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Biometric identification systems, particularly those utilizing fingerprints, have become essential as a means of authenticating users
due to their reliability and uniqueness. The recent shift towards contactless fingerprint sensors requires precise fingertip segmen-
tation with changing backgrounds, to maintain high accuracy. This study introduces a novel deep learning model combining
ResNeSt and UNet++ architectures called FingerUNeSt++, aimed at improving segmentation accuracy and inference speed for
contactless fingerprint images. Our model significantly outperforms traditional and state-of-the-art methods, achieving superior
performance metrics. Extensive data augmentation and an optimized model architecture contribute to its robustness and efficiency.
This advancement holds promise for enhancing the effectiveness of contactless biometric systems in diverse real-world

applications.
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1. Introduction

Biometric identification systems play a vital role in modern
security and authentication, owing to their reliability and the
uniqueness of biometric traits. Among these systems, finger-
print recognition is one of the most widely utilized and trusted
methods. Fingerprints provide a distinct pattern of ridges and
valleys that remain consistent throughout an individual’s life
[1], making them an ideal biometric identifier for both personal
identification and verification.

Recently, there has been a growing trend toward the use of

contactless fingerprint sensors, driven by the demand for more
hygienic, user-friendly, and flexible biometric solutions.
Contactless systems remove the need for direct contact with
the sensor, reducing the risk of spreading infectious diseases.
These systems also offer increased versatility, making them
suitable for various applications, such as mobile devices, public

access points, and high-security environments [2-5], where

user convenience and safety are critical.
For contactless fingerprint sensors to function effectively,

precise detection and segmentation of the fingertip from cap-
tured images is essential. This segmentation step is critical for
tasks such as pose correction [4, 6] and feature-based compari-
son [7], which rely on an accurate mask to distinguish the
fingertip area from the background. The success of the segmen-
tation process directly influences the overall accuracy and
dependability of the system. Historically, fingertip segmenta-
tion has been achieved using a range of techniques, including
color- or brightness-based methods [3, 8], machine learning

algorithms [9, 10], and shape-based approaches [11].
Color-based methods exploit the distinct skin tone of fin-

gertips, machine learning methods apply advanced algorithms
to locate fingertip regions, while shape-based methods empha-
size the geometric features of the fingertip.
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In this research, we investigate the use of a grayscale sensor
for capturing contactless fingerprint images and apply an object
detection model to identify fingertips before processing them
with a segmentation model.

Our study presents a novel deep learning model called
FingerUNeSt++, based on ResNeSt and UNet++, which
exceeds the current state-of-the-art in fingertip segmentation
for contactless fingerprint images in terms of both segmenta-
tion accuracy and inference speed.

1.1. Related Work. Significant advancements in fingerprint
recognition have transitioned from traditional contact-based
methods to sophisticated contactless techniques. In our previ-
ous work [4], we enhanced cross-modality compatibility in
fingerprint capture using pose correction [6] and unwarping
techniques [12], introducing a deep learning—based approach
for fingertip segmentation. This was then followed by a novel
hand-based fingertip segmentation model, archiving superior
performance over SOTA results [13].

Fingerprint segmentation, particularly in contactless images,
is a critical step in the recognition process. Kauba et al. [3]
examined smartphone-based fingerprint acquisition, focusing
on segmentation methods to effectively isolate fingerprints
from the background, allowing seamless comparison with
contact-based datasets using low-latency color-based techniques.

Priesnitz et al. [14] explored the implementation of con-
tactless fingerprint systems on mobile platforms, utilizing the
fast Otsu thresholding method for segmentation.

Deep learning has revolutionized contactless fingerprint
segmentation. Murshed et al. [15] employed convolutional
neural networks (CNNs) to improve segmentation accuracy
and robustness, training on large datasets to detect and seg-
ment fingerprint regions under diverse conditions.

