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1 Introduction

This bachelor thesis focuses on deep reinforcement learning (DRL) and its
recent improvements using a distributional approach. In particular, it dis-
cusses DeepMind’s DQN algorithm and its application to the Atari 2600
games. Furthermore, it presents DeepMind’s approaches to distributional
reinforcement learning by stating the mathematical motivation and main
results supporting the distributional perspective to RL. In addition, two
algorithms that implement deep distributional reinforcement learning, C51
and Quantile Regression-DQN, are discussed.

In the practical part of this thesis, a framework that implements the
Deep Q-Network algorithm compatible to the Arcade Learning Environment
is developed in Julia and the challenging Atari Enduro game is learned.
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2 Reinforcement Learning Foundations

Reinforcement learning is a subcategory of machine learning and a form of
learning which action to choose in a specific situation in order to maximize
a numerical reward signal. In RL terminology, it is learning to map states to
actions to maximize future reward. This framework is generally described
by agent-environment interactions [8].

2.1 Markov Decision Processes

Finite Markov decision processes (MDPs) are a formalization of sequential
decision making and can be used to mathematically formulate the reinforce-
ment learning problem.

Definition 2.1.1. (Finite Markov decision process). A finite Markov deci-
sion process is a 5-tupel (X ,A,R,P, γ), where X is a finite state space and
A a finite action space. The transition kernel P ∶ X ×A →P(R×X) defines
a joint distribution over immediate reward and next state given the current
state-action pair. γ ∈ [0,1) is the discount factor and the reward is denoted
by R ∶ X ×A → R.

A state x ∈ X is said to fulfil the Markov property if

P (xn∣xn−1, an−1, . . . , x0, a0) = P (xn∣xn−1, an−1)

for any sequences (xi)i=0,...,n ∈ X n+1 and (ai)i=0,...,n−1 ∈ An.
The Markov property is assumed in the general reinforcement learning

setting.

Definition 2.1.2. (Policy). A policy π ∶ X → P(A) defines a probability
distribution over the action space A given the current state.

The return of a policy π, starting in an initial state x ∈ X and initially
taking action a ∈ A, is defined as the random variable given the by the sum
of discounted rewards following policy π after taking action a in x, i.e.,

Zπ(x, a) =
∞

∑
t=0

γtR(xt, at), where

x0 = x, a0 = a, xt ∼ P (⋅∣xt−1, at−1), at ∼ π(⋅∣xt).
The random return Zπ(x) starting in state x and thereafter following

policy π is defined analogously.
The goal of almost all reinforcement learning algorithms is estimating

value functions, i.e. functions that map states or state-action pairs to a
numerical value that describes how favourable it is to be in a certain state
given a policy π. In general reinforcement learning, also called value-based
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RL, this is measured by the expectation of the return from starting in a
state or state-action pair and following policy π thereafter:

Qπ(x, a) = E [Zπ(x, a)] ,
V π(x) = E [Zπ(x)] .

Formally, the RL problem is divided into two settings: the policy evalu-
ation and the control problem.

Policy Evaluation and Control In the policy evaluation setting, the
state-value function V π(x) or the action-value function Qπ(x, a) for a given
policy π is approximated.

The reason for computing these functions is to compare them to value
functions of other policies and thereby to find better policies.

Definition 2.1.3. Given two policies π,π′ on the same Markov decision
process (X ,A,R,P, γ). Then,

π ≥ π′ ⇐⇒ V π(x) ≥ V π′(x) ∀x ∈ X

and we say π is a better policy than π′.

In the control setting, the goal is to approximate an optimal policy, i.e. a
policy that maximizes reward. Such a policy is a fixed point of the Bellman
optimality equation

Q(x, a) = E[R(x, a)] + γE [max
A′∈A

Q(X ′,A′)] , (1)

which is the motivation for Q-learning, the reinforcement learning algo-
rithm that is the fundamental algorithm of the extensions presented in this
thesis.

Q-Learning It directly approximates the optimal action-value function
Q∗ by the update rule

Q(x, a) = Q(x, a) + α[R(x, a) + γmax
a′

Q(x′, a′) −Q(x, a)].

Q-learning was first published in 1989 by Watkins [11] and is an off-
policy temporal-difference learning algorithm. For ∣X ∣ < ∞ and ∣A∣ < ∞, it
can be shown that Q-learning converges to the optimal action values with
probability one, if all actions are repeatedly sampled in all states and the
step size parameters satisfy the usual stochastic approximation conditions.
A detailed proof can be found in [10].

An algorithm is said to behave off-policy if it evaluates or improves
a policy different from that used to make decisions. On-policy methods
evaluate or improve the policy that is used to generate data.
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3 Deep Q-Learning and the DQN algorithm

Approximating the value function with a deep neural network is generally
referred to as deep reinforcement learning. A way to apply this function
approximation to Q-learning is DeepMind’s Deep Q-network algorithm first
proposed in 2013 [5] and improved in 2015 [6]. This algorithm was designed
to master 57 Atari 2600 games – a set of games that include a varied range
of challenging tasks – with the same architecture and hyperparameters. The
goal of the reinforcement learning agent is to maximize cumulative future
reward in the form of the game score. The DQN algorithm is in the course
of this thesis implemented and tested on the Enduro Atari game. Also, it
is the fundament for the two distributional algorithms that are presented in
Section 4. Thus, its architecture is discussed in detail in the following.

3.1 Atari 2600 games

Because the following algorithms are designed to master the Atari 2600
games, we give a brief summary of the environment: A state only consists
of images of the screen of a game. To fulfil the Markov property every
visited frame of the game should be contained in the state. Since this is
computationally unfeasible, this is approximated by using the last k frames
as an input to the approximator. In DQN k = 4 is used.

Also, the frames are preprocessed by rescaling them from 210 × 160 to
84×84 pixel frames. To reduce flickering, the maximum value for every pixel
of two consecutive frames is taken. The preprocessing of an observed image
will be denoted by a function φ. The rewards in every game are set to -1 for
a negative signal and +1 for every positive signal. The number of available
actions for the tested Atari 2600 games are game-specific and vary from 4
to 18.

3.2 DQN algorithm

Due to the large state space of the game environment, it is necessary to
approximate the Q function. Since the agent is intended to learn from ob-
serving images of the screen of a game and convolutional neural networks
have performed very well on tasks like image and video recognition, convolu-
tional neural networks were used to approximate Q. We refer to the neural
net approximator by its weights θ. To make learning and evaluation more
efficient, the parametrization Qθ of Q is a map from states to R∣A∣, such
that the neural net output for a given state x ∈ X is an array ((Qθ(x))a∈A
with the corresponding approximated state-action values. Thus, it requires
only a single forward pass through the network to compute Q values for all
actions in a given state. The input layer of the neural net takes an 84×84×4
array, i.e. one state representation. The first hidden layer convolves 32 filters
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of 8 × 8 with stride 4 and applies a ReLU (rectified linear unit) activation
function, followed by a layer that convolves 64 filters of 4 × 4 with stride 2
and a subsequent application of a ReLU. The third and final convolutional
layer convolves 64 filters of 3 × 3 with stride 1 followed by a ReLU. Then, a
fully connected layer of size with 512 rectifier units is applied and finally a
fully connected layer of size ∣A∣ is used.

