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Abstract: Fingerprints have long been recognized as a unique and reliable means of personal identification. Central to
the analysis and enhancement of fingerprints is the concept of the fingerprint core. Although the location of the
core is used in many applications, to the best of our knowledge, this study is the first to investigate the empirical
distribution of the core over a large, combined dataset of rolled, as well as plain fingerprint recordings. We
identify and investigate the extent of incomplete rolling during the rolled fingerprint acquisition and investigate
the centrality of the core. After correcting for the incomplete rolling, we find that the core deviates from the
fingerprint center by 5.7% ± 5.2% to 7.6% ± 6.9%, depending on the finger. Additionally, we find that the
assumption of normal distribution of the core position of plain fingerprint recordings cannot be rejected, but for
rolled ones it can. We find the non-central Fischer distribution best describes the cores’ horizontal positions.
Finally, we investigate the correlation between mean core position offset and the NFIQ 2 score and find a weak
preference of the NFIQ 2 towards rolled recordings with a lower than central core.

1 INTRODUCTION

Fingerprints have long been recognized as a unique
and reliable means of personal identification, play-
ing a pivotal role in forensic investigations and bio-
metric authentication systems. Central to the analy-
sis and enhancement of fingerprints is the concept of
the fingerprint core. The core represents a key fea-
ture within the ridge structure, and is often assumed
to be located near the center of the fingerprint [Man-
hua et al., 2005]. Understanding the location of the
core and its relationship to the finger position is of
great importance for various purposes, such as tem-
plate alignment [Manhua et al., 2005], finger type
classification [Karu and Jain, 1996], and pose correc-
tion [Tan and Kumar, 2020, Ruzicka et al., 2023].

Another application that requires empirical
knowledge of the core distribution is the process
of generating synthetic fingerprints. The goal of
generating a synthetic fingerprint is to mimic the
natural properties of a real fingerprint to an extend
that it is no longer possible to differentiate the two.

Therefore, the research question addressed in this
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paper is: What is the distribution of the fingerprint
core? To the best of our knowledge, this study is the
first to analyse the empirical distribution of the finger-
print core on a large dataset of both rolled and plain
fingerprint recordings. By investigating the distribu-
tion and therefore also the deviation of the core from
the fingerprint center, we aim to gain a deeper un-
derstanding of the inherent structure of fingerprints.
Additionally, we examine the linkage between in-
complete rolling and deviations of the core from the
segmented fingerprint image center to gain insights
into the reliability of rolled fingerprint representa-
tions. Furthermore, we investigate the distribution of
the cores’ horizontal and vertical positions. Finally,
we analyze the correlation between the NFIQ 2 score
and the mean core offset.

In the following sections, we will present related
work, our methodology, datasets used for analysis,
core detection technique, and the results obtained.
Also, we will discuss the implications of our find-
ings and their significance for fingerprint analysis and
identification. By shedding light on the deviation of
the fingerprint core from the center, this study aims to
contribute to the advancement of forensic science and
biometric technologies.
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1.1 Related Work

In the field of fingerprint analysis, there has been ex-
tensive research devoted to the definition and detec-
tion of the fingerprint core as well as to the classifica-
tion of fingerprints.

In the existing literature, two primary methods for
defining the core point in fingerprints are prominent.
The first method, proposed by Srinivasan and Murthy
[Srinivasan and Murthy, 1992] utilizes ridge orienta-
tion to determine the core. According to their defi-
nition, the core is identified as the location with the
maximal ridge curvature. The second way of defining
a core uses the notion of the innermost closed ridge
loop and is described in [Bahgat et al., 2013] by Bah-
gat, Khalil, Abdel and Mashali as well as in ISO/IEC
19794-1:2011 3.33. They define the core as being
the topmost point of the innermost ridge line. Note
that there can also be two cores inside one fingerprint
in the case of a fingerprint of the double loop type,
which has two innermost closed ridge loops. Also,
there can be none for the case of a fingerprint of the
arch type [Ametefe et al., 2022].

In addition to the detection of the core position
within a fingerprint, it is crucial to consider the con-
text of the fingerprint within the image. Fingerprint
images may not always be centered or aligned uni-
formly, which necessitates image segmentation tech-
niques to extract the relevant fingerprint region and
make the core position relative to the fingerprint it-
self, rather than the image as a whole.

