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Current fingerprint identification systems face significant challenges in achieving interoperability between contact-based and
contactless fingerprint sensors. In contrast to existing literature, we propose a novel approach that can combine pose correction
with further enhancement operations. It uses deep learning models to steer the correction of the viewing angle, therefore enhancing
the matching features of contactless fingerprints. The proposed approach was tested on real data of 78 participants (37,162
contactless fingerprints) acquired by national police officers using both contact-based and contactless sensors. The study found
that the effectiveness of pose correction and unwarping varied significantly based on the individual characteristics of each
fingerprint. However, when the various extension methods were combined on a finger-wise basis, an average decrease of 36.9%
in equal error rates (EERs) was observed. Additionally, the combined impact of pose correction and bidirectional unwarping led to
an average increase of 3.72% in NFIQ 2 scores across all fingers, coupled with a 6.4% decrease in EERs relative to the baseline. The
addition of deep learning techniques presents a promising approach for achieving high-quality fingerprint acquisition using
contactless sensors, enhancing recognition accuracy in various domains.

1. Introduction

Fingerprints have been a reliable means of identification and
verification for over a century [1]. They are unique to each
individual and can provide a highly accurate and reliable
means of identification [2–4]. With the advancement of tech-
nology, contactless fingerprint sensors have emerged as a
more hygienic and convenient means of collecting finger-
print data for authentication and identification [5]. However,
for security purposes, it is important that the data collected
by these new sensors is interoperable with the large datasets
of contact-based fingerprints that exist in the possession of
law enforcement and security agencies. These datasets have
been collected over many years and are an essential tool for
police and security agencies in identifying criminals and ver-
ifying identities. A lack of interoperability can affect the

accuracy of template comparison and result in higher false
rejections or false positive rates.

Contactless fingerprint sensors produce images with dif-
ferent characteristics than contact-based ones. Examples of
this are a higher variability in image contrast throughout the
image or a switch of ridges and valleys through lighting
polarity inversion, which can lead to lower template compar-
ison scores for cross-matching than for purely contact-based
to contact-based template comparison [6]. Additionally,
contactless fingerprint sensors are affected by various exter-
nal factors, such as lighting conditions and viewing angles,
which can further reduce the quality of the collected images
and negatively impact template comparison accuracy. Tradi-
tional image enhancement techniques for contactless finger-
print sensors, such as denoising and contrast adjustment
alone, are, therefore, not sufficient to produce images with
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matching features similar to those of contact-based finger-
prints, highlighting the need for more advanced methods.

There has been progress in the development of methods
for improving the interoperability of contact-based and con-
tactless fingerprint sensors in the last few years [7]. Previous
research has focused on new image enhancement techniques
to improve the quality of contactless fingerprint images
[8–11], therefore enhancing their matching features, as well
as on developing algorithms to make contactless recorded
images more similar to their contact-based counterparts
[12–16]. Additionally, new ways of comparing contactless
and contact-based images have been the topic of research
[10, 17–19, 20]. However, the task of improving interopera-
bility still remains an ongoing challenge [21].

This paper builds on the insights gained from our previ-
ous study [22] about the acquisition of contactless finger-
prints. There, we described our data acquisition process as
well as the effect of enhancement and circular unwarping on
the matching rate. The data presented in this study originates
from the acquisition during the previous study. The data was
acquired by national police officers on real data with two
sensors: our contactless fingerprint sensor prototype as well
as an established contact-based one. Since we observed satis-
faction with the acquisition process, our next step was to
work on further improving the sensor’s interoperability
and, therefore, the match rates.

In this paper, we aim to improve sensor interoperability
between contact-based and contactless fingerprint sensors by
extending the processing pipeline by pose correction [16]
and more advanced, parametric unwarping methods. The
pose correction is built on top of three deep-learning neural
networks using an extended and modified U-Net [23] archi-
tecture. The networks are responsible for subtasks in the pose
correction step, which are detecting the fingers, segmenting
the fingers, and localizing the fingers’ core. The code for
training the fingertip segmentation and core detection mod-
els can be found in the study of Ruzicka [24]. The pose
correction itself is accomplished by a sequence of rotations
and warpings.

In the realm of pose correction for fingerprint images,
two distinct categories of approaches have emerged, each
with its own unique methodology and underlying principles.
The first category, as proposed by Tan and Kumar [16],
focuses on employing a series of rotations and warpings
based on an ellipsoid finger shape to transform a set of
minutiae. This approach leverages geometric transforma-
tions to rectify fingerprint poses, aiming to improve sensor
interoperability between contact-based and contactless fin-
gerprint sensors. Note that this approach is limited since it
can not be applied to the image itself.

In contrast, the second category, as introduced by
Dabouei et al. [25], employs a learned robust-thin-plate
spline model to correct the pose of the fingerprint image.
However, it is essential to note a fundamental distinction
between these two categories: the approach by Tan and
Kumar [16] is rooted in geometric principles and relies on
an ellipsoid finger shape model, whereas the approach by

Dabouei et al. [25] is based on a learned model, lacking a
clear mathematical mapping function.

The reliance on a mathematical model in pose correction
is a critical aspect to consider, as it can have a substantial
impact on the results obtained. Mathematical models pro-
vide a well-defined framework for transformation, offering
predictable and consistent correction.

The combination of deep learning and classical techni-
ques presents a promising approach for achieving high-
quality fingerprint acquisition using contactless sensors.
This would enable authentication systems based on contact-
less sensors to access the vast dataset of contact-based fin-
gerprints, providing a more hygienic and convenient means
of identification. An added benefit of using classical algo-
rithms for the rotation and warping inside the pose correc-
tion step is the improved explainability and traceability of the
operation. This is particularly important for real-world
applications in the field of law enforcement, where transpar-
ency and accountability are essential. By leveraging the
strengths of both deep learning and classical techniques,
we can create a more robust and reliable system for contact-
less fingerprint acquisition and authentication.

This development is not only a significant step towards
improved recognition accuracy in various domains, but it
also provides a more user-friendly and convenient way of
authentication, which is essential in today’s fast-paced world.

1.1. Contribution of Work. We propose a new processing
pipeline for contactless fingerprint recordings that improves
sensor interoperability between contactless and contact-
based fingerprint sensors and requires only a single camera.
Key contributions from this paper can be summarized as
follows:

(i) In this paper, we propose a novel deep-learning
neural network architecture based on the U-Net
[23] and MobileNet V2 [26], which is used to seg-
ment the fingertip and also to detect a reference
point based on the fingerprint core. We employ
transfer learning to aid the training process. The
model is compared to two other contemporary U-
Net-based model architectures, the EfficientUNet++
[27] and Squeeze U-Net [28]. The code for training
the model for both image segmentation, as well as
core detection, is shared publicly in the study of
Ruzicka [24].

(ii) Furthermore, we introduce a new pose correction
step in the form of a horizontal rotation before lat-
eral rotation, which is based on the center line of the
segmented fingertip. This aligns the finger axis with
the lateral rotation axis and, therefore, improves the
effect of the rotation.

(iii) Unlike earlier work [16], we developed the pose cor-
rection to work on the contactless recorded image
and not only its set of minutiae. This allows us to
apply further enhancements to the outcome of the
pose correction step.
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(iv) Finally, we combine all of the steps above with
advanced parametrized unwarping methods [29] to
create a novel processing pipeline that reduces the dif-
ferences between contactless and contact-based finger-
print recording, increasing sensor interoperability.

