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Abstract: Contactless fingerprint recognition systems offer a hygienic, user-friendly, and
efficient alternative to traditional contact-based methods. However, their accuracy heavily
relies on precise fingertip detection and segmentation, particularly under challenging
background conditions. This paper introduces TipSegNet, a novel deep learning model
that achieves state-of-the-art performance in segmenting fingertips directly from grayscale
hand images. TipSegNet leverages a ResNeXt-101 backbone for robust feature extraction,
combined with a Feature Pyramid Network (FPN) for multi-scale representation, enabling
accurate segmentation across varying finger poses and image qualities. Furthermore, we
employ an extensive data augmentation strategy to enhance the model’s generalizability
and robustness. This model was trained and evaluated using a combined dataset of
2257 labeled hand images. TipSegNet outperforms existing methods, achieving a mean
intersection over union (mIoU) of 0.987 and an accuracy of 0.999, representing a significant
advancement in contactless fingerprint segmentation. This enhanced accuracy has the
potential to substantially improve the reliability and effectiveness of contactless biometric
systems in real-world applications.
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1. Introduction
Biometric identification systems have become increasingly important in various se-

curity and authentication domains, due to their reliability and uniqueness. Among these
systems, the fingerprint modality stands out as one of the most widely adopted and trusted
methods. Fingerprints offer a unique pattern of ridges and valleys that are consistent over
an individual’s lifetime [1], making them an ideal biometric trait for personal identification
and verification.

In recent years, the adoption of contactless fingerprint sensors has gained momentum,
driven by the need for more hygienic, user-friendly, and versatile biometric solutions.
Contactless fingerprint systems eliminate the need for physical contact with the sensor,
thereby reducing the risk of transmitting infectious diseases, which is a critical advantage
in the post-pandemic world. Moreover, these systems are more adaptable to various use
cases, including mobile devices, public terminals, and high-security environments [2–5],
where user convenience and safety are paramount.

For contactless fingerprint sensors to be effective, accurate detection and segmentation
of the fingertip from the recorded images are essential. This segmentation process is crucial
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for several downstream tasks, such as pose correction [5,6] and feature-based matching [7],
which require an accurate mask of the fingertip region to separate the area from the
background. The segmentation performance directly impacts the overall accuracy and
reliability of the system. Traditionally, fingertip segmentation methods have focused mostly
on segmenting a single fingertip against the background, and they have relied on various
techniques, including color- or brightness-based [3,8], machine learning-based [9,10], and
shape-based approaches [11]. Color-based methods utilize the distinctive skin tone of
fingertips, machine learning-based methods leverage machine learning algorithms to
identify fingertip regions, and shape-based methods focus on the geometric properties of
the fingertip.

However, in this scenario, a fingertip detection algorithm is required to first detect
and classify the fingers in the image of the user’s hand. More modern approaches skip this
step by directly segmenting fingertips from the hand image [10,12].

Our study follows this path and introduces a novel deep learning framework called
TipSegNet, based on the ResNeXt family [13] and the Feature Pyramid Network (FPN) [14]
model architecture, which surpasses the current state-of-the-art (SOTA) techniques for
fingertip segmentation in contactless fingerprint images.

1.1. Related Work

Significant progress in fingerprint recognition frameworks has allowed us to shift
from traditional contact-based methods to more advanced contactless techniques. This
introduced new challenges to the process, such as fingertip segmentation from varying
poses and challenging lighting and background conditions.

The process of using deep learning for object segmentation is well established, as can
be seen by the work of Garcia et al. [15] and Ghosh et al. [16]. Moreover, in the field of
biometrics, deep learning has significantly advanced contactless fingerprint segmentation.
Murshed et al. [12] used convolutional neural networks (CNNs) to improve segmentation
accuracy and robustness by training on large datasets to identify and detect fingerprint
regions under varying conditions. However, instead of calculating a pixel-wise segmenta-
tion mask, they predicted a rotated bounding box around the fingertip region. This can
be satisfactory for some applications; however, if detailed contour information is required,
another segmentation algorithm has to be used on top of the predictions.