A variety of image segmentation approaches have
been employed in fingerprint analysis to address this
challenge. Tomaz, Candeias and Shahbazkia analyse
the pixel color information in the ST space [Tomaz
et al., 2004], while Bazen and Gerez use custom pixel
features to segment the fingerprint image [Bazen and
Gerez, 2001]. More recent work has used a deep
learning approach to fingerprint segmentation [Mur-
shed et al., 2022, Grosz et al., 2021].

An established open-source tool for fingerprint
segmentation is the nfseg tool from the NBIS toolset.
This tool was developed by the National Institute of
Standards and Technology (NIST) and provides a re-
liable, fast and accurate way of segmenting fingerprint
images.

2 METHODS

2.1 Core Detection

In this work, we follow the ISO core definition to
locate the core positions and use the state-of-the-art,

commercially available, automated fingerprint identi-
fication system IDKit from Innovatrix.

2.2 Fingerprint Segmentation &
Relative Core Offset

To evaluate the stability of the core’s centrality in a
fingerprint, a multi-step approach is employed. The
first step involves segmenting and cutting out the fin-
gerprint, which is accomplished using the nfseg tool.
Additionally, nfseg rotates the fingerprint image, such
that the major symmetry axis is aligned with the y-
axis.

Once the fingerprint image is appropriately seg-
mented and the image is cropped to the fingerprint
region, the core points are detected within the im-
age. If multiple cores are detected, we calculate the
mean position of the cores and use this mean for fur-
ther calculations. To assess the position of the core
within the fingerprint, its offset from the central point
of the cropped image is measured. We call this dis-
tance core offset ox

core and oy
core, where x is the index

for the horizontal component and y the index for the
vertical component.

To facilitate the evaluation of core positions in a
standardized manner, a normalization process is em-
ployed. In order to increase readability, we depict
analogous expressions for the y-axis in this section
in parenthesis. The measured core offsets ox

core (oy
core)

are divided by half the width (height) of the cropped
fingerprint wcropped , resulting in a score that repre-
sents the core’s centrality. This score ranges from -1
to 1, indicating the relative position of the core within
the fingerprint. A score of -1 suggests that the core
is located at the left (upper) edge of the fingerprint,
while a score of 1 indicates its proximity to the right
(lower) edge. We call this score the relative core off-
set rox

core (roy
core), as shown in Equation 1.

rox
core =

2ox
core

wcropped
(1)

and analogous for the y-coordinate.
In order to investigate the variability of the cen-

trality of the core, we calculate the mean of the abso-
lute values of the relative core offsets arox

core (aroy
core)

for each finger position f , as shown in Equation 2.

arox
core( f ) =

1
N

N

∑
i
|rox

core;i|, (2)

where N is the number of cores for a given finger
position in the database and i is the index of the core.
The calculation for the y-coordinate is analogous.
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2.3 Incomplete Rolling

While recording rolled fingerprints, we observed that
the user often does not roll the finger completely
from nail-to-nail, but misses the last part of the fin-
ger. This implies that the distance along the x-axis
from the core in the collected fingerprint to the fin-
gerprint boarders is biased towards the starting side
of the rolling process. Especially for the case of op-
erator assisted rolling, where an experienced opera-
tor controls the acquisition process and routinely rolls
from a preferred side for a given left or right hand, a
bias bcore for the left vs right side can be expected. If
there is no preferred rolling direction and the com-
plete nail-to-nail rolling process was not enforced,
the bias vanishes but larger relative core offset val-
ues are expected. Note that the x-axis is defined for
the rotated and cropped fingerprint image and there-
fore aligns with the rolling direction and not the sen-
sor recording surface. This bias bcore can be measured
by the mean relative core offset, as seen in equation 3.

bcore =
1
N

N

∑
i

rox
core;i (3)

A non vanishing relative core offset implies one of
two things: Either the incomplete rolling is the cause
for the bias or there is an anatomic tendency for a fin-
gerprint core for a given finger to sit further on one
side than on the other.

In this work, we assume that the core for a
given participant is sampled from a distribution with
zero mean, i.e. that the core is positioned evenly
around the fingerprint center, and that therefore a non-
vanishing bias is an indication for a statistical error
induced by the incomplete rolling. We analyse this
claim by comparing biases for plain and rolled finger-
prints.