To assess the efficacy of our novel approach, we calcu-
lated the equal error rates (EERs) for a random selection of
78 participants from our previous study [22], consisting of
37,162 contactless fingerprint images. The selection was nec-
essary due to time and computational constraints.

1.2. Structure of Paper. The paper is organized as follows:
First, the methods Section 2 begins by describing the record-
ing hardware in Section 2.1. This is followed by the prepro-
cessing in Section 2.2 and pose correction in Section 2.3.
Sections 2.3.1, 2.3.2, and 2.3.3 provide detailed explanations
of different aspects of the pose correction. Section 2.3.1 also
contains a description of our customU-Net architecture and a
comparison to other contemporary model architectures. Fur-
ther enhancement steps, such as unwarping in Section 2.4, are
explained next.

Section 3.1 briefly describes the template comparison
paradigm, while the last three Sections 3.2.1, 3.2.2, and
3.2.3, provide details on how the datasets for training the
models and evaluating match scores were constructed.

In Section 4, we present the results, beginning with the
results for the fingertip segmentation task in Section 4.1. This
is followed by the results for core detection in Section 4.2
and, finally, the template comparison scores in Section 4.3.
Section 5 discusses the findings, and Section 6 provides the
final conclusion.

2. Contactless Fingerprint Acquisition
and Processing

2.1. Capturing Device. In this study, we refer to the dataset
that was collected with our contactless fingerprint sensor
prototype as described in the study of Weissenfeld et al.
[22]. The prototype used in this study consists of three
main components: a grayscale camera sensor, a liquid lens
integrated with a time-of-flight (TOF) sensor, and illumina-
tion LEDs. The camera sensor captures images at a high
resolution of 3,072× 2,048 pixels, which are corrected for
lens distortion. Additionally, the sensor is calibrated using
flat-field correction to account for variations in the sensitiv-
ity of individual pixels in the sensor, resulting in a more
accurate and reliable image. The final images have a resolu-
tion of 3,052× 2,015 pixels. This results in clear, high-quality
images that are suitable for fingerprint recognition.

The liquid lens integrated with the TOF sensor is a
unique feature of the contactless fingerprint sensor. It allows
the system to adjust the focal plane of the camera sensor
based on the distance of the hand from the TOF sensor.
This ensures that the fingerprint images remain sharp and
in focus, regardless of the distance between the hand and the
sensor. The liquid lens is capable of adjusting the focal plane
in less than 5ms, making it a fast and reliable component of
the system. One caveat of the liquid lens is its small depth of

field. This allows us to assume equidistance from the camera
to the hand of all sharp parts of the image. On the other
hand, small deviations in the measured distance lead to
blurred images.

The illumination LEDs are another important compo-
nent of the contactless fingerprint sensor. They provide uni-
form illumination of the hand, which is critical for accurate
fingerprint recognition. The three stripes of LEDs are posi-
tioned around the camera sensor, creating a ring of light that
surrounds the hand. The LEDs also change color to provide
feedback to the user, indicating when the hand is outside the
acceptable range or when all fingers have been successfully
recorded.

The contactless fingerprint sensor produces a continuous
stream of images at a rate of around 10 frames per second,
resulting in a video of fingerprint recordings. This frame rate
is high enough to enable live identification in just a few
seconds, making the system suitable for real-time monitor-
ing and analysis of fingerprint data in applications such as
security, access control, and identification. The system’s abil-
ity to capture high-quality video in real-time makes it a
valuable tool for biometric authentication in a variety of
settings.

2.2. Live Preprocessing. The contactless fingerprint sensor
system employs several preprocessing steps during the
recording process to ensure that the captured fingerprint
images are of high quality and suitable for use in biometric
authentication. A depiction of those steps can be seen on the
left side of Figure 1. The system utilizes an object-detection
model based on a quantized Mobile Net V2 [26] to detect the
fingertips in the captured images [12]. This model allows the
system to quickly and accurately identify the regions of inter-
est in the images, which are then used to extract the finger-
print images. The detected bounding boxes are also used to
infer which finger is which, aiding in the identification pro-
cess. This identification is based on the detection of the lon-
gest finger, which is assumed to be the middle finger. If two
more fingers (i.e., bounding boxes) are found to the left of the
middle finger, we can infer that the other fingers are the ring
and little fingers based on their location.

Once the fingerprint images have been extracted, they are
subjected to several enhancement operations to improve
their quality. First, the images are rotated upright and resized
to match the FBI standard of 500DPI [30]. This step is
critical in ensuring that the images contain sufficient detail
for accurate identification. Fingerprint template comparison
algorithms are very sensitive to the DPI resolution of the
images, and deviations from the standard resolution can
significantly impact the accuracy of the template comparison
process. By adhering to the FBI standard, the system ensures
that the images are of sufficient resolution to capture the
necessary level of detail for accurate identification. Next,
the image enhancement algorithm from Kauba et al. [12] is
applied. It consists of a gray-value inversion, a sharpness-
improving and noise-removing bilateral filter, and a
contrast-limited adaptive histogram equalization (CLAHE)
filter [31] with a clip limit of 4 and a tile grid size of 15 by 15
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pixels. The bilateral filter uses a pixel neighborhood diameter
of 2, a filter sigma in the gray level space of 4, and a filter
sigma in the coordinate space of 1. The CLAHE filter
enhances the contrast of the image by adjusting the distribu-
tion of its intensity values, while the gray-value inversion
ensures that the appearance of the images is consistent
with contact-based recordings. Both the enhanced image
and the nonenhanced image are passed on to the next step.

In addition to these steps, a sharpness score is calculated
for each fingerprint image during preprocessing. It is based
on the Canny edge detection algorithm [32], which is applied
to a ring-shaped area in the center of the finger. The number
of edge pixels is counted and normalized to produce the final
sharpness score. This step helps to ensure that only the shar-
pest and most detailed images are used for identification.
Later on in the template comparison process, we use the
score information of the finger to rank different recordings
of the same finger. This allows us to select only the top five
sharpest images for each finger.

2.3. Pose Correction. After the fingerprint images have been
captured and preprocessed in real-time, a series of postpro-
cessing steps are applied to further improve their quality and
prepare them for use in biometric authentication. These
steps include pose correction, unwarping, and possible future
additional image enhancements. They are depicted on the
right side of Figure 1.

The pose correction step of the contactless fingerprint
sensor system is a critical component in ensuring the accu-
racy and reliability of biometric authentication. This step
involves a series of rotations that correct the pose of the
captured fingertip images to improve their 3D alignment
for template comparison. In contrast to other existing pose
correction frameworks, our system not only transforms the
output features, i.e., the minutiae [16] but also applies both
horizontal and lateral corrections to the fingertip’s pose.
Additionally, it uses only one camera [14] to estimate the
finger shape. The transformation of the whole image allows
us to gradually improve the recording quality by adding
future improvements to the pipeline.

The operations used for pose correction will be explained
in the order in which they are applied. Therefore, the first

part of Section 2.3.1 is about image segmentation and hori-
zontal rotation, the second part of Section 2.3.2 is about core
detection, and the final part of Section 2.3.3 is about lateral
rotation. The following pose correction is unwarping, which
is explained in Section 2.4.

2.3.1. Segmentation and Horizontal Rotation. The first step in
the pose correction process is segmentation, which involves
separating the fingertip from the background of the captured
image. This is achieved using a custom model based on the
U-Net architecture [23], which accurately identifies the
regions of interest in the image.