The work of Ruzicka et al. [5] improved compatibility between contact based and
contactless fingerprint capture modalities using pose correction [6] and unwarping tech-
niques [17], requiring and introducing a novel deep learning approach for fingertip segmen-
tation in the process. They introduced a network architecture based on the U-Net design [18]
and compared it to the network architectures of EfficientNet [19] and SqueezeNet [20].
However, in their work, they used an object detection model first to detect the fingertip
bounding boxes, similar to the work of Murshed et al. in [12], and then they used the
segmentation models on single finger images to separate the finger from the background
and to determine the exact fingertip region of the fingerprint on the finger.

Kauba et al. [3] explored smartphone-based fingerprint acquisition, emphasizing vari-
ous segmentation techniques to isolate fingerprints from the background, facilitating an
effective comparison against contact-based datasets with low-latency color-based meth-
ods. They explored skin-color-based segmentation, Gaussian mixture model background
subtraction and multiple deep learning approaches: Mask R-CNN [21], Deeplab [22],
Segnet [23] and HRNet [24].

Priesnitz et al. [25] discussed the implementation of contactless fingerprint systems on
mobile platforms using fast Otsu thresholding for fingertip segmentation. This approach
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can only separate the hand or the finger from the background, and it cannot differentiate
different fingers.

Priesnitz et al. [10] use DeepLabv3+ to predict feature points on the hand and then
fully segment the fingertips from hand images using circular areas constructed from the
feature points of the hand. They return a detailed, pixel-wise segmentation mask of the
input hand image.

Parallel to the development of new algorithms in the field of biometrics, the field
of computer vision developed new concepts for deep learning model design. Feature
Pyramid Networks (FPNs), for example, were introduced by Lin et al. [14] in 2017 to
address the challenge of detecting objects at different scales in images, and they are used in
combination with a feature extraction backbone. Traditional CNNs struggled with scale
variance, often requiring multiple models or image resizing techniques to detect small
and large objects effectively. FPNs solve this by creating a pyramid of feature maps that
leverage both bottom-up and top-down pathways, with lateral connections enhancing the
feature hierarchy at each level. In the biometric field, FPNs have been utilized for various
tasks, such as in facial recognition systems [26], cloth segmentation for soft biometrics [27]
or iris recognition [28].

For feature extraction, ResNet and ResNeXt are noteworthy. ResNet [29], known for
introducing residual connections, addresses the vanishing gradient problem present in
early stages of deep network design. It enables the construction of much deeper models
that form the backbone of many state-of-the-art systems in image analysis. Building on
ResNet, ResNeXt [13] introduces the concept of cardinality through aggregated residual
transformations. This enhancement increases the model’s flexibility and scalability, allow-
ing it to capture complex features more efficiently. In the biometric community, ResNeXt
was, for example, used for ear image classification [30] or fingerprint identification [31].

Although ResNeXt and FPN architectures have seen individual use in various biomet-
ric applications, our extensive literature search indicates that their combination has not
been previously explored for multi-fingertip segmentation from whole-hand images.

Several studies have enhanced contactless fingerprint recognition performance
through improved fingertip segmentation. Labati et al. [32] used neural networks to
address perspective distortion and rotational variations for more accurate fingerprint
matching, relying on accurate segmentation. Tan et al. [6] refined minutiae extraction
and matching by addressing pose variations, similarly requiring precise segmentation
for the calculation of finger geometry. Chowdhury et al. [33] reviewed deep learning
methodologies, emphasizing robust segmentation’s importance in recognition.

1.2. Contribution

Our main contribution can be summarized via three points:

• Novel Model Design creating TipSegNet: Utilizing transfer learning to create a
ResNeXt-101-based feature extractor with a FPN-like decoder design for segmenting
fingertips in hand images.

• Extended Data Augmentation: Augmenting the dataset with various transforma-
tions, such as perspective change, resizing and cropping, and solarization, thereby
improving the model’s robustness to variations in contactless fingerprint recordings,
specifically addressing changes like varying lighting conditions, different finger poses,
and reducing overfitting in the training process.
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• Comparison with SOTA: Comparing our model against established, traditional, and
state-of-the-art methods, leading to the demonstration of superior segmentation per-
formance in both cases.

2. Methods
In this section, we detail the methodology used for fingertip segmentation in contact-

less fingerprint images. In contrast to single-finger segmentation techniques, as in [5], this
framework directly extracts the fingertip region of interest from the input hand image,
removing the object detection step from the process.

2.1. Segmentation Using Deep Learning
2.1.1. Pre-Processing

Before feeding the images into the model, it is crucial to standardize the input image
size to ensure consistent weight matrix dimensions and stable learning.