The U-Net architecture [16], originally designed for medi-
cal image segmentation [17, 18], has been adapted for finger-
print segmentation tasks [4]. Variants like Squeeze-Unet [19]
and EfficientUNet++ [20] have been tested, offering improved
efficiency and performance. Squeeze-Unet incorporates
squeeze-and-excitation blocks to enhance channel interdepen-
dencies, while EfficientUNet++ applies EfficientNet’s scaling
techniques to balance accuracy with computational efficiency.
UNet++ [21] refines the skip connections in U-Net, creating a
densely connected structure that boosts segmentation accuracy.

For feature extraction and classification, ResNeSt [22] and
ResNet [23] are key architectures. ResNeSt (ResNet + split-
attention networks) introduces split-attention blocks that
enhance the model’s ability to capture diverse feature represen-
tations, making it highly effective for complex image segmen-
tation tasks. The ResNeSt-50d variant strikes a balance between
depth and computational efficiency, providing a robust archi-
tecture for deep learning applications. ResNet, known for its
residual connections, addresses the vanishing gradient problem
in deep networks and serves as the backbone for many state-of-
the-art models in image analysis. Despite its simplicity, Otsu
thresholding remains a benchmark against which more
advanced techniques are compared.

Several studies have improved the performance of contact-
less fingerprint recognition through enhanced segmentation.
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Labati et al. [24] utilized neural networks to correct perspective
distortion and rotational variations, leading to more accurate
fingerprint comparison, which relies on precise segmentation.
Tan and Kumar [6] improved minutiae extraction and com-
parison by addressing pose variations, requiring accurate seg-
mentation to calculate finger geometry. Chowdhury and Imtiaz
[25] reviewed deep learning approaches, highlighting the criti-
cal role of robust segmentation in the recognition process.

1.2. Contribution

1. Combination of UNet++ with ResNeSt-50d: We inte-
grate a simplified UNet++-like decoder with a ResNeSt-
50d encoder, using different upscaling strategies, ReLU
activation, and no dropout, enhancing feature extraction
and segmentation accuracy.

2. Extended data augmentation: We augment the dataset
to simulate perspective changes and various other
changes, improving the model’s robustness to variations
in contactless fingerprint recordings.

3. Comparison with baseline and SOTA: We compare our
model against established and state-of-the-art methods,
demonstrating superior segmentation performance in
all cases.

2. Methods

In this section, we detail the methodology used for fingertip
segmentation in contactless fingerprint images. Our approach
builds on an established preprocessing pipeline and detection
model, described in [3], to precisely extract the fingertip regions
from the hand image.

2.1. Segmentation Using Baseline. For a baseline segmentation
to compare against, we employ Otsu thresholding, a widely used
method for image binarization [3, 14]. As described in [14],
Otsu’s method calculates an optimal threshold value by maxi-
mizing the variance between two classes of pixels, effectively
separating the foreground (fingertip) from the background.

This approach is straightforward and computationally etfi-
cient, making it suitable for real-time applications. However, it
relies solely on pixel intensity distributions and does not account
for more complex features such as texture or shape, which can
limit its effectiveness in varying lighting conditions and diverse
backgrounds commonly encountered in contactless fingerprint
images. An example of this can be seen in Section 3.

2.2. Segmentation Using Deep Learning. The transition to deep
learning methods for segmentation leverages the advancements
in CNNs to address the limitations of traditional techniques.
Unlike Otsu thresholding, which relies on simple pixel intensity
distributions, deep learning models can capture complex pat-
terns and features within the images. This capability allows for
more robust and accurate segmentation, especially under diverse
conditions typical of contactless fingerprint images.

2.2.1. Preprocessing. Before feeding the images into the deep
learning model, it is crucial to standardize the input to ensure
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consistent learning of the right features and to aid with the
generalization of the model.

Preprocessing of the extracted fingertips for test data
involves only rescaling the images to 224 x 224 pixels.

