integrals are approximated with the trapezoidal
rule by using tfp.math.trapz in Tensorflow probability.

Example 3.1 Single solitary wave motion We con-
sider Eq. (1.1), the following initial condition [26]:

u(x, 0)= ρ

√
ν(ρ+1)(ρ+2)

2ξ
sech2

(
ρ

2
√

η
(x−x0)

)
,
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Table 6 Numerical results for Example 1 with η = 1, ξ = 3, x0 = 32 and ν = 1/32

T I1 I2 I3 L∞

ρ = 2 0 0.78521 0.16665 0.00520 0.00015

4 0.78236 0.16685 0.00521 0.00047

8 0.77755 0.16690 0.00522 0.00060

12 0.77644 0.16693 0.00522 0.00064

16 0.77636 0.16692 0.00522 0.00080

20 0.77513 0.16680 0.00521 0.00105

25 0.77422 0.16645 0.00519 0.00147

ρ = 3 0 1.32008 0.54548 0.02272 0.00023

4 1.31867 0.54554 0.02273 0.00024

8 1.31918 0.54561 0.02274 0.00025

12 1.32028 0.54568 0.02274 0.00025

16 1.32154 0.54574 0.02275 0.00025

20 1.32263 0.54575 0.02275 0.00024

25 1.32080 0.54518 0.02269 0.00118

ρ = 10 0 2.18214 1.99409 0.22833 0.00040

4 2.17916 1.99059 0.22595 0.00127

8 2.18019 1.98963 0.22556 0.00249

12 2.18824 1.99005 0.22590 0.00363

16 2.19127 1.98981 0.22548 0.00466

20 2.18734 1.98858 0.22453 0.00598

25 2.18926 1.97404 0.21408 0.02957

(3.6)

The exact solution is

u(x, t) = ρ

√
ν(ρ + 1)(ρ + 2)

2ξ
sech2

(
ρ

2
√

η
(x − νt − x0)

)
,

(3.7)

Initially, we share the L2 and L∞ results obtained
by the PINN method and the method introduced by
[55] in Table 3. In Tables 4 and 5, we have compared
the results of the proposed method with those of other
approaches presented in the existing literature, detail-
ing the values of I1, I2, I3, as well as the L2 norm
and L∞ norm errors. Additionally, Fig. 4 provides a
comparison of the conservation laws of momentum,
mass, and energy, along with the error of approximate
solutions between the two methods, namely the sim-
ple PINN and the proposed method. The parameters
utilized for these computations, as outlined in Table 3,
include η = 1, ξ = 3, ρ = 4, x0 = 30, ν = 1/32,
�t = 0.001, and final time T = 1 within the com-
putational domain D = [0, 80]. In Table 6, we further

explore the impact of different parameters on mass,
momentum, and energy, with η = 1, ξ = 3, x0 = 32,
and ν = 1/32.Various values ofρ are considered at dif-
ferent times. Meanwhile, Fig. 5 provides a comparison
between our approximation and exact solution graphs
for Example 1, considering ν = 0.5, ρ = 2, x0 = 32,
η = 1, and ξ = 2. In Fig. 6, the approximation and
exact solution graphs are presented for Example 1 with
ν = 1/32, ρ = 5, x0 = 32, η = 1, and ξ = 3.
Lastly, Fig. 7 showcases the plot of approximate and
exact solutions for Example 1, featuring ν = 1/32,
ρ = 10, x0 = 32, η = 1, and ξ = 3. In this example,
we face a stiff problem, and as ρ increases, so does
its stiffness. As we can see from the graphs that this
method has been able to accurately approximate this
problem with a different value of ρ. According to the
results in the tables, we can see that although we have
chosen small time and space steps in the discretization,
but it has been able to maintain the constancy to a good
extent.
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Fig. 5 Approximate and exact solutions with ν = 0.5, ρ = 2, x0 = 32, η = 1 and ξ = 2 for Example 1
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Fig. 6 Approximate and exact solutions with ν = 1/32, ρ = 5, x0 = 32, η = 1 and ξ = 3 for Example 1
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Fig. 7 Approximate and exact solutions with ν = 1/32, ρ = 10, x0 = 32, η = 1 and ξ = 3 for Example 1
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Table 7 Numerical results for Example 2 with N = 200, �t = 0.2, η = 1, ξ = 3, x1 = 15, x1 = 30, ν1 = 0.5 and ν2 = 0.125