Pre-processing of the extracted fingertips for test data involves only rescaling the
images to 224 × 224 pixels. For training data, pre-processing includes rescaling to
224 × 224 pixels as well, but it also involves the application of various augmentation
techniques. These augmentations are applied only with a probability of 50% and in a
random order. The augmentation techniques are

• Resize + Crop: The image is randomly cropped to a region of a size of 0.75 to 1 times
the original size, with an aspect ratio of between 0.9 and 1.1 of the original image,
before it is padded to 224 × 224 pixels.

• Rotation: The image is randomly rotated with an angle ranging from −60 to 60 degrees.
• Perspective Change: This technique simulates random changes in the viewpoint by

distorting the image accordingly.
• Gaussian Blur: A Gaussian blur is applied to the image, simulating various degrees of

focus and sensor noise.
• Solarize: This technique inverts all pixel values above a certain threshold. It creates

high-contrast images and simulates the ridge-valley inversion [34].
• Posterize: The number of bits used to represent the pixel values is reduced, decreasing

the number of possible shades of gray in the image. This simplification simulates
low-contrast recording, where the background is hard to separate from the fingertips.

• Histogram Equalization: This method adjusts the contrast of the image by spreading
out the most frequent intensity values. It is a common enhancing technique used to
improve the visual appearance and downstream performance of fingerprints.

To improve the model’s ability to generalize from the training data, we employed
several augmentation techniques. To assess the impact of these augmentations on perfor-
mance, we conducted an ablation study. This involved training the model three times:
once with the full augmentation pipeline, once without any augmentation, and once with
minimal augmentation (reducing the strength of all augmentation operations).

Figure 1 displays four training set examples with applied augmentations. The images
demonstrate the effects of the posterize augmentation, with the first image also featuring a
resize and crop function. The second and third images illustrate perspective changes, while
the third image further incorporates a rotational augmentation.
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Figure 1. Examples from the training set with added augmentations. Input images as shown to the
model during training on the left and their corresponding labels on the right.



Sensors 2025, 25, 1824 6 of 18

2.1.2. Architecture

Our TipSegNet combines the structure of an FPN and utilizes the ResNeXt 101 32× 48d
architecture as a backbone. We make use of transfer learning in the backbone by starting
the training with a pretrained ResNeXt 101 32 × 48d model instance. Pretraining was
carried out on the Instagram dataset introduced by [35]. Our framework is build in PyTorch
version 2.4, using the Segmentation Models framework by [36] as a starting ground.

ResNeXt Family

ResNeXt enhances the traditional ResNet by introducing a concept known as cardi-
nality, which determines the number of parallel paths within each residual block [13]. We
chose the ResNeXt 101 32 × 48d variant, which has a cardinality of 32, i.e., 32 parallel paths
of convolutional layers that are concatenated together at the end of the block. This allows
the network to capture a wider range of feature representations. We choose ResNeXt over
ResNet because its ability to handle complex feature interactions makes it particularly well
suited for challenging image recognition and segmentation tasks.

The ResNeXt architecture used in this work can be grouped into an initial part, four
main layers and the finalizing part. The four main layers are depicted in blue in Figure 2.
The initial part reduces the input dimension via convolutions with a stride of two and max
pooling, also with a stride of two. Following the initial part is the main part with its four
cardinal, residual blocks. In the first layer, a cardinal, residual block is repeated three times.
In the second layer, the block is repeated four times. In the third layer, the block is repeated
23 times. Finally, the fourth main layer consists of three repeated cardinal, residual blocks.
Following the main layers is the global average pooling as well as the fully connected
output layer and Softmax, which is removed in this work, because the output of each of the
main layers is used by the decoder part, the FPN, to create the segmentation mask output.

Predict Upscale

A
dd

Figure 2. Model architecture. The ResNeXt part is encircled by the dashed, green line, and the output
of its four main layers is used by the FPN to generate the multi-scale predictions (yellow), which
are then upscaled (checkerboard pattern) before being summed together to create the input to the
segmentation head (red).