In order to correct for a non-vanishing bias, we
calculate the corrected relative core offset carocore for
each finger position f . For this calculation, we sub-
tract the found bias, i.e. the mean relative core offset,
from the calculated relative core offset, resulting in
the corrected mean of absolve values of the relative
core offsets carocore, as shown in Equation 4.

carocore( f ) =
1
N

N

∑
i
|rox

core;i −bcore( f )| (4)

2.4 Distribution of Core Positions

In order to determine the underlying distribution
of the core positions for each finger, the initial
step was assessing the normality of the data. The
Anderson-Darling test [Anderson and Darling, 1952]

was specifically chosen as the preferred method due to
its high power and sensitivity in detecting departures
from normality. Should the assumption of normal-
ity not be met, an alternative approach was employed
to identify a suitable set of distributions that best de-
scribe the data. This was achieved by employing
the Bayesian Information Criterion (BIC) [Schwarz,
1978], which combines the complexity of a model
with its performance into one score. It chose from
a set of over 110 distributions and selected the overall
best matches. In the next step, a Generalized Monte
Carlo goodness-of-fit procedure was used to find the
best distribution of the previously selected set of dis-
tributions for each finger position. This procedure
is often described as the parametric bootstrap test in
literature [Stute et al., 1993, Kojadinovic and Yan,
2012].

2.5 NFIQ 2 Evaluation

The NIST Fingerprint Image Quality (NFIQ) is a soft-
ware tool designed for assessing the quality of finger-
print images in the context of biometric identification
and verification systems [Tabassi et al., 2021].

To assess the relationship between the NFIQ 2
score and the core offset in both the X and Y di-
rections, we employed Spearman’s correlation coef-
ficient [Spearman, 1904].

In our analysis, the null hypothesis (H0) posits
that there is no significant correlation between the
NFIQ 2 scores and the core offset. The alternative hy-
pothesis (Ha) suggests that there exists a significant
correlation between the NFIQ 2 scores and the core
offset. We investigate the hypothesis separately for
horizontal and vertical core offset. Additionally, we
also investigate the correlation between the arox

core,
aroy

core and the NFIQ 2.
For the hypothesis test, the H0 can be transformed

to a Student’s t distribution with the number of sam-
ples minus two as the degrees of freedom [Howell,
2013, p. 280]. Note that this is only accurate for over
500 observations [Community, ].

To determine the statistical significance of our
findings, we set the significance level (α) for the hy-
pothesis test to 10−3.

2.6 Datasets

This study uses 6 different datasets to investigate the
centrality of the core. Some of the datasets provide
a finger position description for each of the recorded
fingerprints, which we denote in the FGP scheme in-
troduced by NIST [National Institute of Standards and
Technology, 2000, p. 18]:

Centrality of the Fingerprint Core Location
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Table 1: FGP values mapped to finger names.

Finger Right Left

Thumb 1 6
Index 2 7
Middle 3 8
Ring 4 9
Little 5 10

Plain Thumb 11 12
Unknown 0 0

Table 2: Number of rolled fingerprints with found cores.

FGP AIT 300a 302a 302b

1 1083 815 935 521
2 875 801 981 542
3 528 819 981 605
4 523 832 984 632
5 941 803 952 616
6 1077 797 889 505
7 512 806 963 575
8 522 813 942 609
9 525 816 993 630
10 525 791 940 603

Table 3: Number of plain fingerprints with found cores.

FGP 300a 302b Neurotechnology PolyU

0 0 0 840 2776
1 0 226 0 0
2 704 228 0 0
3 662 255 0 0
4 768 270 0 0
5 653 244 0 0

11 779 11 0 0
6 0 236 0 0
7 771 236 0 0
8 650 234 0 0
9 779 257 0 0

10 675 231 0 0
12 748 151 0 0

Of the 6 datasets used, the NIST Special Datasets
300a [Fiumara et al., 2018], 302a and 302b [Fiumara
et al., 2021], the Neurotechnology dataset and the
PolyU contact-based dataset [Lin and Kumar, 2018]
are publicly available, while the AIT Dataset [Weis-
senfeld et al., 2022] is an in-house dataset.

2.6.1 Rolled Combination

For the combined results of the rolled fingerprints, we
used the datasets: AIT Dataset, NIST 300a (rolled

images only), 302a and 302b (rolled images only).
Since we use the normalized core offset for our calcu-
lations, we were able to combine datasets in various
resolutions. Table 2 shows the number of fingerprint
recordings for each finger position used. In total, we
had 30602 rolled fingerprint recordings.