T I1 I2 I3 L∞ L2

ρ = 2 0 4.7127 3.3332 1.4166 0.0001134 0.00049

4 4.7127 3.3300 1.4140 0.0010888 0.00311

8 4.7158 3.3295 1.4130 0.0024816 0.00591

12 4.7205 3.3301 1.4133 0.0028067 0.00784

16 4.7169 3.3288 1.4127 0.0034397 0.00948

20 4.7153 3.3249 1.4086 0.0059529 0.01443

ρ = 3 0 5.4178 4.8357 2.5341 0.000801 0.00129

4 5.4170 4.8275 2.5233 0.001667 0.00643

8 5.4031 4.8241 2.5220 0.003461 0.00862

12 5.3932 4.8215 2.5193 0.006804 0.00994

16 5.3911 4.8189 2.5141 0.014854 0.03031

20 5.3808 4.8101 2.5101 0.075431 0.09914

Table 8 Numerical results for Example 2 with N = 200, �t = 0.2, η = 1,ξ = 3, x1 = 15, x1 = 30, ν1 = 0.3 and ν2 = 0.0375

T I1 I2 I3 L∞ y L2

ρ = 2 0 3.2957 1.7970 0.4892 0.0000763 0.00032

4 3.2856 1.7954 0.4801 0.0009853 0.00418

8 3.2804 1.7902 0.4784 0.0027298 0.00760

12 3.2809 1.7896 0.4730 0.0047965 0.00960

16 3.2794 1.7899 0.4714 0.0057248 0.01197

20 3.2725 1.7864 0.4605 0.0055085 0.01346

ρ = 3 0 4.2066 3.0800 1.0164 0.0000763 0.00032

4 4.2085 3.0812 1.0185 0.0009853 0.00424

8 4.2150 3.0834 1.0204 0.0027298 0.00694

12 4.2210 3.0849 1.0210 0.0047965 0.00856

16 4.2251 3.0844 1.0194 0.0057248 0.01469

20 4.2262 3.0793 1.0146 0.0055085 0.01537

Example 3.2 The interaction of two solitary waves:
We consider Eq (1.1) with the following initial condi-
tion [55]:

u(x, 0) = ρ

√
ν1(ρ + 1)(ρ + 2)

2ξ
sech2

(
ρ

2
√

η
(x − x1)

)

+ ρ

√
ν2(ρ + 1)(ρ + 2)

2ξ
sech2

(
ρ

2
√

η
(x − x2)

)
.

(3.8)

The exact solution for this problem is:

u(x, t) = ρ

√
ν1(ρ + 1)(ρ + 2)

2ξ
sech2

(
ρ

2
√

η
(x − ν1t − x1)

)
+

ρ

√
ν2(ρ + 1)(ρ + 2)

2ξ
sech2

(
ρ

2
√

η
(x − ν2t − x2)

)
,

(3.9)

L2, L∞ errors, and the values of I1, I2, and I3 are
reported in Table 7 for N = 200, �t = 0.2, η = 1,
ξ = 3, x1 = 15, x2 = 30, ν1 = 0.5, and ν2 = 0.125.
Subsequently, results for L2, L∞ errors, I1, I2, and I3
are reported in Table 8 for N = 200, �t = 0.2, η = 1,
ξ = 3, x1 = 15, x2 = 30, ν1 = 0.3, and ν2 = 0.0375.

In Fig. 8, we show approximate and exact solutions
with ν1 = 0.5, ν2 = 0.125, ρ = 2, x1 = 32, x2 = 25,
η = 1, and ξ = 3 as well as for ν1 = 0.5, ν2 =
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Fig. 8 Approximate and exact solutions with ν1 = 0.5, ν2 = 0.125, ρ = 2, x1 = 32, x2 = 25, η = 1 and ξ = 3 for Example 2
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Fig. 9 Approximate and exact solutions with ν1 = 0.5, ν2 = 0.125, ρ = 4, x1 = 15, x2 = 30, η = 1 and ξ = 3 for Example 2
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Table 9 Numerical results for Example 3 with N = 200, �t = 0.2, η = 0.1 and ξ = 3

Present method Method in [1]