Other examples of contemporary neural network archi-
tectures that build on the idea of Ronnebergers U-Net are
Squeeze U-Net [28] and EfficientUNet++ [27]. Both reduce
the number of compute required to run the model, while
improving on the performance when compared to the origi-
nal U-Net. Similar to the custom U-Net extension intro-
duced in this paper, the EfficientUNet++ builds on a
pretrained decoder, in this case, the EfficientNet [33]. Com-
pared to our implementation, the EfficientUNet++ can only
work with input images of the shape 224× 224× 3, since it
does not resize the input image in the model. Therefore, for
comparing EfficientUNet++ with the other models, we had
to train and test the model on 224× 224× 3 sized images
instead of 448× 448×1 sized images, which are used for
the other two models. Furthermore, all three models are
designed to work as efficient as possible, leading to low num-
bers of trainable parameters. This is especially obvious when
compared to another segmentation model like Vision Trans-
former [34]. Vision Transformer has 86 million parameters
in the base version and 632 million parameters in the largest
version. Our custom U-Net extension is the largest of the
three U-Net-based models and has 10.2 million trainable
parameters. Next is EfficientUNet++ with 6.3 million, fol-
lowed by Squeeze U-Net with 2.5 million trainable parame-
ters. A comparison of the three models regarding model
scores can be found in Sections 4.1 and 4.2. Note that the
custom U-Net introduced in this paper is used in the final
processing pipeline for pose correction.

The custom U-Net architecture is a modification of the
original design proposed by Ronneberger et al. [23] to

PostprocessingLive preprocessing

Input + fingertip detection

Enhance

Score

Segment

Locate core

Rotate
LateralHorizontal

Unwarp

FIGURE 1: Preprocessing and postprocessing pipeline. The input is the grayscale image from the camera sensor. It is rotated and then processed
by the object-detection network to find the fingertips. Those are cut out from the image and enhanced. Additionally, the fingertip’s sharpness
is scored. All of this happens live as preprocessing. The results are saved and later used for the postprocessing. In postprocessing, the finger’s
core is localized, and the finger contour is segmented. Those are used to correct the horizontal rotation of the finger, followed by a lateral
rotation correction. Finally, the image is unwarped before the template comparison.
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enhance its performance. One modification includes the use
of batch normalization [35], which stabilizes the training of
neural networks and reduces the internal covariate shift,
preventing the vanishing or exploding gradient problem.
Additionally, to prevent gradients from potentially disap-
pearing, a leaky ReLU activation function [36] is introduced.

The pretrained neural network, MobileNet V2 [26], is
incorporated into our custom U-Net architecture in this
study to improve its performance in semantic segmentation.
MobileNet V2 is a highly efficient architecture designed for
resource-constrained devices, such as mobile phones and
embedded systems. It utilizes depthwise separable convolu-
tions and linear bottleneck layers to reduce the computa-
tional cost of the network while maintaining high accuracy.
Furthermore, MobileNet V2 has been pretrained on a large-
scale dataset, making it an ideal choice for transfer learning
in various computer vision tasks. The U-Net architecture
itself is widely used in semantic segmentation tasks due to
its ability to capture high-resolution features while maintain-
ing a large receptive field.

Figure 2 shows our custom U-Net model architecture. It
consists of a downsampling path, followed by an upsampling
path after the bottleneck layer. The two paths are connected
through skip connections between equally shaped layers. In
contrast to the original publication and traditional residual
connections [37], we do not use a linear layer to equalize the
dimensions but instead, concatenate the output of the previ-
ous layer to the input of the current layer. This is depicted by
the green spheres with a “+” sign in Figure 2.

The downsampling path of our U-Net architecture con-
sists of the MobileNet V2 model, which is used to extract
low-level features from the input images. We freeze the
weights of the MobileNet V2 model during training to pre-
vent overfitting and improve the generalization of the model.

To ensure that the pretrained MobileNet V2 [26] model
can process the input images, we first resize the images to
multiples of its input shape, e.g., 224∗N× 224∗N pixels. We
use a convolutional layer with three filters and a stride that is
adapted to the task-specific image dimensions to convert the
output to 224× 224 pixels. This is depicted by the first right-
banded orange box in Figure 2. Its kernel size is calculated as
being the stride times two plus one. This initial convolutional

layer helps the model learn more complex features from the
input images and allows it to be more flexible in handling
different input sizes.

The upsampling path of our U-Net architecture consists
of a series of upsampling blocks that gradually increase the
resolution of the feature maps. Each upsampling block con-
sists of a transposed convolutional layer, followed by batch
normalization [35] and the leaky ReLU activation function
(α¼ 0:3) [36]. The transposed convolutional layer has a ker-
nel size of 3 and a stride of 1, while the number of filters in
each layer gradually decreases as we move further up the
upsampling path.

After the final upsampling block, we leave out the batch
normalization. By an interpolating resizing, the output fea-
ture maps are reshaped to match the dimensions of the input
images. We then apply a final convolutional layer with a
kernel size of 3 and a number of filters equal to the number
of desired output channels. If the number of output channels
is greater than two, we apply a Softmax activation function to
each pixel of the output map to obtain a probability map for
each class. If there are only two output channels, we use a
Sigmoid activation function for binary classification. This
last layer produces the final segmentation output of our U-
Net model.

Our custom U-Net model can also be quantized to
reduce its memory footprint and increase inference speed,
which is especially important for embedded sensor devices
where resources are limited. We can use quantization tech-
niques, such as posttraining quantization and quantization-
aware training, to convert the model’s weights and activa-
tions to lower-precision formats.

Since the training data is sparse, we added two data aug-
mentation methods: flip horizontal and random brightness.
These augmentations can effectively double the size of the
training data by creating a mirrored version of each image
and randomly adjusting the brightness of the image, respec-
tively. This can help reduce overfitting and improve the
model’s generalization ability, as well as enhance its ability
to accurately identify objects and boundaries under varying
lighting conditions.

For the training itself, we used a batch size of 8 and
trained for a maximum of 300 epochs, but early stopping
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FIGURE 2: The figure shows the architecture of a custom U-Net model used for both finger segmentation and core detection. The model
consists of several convolutional layers with leaky ReLU activations (right-banded orange), a pretrained MobileNet V2 (light orange), and
several transpose convolutional layers (blue). The intermediate outputs of the MobileNet V2 (right-banded blue) are used for skip connec-
tions, and concatenation is denoted by green spheres with a “+” symbol. Batch normalization layers are depicted as thin red layers following
the transpose convolution blocks. The first violet layer is a resizing layer, and the second violet layer represents the Sigmoid/Softmax output
activation.
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ended the training early for all tested models. A binary cross-
entropy loss is used.

Once the fingertip is segmented, the correction process
usually involves fitting a box around the finger and correct-
ing for the rotation of the box to ensure that the center line of
the finger is vertical [38]. However, this approach is more
sensitive to outliers in the segmentation, which can lead to
inaccurate results. That is why we used our new approach,
which involves calculating the slope of the center line by
fitting a linear function over the middle of the points on
the finger’s contour at the same height. This method reduces
the effect of outliers in the contour detection and allows for
accurate rotation of the image. This step can be seen as the
first pose correction in the pose correction process.