2.6.2 Plain Combination

For the combined results of the plain fingerprints we
used the following datasets: NIST Special Dataset
300a (plain images only), NIST Special Dataset 302b
(slap-segmented images only), Neurotechnology and
PolyU Contact-based. A finger-wise overview of the
number of recordings per finger can be seen in table
3. In total, we had 9568 plain fingerprint recordings.

3 RESULTS & DISCUSSION

3.1 Bias & Incomplete Rolling

For the rolled fingerprints, we observed the follow-
ing bias values, described as percentages of the rox

core
score in Table 4. We find that the right hand with fin-
gers 1-5 shows a positive bias, i.e. a tendency of the
core to sit closer to the right side. This implies that
we measured incomplete rolling where the finger was
rolled starting with the right finger-nail edge. This
effect was especially strong for middle, ring and little
finger, with the strongest effect on the ring finger. One
explanation for this could be obstruction of the non-
rolled fingers in the rolling process. Another expla-
nation could be the inter-connectivity of the tendons
passing the carpal tunnel as well as the connection of
the flexor digitorum superficialis to all fingers except
the thumb. This makes it challenging to lift only the
ring finger and to a lesser extend also the middle fin-
ger for most people. Therefore, the effort of separat-
ing the ring or middle finger from the other fingers is
increased, which could lead to a faster termination of
the rolling process.

On the other side, the left hand also shows the
pattern that the ring finger and the middle finger cre-
ate the largest bias. The same reasoning of the hand
anatomy, leading to the observed bias, could apply
here. Also note the sign flip, indicating that the pre-
ferred starting edge of the rolling process changed. In
future work, the effect of inverted roll directions and
left versus right handiness on the bias could be ex-
plored with a dedicated dataset.

Additionally, also the plain fingerprint recordings
showed a non-vanishing mean of the core x-position,
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Table 4: Rolled Fingerprint Bias for Average Core X-
Positions.

FGP Bias [%] FGP Bias [%]

1 2.90 6 0.42
2 0.67 7 0.33
3 3.27 8 -1.11
4 5.17 9 -3.62
5 4.89 10 -0.50

Table 5: Mean Core X-Position Plain Recordings for Aver-
age Core Positions.

FGP Offset [%] FGP Offset [%]

1 -1.50 6 2.35
2 -6.43 7 11.69
3 -5.67 8 9.79
4 10.01 9 -1.64
5 -1.53 10 15.49

11 7.21 12 -0.72
0 2.32 - -

similar to the bias of the rolled fingerprints. The mag-
nitude of this can be seen in Table 5.

One observation of the mean fingerprint core in
the plain recording setting is the mirrored mean core
x-position shift. The sign of the offset of the core
is flipped when comparing the left to the right hand.
This could be an indication that the hand is placed
tilted on the sensor, i.e. rotated along the finger axis,
where the tilt between left and right hand is inverted.

Another key observation is the comparison of the
bias of the rolled fingerprints and the mean core po-
sition for plain fingerprint recordings. The tendency
of the core in rolled fingerprints of the right hand was
to sit closer to the right edge, while for plain record-
ings, only the thumb and the ring finger cores had the
tendency to sit closer to the right edge. Also for the
left hand, only the thumb and index finger cores both
in plain and rolled fingerprints tend towards the right
side of the finger. This is an indication that the reason
for the non-zero core position offset is not an effect
of human finger anatomy, but rather of the recording
process.

Finally, also the y-position of the mean fingerprint
core offset can be calculated. For plain/rolled finger-
print recordings, we find the following offsets from
the image center in percentages of the total roy

core, -
100% depicts the upper finger edge and 100% the
lower finger edge: 3.37%/15.94% for right thumbs,
-8.39%/-5.28% for right index fingers, -16.80%/-
6.93% for right middle fingers, -14.70%/-8.36% for
right ring fingers, -13.10%/-13.33% for right little fin-
gers, 5.15%/15.03% for left thumbs, -9.66%/-6.83%

for left index fingers, -19.75%/-8.37% for left ring fin-
gers and -12.60%/-13.15% for left little fingers. For
the unknown finger position we found an offset of
5.18%/-.

The direction of the y-offset of the mean core
position agrees for all 10 fingers between plain and
rolled recordings. This could be due to the fact that
plain recordings in the observed dataset are taken
from the same participants as the rolled recordings,
with the exception of the PolyU and Neurotechnology
datasets, which had no finger information.