T I1 I2 I3 I1 I2 I3

ρ = 2 0 1.77081 1.37540 0.88379 1.77245 1.37864 0.88622

4 1.72156 1.31660 0.87048 1.77245 1.37865 0.88623

8 1.72754 1.28984 0.86384 1.77245 1.37865 0.88623

12 1.72369 1.28300 0.85900 1.77245 1.37865 0.88623

ρ = 3 0 1.76917 1.37391 0.78855 1.77245 1.37864 0.79266

4 1.68743 1.27782 0.68135 1.77245 1.37865 0.79267

8 1.63640 1.22320 0.64510 1.77245 1.37865 0.79267

12 1.65520 1.20922 0.63437 1.77245 1.37865 0.79267

Table 10 Numerical results for Example 3 with N = 200, �t = 0.2, η = 0.05 and ξ = 3

T I1 I2 I3

ρ = 2 0 1.77242 1.31437 0.88493

4 1.76411 1.29539 0.86655

8 1.75039 1.26075 0.85927

12 1.74939 1.25998 0.83574

ρ = 3 0 1.77245 1.31593 0.79264

4 1.17632 1.28965 0.78172

8 1.75432 1.26354 0.77672

12 1.74455 1.26021 0.75032

0.125, ρ = 4, x1 = 15, x2 = 30, η = 1 and ξ = 3 in
Fig. 9.

In this example, according to the plots we conclude
that this method is useful for simulation of the interac-
tion of two solitarywaveswhich is a stiff problem.Also
we can see it maintains the constancy well according
to the tables.

Example 3.3 Maxwellian initial condition We con-
sider Eq. (1.1), the following initial condition [40,80]

u(x, 0) = e−(x−20)2 , x ∈ [0, 40], (3.10)

The L2, L∞ errors, and the values of I1, I2, and I3 are
presented in Table 9 with parameters set to N = 200,
�t = 0.2, η = 0.1, and ξ = 3 and also for N = 200,
�t = 0.2, η = 0.05 and ξ = 3 in Table 10. Addition-
ally, Fig. 10 illustrates our approximate solution for the
Maxwellian example. The corresponding parameters
for this figure are N = 100, ρ = 2, η = 0.05, and
ξ = 3. Furthermore, Fig. 11 depicts the same solution
with parameters set to N = 100, ρ = 3, η = 0.01, and
ξ = 3.

Example 3.4 Parameter estimation for Single soli-
tarywavemotionWeassumeExample 1 again, but this
time we consider our PDE has an unknown parameter.
At first we assume ξ is unknown with its exact value
ξ = 1.651710 and with the other parameters given by
ν = 0.5, ρ = 2, η = 1 and x0 = 30 then approximated
solution from the inverse PINN with 20000 epochs
shown Fig. 12 is 1.650976. Now, consider ξ ∈ [1, 4]
for 15 times randomly then generated 20000 data in the
problem domain D = [0, 80] uniformly for each one
so that its parameters are ν = 0.5, ρ = 2, η = 1 and
x0 = 30 and then recovery ξ in Fig. 13 also MSE and
R2score are 1.793208 × 10−7 and 0.9999997 respec-
tively as well as for parameters ν = 0.5, ρ = 4, η = 1
and x0 = 30 in Fig. 14 with MSE: 4.366964 × 10−6

and R2score: 0.9999932. Figure15 estimated η which
is in [1, 4] with ν = 0.5, ρ = 2, ξ = 3 and x0 = 30
as well as MSE and R2score are 2.751684 × 10−6

and 0.9999964 respectively. also in Fig. 16 estimated
η with ν = 0.5, ρ = 4, ξ = 3 and x0 = 30 as

123



N. Mohammadi et al.

Fig. 10 Approximate solutions with N = 100, ρ = 2, η = 0.05 and ξ = 3 for Example 3

well as MSE and R2score are 2.989937 × 10−6 and
0.9999937 respectively.