Additionally to the function approximation, there are three important
modification to classical online Q-learning leading to DQN, which are nec-
essary as RL combined with non-linear function approximation is known to
be unstable (see also Section 3.3). The following problems arise:

1. Observations of the agent are highly correlated.

2. Small updates to Qθ can significantly change the policy and thus the
distribution of observations.

3. Action values and target values are correlated.

The DQN algorithm proposes the use of a target network Q̂. Every
C ∶= 104 steps the weights of the active Q-network Qθ are copied to Q̂θ− . The
target network is used to compute the target but only the active network
is updated. Thus, this modification reduces the effect of the latter point
mentioned above.

To reduce correlations in observations for updates, the transitions used
for an update are uniformly sampled from a replay buffer that saves the last
M = 106 transitions of the agent.

The Q-networks weights are updated using the Huber loss

Lκ(u) =
⎧⎪⎪⎨⎪⎪⎩

1
2u

2 if ∣u∣ < κ,
κ(∣u∣ − 1

2κ) otherwise.
(2)

To minimize the loss, RMSProp with minibatches of size 32 is used.
Combining the discussed elements of the Deep Q-learning algorithm, it can
now be given in procedural form (see Algorithm 1).
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Algorithm 1: Deep Q-learning [6]

1 Initialize replay memory D to capacity M
2 Initialize action-value function Q with random weights θ

3 Initialize target action-value function Q̂ with weights θ− = θ
4 foreach episode do
5 Initialize s1 ∶= {x1} and φ(s1)
6 repeat
7 With probability ε choose a random action at
8 otherwise select at ∶= argmaxaQ(φ(st), a; θ)
9 Execute action at, observe rt and image xt+1

10 Set st+1 ∶= (st, xt+1) and φt+1 ∶= φ(st+1)
11 Store transition (φt, at, rt, φt+1) in D
12 if t ≡ 0 mod K then
13 Sample random minibatch of (φj , aj , rj , φj+1) from D

14 yj =
⎧⎪⎪⎨⎪⎪⎩

rj if sj+1 terminal,

rj + γmaxa′ Q̂(φj+1, a
′; θ−) otherwise

15 Perform a RMSProp step on L1(yj −Q(φj , aj ; θ)) w.r.t. θ

16 Every C steps reset Q̂ ∶= Q
17 until st+1 is terminal

Applying the deep Q-network algorithm, an agent was trained on a total
of 200 Million frames of game experience, on 57 Atari 2600 games. DQN
performed better than a professional human games tester in 24 games (see
[3, Table 1]). A report on all game scores can be found in [6].

3.3 DQN within Deadly Triad

Q-learning is an off-policy temporal difference method. Thus, it combines
bootstrapping and off-policy learning. Due to the high-dimensional state
space of the Atari games environment, the Q-function must generalize across
states and therefore can only be approximated, which leads to DQN com-
bining all the three methods, which Sutton and Barto refer to as the deadly
triad [8]. The combination of all three methods possibly lead to unstable and
non-convergent algorithms in theory. In addition, there is little knowledge,
how non-linear function approximation interacts within the deadly triad and
if, in case of divergence, the deadly triad or the non-linear deep neural net-
work is to blame. This fact arises the question why DQN performs so well
on the Atari games. While there are in general no theoretical proofs for the
convergence of algorithms that find themselves in the deadly triad, DQN
is able to master many of the Atari 2600 games better than humans do.
To examine the influence of the deadly triad in the DQN setting, empirical
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examinations [9] attempted to show how the components of the deadly triad
influence DQN’s learning behaviour. The components of the deadly triad
were examined using the following hypotheses:

Bootstrapping The influence of bootstrapping can be modulated using
multi-step returns. If bootstrapping is applied after a single step, as in
Q-learning, the contraction in the (linear or tabular) learning update is
proportional to the discount factor γ ∈ [0,1). For n-step return updates the
bootstrapped value is weighted by γn Increasing the number of steps before
bootstrapping, intuitively, results in slower divergence. This hypothesis is
supported with linear function approximation since the TD-operator is a
contraction, but this does not hold true for non-linear parametrizations.

Function approximation The generalization of the function approxima-
tion can be modulated by the capacity of the neural net approximator. While
the tabular TD-algorithms converge, it is hypothesized that a larger neural
net generalizes less between states and thus behaves more like the tabular
case. This hypothesis was not supported by the empirical experiments.

Off-policy learning To make updates “more off-policy” one can change
the distribution by which sampling from the experience replay is conducted.
If transitions are not uniformly sampled but prioritized [7], it can lead to
more off-policy updates. The heavier the prioritization, the more off-policy
updates are.

By varying these components, insights into the effects of them on the
learning behaviour of the algorithm are made. Variants of DQN are tested
and compared in the Atari 2600 environment and evaluated by multiple
statistics. The most significant being the maximal absolute action-value
estimate. Because rewards are clipped to [−1,1] and γ = 0.99, the estimates
theoretically are bounded by 1

1−γ = 100. If values ∣q∣ > 100 occur, this
is referred to as soft divergence. A poor control performance was shown
empirically to correlate with soft divergence. The following hypotheses were
empirically shown in [9].

Hypotheses 1 Unbounded divergence is uncommon when combining Q-
learning and conventional deep reinforcement learning function spaces.

Hypotheses 2 There is less divergence when bootstrapping on separate
networks (target network).

Hypotheses 3 Longer multi-step returns will diverge less easily.
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Hypotheses 4 Stronger prioritization of updates will diverge more easily.

The perspective that deep neural networks and reinforcement learning
are usually unstable runs counter to experiments, where no setting resulted
in unbounded value estimates, i.e. NaNs.

Assuming that multi-step returns lead to less bootstrapping, hypotheses
3 was empirically shown and thus, the influence of the bootstrapping com-
ponent of the deadly triad on DQN was made visible. A similar conclusion
can be drawn for hypotheses 4 and off-policy learning.
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4 Distributional Reinforcement Learning

4.1 Motivation and theoretical background

In the general value-based reinforcement learning setting the agent is in-
tended to learn action selection in order to maximize the expected return,
i.e. the action-value function (3) or the state-value function (4)

Q(x, a) = E [Z(x, a)] = E [
∞

∑
t=0

γtR(xt, at)] , (3)

V (x) = E [Z(x)] = E [
∞

∑
t=0

γtR(xt)] . (4)

Instead of restricting the algorithm to learn the expectation of the return,
one can argue why not learn the whole distribution. Bellman’s equation for
value-based reinforcement learning can also be translated into the distribu-
tional setting as

Z(x, a) D= R(x, a) + γZ(X ′,A′). (5)

The distributional Bellman equation states that the distribution of the
return Z(x, a) is characterized by the random reward R(x, a), the transition
(x, a) → (X ′,A′) and the return of the next state-action pair Z(X ′,A′). For
the theoretical results, these three quantities are assumed to be independent.