3.2 CARO & ARO

The carocore from equation 4 is an important mea-
sure for how strongly the core is scattered around the
bias position. It is the central indication of how sta-
ble the centrality of the core position is. Its non-bias
corrected counterpart, the arocore from equation 2 is
an important measurement for the expected variabil-
ity in a real recording environment, where incomplete
rolling and therefore a non-vanishing bias is to be ex-
pected.

We found the following carocore scores for
plain/rolled recordings, which are written as percent-
ages of the rocore score. This score can vary from 0%
(no deviation, every core in center) to 100% (maximal
deviation, every core at the finger edge). Additionally,
we report the arocore scores for comparison in paren-
thesis. This can be seen in Table 6.

Table 6: CARO (ARO) Scores for Rolled Fingerprints.

FGP Scores [%] FGP Scores [%]

1 6 ± 5 (7 ± 5) 6 7 ± 6 (7 ± 6)
2 7 ± 6 (8 ± 7) 7 7 ± 6 (7 ± 6)
3 6 ± 5 (7 ± 6) 8 7 ± 5 (7 ± 6)
4 5 ± 5 (6 ± 5) 9 6 ± 5 (6 ± 5)
5 6 ± 5 (7 ± 5) 10 6 ± 5 (7 ± 5)

One key remark is that the scattering of the core
around the fingerprint center is similar between all
fingers and falls within a range of 5.7% ± 5.2% to
7.6% ± 6.9 for the different fingers. This quantifies
the centrality of the core as a landmark for various
fingerprint enhancement techniques, such as pose cor-
rection for contactless fingerprint recordings, where
the centrality of the core is the assumption for calcu-
lating the viewing angle.

For the aroy
core for rolled fingerprints, we found

scores from 9% ± 6% for the right index finger to
12% ± 8% for the right thumb. Both thumbs had the
highest values and the index fingers the lowest. The
other fingers were all in the range of around 10%.
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This indicates that the core varies in height roughly
equally for all fingers, with a slight increase for the
thumbs and decrease for the index fingers.

3.3 Distribution of the Core

The Anderson-Darling test revealed that the assump-
tion of normality of the carocore data could be rejected
with a significance level of under 10−16 for all rolled
fingerprints. For the plain recordings, normality of
carox

core could only be rejected for the unlabeled fin-
gers with a FGP of 0 and the caroy

core for all fingers
except FGP 12. Therefore, we continued the testing
with the BIC for the rolled fingerprint recordings in
both axis, as well as the vertical core position of the
plain fingerprints.

The overall best BIC scores could be achieved
with the Logistic distribution. Other well perform-
ing distributions that were added to the set of candi-
date distributions are: Laplace [Abramowitz and Ste-
gun, 1972, p. 930], Cauchy [Abramowitz and Ste-
gun, 1972, p. 930], Dagum (also known as Mielke)
[Dagum, 1999], non-central Fischer (NCF) [Cabaña,
2011,Ramirez, 2004], Burr [Burr, 1942], Normal and
the Lognormal distribution [Galton, 1997].

Of the eight candidate distributions, Logistic,
Laplace and Cauchy distributions could be rejected
with a significance level of 5% for all fingers. Both
Dagum and NCF distribution achieved high p-values
of up to 0.94 for the NCF and 0.70 for Dagum.

The results for all the fingers can be seen in Ta-
ble 7. In most cases, the NCF distribution performed
best. For rolled fingerprints, all fingers could best be
described with either the NCF or the Burr distribution.
For both plain as well as rolled fingerprint recordings,
all cases where the NCF distribution did not have the
highest goodness-of-fit p-value, it was the runner up
with the second highest p-value.

We therefore conclude that the NCF is best suited
to describe the core position and suggest to implement
those for the generation of synthetic fingerprint sam-
ples.

3.4 NFIQ 2 Correlation

In this section, we present the results of our analysis,
which aimed to investigate the correlation between
the mean rox

core, mean roy
core and the NFIQ 2 scores,

as well as the correlation between both arocore scores
and the NFIQ 2 scores.

For rolled fingerprint recordings, we found a sig-
nificant, positive correlation of 0.23 between the
mean roy

core and the NFIQ 2 scores. For the x compo-
nent of the mean core offsets of the rolled fingerprint
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Figure 1: Correlations between the Mean Core Offset in X
and Y direction and the NFIQ 2 score for rolled (blue) and
plain (orange) fingerprint recordings, for each finger posi-
tion (see markers in legend).

recordings, as well as both components of the mean
core offsets of plain fingerprint recordings, no indica-
tive correlation with a magnitude of over 0.06 could
be found.