FPN and Feature Hierarchy

The FPN architecture enhances feature extraction by utilizing a top–down pathway
and lateral connections. The model constructs a multi-scale feature hierarchy by progres-
sively upsampling and merging high-level semantic features with lower-level features from
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earlier layers. This can be seen in Figure 2, where the four main layers of the ResNeXt
architecture are symbolized using the blue color, and they depict the top–down pathway
of the model. At each layer, the FPN creates a prediction, depicted with the yellow layers.
Those predictions are made independently of each other. Those are then upscaled such that
each of the output prediction layers matches the segmentation head dimensions, resulting
in the checkerboard planes in Figure 2. Finally, the predictions are added together and fed
into the segmentation head, which produces the model’s output.

Model Parameters and FLOPs

The model’s components, including the encoder, decoder, and segmentation head,
each contribute to the overall parameter count and computational complexity. As seen in
Table 1, the majority of the computation is conducted by the encoder, which also holds
the most trainable parameters. To put the numbers into perspectives, 826 million trainable
parameters of the encoder backbone are less than the 1843 million trainable parameters
of the vision transformer ViT-G (or ViT-22B with 21743 million parameters) [37], but
significantly more than the 24 million trainable parameters of a ResNet-50 or 59 million
trainable parameters of a ResNet-152.

Table 1. Number of parameters and floating point operations (FLOPs) for the different model parts
and the whole model.

Model Part Parameters FLOPs

Encoder 8.264 × 108 1.231 × 1012

Decoder 2.608 × 106 1.508 × 1010

Segmentation Head 1161 4.335 × 107

Total 828.965 × 108 1.246 × 1012

In order to investigate the effect our novel model architecture has on the performance,
we conducted an ablation study comparing our backbone choice with three smaller back-
bones. We exchanged the ResNext-101 backbone with a ResNet-34, ResNet-50 or ResNet-101
model and trained the model for around 850 epochs each. All three backbones are smaller
in terms of parameters and therefore also require less computations to be trained and run.
Table 2 shows the number of parameters and FLOPs for the different choices.

Table 2. Number of parameters and floating point operations (FLOPs) for ResNet-34, ResNet-50 and
ResNet-101.

Model Parameters FLOPs

ResNet-34 2.315 × 107 4.163 × 1010

Encoder 2.128 × 107 2.883 × 1010

Decoder 1.871 × 106 1.276 × 1010

ResNet-50 2.611 × 107 4.763 × 1010

Encoder 2.350 × 107 3.251 × 1010

Decoder 2.608 × 106 1.508 × 1010

ResNet-101 4.510 × 107 7.753 × 1010

Encoder 4.249 × 107 6.242 × 1010

Decoder 2.608 × 106 1.508 × 1010
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2.1.3. Training and Hyperparameter

Our model is trained using the Jaccard loss function [38], also known as the intersection
over union (IoU) loss, which is particularly effective for segmentation tasks. Jaccard loss is
defined as

Jaccard Loss = 1 − |A ∩ B|
|A ∪ B| (1)

where A is the predicted segmentation mask and B is the ground truth mask. The ∩
operator describes the intersection and ∪ the union of the two regions, and |...| denotes
taking the area of the resulting regions.

We utilize stochastic gradient descent (SGD) with minibatches and a batch size of 8 as
the optimizer for training the model. The hyperparameters for SGD include a momentum
of 0.9 to accelerate convergence and a learning rate of 8 × 10−5.

The model was trained for 853 epochs. During the training, we observed two major
and a few minor spikes in both training and validation loss, as can be seen in Figure 3.
However, the trend of both the training and the validation loss was downward. After
around 10% of the run, the validation loss improved from 0.448 of the first epoch to 0.057.
The final value after 853 epochs was 0.038. Although we did not observe signs of overfitting,
we stopped the training run, because the outlook of further gains by continuing the training
was diminishing.

0 200 400 600 800
Epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

Training
Validation

Figure 3. Training and validation loss over training epochs.

The training run was conducted on an NVIDIA GeForce 3090 graphics card and took
8 days to complete.

2.2. Experiment

We utilize 220 manually annotated hand images from the dataset used in [5], with the
addition of an in-house dataset consisting of 2016 labeled hand images recorded using a
smartphone using similar recording settings. The additional in-house dataset was captured
to increase the number of training examples. The data consist of hand recordings against
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various background scenarios. The data are split into 1788 images for training, 224 images
for testing and 224 images for validation. All metrics are calculated on the test set, which
was not shown to the model during training. Although the current dataset of 2236 images
is sufficient for demonstrating the effectiveness of TipSegNet, we acknowledge that larger
datasets are beneficial for further improving generalization and robustness. Future work
will involve expanding the dataset significantly, incorporating more diverse hand images
and variations in capture conditions.