2.3.2. Reference Point Detection. The next step in the pose
correction process involves detecting a reference point that
indicates the center of the fingerprint image. Around 98.5%
of the population have a fingerprint type that contains at
least one singular point called core [39], which is defined
in ISO/IEC 19794-1 : 2011 3.33 as being the topmost point
of the innermost ridge line. We assume that this core point is
close to the fingerprint center [40] and use it as a reference
point. When there is no core point in the presented finger-
print, we use the ridge orientation to manually set the refer-
ence point to the central fingerprint position for the testing
data and exclude the sample for the automatically generated
training data. When two cores are present, we choose the one
closer to the image center.

Unlike traditional methods that rely on ridge orientation
for core detection [41–43], we use once more our custom U-
Net architecture to directly localize the reference point in the
fingertip image. Additionally, the U-Net approach is better
suited for images with low depth of field, where some parts of
the image may not be in sharp focus. Similar to Section 3.2.2,
we train and test in addition to our proposed model archi-
tecture also a Squeeze U-Net and EfficientUNet++. To train
these U-Net models, a large dataset of fingerprint images was
created. The dataset was constructed using a semi-automatic

annotation process, where the position of the core for the
training was generated primarily by a commercial fingerprint
matcher (IDKit from Innovatrix [44]) and partially manually
corrected. During the correction procedure, the reference
point annotation for fingerprint types without a core was
set according to the generation of testing samples, i.e., we
used the ridge orientation to manually set the reference point
to the center of the fingerprint. For fingerprint samples with
a core, the reference point is set to the core point position.
The validation and test data were annotated entirely by hand
to ensure high accuracy.

The dataset comprises a diverse range of fingerprint
images, covering populations of different ages and skin types.
This ensures that our model can accurately detect the core
location in various scenarios. A detailed description of the
dataset can be found in Section 3.2.1.

For the reference point detection task, we treated the
problem as a segmentation problem. The model output is a
probability map predicting the position of the reference
point, i.e., the core for most fingerprints. We used
448× 448-pixel images as input and normalized the pixel
values. Only for the EfficientUNet++, we had to downscale
the images to 224× 224 pixels. The models were trained for
up to 300 epochs, but we used early stopping and monitored
the validation loss to prevent overfitting. We used a batch
size of 28 and a binary cross-entropy loss with two custom
metrics: (i) the average Euclidean pixel distance from the
annotated core and (ii) the average number of separate,
detected regions. Our aim was to train a model with a low
average pixel distance and an average number of detected
regions of one.

The position of the reference point in each image was
annotated using a circle that has a radial fall-off, which can
be seen in Figure 3. This annotation method allowed for
more leniency when the reference point was not detected
perfectly, as the circle would still partially overlap with the
actual annotated reference point location. The use of this
annotation method also improved the behavior of the loss
function during training. Specifically, the cross-entropy loss

ðaÞ ðbÞ ðcÞ
FIGURE 3: Annotated core position for different fall-off rates: (a) 0.1; (b) 10−3; (c) 10−5.
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used for training would otherwise treat a close miss and a
completely wrong detection equally, as only the pixel values
are compared.

In order to investigate the effect of different fall-off rates
on the accuracy of the model, we run an ablation study with
three experiments with the following fall-off rates: 0:1, 10−3,
and 10−5. Figure 3 shows the annotated reference point posi-
tion for all three cases.

2.3.3. Lateral Rotation. Once the fingerprint core has been
detected, the system assumes that the finger has an elliptic
cross-section. This assumption is based on the work of Tan
and Kumar [16], who introduced a fingerprint model with an
elliptical cross-section and used an ellipse with a major–minor
axis ratio of 1.2 for lateral rotation correction.

To calculate the finger’s offset from the center, we use the
detected core as a reference point. We assume that most of
the finger’s interesting regions lie close to the core and that
the core correlates with the intersection of the rotated minor
axis of the ellipse with itself, i.e., the flat region of the finger.

Similar to the study of Tan and Kumar [16], we use the
offset of the core position from the left finger edge (P0l)
visible in the rotated image to the right finger edge (P0r)
visible in the rotated image to implicitly define the rotation
angle (α, i.e., the negative viewing angle) as follows:

η ≔ arctan
sin α

1:2 cos α

� �

R≔
P0lP0c
P0cP0r

¼ 1þ sin ηð Þ
1 − sin ηð Þ :

ð1Þ

Equation (1) can be solved analytically, and for our
choice of major-to-minor axis ratio of 1.2, we find as follows:

A ≔ R − 1ð Þ2
B ≔ R2

− 2Rþ 1ð Þ

C ≔
−10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R 9R2 þ 7Rþ 9ð Þ

p
Aþ B 9R2 þ 32Rþ 9ð Þ

9AB
α ¼2 sign R − 1ð Þatan ffiffiffiffi

C
p

;

;

ð2Þ

which allows us to calculate an estimated rotation angle from
the offset of the core position.

After finding the rotation angle, we use our ellipsoid
model of the fingertip again. The width of the elliptic cross-
section for each slice in the model is determined using the
measured contour width, allowing us to rotate the finger to
the correct orientation while taking into account its estimated
3D shape. We then remove any regions that would not have
been visible to a front-facing camera. The result is a corrected
and aligned image where the core sits in the center.

Figure 4 provides an example of the pose correction pro-
cess. Figure 4 shows a ring finger that has been enhanced
using Kauba’s enhancement technique, which is described in
more detail in Section 2.2. In Figure 4(a), the input to the
pose correction process is depicted, where the detected core
is highlighted using a white cross. The position of the core, as
well as the segmentation mask, are utilized to determine the
viewing angle of the finger. Additionally, the segmentation
mask is used to generate a 3D model of the finger shape,
based on elliptic cross-sections with a major-to-minor axis
ratio of 1.2. The final output of the pose correction process is
illustrated in Figure 4(b).

2.4. Unwarping. In the postprocessing steps for contactless
fingerprints, one critical task is unwarping the acquired
images. Unlike contact-based fingerprint sensors, where the
finger is in direct contact with the sensor surface, contactless

ðaÞ ðbÞ
FIGURE 4: Detected core and following pose correction for a segmented and rotated ring finger with Kauba et al. [12] enhancement: (a) core;
(b) correction.
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sensors capture the fingerprint image without physical con-
tact. As a result, contactless images can be distorted due to
the curvature of the fingertip. Unwarping is necessary to
correct this and to align the fingerprint image to a standard
reference frame. It enables accurate template comparison
with contact-based fingerprints.

To correct for the distortion caused by the nonplanar
surface of the fingertip in contactless fingerprint images,
we explore three types of unwarping: circular, elliptic, and
bidirectional, which are described in more detail in the study
of Sollinger and Uhl [29]. The circular method assumes the
finger has a cylindrical shape, while the elliptic method mod-
els the finger cross-section as an ellipse. The bidirectional
method takes into account the curvature of the fingertip.
This is accomplished by combining the circular unwarping
with another circular unwarping for the rounded tip region
of the finger.

To test the effectiveness of the circular method, we eval-
uate two different approaches: one that adapts the radius of
the cylinder to the contour of the finger in each image and
another one that uses a static radius based on the image
width. The adaptive choice of the radius is made possible
by the segmentation of the fingerprint image, which allows
us to precisely identify the contour of the finger and adjust
the finger width accordingly.

Figure 5 shows the effect of the unwarpings on a contact-
less middle finger recording.