Let

Z ∶= {Z ∶ X ×A →P(R) ∶ E[∣Z(x, a)∣p] < ∞ ∀(x, a), p ≥ 1}

denote the space of action-value distributions with finite moments. The set
of probability distributions with finite p-th moment is denoted by Pp(R).

Definition 4.1.1. (Distributional Bellman operator). The distributional
Bellman operator T π ∶ Z → Z is defined using the distributional Bellman
equation (5) by

T π(Z(x, a)) D∶= R(x, a) + γZ(X ′,A′), where

X ′ ∼ P (⋅∣x, a), A′ ∼ π(⋅,X ′).

For further analysis of this operator the Wasserstein distance will be an
important tool.

Definition 4.1.2. ((Supremum) p-Wasserstein-distance). The p-Wasserstein
distance dp for 1 ≤ p < ∞ and F,G ∈ Pp(R) is defined as

dp(F,G) ∶= (∫
1

0
∣F−1(u) −G−1(u)∣pdu)

1/p

. (6)
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On Z, the supremum p-Wasserstein distance d̄p for Z1, Z2 ∈ Z is given by

d̄p(Z1, Z2) ∶= sup
x,a

dp(Z1(x, a), Z2(x, a)). (7)

The p-Wasserstein distance is a metric on Pp(R). The supremum p-
Wasserstein distance was introduced in [1] and is a metric on Z. Given two
random variables U,V with cumulative distribution functions FU , FV , we
will write dp(U,V ) ∶= dp(FU , FV ) whenever convenient.

Lemma 4.1.3. Let U,V,A be random variables with distributions in Pp(R)
with A independent of U,V and a ∈ R. The metric dp has the following
properties:

dp(aU, aV ) ≤ ∣a∣dp(U,V ), (8)

dp(A +U,A + V ) ≤ dp(U,V ), (9)

dp(AU,AV ) ≤ ∥A∥pdp(U,V ). (10)

The following analysis of the distributional Bellman operator is split into
the policy evaluation and the control setting.

4.1.1 Policy Evaluation

Analogous to the policy evaluation setting of value-based reinforcement
learning, the goal of policy evaluation is the approximation of the return
distribution Zπ for a given policy π.

Lemma 4.1.4. ([1], Lemma 3). T π ∶ Z → Z is a γ-contraction in d̄p.

Proof. Let Z1, Z2 ∈ Z. By definition,

d̄p(T πZ1, T
πZ2) = sup

x,a
dp(T πZ1(x, a), T π(Z2(x, a))).

Applying Lemma 4.1.3, we obtain

dp(T πZ1(x, a), T π(Z2(x, a))) = dp(R(x, a) + γZ1(X ′,A′),R(x, a) + γZ2(X ′,A′))
(9)
≤ dp(γZ1(X ′,A′), γZ2(X ′,A′))
(8)
≤ γdp(Z1(X ′,A′), Z2(X ′,A′))
≤ γ sup

A′,X′

dp(Z1(X ′,A′), Z2(X ′,A′)).

Thus,

d̄p(T πZ1, T
πZ2) = sup

x,a
dp(T πZ1(x, a), T π(Z2(x, a)))

≤ sup
x,a

γ sup
A′,X′

dp(Z1(X ′,A′), Z2(X ′,A′))

= γ sup
A′,X′

dp(Z1(X ′,A′), Z2(X ′,A′))

= γd̄p(Z1, Z2).
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By Banach’s fixed point theorem, T π has a unique fixed point Z and
for Zk+1 = T πZk it holds that limk→∞Zk → Z on the complete metric space
(Z, d̄p). This fixed point is Z = Zπ.

Not all distributional metrics are equal. For example, T π is not a con-
traction in total variance distance, Kullback-Leibler divergence and the Kol-
mogorov distance.

4.1.2 Control

In the control setting of distributional reinforcement learning, the goal of
the agent is to learn an optimal return distribution. Following the analysis
of [1] several definitions are needed first.

Definition 4.1.5. (Optimal return distribution). An optimal return distri-
bution is the return distribution of an optimal policy. The set of optimal
return distributions is Z∗ ∶= {Zπ∗ ∶ π∗ ∈ Π∗}.

Definition 4.1.6. (Greedy policies for Z). A greedy policy π for Z ∈ Z
maximizes the expectation of Z. The set of greedy policies for Z is

GZ ∶= {π ∶ ∑
a

π(a∣x)E[Z(x, a)] = max
a′∈A

E[Z(x, a′)] ∀x ∈ X} .

Definition 4.1.7. (Distributional Bellman optimality operator). Any op-
erator T ∶ Z → Z for which

∃π ∈ GZ ∶ T Z = T πZ

holds is called distributional Bellman optimality operator. Particularly, this
is an operator T such that

T (Z(x, a)) D∶= R(x, a) + γZ(X ′, πZ(X ′)), where

X ′ ∼ P (⋅∣x, a), πZ(X ′) = argmax
a′

E[Z(X ′, a′)].

A distributional Bellman optimality operator T is not a contraction in
d̄p and does not necessarily have a fixed point Z∗ = T Z∗ as shown in [1] in
Proposition 1 and 2.

Convergence in the control setting can only be shown pointwise and
not to the set Z∗ but to the larger set of nonstationary optimal return
distributions Z∗∗. A nonstationary optimal value distribution Z∗∗ ∈ Z∗∗ is
the value distribution corresponding to a sequence of optimal policies.
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Theorem 4.1.8. ([1], Theorem 1). Let X be measurable and ∣A∣ < ∞. Then

lim
k→∞

inf
Z∗∗∈Z∗∗

dp(Zk(x, a), Z∗∗(x, a)) = 0 ∀x ∈ X , a ∈ A.

If ∣X ∣ < ∞, then Zk converges uniformly to Z∗∗. If there is a total ordering ≺
on Π∗ such that T Z∗ = T πZ∗ holds for any Z∗ ∈ Z∗ with π ∈ GZ∗ , π ≺ π′ for
all π′ ∈ GZ∗ ∖ {π}, then T has a unique fixed point Z∗ ∈ Z∗.

Before we prove Theorem 4.1.8 we make several definitions and state
additional lemmata needed for the proof.