The dataset annotations for the 2016 hand images from the in-house dataset were
performed by a team of four people, while the annotations for the 220 annotated hand
images from the dataset used in [5] were completed by a single person.

In our multi-class segmentation task, an averaging strategy is necessary for calculating
the metrics over all classes. We employ micro-averaging for all metrics. Micro-averaging
involves aggregating all true positives, false positives, true negatives, and false negatives
across all classes before computing the overall metric. This approach ensures that each
instance, regardless of its class, contributes equally to the final metric, making it particularly
suitable when class distribution is imbalanced.

Moreover, we report the mean intersection over union (mIoU) metric, which is analo-
gous to the Jaccard index, defined as the intersection of the predicted segmentation and the
ground truth, divided by their union. Additionally, we report the accuracy.

3. Results
This section presents the results of our segmentation model, comparing its perfor-

mance against state-of-the-art (SOTA) segmentation models.
The algorithms listed in Table 3 can be categorized into three groups. The first group

includes approaches capable of segmenting a fingertip from an image of the entire hand
but only with the following two classes: fingertip and background. In other words, they
do not differentiate between different fingers. Therefore, a secondary detection stage is
required. The second group represents approaches that also segmented the fingertip from
an image of the entire hand; however, they use a different detection class for each of the
fingers, removing the need for a secondary detection step. The third group consists of
methods that segment a single finger from its background, thus requiring a detection step
to prepare the data for segmentation.

In the more challenging task of segmenting the fingertip from the whole hand, eight
SOTA results, apart from this work, are reported in Table 3. The first, proposed by Priesnitz
et al. [10], employs Otsu adaptive thresholding to separate the hand from the background.
However, since this method is limited to distinguishing an area from its background, it
does not perform further fingertip detection or segmentation and therefore falls into the
first group. Similar approaches to this were utilized by Kauba et al. in [3], where color
histograms and Gaussian mixture models were used to segment the background of the
image from the hand image. Another result presented by Priesnitz et al. in [10] makes use
of the DeepLabv3+ framework. This approach predicts feature points of the hand, such
as the edge of the fingertip and knuckle positions, which are then used to segment the
fingertip region in the hand image.

Additionally, Kauba et al. [3] also implemented and tested four different deep learning
segmentation models that are capable of segmenting the hand from its background and
also segmenting the fingertips from the hand image, moving them into the second group.
Those are Mask R-CNN [21], Segnet [23], HRNet [24] and DeepLab [22]. These provided
the best comparison to our new approach.

In the third group, segmentation focuses solely on isolating the finger from the back-
ground, without the need for finger detection or type assignment. The first approach by
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Lee et al. in [39] utilizes both color and texture information in a region-growing method to
segment the finger from the background. However, this method segments the entire finger,
not specifically the fingertip region. The next approach, proposed by Raghavendra [40],
divides the problem of fingertip segmentation into two steps. First, the entire finger is
segmented from the background, similar to [39]. Then, the segmentation mask is reduced
to the fingertip region using a process called scaling. Combining finger segmentation
with fingertip segmentation yields an accuracy between 0.922 and 0.955, depending on the
smartphone camera used. Finally, three deep learning models, U-Net, EfficientNet, and
SqueezeNet, presented by [5], focus on segmenting the fingertip region from a single finger
using deep learning techniques.

Table 3. Segmentation scores for various SOTA methods as reported in the corresponding publications,
taken with the reported decimal places. The topmost entries until the horizontal line are methods that
work with hand images as inputs, while the others only work on a single finger. Bold values indicate
the highest scores, for both the whole hand and the finger-only group. Italic indicates our approach.

Approach mIoU Accuracy

Group 1

Otsu [10] 1 0.92 -
Color Histogram [3] 1 0.38 -
Gaussian Mixture [3] 1 0.31 -
Mask R-CNN [3] 0.96 -
DeepLabv3+ [10] 0.95 -

Group 2

Segnet [3] 0.90 -
HRNet [3] 0.85 -
DeepLab [3] 0.93 -
TipSegNet 0.99 1.00

Group 3

Color & Texture [39] 2 - 0.99
Mean Shift [40] 2 - 0.92–0.96
U-Net [5] 2 0.91 0.98
EfficientNet [5] 2 0.50 0.88
SqueezeNet [5] 2 0.86 0.96

1 Segmentation conducted only for the hand area; no fingertip detection. 2 Segmentation conducted only for a
single finger.