3. Experiments

3.1. Template Comparison. We employed a template com-
parison procedure to ensure accurate imposter and genuine
scores for our dataset and calculate the EER. Our approach
involved selecting the top five sharpest contactless recordings
for each finger from a particular recording session based on
the scoring mechanism in the preprocessing pipeline (see
Section 2.2). Using IDKit from Innovatrix [44], we calculated
templates for each of these five finger images and compared
them to all contact-based recording templates. This method-
ology enabled us to account for variations in the recording
quality, ensuring the reliability of our results.

By selecting only the top five sharpest images for each
finger, we not only improved the reliability of our results but
also significantly reduced the number of required compari-
sons. This reduction in required comparisons is especially

crucial for larger datasets where the number of comparisons
can become prohibitively large, leading to longer computa-
tion times. Our template comparison procedure thus struck a
balance between result quality and efficiency.

To assess the variability of our results, we randomly sam-
pled 80% of the genuine scores and 80% of the imposter
scores and calculated the EER. This process of subsampling
and calculating the EER was repeated 100 times, and we
report the mean and standard deviation of the results.

3.2. Data

3.2.1. Core Detection Dataset. To train and validate our core
detection U-Net algorithm, we created a dataset from a sub-
set of the dataset used in our previous study [22]. We utilized
a semiautomatic annotation approach that involved both a
commercial fingerprint matcher and manual correction. We
utilized the IDKit software from Innovatrix [44] to locate the
core position in contactless fingerprint images. The matcher
was run over both enhanced and original images to ensure
accuracy. Although the matcher was designed for contact-
based fingerprints, this semiautomatic approach allowed us
to annotate a large amount of training data efficiently. How-
ever, to ensure higher quality annotations, we manually cor-
rected parts of our training data to minimize the impact of
annotation errors on the neural network’s performance.

For our validation and test data, we chose to manually
create the entire dataset to ensure the highest possible qual-
ity. This was a time-consuming process, but it allowed us to
have complete control over the quality and accuracy of the
annotations.

In addition to the semiautomatic annotation approach
and manual correction, we took an additional step to ensure
the quality of our dataset: we filtered the images beforehand,
only using images that had a sharpness over a finger-
dependent threshold. Specifically, we found in extensive
empirical experimentation that different fingers had different
optimal thresholds for sharpness. For example, we found
that the optimal sharpness threshold for the index and little
fingers was 0.16, while the optimal threshold for the middle
and ring fingers was 0.22. By tailoring our image filtering
approach to the specific finger being analyzed, we were
able to ensure that our dataset only contained high-quality
images that were well-suited for training and validating our
neural network.

ðaÞ ðbÞ ðcÞ ðdÞ ðeÞ
FIGURE 5: Effect of the different unwarpings on a middle finger: (a) input; (b) elliptic; (c) bidirectional; (d) circular-adaptive; (e) circular-fixed.
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In total, we were able to use 119,993 images from 535
different users to create our dataset.

As shown in Figure 6, our participant population was
diverse in terms of their country of origin, age, and gender.
While our dataset contained more male users (356) than
female users (166), we still believe that the overall diversity
of our user population allowed us to capture a wide range of
fingerprints and ensured that our dataset was representative
of a broad range of users. Note that one participant has an
unidentified gender. In order to strengthen the anonymiza-
tion of the data and to avoid identification using a quasi-
identifier, we excluded this participant from Figure 6.

3.2.2. Finger Segmentation Dataset. To train a neural network
for segmenting fingers in contactless fingerprint images, a
carefully curated and annotated dataset is crucial. However,
manual annotation of each image can be a time-consuming
process. To speed up the annotation process, we utilized an
existing finger segmentation dataset with preannotated
images for a different recording setup [12] and combined
it with newly created, manual annotations from our dataset
collected in the study of Weissenfeld et al. [22]. We carefully
cropped the preexisting dataset to ensure consistency with
our new dataset in terms of image ratios.

This hybrid approach allowed us to significantly reduce
the overall workload required to create our dataset while also
potentially increasing the diversity of images in our training
set, which could, in turn, improve the performance of our
model.

To ensure that the model is trained and evaluated on data
from previously unseen users, we carefully split our dataset
into train, validation, and test sets on a user basis. This
means that no user appears in two sets, which encourages
the model to learn more generalizable features that can be
applied to new users. Moreover, this approach provides a
more realistic assessment of the model’s performance in
real-world scenarios where the model must perform well
on users it has never encountered before.

Our final dataset contained a total of 5,828 images, 5,146
of which were preannotated, and 1,457 and 1,822 images
were used for validation and testing, respectively.

3.2.3. Template Comparison Dataset. To assess the efficacy of
our developed methods, we conducted a random selection of
a representative subset of 78 participants from our previous
study [22], which contains 37,162 contactless fingerprint
images. This was necessary due to time and computational
constraints. Both contactless and contact-based fingerprint
recordings were obtained from a law enforcement agency,
providing a realistic sample of real-world scenarios. The con-
tactless recordings were acquired using our sensor prototype
(see Section 2.1), while the contact-based recordings were
collected using the commercially available Idemia TP 5300
(https://www.idemia.com/palmprint-scanner). The contact-
based recordings consisted of rolled fingerprint images with
a resolution of 1,000DPI.

To ensure the quality of our contactless dataset, we again
applied the sharpness-filtering approach from Section 3.2.1.
By customizing our image filtering approach to the specific
finger under analysis, we could minimize the number of
blurred images included in our dataset.

3.2.4. Demographics. For calculating conclusive match per-
formances of contact-based and contactless fingerprint
enhancement methods, it’s important to have a diverse data-
set. This allows for evaluating models’ robustness to varia-
tions in lighting, image quality, and finger placement, among
other factors, and ensures that results are representative of a
wide range of people and not biased toward a particular
population.

Figure 7 illustrates only 75 of the 78 participants, because
we do not know the gender and origin of three participants.
Of the 75 participants, we had 42 identified as male and 33 as
female. The distribution of participants’ countries of origin
was diverse, with Asia being the most represented continent
(24 male, 26 female), followed by Africa (10 male, no female)
and Europe (five male, no female).
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FIGURE 6: Age and country of origin distribution separated by gender for the core detection dataset.
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The majority of Asian participants were from Syria (36),
followed by Afghanistan (five) and China (three), and we had
participants from a total of eight different Asian countries.
The majority of African participants were from Somalia
(four), followed by Nigeria (two), and we had participants
from a total of nine different African countries. The majority
of European participants were from Ukraine (three), fol-
lowed by Türkiye (two), and we had participants from a total
of five different European countries.

3.2.5. Quality Analysis. Participants in the study had their
fingerprints captured by the law enforcement agency using
both an optical fingerprint scanner, specifically the Idemia
TP 5300 which creates 1,000DPI images, as well as our con-
tactless fingerprint sensor. The collected contact-based
recordings are rolled fingerprints. To assess the quality of
the contact-based dataset, the NFIQ 2 score was calculated
for each fingerprint image, and the results are presented in
Table 1. Developed by NIST, the NFIQ 2 score is a metric
that scores the quality of a recorded fingerprint image on a
scale from 0 to 100, where a higher score indicates better
quality [45]. Although designed for contact-based images
with a DPI of 500, it can also provide valuable insights for
higher resolution images and also partially for contactless
images [46]. For comparison, the NFIQ 2 scores of the fin-
gerprint images recorded with our contactless fingerprint
sensor can also be seen in Table 1. These scores are calculated
for the enhanced images resulting from the live preproces-
sing pipeline, which includes all images above the sharpness
threshold and not just the five sharpest images. It is impor-
tant to note that the NFIQ 2 score could not be calculated for

3,464 images mostly because the recognized fingerprint area
was too small.