Lemma 4.1.9. ([1], Lemma 4). Let Z1, Z2 ∈ Z. Then

∥ET Z1 −ET Z2∥∞ ≤ γ∥Z1 −Z2∥∞.

Proof. The distributional Bellman optimality operator is denoted by TD and
for the usual Bellman optimality operator TE is used. Therefore by linearity
of the expectation we have

∥ETDZ1 −ETDZ2∥ = ∥TEEZ1 − TEEZ2∥
≤ γ∥Z1 −Z2∥∞.

which completes the proof.

First, we proof the statement assuming a unique optimal policy π∗ and
later deduce the general case from this result. Note that from the uniqueness
of π∗ it follows that it is deterministic and we write π∗(x) =∶ a∗ for the
optimal action in state x.

Let Zk ∶= T Zk−1 with Z0 ∈ Z, B ∶= 2 supZ∈Z ∥Z∥∞ < ∞, εk ∶= γkB and
define Xk ⊆ X at time step k by

Xk ∶= {x ∈ X ∶ Q∗(x,π∗(x)) − max
a≠π∗(x)

Q∗(x, a) > 2εk} . (11)

Using Lemma 4.1.9 and Qk ∶= EZk we obtain

∣Qk(x, a) −Q∗(x, a)∣ ≤ γk∣Q0(x, a) −Q∗(x, a)∣
≤ γk(∣Q0(x, a)∣ + ∣Q∗(x, a)∣)
≤ γk2 sup

Z∈Z
∥Z∥∞ = γkB.

For x ∈ X , a ∈ A it follows that Q∗(x, a∗)−Qk(x, a∗) ≤ εk and Qk(x, a)−
Q∗(x, a) ≤ εk. Adding the inequalities, it follows that

Qk(x, a∗) −Qk(x, a) ≥ Q∗(x, a∗) −Q∗(x, a) − 2εk. (12)

For x ∈ Xk, we deduce from the definition (11) and equation (12) that
Qk(x, a∗) > Qk(x, a′) holds for all a′ ≠ a∗. Thus, the greedy policy w.r.t. Qk
corresponds to the optimal policy π∗ for the states in Xk.
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Lemma 4.1.10. For x ∈ X it holds that

∃k ∈ N ∀k′ ≥ k ∶ x ∈ Xk′ .

In particular, argmaxa∈AQk(x, a) = π∗(x).

Proof. Define
∆(x) ∶= Q∗(x, a∗) − max

a∈A,a≠a∗
Q∗(x, a).

Since π∗ is deterministic and ∣A∣ ≤ ∞, it follows that ∆(x) > 0. By definition
it follows that ∆(x) ≤ 2 supZ∈Z ∥Z∥∞ = B. Since γk → 0, it holds that

∃k′ ∶ ∀k ≥ k′ ∶ εk = γkB < γk′B < ∆(x)
2

and x ∈ Xk′ for all k′ ≥ k.

Therefore, it follows that Xk ↗ X . We will refer to these states, where
the greedy policy chooses the optimal policy, as “solved”. But not only
need these states to be solved, also most of their successors and most of the
successors of those. This is formalized as follows: Let δ > 0 be fixed and
Xk,0 ∶= Xk. For i > 0 define

Xk,i ∶= {x ∈ Xk ∶ P (Xk−1,i−1∣x,π∗(x)) ≥ 1 − δ} . (13)

Lemma 4.1.11. For any i ∈ N and any x ∈ X , there exists k such that

∀k′ ≥ k ∶ x ∈ Xk′,i.

Proof. We show that Xk,i ↗ X per induction on i. For i = 0 this follows from
Lemma 4.1.10. Let P be any probability measure on X . Assume Xk,i ↗ X
and thus P (Xk,i) → P (X) = 1. Let x ∈ X , then there exists k ∶ x ∈ Xk. It
follows that

P (Xk,i∣x,π∗(x)) → P (X ∣x,π∗(x)) = 1.

By equation (13), there exists k′ ≥ k such that x ∈ Xk′,i+1 and x remains in
Xk,i+1 for all k ≥ k′. Thus, Xk,i+1 ↗ X .

For the proof of Theorem 4.1.8 one additional lemma is needed:

Lemma 4.1.12. Let (Aj)j≥1 be a set of random variables describing a par-
tition of Ω, i.e. Ai(ω) ∈ {0,1} and for any ω ∈ Ω there is exactly one Ai,
such that Ai(ω) = 1. Let U,V be two random variables. Then

dp(U,V ) ≤ ∑
i

dp(AiU,AiV ).
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Proof of Theorem 4.1.8. We writeWk(x) ∶= Zk(x,πk(x)) and similarlyW ∗(x) ∶=
Z∗(x,π∗(x)) and use the notation TWk(x) =Wk+1(x) = T Zk(x,πk(x)) for
the application of the Bellman optimality operator. Also, we define the indi-
cator functions Ski (x) ∶= I[x ∈ Xk,i] and S̄ki (x) ∶= 1−Ski (x). Fix i > 0 and x ∈
Xk,i. Define the transition operator P π ∶ Z → Z as P πZ(x, a) D∶= Z(X ′,A′)
with X ′ ∼ P (⋅∣x, a) and A′ ∼ π(⋅∣X ′). By using Lemma 4.1.12 we separate
the transition from x into two terms, one for solved next states and one for
unsolved next states X ′:

P πkWk(x) = Ski (X ′)Wk(X ′) + S̄ki (X ′)Wk(X ′),
P πkW ∗(x) = Ski (X ′)W ∗(X ′) + S̄ki (X ′)W ∗(X ′).

Note that from Lemma 4.1.10 for x ∈ Xk it follows that πk(x) = π∗(x).
Then,

dp(Wk+1(x),W ∗(x)) = dp(TWk(x),TW ∗(x))
= dp(R(x,πk(x)) + γP πkZk(x),R(x,π∗(x)) + γP π∗Z∗(x))
(8),(9)
≤ γdp(P πkZk(x), P π

∗

Z∗(x)))
= γdp(P πkWk(x), P π

∗

W ∗(x))
4.1.12
≤ γdp(Ski (X ′)Wk(X ′), Ski (X ′)W ∗(X ′))

+ γdp(S̄ki (X ′)Wk(X ′), S̄ki (X ′)W ∗(X ′)) (14)

holds. Let

δi ∶= P({X ′ ∉ Xk,i}) = E({S̄ki (X ′)}) = ∥S̄ki (X ′)∥p.

Then,

dp(S̄ki (X ′)Wk(X ′), S̄ki (X ′)W ∗(X ′)) ≤ sup
x′
dp(S̄ki (X ′)Wk(x′), S̄ki (X ′)W ∗(x′))

(10)
≤ ∥S̄ki (X ′)∥p sup

x′
dp(Wk(x′),W ∗(x′))

= δi sup
x′
dp(Wk(x′),W ∗(x′))

≤ δiB.