By integrating a Feature Pyramid Network (FPN) with a ResNeXt-101 32 × 48d back-
bone and leveraging an extensive augmentation framework, our approach achieved an
accuracy of 0.999 and a mean intersection over union (mIoU) of 0.987. Additionally, we
measured the F1 score to be 0.993 and the F2 score to be 0.993 as well. These results not
only exceed the state-of-the-art (SOTA) performance for the challenging task of fingertip
segmentation from a hand image but also outperform the SOTA methods for single-finger
segmentation.

In Figure 4, we present four exemplary segmentation results. The model identifies
nine classes, with Class 0 representing the background (the area surrounding the fingertips).
Class 1 corresponds to the left index finger fingertip, Class 2 to the left middle finger
fingertip, and so on, with Class 5 denoting the right index finger fingertip up to Class 8,
which denotes the right little finger’s fingertip.
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Figure 4. Four exemplary segmentation results from the validation set. Class 0 describes the
separation of the fingers from the background, Class 1 the left index finger, Class 2 the left middle
finger and so on.
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3.1. Failure Case Analysis

While our model achieves high overall performance, a thorough analysis of failure
cases is crucial for understanding its limitations and identifying areas for improvement.
We conducted a failure case analysis on both the validation and test sets. Surprisingly, only
one significant failure case was found in each set, highlighting the model’s robustness.

Figure 5 shows the two identified failure cases. Figure 5 depicts a case from the
validation set where the hand is partially out of bounds, with only portions of the fingertips
being visible. This presents a significant challenge to the model, as it is trained to segment
fingertips within the context of a complete hand. As a result, the model struggles with
the segmentation of the ring and little fingers, misclassifying a considerable portion of
their areas. This suggests a limitation of the model in handling incomplete hand images,
particularly when critical features (the full finger context) are missing.

Figure 5. Failure case examples with blurred input images for privacy reasons. (top) Example from
the validation set with an out-of-bounds hand, leading to mis-segmentation of the ring and little
fingers. (bottom) Example from the test set with a finger deformity, resulting in a small number of
misclassified pixels within the fingertip region.

Figure 5 presents a case from the test set involving a finger deformity. Here, the
model performs remarkably well overall, but a small number of pixels within the fingertip
region are misclassified. As noted, this type of minor error is easily correctable using
morphological operations (e.g., closing or filling) in a post-processing step. This case
indicates that while the model is generally robust to finger shape variations, extreme
deformities can still pose a minor challenge.

These two examples represent the most significant failure modes observed in our
evaluation. The out-of-bounds hand highlights the importance of proper image acquisition
and framing. The finger deformity case, while less problematic due to the ease of post-
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processing correction, suggests that incorporating more examples of such variations in
the training data could further improve robustness. Overall, the scarcity of failure cases
underscores the model’s strong performance, but these examples provide valuable insights
for future refinement and development.

3.2. Data Augmentation Ablation

The results for the data augmentation ablation study, as shown in Table 4, indicate
that while the augmentation did not substantially alter the top-line performance metrics
(accuracy, F1, IoU), it played a crucial role in improving the model’s robustness and
generalization capabilities, as evidenced by the difference in the training loss. The training
loss of the augmentation free run reached the lowest minima (0.0092) and had only minor
fluctuations around that minima. This implies that the model was able to extract nearly
all the information for the learning signal. Therefore, it does not have further potential for
improvement. The loss of the minimal augmented model (0.0262) and, even more, the loss
of the fully augmented model (0.056) indicate that the images presented to the model, with
the addition of the augmentations, prove to be harder to segment. This increased difficulty
implies that further training on augmented data could potentially enhance the model’s
generalization ability.

Table 4. Augmentation ablation results, where no augmentation describes the results for the model
trained without augmentations; the results for the model with only minor augmentation and data
augmentation; and the results for the model trained with full data augmentation.