Therefore, we conclude that for rolled fingerprint
recordings, a non-zero core offset in the vertical fin-
gerprint direction where the core is shifted to the
lower part of the image is favoured by the NFIQ 2
score. Furthermore, we observed a very small cor-
relation of -0.09 between the aroy

core and the NFIQ 2
score. Therefore, there seems to be a preference of the
NFIQ 2 score for core locations on the lower halve of
the image, with a tendency to prefer cores closer to
the center.

Interestingly, we did not observe a relevant corre-
lation in x direction between the mean core offset and
the NFIQ 2 score. Also the correlation of the arox

core
is not statistically significant. This implies that there
is either no preferred side by the NFIQ 2 score or that
the horizontal component of the core position does
not strongly influence the NFIQ 2 score.

A more detailed analysis on a finger-wise basis
can be seen in Figure 1. Here, the correlation results
for plain and rolled fingerprint recordings for each fin-
ger are depicted. The labels are the exponents of the
p-values of the Spearman’s correlation test with 10 as
their basis. The first number describes the p value of
the correlation in x direction and the second in y di-
rection.

Notable, with the exception of both thumbs in
plain recordings, the correlation between the mean
roy

core and the NFIQ 2 score is close to zero or pos-
itive. And for the thumbs in plain recordings, the re-
sults are not statistically significant with their p val-
ues of above 10−3. More data is required to come to
a conclusion regarding the thumbs in plain fingerprint
recordings.
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Table 7: Best fitting distributions - Dagum (Dag), Lognorm (LNo), Burr (Bur), Norm (Nor).

- Plain Rolled
- x y x y

FGP Dist. p [%] Dist. p [%] Dist. p [%] Dist. p [%]

0 Dag 70 NCF 78 - - - -
1 LNo 67 NCF 20 Bur 11 NCF 95
2 LNo 56 Bur 60 NCF 32 NCF 71
3 Bur 47 NCF 80 NCF 37 Bur 37
4 NCF 94 NCF 55 NCF 85 Bur 29
5 NCF 50 NCF 73 NCF 84 Bur 42
6 NCF 84 NCF 44 NCF 65 Bur 36
7 NCF 56 Bur 55 NCF 73 NCF 74
8 NCF 28 NCF 54 NCF 33 NCF 30
9 NCF 67 Bur 31 NCF 60 NCF 78

10 Nor 75 NCF 67 Bur 41 NCF 61
11 NCF 33 Bur 43 - - - -
12 Nor 72 NCF 23 - - - -

4 CONCLUSION

We found a non-vanishing bias in our combined rolled
dataset. This effect was especially strong for middle
(right 3%, left -1%), ring (right 5%, left -4%) and
little (right 5%, left -1 %) finger, with the strongest
effect on the ring finger. Furthermore, we also ob-
served a non-vanishing bias for the plain recording
setting, but comparing rolled with plain recordings,
we found that the preferred side is not linked to the
finger position value. This indicates that the finger-
print core position does not have an anatomically pre-
ferred side but rather that the non-vanishing bias orig-
inates from incomplete rolling in the case of rolled
fingerprint recordings and placing that hand tilted on
the sensor for the plain fingerprint recordings.

In addition to this finding, we measured the vari-
ability of the core position, given as carox

core and
aroy

core. We found the carox
core to be around 6% to

8%, depending on the finger position. This indicates
that the core point is stable enough to be used as a
reference point for various applications.

Both of those findings are especially interesting
for the field of contactless fingerprint analysis, where
the perspective of the camera has to be accounted
for. A non-vanishing core offset originating from an
anatomical preference of the core towards one side
would require a re-calibration of the role of the finger-
print core as a reference point. Also, the magnitude at
which the core scatters around the central position of
the segmented fingerprint image is crucial. A too un-
stable core position would make the core unreliable
as reference point.

Furthermore, we found the non-central Fischer
distribution to be the best matching distribution for
the core’s x and y position. We think that this finding
can help improve the quality of synthetically gener-
ated fingerprints and further increase the understand-
ing of the human fingerprint.

Finally, we found a correlation between the verti-
cal offset of the core from the fingerprint center and
the NFIQ 2 score. The NFIQ 2 scores favors core po-
sitions in rolled fingerprint recordings where the core
sits close to the image center, but slightly off towards
the lower image edge. Interestingly, we did not find
any correlation of the NFIQ 2 score and the core off-
set in the horizontal direction.
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