For x ∈ Xi+1,k+1 it holds that 1 − δi = P (X ′ ∈ Xi,k∣x,π∗(x)) ≥ 1 − δ and it
follows that δi ≤ δ.

This yields

dp(Wk+1(x),W ∗(x)) ≤ γdp(Ski (X ′)Wk(X ′), Ski (X ′)W ∗(X ′)) + γδB. (15)

Let x ∈ Xk+i,i. By induction on i > 0, we show that

dp(Wk+i(x),W ∗(x)) ≤ γidp(Sk0 (X ′′)Wk(X ′′), Sk0 (X ′′)W ∗(X ′′)) + δB
i

∑
j=1

γj

14



for a random state X ′′ i steps forward. For i = 1 it follows with (15) and
the partition {Sk0 , S̄k0} that

dp(Wk+1(x),W ∗(x)) ≤ γdp(Sk0 (X ′)Wk(X ′), Sk0 (X ′)W ∗(X ′)) + γδB.

Using the induction hypotheses (IH) we conclude that

dp(Wk+i(x),W ∗(x))
(14)
≤ γdp(Sk+i−1

0 (X ′)Wk+i−1(X ′), Sk+i−1
0 (X ′)W ∗(X ′))

+ γdp(S̄k+i−1
0 (X ′)Wk+i−1(X ′), S̄k+i−1

0 (X ′)W ∗(X ′))
≤ γdp(Wk+i−1(X ′),W ∗(X ′)) + γδB
(IH)
≤ γidp(Wk(X ′′),W ∗(X ′′)) + δB

i

∑
j=1

γj

≤ γidp(Wk(X ′′),W ∗(X ′′)) + δB

1 − γ .

Finally, for any x ∈ X and for any ε > 0 there are δ > 0 small enough
and i and k sufficiently large such that the inequality dp(Wk(x),W ∗(x)) < ε
holds. By one additional application of T the result extends to Zk(x, a).
To expand the proof to the general case, where there are multiple optimal
policies, we define the sets

Xk,i ∶= {x ∈ Xk ∶ ∀π∗ ∈ Π∗ ∶ EP (Xk−1,i−1∣x, a∗) ≥ 1 − δ}.

Since ∣A∣ < ∞, Lemma 4.1.11 holds for the expanded definition of Xk,i. Let
x ∈ Xk,i and consider a sequence of greedy policies πk, πk−1, . . . selected by
successive applications of T and define

T π̄k ∶= T πkT πk−1⋯T πk−i+1

and write
Zk+1 = T π̄kZk−i+1.

Let Z∗ ∈ Z∗, then

inf
Z∗∗∈Z∗∗

dp(T π̄kZ∗(x, a), Z∗∗(x, a)) ≤ δB

1 − γ , (16)

because Z∗ corresponds to an optimal policy π∗ and π̄k is optimal along
most of the trajectories from (x, a).

Finally, for this Z∗ we obtain

inf
Z∗∗∈Z∗∗

dp(Zk+1(x, a), Z∗∗(x, a)) ≤ dp(Zk+1(x, a),T π̄kZ∗(x, a))

+ inf
Z∗∗

dp(T π̄kZ∗(x, a), Z∗∗(x, a))

≤ dp(T π̄kZk−i+1(x, a),T π̄kZ∗(x, a)) + δB

1 − γ

≤ γiB + 2δB

1 − γ ,
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using the same argument as before for the newly defined Xk,i. Thus we have

inf
Z∗∗∈Z∗∗

dp(Zk(x, a), Z∗∗(x, a)) → 0. (17)

We get uniform convergence for finite X since there is a fixed k after
which X = Xk.

Now, consider the special case where there is a total ordering ≺ on Π∗

such that for any Z∗ ∈ Z∗ the equation T Z∗ = T πZ∗ holds with π ∈ GZ∗
and π ≺ π′ for all π′ ∈ GZ∗ ∖{π}. The greedy policies for Z∗, i.e. the policies
which maximize the expectation of Z∗, are exactly Π∗. Denote by π∗ the
minimal policy in Π∗ w.r.t. ≺. Then T = T π∗ , which has a unique fixed point
as seen in Section 4.1.1.

Theorem 4.1.8 shows differences for the distributional approach in the
control setting. Lemma 4.1.9 shows that the expectation of Zk converges to
Q∗ in ∥ ⋅ ∥∞, but its distribution only converges to the set of non-stationary
optimal return distributions.

These theoretical results can now be used to design algorithms for the
reinforcement learning framework. Particularly, two algorithms are pre-
sented, which were tested within the Atari 2600 environment. The first
using a categorical approach for approximation, the other one applies quan-
tile regression.
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4.2 Categorical Distributional Reinforcement Learning

Along the theoretical results presented in Section 4.1, [6] presented an algo-
rithm to approximate distributional learning called categorical algorithm.

The return distribution is modelled using a discrete distribution parametrized
by the number of atoms N ∈ N and the boundaries VMIN, VMAX ∈ R with the
support

S ∶= {zi = VMIN + i∆z ∶ 0 ≤ i < N}, ∆z ∶= VMAX − VMIN

N − 1
.

Every atom zi of the support stands for the value of a possibly observed
return where VMIN is the smallest observable return and VMAX the largest.
Given a state x and an action a, every atom zi is assigned a probability, the
probability of receiving reward zi given the state-action-pair (x, a). These
probabilities are given by a parametric model θ ∶ X × A → RN that defines
the distribution

Zθ(x, a) = zi with probability pi(x, a) ∶=
eθi(x,a)

∑j eθj(x,a)

of the return. On the one hand, using a discrete distribution has the advan-
tage of being highly expressive and computationally friendly. On the other
hand, the fixed support of the return distribution poses a problem when ap-
plying the Bellman update T Zθ. Often, the update exceeds the boundaries
of the support of the discretized distribution.

Following the theoretical results of section 4.1, it would seem obvious to
minimize the Wasserstein distance while training. This metric as defined
in 4.1.2 would be robust to disjoint supports of distribution functions but
toy problems from [1] showed that minimizing the Wasserstein loss with
stochastic gradient descent performs poorly.

Instead, the Kullback–Leibler (KL) divergence, another distance between
probability distributions, is used for the loss function. Note, that T π is not a
contraction in KL divergence. Thus, the use of this metric is not supported
by convergence results.

Definition 4.2.1. (Kullback-Leibler divergence). For two discrete proba-
bility distributions P and Q defined on the same probability space Ω, the
KL divergence from Q to P is defined as

DKL(P ∣∣Q) ∶= ∑
ω∈Ω

P (ω) log(P (ω)
Q(ω))

= − ∑
ω∈Ω

P (ω) log(Q(ω)
P (ω)) . (18)

As this distance relies on non-disjoint supports, there is a projection
onto S applied to the Bellman update before computing the loss.