Accuracy F1 IoU Recall

no augmentation 0.999 0.994 0.987 0.994
minimal augmentation 0.998 0.993 0.985 0.993

data augmentation 0.999 0.994 0.987 0.994

3.3. Model Ablation

The results of the model ablation study, detailed in Table 5, reveal the performance
of different backbones within our segmentation framework. As the table illustrates, all
tested models achieved remarkably high performance metrics, with accuracy scores nearing
0.999 and IoU scores around 0.98. These metrics are nearly saturated, being so close to
the optimal value that further improvements become increasingly challenging to obtain.
It suggests that we are approaching the upper limits of what is achievable with current
methodologies and datasets for this particular task.

Table 5. Ablation results for different model backbones.

Model Accuracy F1 IoU Recall

ResNet-34 0.998 0.990 0.981 0.990
ResNet-50 0.997 0.988 0.976 0.988

ResNet-101 0.998 0.992 0.984 0.992
ResNeXt-101 0.999 0.994 0.987 0.994

4. Discussion
Our study presents a significant advancement in the segmentation of fingertips in con-

tactless fingerprint imaging by leveraging a novel deep learning approach with extensive
data augmentation. In this discussion, we analyze the implications of our findings, the
performance of our proposed model, and potential limitations and future directions.



Sensors 2025, 25, 1824 14 of 18

The results demonstrate that our TipSegNet substantially outperforms all other ad-
vanced segmentation models. Specifically, our model achieved an accuracy of 0.999, a mIoU
of 0.987 and an F1 score of 0.994. These metrics underscore the model’s robustness and
precision in segmenting the fingertip regions from contactless fingerprint images. These
results are particularly notable, because TipSegNet successfully segments all four fingertips
directly from a hand image, a more challenging task than single-finger segmentation. This
eliminates the need for a separate finger detection step, streamlining the overall biometric
process. The improvements over the SOTA models can be attributed to the combination of
several factors, each providing small improvements. These factors include the following:

• The use of ResNeXt-101 as a backbone: ResNeXt-101, with its concept of cardinality,
captures a richer set of feature representations than traditional ResNet architectures.
This is crucial for distinguishing subtle differences between fingertip regions and
complex backgrounds.

• Feature Pyramid Network (FPN) integration: The FPN effectively combines multi-
scale features, allowing the model to accurately segment fingertips regardless of their
size or orientation in the image. This addresses a common challenge in contactless
fingerprint imaging, where the finger pose can vary significantly.

• Extensive data augmentation: Our comprehensive augmentation strategy, includ-
ing geometric transformations and intensity adjustments, significantly improves the
model’s ability to generalize to diverse real-world scenarios. This is evident from the
minimal difference in performance between the training and validation sets, indicating
robustness to variations in image quality and capture conditions.

The marginal differences in performance metrics across the different backbones shown
in the ablation study underscore a critical observation: while larger models like ResNeXt-
101 do offer improvements, the gains are small compared to the substantial increase in
computational resources and training time they demand.

This observation raises an important point about efficiency versus performance in
deep learning model design. Although the pursuit of state-of-the-art results often leads to
the development of increasingly complex models, our findings suggest that for tasks like
fingertip segmentation, where performance is approaching saturation, a more balanced ap-
proach might be warranted. Smaller, more efficient models such as ResNet-34 or ResNet-50
could offer a more practical solution, providing a good trade-off between performance and
computational efficiency. Especially in resource-constrained environments or applications
requiring rapid processing, these models could deliver nearly equivalent results in this
framework without the overhead associated with their larger counterparts.

The ResNeXt-101 backbone and FPN decoder, while effective, significantly increase
the computational complexity of our model. This complexity can lead to longer training
and inference times, particularly on resource-constrained devices. Parallel computation
techniques, especially leveraging the parallel processing capabilities of modern GPUs,
offer a promising avenue for mitigating this issue. The inherent structure of ResNeXt,
with its multiple parallel branches (cardinality), is naturally suited for parallelization
across GPU cores. Similarly, the independent feature processing at different levels of the
FPN can be distributed across multiple GPU threads. Frameworks and libraries such as
cuDNN [41] provide highly optimized primitives for deep learning on GPUs, enabling
significant acceleration of both training and inference. Efficient utilization of GPU resources
can significantly accelerate both training and inference, making the model more practical
for real-time applications.
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Furthermore, the saturation of performance metrics highlights the need for more
challenging datasets that can better differentiate between model capabilities. As we push
the boundaries of what is possible with current techniques, identifying areas where models
still struggle can guide future research and innovation in the field. For example, future
datasets could include more diverse backgrounds, challenging lighting conditions, and
variations in skin tone and texture.