Example 3.5 Parameter estimation for the interac-
tion of two solitary waves: We assume Example 2
again, but this time consider our PDE has an unknown
parameter. At first assume ξ is unknown with the
exact value drawn randomly ξ ∈ [1, 4] for 15 times
then we generate 20000 data in the problem domain
D = [0, 80] for each ξ so that its parameters are
ν1 = 0.2, ν2 = 1/80, ρ = 2, η = 1, x1 = 15 and
x2 = 30 and then recovery ξ in Fig. 17 also MSE and
R2score are 1.437894 × 10−5 and 0.9999757 respec-
tively. also for parameters ν1 = 0.2, ν2 = 1/80, ρ =
4, η = 1, x1 = 15 and x2 = 30 in Fig. 18 with MSE:
8.968579 × 10−6 and R2score: 0.999982. Figure19
estimated η which is in [1, 4] with ν1 = 0.2, ν2 =
1/80, ρ = 2, ξ = 3, x1 = 15 and x2 = 30 as
well as MSE and R2score are 3.4988931 × 10−4

and 0.999465 respectively. Also for parameters ν1 =
0.2, ν2 = 1/80, ρ = 4, ξ = 3, x1 = 15 and x2 = 30
in Fig. 20 with MSE: 1.5514632× 10−4 and R2score:
0.999806.

4 Conclusion

We introduced, a novel approach for utilizing Physics-
Informed Neural Networks (PINN), specifically tai-
lored for the numerical simulation of the General-
ized Equal Width Equation (GEW), a challenging par-
tial differential equation known for its stiffness. The
method incorporates three conservation conditions into
the loss function of a conventional PINN. The out-
come is a continuous nonlinear function, represent-
ing an approximate solution to our Partial Differen-
tial Equation (PDE), within a neural network frame-
work. This function is derived from the trained weights
of a feedforward neural network in our model. Upon
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Fig. 11 Approximate solutions with N = 100, ρ = 3, η = 0.01 and ξ = 3 for Example 3

Fig. 12 Loss function of
parameter estimation for ξ

with ν = 0.5, ρ = 2, η = 1
and x0 = 30 in each epoch
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Fig. 13 Parameter
estimation for ξ with
ν = 0.5, ρ = 2, η = 1 and
x0 = 30

Fig. 14 Parameter
estimation for ξ with
ν = 0.5, ρ = 4, η = 1 and
x0 = 30
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Fig. 15 Parameter
estimation for η with
ν = 0.5, ρ = 2, ξ = 3 and
x0 = 30

Fig. 16 Parameter
estimation for η with
ν = 0.5, ρ = 4, ξ = 3 and
x0 = 30

completion of the training process, we obtain reason-
ably accurate solutions and the proposed method out-
performs the PINN approach. It surpasses alternative
methods by requiring fewer data points in the domain.

Furthermore, the assessment of mass, momentum, and
energy conservation throughout the simulation under-
scores the superiority of this approach. On the other
side, with the assumption that there was an unknown
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Fig. 17 Parameter
estimation for ξ with
ν1 = 0.2, ν2 = 1/80, ρ =
2, η = 1, x1 = 15 and
x2 = 30

Fig. 18 Parameter
estimation for ξ with
ν1 = 0.2, ν2 = 1/80, ρ =
4, η = 1, x1 = 15 and
x2 = 30 Example 5

parameter in the GEW model, we used the data at a
few points in the domain to estimate parameters with
very high accuracy using the inverse PINN approach.
Parameter estimate and an approximate solution on the

domain will be obtained simultaneously in the data-
driven stage.
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Fig. 19 Parameter
estimation for η with
ν1 = 0.2, ν2 = 1/80, ρ =
2, ξ = 3, x1 = 15 and
x2 = 30

Fig. 20 Parameter
estimation for η with
ν1 = 0.2, ν2 = 1/80, ρ =
4, ξ = 3, x1 = 15 and
x2 = 30

Acknowledgements We would like to express our sincere
appreciation to the reviewers for their valuable feedback, which
greatly contributed to the improvement of our paper.

Funding No funds were used for the research of this article.

Data availibility No Data associated with the manuscript.

Declarations

Conflict of interest The authors declare that they have no con-
flict of interest to disclose.

123



N. Mohammadi et al.

Appendix: Spatial-temporal derivative by auto-
matic differentiation

One of the key advantages of the Physics-Informed
NeuralNetworks (PINN) approach is its ability to lever-
age automatic differentiation. This feature streamlines
both the implementation process and the calculation
of spatial, temporal, and spatiotemporal derivatives.
Since the process is uniform across different cases, for
instance, to compute uxxt , the following code would be
used:
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