The Bellman update is approximated in the following way.
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Definition 4.2.2. (Projected sample Bellman update ΦT̂ Zθ(x, a)). For a
sample transition (x, a, r, x′) the sample Bellman update is given by

T̂ zj = r + γzj ∀zj ∈ S. (19)

The ith component of the projected update ΦT̂ Zθ(x, a)) is given by

(ΦT̂ Zθ(x, a)))i =
N−1

∑
j=0

⎡⎢⎢⎢⎢⎣
1 −

∣[T̂ zj]VMAX
VMIN

− zi∣
∆z

⎤⎥⎥⎥⎥⎦

1

0

pj(x′, π(x′)), (20)

where []ba bounds its argument in the range [a, b].

The categorical algorithm can now be given as Algorithm 2.

Algorithm 2: Categorical Algorithm [1]

Input: A transition xt, at, rt, xt+1 and γ
1 Q(xt+1, a) ∶= ∑i zipi(xt+1, a)
2 a∗ ∶= argmaxaQ(xt+1, a)
3 mi ∶= 0, i ∈ 0, . . . ,N − 1
4 for j ∈ 0, . . . ,N − 1 do

5 T̂ zj ∶= [rt + γzj]VMAX
VMIN

6 bj ∶= (T̂ zj − VMIN)/∆z
7 l ∶= ⌊bj⌋, u ∶= ⌈bj⌉
8 ml ∶=ml + pj(xt+1, a

∗)(u − bj)
9 mu ∶=mu + pj(xt+1, a

∗)(bj − l)
10 end

Output: −∑imi log pi(xt, at)

C51 – Categorical DRL for Atari Combining the DQN Algorithm 1
with the Categorical Algorithm 2, C51 originates. For this additional pa-
rameters are needed: the number of atoms N = 51 and the boundaries of the
support of the parametrized distribution VMAX = −VMIN = 10. Additionally,
the neural net approximator needs to be adapted. It is now approximating
return distributions and thus the output layer returns for a given state x
the approximated return distributions for every action, i.e. an array of size
∣A∣ ×N .

Approximating the whole distribution instead of just the expectation
performed very well on the Atari games. C51 beat DQN in 50 out of 57
Atari games and performed better than a professional human games tester
in 40 games (see [3, Table 1]) after being trained on 200 million frames.
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4.3 Distributional Reinforcement Learning with Quantile Re-
gression

Even though the categorical approach given in Algorithm 2 performed very
well in numerical examples, it is not supported by the theoretical findings
of Section 4.1. Thus, further designing of algorithms for approximated DRL
was conducted by DeepMind and in [3] they proposed an algorithm which
minimizes the Wasserstein loss applying quantile regression.

Their approach includes learning a distribution with fixed probabilities
q1, . . . , qn and variable locations z1, . . . , zn. Specifically, uniform probabilities
qi ∶= 1/n, i = 1, . . . , n were chosen and locations were learnt. This can
be referred to as estimating quantiles of a distribution. A p-quantile of
a probability distribution P on (R,B(R)) is a real number xp such that
P ((−∞, p]) ≥ xp and P ([p,∞)) ≥ 1 − xp. The values of the corresponding
discrete cumulative distribution function are denoted by τ1, . . . , τn with τi =
i/n and τ0 = 0.

Analogous to Z, the space of action-value distributions, we define ZQ as
the set of quantile distributions for fixed n.

Definition 4.3.1. (Quantile Distribution). Let θ ∶ X × A → Rn be a para-
metric model. A quantile distribution Zθ ∈ ZQ,

Zθ(x, a) ∶=
1

n

n

∑
i=1

δθi(x,a)

is a mapping from X ×A to a uniform probability distribution with support
{θi(x, a)}.

Comparing the approach of Section 4.2 to learning a quantile distribution
three main benefits are stated in [3]:

1. There are no restrictions by predefined bounds on the support of the
distribution.

2. Thus, there is no more need for a projection of the Bellman update
onto the predefined support of the distribution. Together, these points
mean that there is no more domain knowledge for the bounds of the
support needed.

3. By applying quantile regression, this parametrization allows to mini-
mize the Wasserstein loss, without suffering form biased gradients as
discussed in the following.

Definition 4.3.2. (Quantile Projection). The projection of an arbitrary re-
turn distribution Z ∈ Z onto ZQ w.r.t. the 1-Wasserstein distance is defined
as

ΠW1Z ∶= argmin
Zθ∈ZQ

W1(Z,Zθ).
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For a distribution with bounded first moment Y and a uniform distribu-
tion U with support {θ1, . . . , θn} the 1-Wasserstein metric, partitioning the
preimage of U , is given by

W1(Y,U) =
n

∑
i=1
∫

τi

τi−1
∣F−1
Y (ω) − θi∣dω. (21)

Quantile Regression To guarantee unbiased gradients for the approxi-
mation of the distribution, quantile regression [4] is applied. This method
is widely known and is a method for unbiased stochastic approximation of
the quantile function.

Definition 4.3.3. (Quantile regression loss LτQR). For a given quantile
τ ∈ [0,1] and a distribution Z the quantile regression loss LτQR is given by

LτQR(θ) ∶= EẐ∼Z[ρτ(Ẑ − θi)], where

ρτ(u) = u(τ − δ{u<0}).

The value of the quantile function F −1
Z (τ) can be defined as the minimizer

of LτQR. This loss gives unbiased sample gradients and can therefore be
minimized using stochastic gradient descent.

Lemma 4.3.4. For τ, τ ′ ∈ [0,1] with τ < τ ′ and cumulative distribution
function F , the set of θ ∈ R minimizing

∫
τ ′

τ
∣F−1(ω) − θ∣dω

is given by

{θ ∈ R ∶ F (θ) = τ + τ
′

2
} .

In particular, if F−1 is the inverse CDF, F −1((τ + τ ′)/2) is always a valid
minimizer and if F−1 is continuous at (τ +τ ′)/2, it is the unique minimizer.

Proof. Let ω ∈ [0,1]. By the convexity of ∣⋅∣, the function G ∶ θ ↦ ∣F−1(ω)−θ∣
is convex. Thus, the subgradient (in θ at θ0)

[a, b] ∶= [ lim
θ→θ−0

G(θ) −G(θ0)
θ − θ0

, lim
θ→θ+0

G(θ) −G(θ0)
θ − θ0

] ,

is well-defined and given by

θ ↦
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−1 if θ < F−1(ω),
[−1,1] if θ = F−1(ω),
1 if θ > F−1(ω).
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From the triangle inequality, it follows that the function θ ↦ ∫ τ
′

τ ∣F−1(ω)−
θ∣dω is convex and its subgradient is given by

θ ↦ ∫
F (θ)

τ
1dω + ∫

τ ′

F (θ)
−1dω = −τ ′ − τ + 2F (θ).