We motivate the use of NFIQ 2 for analyzing the dataset
quality as a means to compare fingerprint feature quality for
different databases, although the NFIQ 2 score alone is not
indicative of template comparison performance, given, for
example, as EER [38].

Our analysis showed that the contact-based recordings
using the Idemia TP 5300 sensor produced higher mean
NFIQ 2 scores than the contactless sensor. Specifically,
the mean NFIQ 2 score for all fingers was 50:0Æ 18:9 for
the Idemia TP 5300 sensor, compared to 32:3Æ 13:5 for the
contactless sensor.

We also examined the distribution of NFIQ 2 scores for
each sensor. Our analysis revealed that the contact-based
recordings had a wider range of scores, with a minimum of
2 and a maximum of 93, compared to the contactless sensor,
with a minimum of 0 and a maximum of 91. Additionally,
the contact-based recordings had a higher interquartile range
(IQR), as evidenced by the ½q0:25; q0:75� range of ½37; 63�,
compared to ½22; 42� for the contactless sensor.

Comparing the NFIQ 2 scores of our database with
scores from publicly available sources, we find the scores of
the contact-based part of our database (50Æ 18) are high
when compared to MCYT [47] (dp: 38Æ 15, pb: 33Æ 14),
FVC06 [48] (36Æ 9) or PolyU [6] (47Æ 12) and the scores
of the contactless images (32Æ 14) are low. [38]

3.2.6. Cleaning. During our reanalysis of the mapping from
contactless to contact-based recordings, we discovered that
finger identification based on the longest finger was error-
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FIGURE 7: Age and country of origin distribution separated by gender for the template comparison of contact-based and contactless images
dataset.

TABLE 1: Mean NIFQ 2 scores with standard deviation for the contact-based recordings collected using the Idemia TP 5300 sensor as well as
the contactless recordings after the preprocessing stage.

Recording mode All Thumb Index Middle Ring Little

Contact-based 50:0Æ 18:9 55:4Æ 13:4 54:6Æ 18:2 50:6Æ 16:5 46:0Æ 18:8 43:5Æ 23:3
Contactless 32:3Æ 13:5 38:8Æ 10:1 31:7Æ 13:5 35:7Æ 12:8 30:9Æ 13:2 23:6Æ 12:5
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prone, resulting in inaccuracies. This was especially promi-
nent for certain users, where the identification would change
for a handful of frames in the recording stack. To address this
issue, we developed a three-level correction and detection
framework to improve the accuracy of the dataset.

Our examination of the contact-based and contactless
fingerprint template comparison dataset revealed two indica-
tions of finger identification errors: first, the order of the
identified names changed relative to their detection indices.
Second, the genuine score for a finger was separated into two
separate groups during one recording, with the highest
imposter score clearly suggesting a match with the counter-
part finger (e.g., the index finger with the little finger from
the same hand).

In the first level of correction, we identified recordings
where finger identification was very likely to have been
switched during the recording process. To do so, we looked
for three indications: first, all images considered had their
naming order changed; second, the genuine scores separated
into two distinct groups, with the average genuine score of
the first group at least double the genuine score of the incon-
sistent naming group; and third, the highest imposter match
was the match with the same hand of the same user but
another finger. We also ensured that each image in the
inconsistent naming group had a genuine score of below
40 and an imposter score of above 70 with the corresponding
counterpart finger. Applying this level of correction allowed
us to identify and correct 80 finger identification errors in the
dataset, thus significantly improving the accuracy of our
analysis.

In the second level of correction, we identified recordings
that were highly likely to have been misidentified. We
applied the same criterion of splitting into two genuine score
groups, with the average genuine score of the correctly iden-
tified group being one and a half times the average genuine
score of the misidentified group. Additionally, the highest
imposter match score was for the same hand of the same
user but with its counterpart finger. However, at this level, we
did not detect any incoherent naming order. We were able to
correct 16 images in level 2.

Finally, in the last level of correction, we examined
images that exhibited naming irregularities but did not
meet the imposter score criteria. As before, the mean genuine
score of the correctly identified group was one and a half
times the average score of the misidentified group. In level 3,
we identified and corrected six images.

In addition to recordings with a correctable error in the
pipeline, we also excluded 25 individual fingers, where the
assignment between contactless and contact-based record-
ings could not be made.

4. Experimental Results

4.1. Segmentation. In the task of segmenting the finger from
the background, our model achieved the highest accuracy
value of 0.979, which can be seen in Table 2. The high-
accuracy score suggests that the model predicted the correct
class for nearly 98% of the pixels in the image. Moreover, we

evaluated the segmentation performance using the commonly
used mean intersection over union (MIoU) metric, and the
model achieved again the highest score of 0.914 on the test set.
This result indicates that the model accurately identified and
separated the finger from the background in the image with a
high level of precision, achieving a significant overlap between
the predicted and ground truth segmentation maps. Addi-
tionally, all three models are in the same ballpark regarding
inference speed on a Nvidia GTX 3090, with our custom U-
Net having a slight speed advantage. The inference speed was
calculated by averaging over 50 predictions.

These results demonstrate the effectiveness of our model
in accurately segmenting the finger from the background,
which is a critical step in many computer vision applications.
Furthermore, the potential of the model to perform well in
other related segmentation tasks is suggested by its perfor-
mance in this task.

To visually demonstrate the accuracy of our segmenta-
tion model, Figure 8 shows a sample segmentation result.
The image on the left is the original input image, and the
image on the right is the corresponding segmentation map
produced by our model.

4.2. Reference Point Detection. Table 3 displays the average
distance for a segmentation fall-off rate of 10−5 as well as the
inference speed running on a GTX 3090 for all three tested
models. Similar to segmentation, our custom U-Net model
performs the best with an average distance of 9.49 compared
to 9.63 for the Squeeze U-Net and 11.03 for the EfficientU-
Net++. Furthermore, all three models are in the same ball-
park regarding inference speed, with the Squeeze U-Net
being the fastest, with 100ms for an average prediction.

As an ablation study, we tested the impact different fall-
off rates have on the performance. The fall-off rate deter-
mines the size of the region in which the gradient can be
updated based on the loss function. We selected the best-
performing model at a fall-off rate of 10−5 and restarted
training with two other fall-off rate settings. Once with a
fall-off rate of 10−3 and once with a fall-off rate of 10−1.
The results are presented in Table 4. Our analysis indicates
that a slower fall-off rate (10−5) yielded the best average
distance score of 9.49 compared to faster rates of 10−3 and
10−1, with scores of 23.46 and 38.47, respectively.

Additionally, the evaluation of the average number of
separated regions reveals that all three models generate a
single connected prediction region, with an average of one
region per model. This observation indicates that the model

TABLE 2: Accuracy and mean intersection over union (MIoU)
metrics of the image segmentation approach were evaluated on
the test set in addition to the inference speed (Inf. speed) measured
running on a GTX 3090.

Model Accuracy (%) MIoU (%) Inf. speed (s)

Custom 97.85 91.38 0.07
Efficient 87.56 49.72 0.12
Squeeze 96.42 85.73 0.08

Note: Bold signifies the best performing values.
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successfully identifies the entire reference point region as a
single entity without generating any false positive regions.