Our augmentation ablation study highlights the importance of data augmentation in
achieving robust model performance. Although the impact on the overall metrics was not
substantial, the lower training loss observed with no augmentation suggests that it plays a
critical role in preventing overfitting and enhancing the model’s ability to generalize. This
is particularly important when dealing with limited training data, as is often the case in
biometric applications.

The accuracy of fingertip segmentation directly influences the performance of down-
stream tasks such as pose correction, feature-based matching, and overall fingerprint
recognition. Improved segmentation accuracy ensures that the extracted fingertip regions
are precise, which enhances the reliability of subsequent processing steps. This is partic-
ularly important for contactless fingerprint systems, where variations in perspective and
environmental conditions can introduce additional challenges. By accurately segmenting
all four fingertips, TipSegNet provides a solid foundation for these downstream tasks,
leading to more accurate and reliable fingerprint recognition.

Despite its high efficacy, the model’s complexity and parameter count (829 million
parameters) may pose challenges for deployment in resource-constrained environments.
Future work could focus on model compression techniques, such as pruning and quan-
tization, to reduce the computational load without compromising accuracy. Additional
possibilities include the automatic labeling of large datasets using this model, which can
then be used by smaller models to train on. Furthermore, the concept of knowledge distilla-
tion [42,43] can also be used to train a smaller model while using the bigger, more capable
model as a teacher.

Finally, while our model demonstrates beyond state-of-the-art performance, it is
important to acknowledge that the field of contactless fingerprint recognition is rapidly
evolving. Future research should explore the integration of TipSegNet with other advanced
techniques, such as 3D fingerprint reconstruction and liveness detection, to develop even
more robust and secure biometric systems.

Limitations

Despite TipSegNet’s strong performance, certain limitations warrant consideration.
Occlusion of fingertips by other fingers or external objects presents a significant challenge.
Although the multi-scale representation provided by the FPN offers some robustness
to minor occlusions, severe obscuration, where a substantial portion of the fingertip is
hidden, is likely to degrade segmentation accuracy. Image quality also plays a crucial
role; noise, low resolution, or inadequate lighting can negatively impact performance,
particularly in resolving fine details such as precise fingertip contours. Although pre-
processing techniques, such as noise reduction, contrast enhancement, and resolution
upscaling as described in [44], could potentially mitigate some of these issues, inherent
limitations in spatial resolution and receptive fields of convolutional layers can still hinder
the discrimination of extremely fine-grained features, which is not that relevant for the
task of fingertip segmentation. Furthermore, while the dataset employed in this study is
of a sufficient size and includes augmentation techniques, its limited diversity in terms
of finger deformities and extreme hand poses is a limitation. Finally, the computational
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cost associated with the ResNeXt-101 backbone and FPN decoder is substantial, potentially
limiting deployment in resource-constrained environments.

5. Conclusions
This research introduces TipSegNet, a novel deep learning model designed for accu-

rate, multi-finger segmentation in contactless fingerprint images. By integrating a robust
ResNeXt-101 backbone with a Feature Pyramid Network and employing a comprehensive
data augmentation strategy, TipSegNet surpasses existing state-of-the-art methods, achiev-
ing a mean intersection over union (mIoU) of 0.987, an accuracy of 0.999, and an F1 score
of 0.994. These results demonstrate a significant advancement in the field, particularly
in the challenging context of segmenting multiple fingertips directly from hand images
without a separate finger detection step. Our ablation studies further highlight the effec-
tiveness of our design choices, demonstrating that while larger models like ResNeXt-101
offer marginal gains, careful consideration of model size and computational resources is
crucial for practical deployment. The high accuracy of TipSegNet not only provides a solid
foundation for downstream biometric tasks, such as pose correction and feature matching,
but also opens new avenues for creating more streamlined and user-friendly contactless
fingerprint recognition systems. Future work could focus on optimizing TipSegNet for
real-time processing, exploring model compression techniques to enhance efficiency, and
investigating its integration with advanced biometric methodologies, including 3D finger-
print reconstruction and liveness detection. This will pave the way for the development of
even more robust, secure, and widely applicable biometric authentication solutions.
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