Setting it to zero yields τ ′ + τ = 2F (θ) and thus θ = F−1((τ ′ + τ)/2) is a
minimizer. For F continuous at (τ ′ + τ)/2 the minimizer is unique.

These quantile midpoints will be denoted by

τ̂i ∶=
τi−1 + τi

2
for i = 1, . . . , n. (22)

With Lemma 4.3.4 it follows that the set {θ1, . . . , θn} which minimizes
W1(Y,U) is given by θi = F−1

Y (τ̂i).
Combining equation (21) and Lemma 4.3.4, it follows that if {θ1, . . . , θn}

minimize W1(Z,Zθ), they also minimize

n

∑
i=1

EẐ∼Z[ρτ̂i(Ẑ − θi)]. (23)

The main result of [3], which supports combining DRL with quantile
regression, is the following.

Proposition 4.3.5. ([3], Proposition 2). Let ΠW1 be the quantile projec-
tion. For return distributions Z1, Z2 ∈ Z and a Markov decision process
(X ,A,R,P, γ) with countable action and state spaces A and X , it holds that

d̄∞(ΠW1T πZ1,ΠW1T πZ2) ≤ γd̄∞(Z1, Z2). (24)

Before we proof Proposition 4.3.5, we need two supporting results:

Lemma 4.3.6. Let (X ,A,R,P, γ) be a MDP with countable action and
state spaces A and X . Let Y,Z be return distributions such that each state-
action distribution Z(x, a), Y (x, a) is given by a discrete Dirac delta func-
tion. Consider the special case where rewards are equal to zero, γ = 1 and
τ ∈ [0,1]. Denote by Πτ the projection operator that maps a probability dis-
tribution onto a Dirac delta distribution located at its τ th-quantile. Then,
the inequality

d̄∞(ΠτT πZ,ΠτT πY ) ≤ d̄∞(Z,Y )

holds.

Proof. Let Z(x, a) = δθ(x, a) and Y (x, a) = δψ(x, a) for all (x, a) ∈ X × A
and ψ, θ ∶ X × A → R. Let (x′, a′) be an arbitrary state-action pair and let
{(xi, ai)i∈I} be the finite or countable set of state-action pairs that can be
reached from (x′, a′) in a single transition with probability pi > 0.
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Then, we can write the application of the distributional Bellman operator
on Z and Y as

T πZ(x′, a′) = ∑
i∈I

piδθ(xi,ai), (25)

T πY (x′, a′) = ∑
i∈I

piδψ(xi,ai). (26)

Let u ∈ I be such that θu is equal to the τ -th quantile of T πZ(x′, a′) and
v ∈ I such that ψv is equal to the τ -th quantile of T πY (x′, a′).

By definition of Πτ , it follows that

d∞(ΠτT πZ(x′, a′),ΠτT πY (x′, a′)) = ∣θu − ψv ∣.
Assume that

∀i ∈ I ∶ ∣θu − ψv ∣ > ∣θi − ψi∣. (27)

We show that (27) leads to a contradiction:
W.l.o.g. let θu ≤ ψv. Define the partitions

I≤θu ∶= {i ∈ I ∶ θi ≤ θu},
I>θu ∶= {i ∈ I ∶ θi > θu},
I<ψv ∶= {i ∈ I ∶ ψi ≤ ψv},
I≥ψv ∶= {i ∈ I ∶ ψi > ψv}

of I that lead to the disjoint unions I = I≤θu ⊍ I>θu = I<ψv ⊍ I≥ψv . By the
assumption in (27), it follows that I≤θu ∩ I≥ψv = ∅ and therefore I≤θu ⊆ I<ψv .
Since θu is the τ -th quantile of T πZ(x′, a′), we have that

∑
i∈I<ψv

pi ≥ ∑
i∈I≤θu

pi ≥ τ.

Thus, by definition of the τ -quantile it follows that the τ -th quantile of
T πY (x′, a′) is less then ψv. Therefore the assumption is wrong and we
conclude that

d∞(ΠτT πZ(x′, a′),ΠτT πY (x′, a′)) ≤ d̄∞(Z,Y ).

Since, (x′, a′) was arbitrary, the result

d̄∞(ΠτT πZ,ΠτT πY ) ≤ d̄∞(Z,Y )

follows for the metric d̄∞.

Lemma 4.3.7. For two probability distributions ν1, ν2 over R and the Wasser-
stein projection operator ΠW1 that projects distributions onto support of size
n, it holds that

d∞(ΠW1ν1,ΠW1ν2) = max
i=1,...,n

∣F −1
ν1 (2i − 1

2n
) − F−1

ν2 (2i − 1

2n
)∣ .
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Proof. By Lemma 4.3.4 ΠW1νk = ∑ni=1
1
nδF−1νk (

2i−1
2n
)

for k = 1,2 and it follows

by definition that

d∞(ΠW1ν1,ΠW1ν2) = d∞ (
n

∑
i=1

1

n
δF−1ν1 (

2i−1
2n
)
,
n

∑
i=1

1

n
δF−1ν2 (

2i−1
2n
)
)

= max
i=1,...,n

∣F −1
ν1 (2i − 1

2n
) − F−1

ν2 (2i − 1

2n
)∣

holds.

Proof of Proposition 4.3.5. First, several simplifications can be applied to
the proposition: For a given state-action pair the instantaneous reward is
assumed to be deterministic.

Furthermore, from the γ-contraction property of T π in d̄∞, it is sufficient
to prove the claim for γ = 1.

Because the Wasserstein metrics are invariant under translation of the
support of distributions, it is enough to consider the case r(x, a) = 0 for all
(x, a) ∈ X ×A.

We write Z(x, a) = ∑Nk=1
1
N δθk(x,a) and Y (x, a) = ∑Nk=1

1
N δψk(x,a) for θ,ψ ∶

X × A → Rn. Let {(xi, ai)i∈I} be the finite or countable set of state-action
pairs that can be reached from an arbitrary state-action pair (x′, a′) in a
single transition with probability pi > 0.

Now, we construct a new MDP in which all distributions are given by
single Dirac delta distributions to apply Lemma 4.3.6. Starting from (x′, a′)
we define new states, actions, transitions and a policy π̃. The states that
are reachable in one transition are now given by ((x̃ji , ã

j
i )i∈I)Nj=1 and the

probability of reaching (x̃ji , ã
j
i ) is pi/n.

For this new MDP, define the return distributions

Z̃(x̃ji , ã
j
i ) = δθj(xi,ai)

Ỹ (x̃ji , ã
j
i ) = δψj(xi,ai).