In conclusion, our findings suggest that the customU-Net
model introduced in this paper is well-suited for both image
segmentation as well as reference point detection. Addition-
ally, we found that the model’s performance is significantly
improved by utilizing a slower fall-off rate, which enables a
larger gradient update region. Moreover, the model generates
a single connected prediction region with high accuracy, indi-
cating its robustness and effectiveness for the given task.

4.3. Recognition Accuracy. Table 5 displays the EERs were
obtained for contactless to contact-based fingerprint tem-
plate comparison using various unwarping techniques. We
calculated the EERs following the same approach described
in Section 3.1, whereby we randomly subsampled 80% of the
genuine scores and 80% of the imposter scores to calculate
the EER. This process was repeated 100 times to obtain a
mean and standard deviation of the EERs, which are
reported in Table 5.

Table 5 includes the EERs for all fingers combined as well
as for each individual finger (Thumb, Index, Middle, Ring,
and Little). The first row, labeled as “B” represents the EERs
for the contactless to contact-based template comparison
without any postprocessing. The following rows represent
the EERs for various postprocessing techniques, including
circular with fixed (CF) and adaptive (CA) finger width,
elliptic unwarping (El), and bidirectional unwarping (Bi)
with a fixed finger width. The rows after the middle row
show the EERs for the same postprocessing techniques
applied to images after pose correction (PC).

The best EERs of all improvement combinations for each
finger are highlighted in bold, and the best EERs for one
improvement combination are italicized. For example, in
the middle finger category, the best EER is achieved with
both the pose correction and circular unwarping with adap-
tive finger width, as well as with elliptic unwarping only.

The largest improvement in average EERs for the non-
pose corrected enhancements compared to the baseline is
given by elliptic unwarping. Here, the difference in score is
0.22, which is an improvement of 14.0%. For the pose cor-
rected case, the largest, average improvement is found using
bidirectional unwarping. Here, the difference in score is 0.10,
which is an improvement of 6.4%. However, the results vary
strongly on a finger basis.

This allowed us to combine different unwarpings and the
inclusion of pose correction for each finger, which can be
seen in Table 6. Specifically, pose correction and elliptic
unwarping were used for the thumbs, elliptic unwarping
was used for the index and middle fingers, no pose correction
or unwarping was applied to the ring finger, and bidirec-
tional unwarping was used for the little finger. This finger-
wise combined enhancement method reached an improve-
ment of 0.58 in comparison to the baseline. This is an
improvement of 36.9%.

The results show that the elliptic enhancement technique
performed best for the thumb, index, and middle finger,
while other techniques were more effective for the ring and
little fingers. Furthermore, the influence of pose correction as
a postprocessing step varied strongly on a finger-to-finger

ðaÞ ðbÞ
FIGURE 8: Segmentation of a nonenhanced index finger: (a) input; (b) mask.

TABLE 3: Average distance (Avg. distance) and inference speed (Inf.
speed) running on a GTX 3090 with a fall-off rate of 10−5 were
measured for all three models.

Model Avg. distance (px) Inf. speed (s)

Custom 9.49 0.16
Efficient 11.03 0.12
Squeeze 9.63 0.10

Note: Bold signifies the best performing values.

TABLE 4: Average distance and average number of separated regions
for different fall-off rates for the core detection problem for our
custom U-Net.

Fall-off rate Avg. distance Avg. regions

10−5 9.49 1
10−3 23.46 1
10−1 38.47 1

Note: Bold signify the best performing value.
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basis. Overall, the results demonstrate that the combination
of different enhancement techniques can significantly
improve the accuracy of contactless to contact-based finger-
print template comparison, with some techniques being
more effective for certain fingers.

4.4. Image Quality Analysis. Table 7 presents the NFIQ 2
scores for the contactless recordings exemplary enhanced
with bidirectional unwarping and Kauba’s enhancement.

Overall, the mean NFIQ 2 score for all fingers combined
was 33.5, with a standard deviation of 10.9. The mean NFIQ
2 scores for individual fingers ranged from 27:2Æ 9:8 for the
little finger to 41:6Æ 7:0 for the thumb. The minimum and
maximum NFIQ 2 scores for all fingers were 0 and 71,
respectively. The IQR was 16, indicating that 50% of
the NFIQ 2 scores were between 26 and 42. The range of
the NFIQ 2 scores from the 10th to the 90th percentile
(q0:10–q0:90) was 28, indicating that the majority of the
scores were distributed between 18 and 46.

Compared to the NFIQ 2 scores of Table 1, which con-
tains the results for the images without pose correction and
unwarping, we had an improvement of average score from

32:3 to 33:5, which is an increase of 3.72%. Also, the volatility
in the form of standard deviation was reduced from 13:5 to
10:9, which is a reduction of 19.26%. For the thumbs, the
improvement was above the average with a change from 38:8
to 41:6, which is an increase of 7.22%. Here, the reduction in
standard deviation was even stronger, from 10:1 to 7:0,
which is a decrease of 30:69%. For the other fingers, the
relative improvements of the average NFIQ 2 scores were
4.1% (index), −1.96% (middle), 1.29% (ring), and 15.25%
(little). Note that the middle finger was the only finger where
pose correction and unwarping led to a reduction of the
NFIQ 2 score. The reduction in variability of the standard
deviation was given for all fingers. The relative reductions
were 20.00% (index), 20.31% (middle), 18.18% (ring), and
21.60% (little).

5. Discussion

5.1. Segmentation and Reference Point Detection. The results
of the segmentation task demonstrate that our custom U-Net
model accurately predicted the class for nearly 98% of the
pixels in the image and effectively minimized the difference

TABLE 6: Average equal error rate for a finger-wise combination of enhancement methods.

EER Thumb Index Middle Ring Little

0:99Æ 0:07 P.C.+Elliptic Elliptic Elliptic None Bidirectional

TABLE 5: Equal error rates (EERs) are given in percentages for contactless to contact-based template comparison.

Enhancement All (%) Thumb (%) Index (%) Middle (%) Ring (%) Little (%)

B 1:57Æ 0:11 2:38Æ 0:58 1:12Æ 0:13 1:28Æ 0:21 0.85 Æ 0.23 2:97Æ 0:33
CF 1:46Æ 0:08 0.47 Æ 0.02 1:39Æ 0:14 0:89Æ 0:20 1:12Æ 0:19 3:04Æ 0:34
CA 3:30Æ 0:19 1:51Æ 0:20 1:69Æ 0:57 2:28Æ 0:35 0.85 Æ 0.50 8:67Æ 0:84
El 1.35 Æ 0.10 0:82Æ 0:22 0.94 Æ 0.16 0.66 Æ 0.15 0:98Æ 0:15 3:43Æ 0:34
Bi 1:37Æ 0:10 1:52Æ 0:22 1:33Æ 0:31 1.00 Æ 0.18 1:31Æ 0:17 1.77 Æ 0.15
PC 1:61Æ 0:10 0.78 Æ 0.40 2:03Æ 0:39 1:68Æ 0:37 0:94Æ 0:22 2:04Æ 0:21
PC+CF 1:62Æ 0:08 0.68 Æ 0.05 2:00Æ 0:19 0:80Æ 0:19 1:45Æ 0:21 2:15Æ 0:13
PC+CA 2:27Æ 0:14 0.52 Æ 0.06 3:02Æ 0:19 0.63 Æ 0.10 2:16Æ 0:28 3:12Æ 0:14
PC+El 1:48Æ 0:11 0.41 Æ 0.16 1:45Æ 0:26 0:89Æ 0:22 1:06Æ 0:16 2:60Æ 0:15
PC+Bi 1:47Æ 0:08 0.57 Æ 0.16 1:76Æ 0:29 0:79Æ 0:10 1:96Æ 0:18 1:98Æ 0:20

All comparisons are made using Kauba et al. [12] enhancement for the contactless images. Depicted are the mean and standard deviation of EERs for 100
random subsamples containing 80% of the template comparison scores. The baseline was calculated for the enhanced images after the preprocessing pipeline
without any further postprocessing steps. Results for the pose correction (PC) run were calculated by applying pose correction as a postprocessing step to the
results of the baseline (B). For the next runs, additional unwarping was added: circular unwarping with a fixed finger width (CF), circular unwarping with an
adaptive finger width (CA), elliptic unwarping with a fixed finger width (El), and finally, bidirectional unwarping with a fixed finger width (Bi). Bold entries
highlight the best score for this column and italicized entries the best score for the row. Ties are broken by smaller standard deviations.