Thus, we obtain

d̄∞(ΠW1T πZ̃,ΠW1T πỸ )
4.3.5
≤ d̄∞(Z̃, Ỹ )
= sup

i∈I
j=1,...,N

∣θj(xi, ai) − ψj(xi, ai)∣

4.3.7= sup
i∈I

d∞(Z(xi, ai), Y (xi, ai)). (28)

By construction, T π̃Z̃(x′, a′) has the same distribution as T πZ(x′, a′)
and the same holds for Y . By definition of the Wasserstein distance it follows
that

d∞(ΠW1T π̃Z̃(x′, a′),ΠW1T π̃Ỹ (x′, a′)) = d∞(ΠW1T πZ(x′, a′),ΠW1T πY (x′, a′)).
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By substituting this equality into inequality (28) and since (x′, a′) were
arbitrary, it follows that

d̄∞(ΠW1T πZ1,ΠW1T πZ2) ≤ γd̄∞(Z1, Z2).

With Proposition 4.3.5 it follows that the combination of the quantile
projection and the Bellman operator is a contraction. Thus, by Banach’s
fixed point theorem it follows that ΠW1T π has a unique fixed point Ẑπ and
the sequence Zk+1 ∶= ΠW1T πZk, Z0 ∈ Z converges to Ẑπ. Since d̄p ≤ d̄∞,
convergence results hold for p ∈ [1,∞].

QR-DQN The goal of the algorithm is to approximate the return dis-
tribution with a parametrized quantile distribution over the set of quantile
midpoints defined in equation (22).

Combining Lemma 4.3.4 with the distributional Bellman equation yields
the quantile regression temporal difference learning update

θi(x) ← θi(x) + α(τ̂i − δ{r+γz′<θi(x)}),
a ∼ π(⋅∣x), r ∼ R(x, a), x′ ∼ P (⋅∣x, a), z′ ∼ Zθ(x′),

where Zθ is a quantile distribution as defined in 4.3.1 and θi(x) is the esti-
mated value of F−1

Zπ(x)(τ̂i).
This update can now be used to adapt the DQN algorithm to learn

quantile distributions of returns. The DQN architecture, as discussed in
Section 3, is mostly maintained but three changes were made. Similar to
C51, the output of the neural network approximator is of size ∣A∣×N where
N is the number of quantile targets for the approximated distribution.

A so-called quantile Huber loss,

ρκτ (u) = ∣τ − δ{u<0}∣Lκ(u), (29)

where Lκ(u) is the Huber Loss, replaces the Huber loss function, which was
used by DQN. The optimizer is changed from RMSProp to ADAM.

The changes to the DQN algorithm can now be given in Algorithm 3.

Algorithm 3: Quantile Regression Q-Learning [3]

Input: A transition x, a, r, x′ and γ
1 Q(x′, a′) ∶= ∑i qiθi(x′, a′)
2 a∗ ∶= argmaxa′ Q(x, a′)
3 T θj ∶= r + γθj(x′, a∗)

Output: ∑Ni=1 E[ρκτ̂i(T θj − θi(x, a))]
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5 Results: Replicating DQN for Enduro

Finally, the results of replicating DQN for one Atari game are reported de-
spite the huge computational requirements. A framework that implements
the Deep Q-Network algorithm compatible to the Arcade Learning Envi-
ronment [2] has been developed in Julia and the challenging Atari Enduro
game is learned.

Enduro The Atari 2600 game Enduro consists of racing the national En-
duro, a long-distance endurance race. The object of the race is to pass other
cars. In particular, the RL agent receives a reward of +1 for passing one
car. To receive a negative reward when being overtaken by other cars, the
agent needs to pass cars before. Then, the agent receives a reward of −1 per
car. In general, rewards are given extremely sparse in Enduro. Also, Enduro
involves different game modes and changes its visibility: There is a night
mode, where only tail lights of the cars are visible. Also, the weather condi-
tions change from sunny, to an icy patch on the road to a patch of fog. Thus,
Enduro is an extremely challenging reinforcement learning environment.

Training Details For replicating the DQN algorithm, all the parameters
and specifications reported in [6] were used. Unfortunately, since training
is computationally very complex and memory-intense, the training dura-
tion was shortened and the replay buffer was reduced in size. In the first
experiments a buffer with size M = 105 was used and later M was set to
4⋅105 while DQN originally uses a buffer with 1 Million transitions. Training
was conducted on 10 million frames of game experience while DQN used a
training time of 50 million frames. In addition, DeepMind’s frame skipping
technique was applied, such that the agent only sees every 4th frame and the
chosen action is repeatedly executed on the next three frames. This makes
learning more efficient.

The learning behaviour of four different settings are compared: Three
different optimizers, stochastic gradient descent, ADAM and RMSProp, are
compared with a buffer of size 4 ⋅105 and the two different buffer sizes using
RMSProp as an optimizer can be compared.

Evaluation Details DeepMind stated for the evaluation of DQN that the
agents were frequently tested along the training period on 135 000 evalua-
tion frames and the highest average episode score is reported. An agent is
evaluated by reporting its game score acting greedily in one game (i.e., an
episode). Using the Arcade Learning Environment for the game simulation,
the Enduro game has around 3000 frames or 3000 ⋅ 4 frames, as it is not
stated clearly if the skipped frames are counted or not by DeepMind. This
leads to roughly 40 or 10 tested games per agent. Since, one game of Enduro

25



takes quite a long time and the training performance is tested every 50 000
frames, three games per agent are reported and all three performances are
given in the scatter plots in Figure 5. Additionally, the average performance
in the three games is stated in the line plot.

Figure 1: RMSProp with M = 105 Figure 2: RMSProp with M = 4 ⋅ 105

Figure 3: GD with M = 4 ⋅ 105 Figure 4: ADAM with M = 4 ⋅ 105

Figure 5: Evaluation of four different DQN settings trained on Enduro for
10 million frames.

Results DeepMind reported as the highest score of DQN in Enduro 301.8
(±24.6) points. For comparison, a random agent receives on average 0 points
in one game. The results achieved in the course of this thesis are visualized
in Figure 5. The best agent achieved a score of 43 points. It uses RMSProp
and the larger replay buffer of size 4 ⋅ 105.

By having a closer look at Figure 1, it is visible that the agent rela-
tively early achieves a high score but then reducing its scored points again.
We believe that this behaviour is connected to the smaller replay buffer.
In general, all optimizers except gradient descent show large variances in
their scores and behave like forgetting how to behave in already visited and
learned states constantly. This could be connected to the more advanced
optimizers that both implement an adaptive learning rate in combination to
the small buffer of size 4 ⋅ 105.
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Even though not directly visible through the reported score, gradient
descent seems to implement the most reliable and consistent learning in
combination with a smaller buffer as the averaged score given in Figure 3
shows a trend.
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