TABLE 7: NIFQ 2 scores for the contactless recordings after the postprocessing stage with bidirectional unwarping.

— All Thumb Index Middle Ring Little

Mean Æ Std. 33:5Æ 10:9 41:6Æ 7:0 33:0Æ 10:8 35:0Æ 10:2 31:3Æ 10:8 27:2Æ 9:8
½Min;Max� ½0; 71� ½10; 71� ½1; 71� ½2; 64� ½1; 60� ½0; 69�
½q0:25; q0:75� ½26; 42� ½38; 46� ½27; 41� ½29; 42� ½24; 39� ½20; 34�
½q0:10; q0:90� ½18; 46� ½32; 49� ½17; 45� ½20; 46� ½16; 44� ½14; 40�
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between the predicted and ground truth segmentation maps
during training. The model achieved an MIoU score of 0.914,
indicating its high precision in identifying and separating the
finger from the background in the image. The significant
overlap between the predicted and ground truth segmentation
maps further confirms the model’s effectiveness in accurately
segmenting the finger from the background. Furthermore, for
the task of reference point detection, our customU-Netmodel
performed better than both the Squeeze U-Net and Efficien-
tUNet++ U-Net adaptations. This achievement is crucial for
many computer vision applications, indicating the model’s
potential for performing well in other related segmentation
tasks.

From the other two tested models, Squeeze U-Net also
performed well on both tasks, and further research could
focus on the possibility of quantizing this model, allowing
it to run on embedded inference hardware. On the other
hand, the performance of EfficientUNet++ could not hold
up with the performance of the other two models. We think
that this is mostly an effect of the different image resolutions
used to train and test the models, since the EfficientUNet++
was only able to work with images of size 224× 224 pixels.

These results suggest that it might be beneficial to com-
bine both tasks into one step. This means that both the finger
contour, as well as the reference point position can be found
by a single model. One approach could be to use two separate
the reference point detecting and finger detection heads or to
train on a multiclass segmentation problem where one label
represents the finger contour, and one represents the refer-
ence point position. Both approaches have their own merits.
Two separate heads offer the best model performance, as the
final segmentation steps remain separate for both problems.
However, this means that similar calculations need to be
repeated. The approach with a multiclass segmentation data-
set could introduce a larger efficiency gain, as it shares not
only the down-sampling stack of layers but also the last
segmentation layers. The decision to choose one approach
over the other should take into account the hardware con-
straints of the sensing environment and require further
research to determine the optimal balance.

5.2. Pose Correction. The results of the study on the different
postprocessing techniques for contactless to contact-based
fingerprint template comparison are quite interesting. The
study showed that combining different enhancement techni-
ques, such as pose correction, elliptic, and bidirectional
unwarping, can significantly improve the accuracy of the fin-
gerprint template comparison system. Moreover, the results
varied on a finger-to-finger basis, with certain postprocessing
techniques being more effective for certain fingers.

One possible reason is that the shape and size of the
fingers differ from one individual to another, which can
effect the quality of the captured images, as well as the func-
tioning of the following enhancement steps. Moreover, the
influence of pose correction on the template comparison
accuracy varied on a finger-to-finger basis. The reason for
this can be attributed to the different shapes of the fingers
and their orientation during the scanning process. In some

cases, pose correction may have a significant impact on
improving the template comparison accuracy, while in other
cases, the improvement may be minimal or negligible.
Another factor that may contribute to the variations in
results is the number of participants. A larger cohort reduces
the statistical fluctuations.

The study also showed that the largest improvement in
average EERs for the nonpose corrected enhancements was
given by elliptic unwarping. The largest, average improve-
ment for the pose-corrected case was found using bidirec-
tional unwarping. However, the results vary strongly on a
finger basis, which allowed for the combination of different
unwarpings and the inclusion of pose correction for each
finger. A finger-wise combined enhancement method, shown
in Table 6, reached an average improvement of 0.58 points in
comparison to the baseline. This is a relative decrease in EER
of 36.9%.

Moreover, since elliptic unwarping outperformed circu-
lar unwarping in both pose-corrected and nonpose-corrected
cases, it may be worthwhile to explore the possibility of
extending the bidirectional unwarping method to work
with ellipsoids in future research.

Overall, the results highlight the importance of using a
combination of different enhancement techniques, tailored
to the specific characteristics of each finger, to achieve the
best possible accuracy in contactless to contact-based finger-
print template comparison. The use of deep-learning neural
networks and advanced unwarping techniques can help to
overcome the limitations of contactless fingerprint scanning
and improve the overall reliability and security of biometric
systems. Future research could focus on a detailed analysis of
deviations in the finger shape from the assumed ellipsoid
with a major-to-minor axis ratio of 1.2.

6. Conclusion

The aim of our study was to investigate whether implement-
ing novel steps in the processing pipeline for contactless fin-
gerprint sensors, specifically pose correction and unwarping,
would improve the accuracy of the system as measured by the
NFIQ 2 score and EERs. In order to implement pose correc-
tion, we developed a novel deep-learning network architec-
ture closely related to U-Net [23]. It was able to solve both
subtasks for pose correction: Image segmentation (MIoU of
91.4%) and reference point localization (average distance of
9.49) and outperformed both Squeeze U-Net as well as Effi-
cientUNet++, which are both contemporary image segmen-
tation networks. Additionally, the structure of the model
allows for quantization using the established TensorFlow
Lite framework.

We assessed the efficacy of our novel approach by calcu-
lating the EERs for 78 participants, totaling 37,162 recorded
contactless fingerprint images. In conclusion of the results,
we found that the changes in template comparison scores
were highly finger-specific, indicating that the effectiveness
of the extensions varied based on the characteristics of indi-
vidual fingerprints. A finger-wise combination of different
extension methods leads to an average, relative, finger-wise
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decrease of EER of 36.9% compared to the baseline. The
analysis of pose correction and bidirectional unwarping
combined showed a relative increase of NFIQ 2 scores of
3.72% averaged over all fingers and a relative decrease of
6.4% in EER compared to the baseline, indicating that the
extensions enhanced the performance of the system.

Overall, our findings suggest that pose correction and
unwarping can be valuable additions to the processing pipe-
line for contactless fingerprint sensors, potentially leading to
improved accuracy and efficiency in fingerprint recognition
systems. This finding has important implications for appli-
cations that rely on accurate fingerprint recognition, such as
forensic investigations and biometric authentication systems.
Further studies are needed to explore the generalizability of
these results to different populations and recording condi-
tions, as well as to investigate the variability of finger shapes.
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