For training data, preprocessing includes rescaling to 224 X
224 pixels and applying various augmentation techniques to
increase the robustness of the model. These augmentations are
applied randomly and in a random order to ensure the model
learns to handle diverse variations in the data. The augmenta-
tion techniques include:

o Resize + crop: The image is resized with a factor between
0.75 and 1 and an aspect ratio of between 0.9 and 1.1,
before it is randomly padded to 224 x 224 pixels.

o Horizontal flip: The image is flipped horizontally with a
probability of 50%.

e Rotation: The image is randomly rotated from —60° to
60°.

o Perspective change: This technique simulates changes in
the viewpoint by randomly distorting the image. This is
achieved by transforming the image as if it was viewed
from a different angle.

e Gaussian blur: A Gaussian blur is applied to the image,
simulating varying degrees of focus and sensor noise.

e Solarize: This technique inverts all pixel values above a
certain threshold. This creates high-contrast images,
simulating the ridge-valley inversion.

e Posterize: The number of bits used to represent the pixel
values is reduced, decreasing the number of shades of
gray in the image. This simplification simulates low con-
trast recording, where the background is hard to separate
from the fingertips.

e Histogram equalization: This method adjusts the con-
trast of the image by spreading out the most frequent
intensity values. It is a common enhancing technique
used to improve the visual appearance and downstream
performance of fingerprints.

These augmentation techniques aim at enhancing the
model’s ability to generalize from the training data.

While the segmentation model is trained and applied to
images rescaled to 224 X 224 pixels for computational effi-
ciency and training stability, this does not limit the resolution
of the final fingerprint data used for the next steps. The output
of the segmentation network is a binary mask representing the
fingertip region. This mask, which is initially at the 224 x 224
resolution, can be easily upsampled (e.g., using nearest-
neighbor or bilinear interpolation) to match the dimensions
of the original and high-resolution input image. This
upsampled mask is then applied to the original image, effec-
tively extracting the fingertip region at its full, native resolution
(e.g., 500 ppi or higher).

2.2.2. Architecture. Our segmentation model FingerUNeSt++
combines elements from UNet+4 and ResNeSt-50d to achieve
high accuracy in fingertip segmentation. Here, we describe the
key components of this architecture.

TaBle 1: Number of parameters and floating-point operations
(FLOPs) for the different model parts and the whole model.

Model part Parameters FLOPs

Encoder 25.434 % 10° 65.204 % 10°
Decoder 25.478 x 10° 0.48 10"
Segmentation head 145 86.704 x 10°
Total 50.911 x 10° 0.545x 10*?

2.2.2.1. UNet and UNet++. The UNet architecture consists of
an encoder—decoder structure with skip connections. The
encoder progressively reduces the spatial dimensions while
increasing feature depth and the decoder reconstructs
the image to its original size, using the skip connections to
fuse high-resolution features from the encoder. UNet++
extends this concept by adding dense skip connections, creat-
ing a more complex network of connections between encoder
and decoder. This helps capture more detailed and nuanced
features.

2.2.2.2. ResNeSt Family. ResNeSt (ResNet with split attention)
enhances the traditional ResNet by incorporating split atten-
tion blocks, which allow the network to focus on different
feature subsets simultaneously. This results in better feature
representation and improved performance on complex tasks.
We chose ResNeSt over ResNet because it provides a more
powerful feature extraction mechanism, crucial for handling
the variability in contactless fingerprint images.

2.2.2.3. Simplifications of Our UNet++ Implementation. In
our implementation, we simplify UNet++ by using the
nearest-neighbor upscaling methods, ReLU activation func-
tions instead of LeakyReLU, and removing dropout layers.
These changes streamline the architecture while maintaining
high performance, reducing computational complexity and
training time. We utilize PyTorch and build on the code pro-
vided by Iakubovskii [26].

2.2.2.4. Model Parameters and FLOPs. The model’s compo-
nents, including the encoder, decoder, and segmentation head,
each contribute to the overall parameter count and computa-
tional complexity. The details are given in Table 1.

2.2.3. Training and Hyperparameter. Our model is trained
using the Jaccard loss function [27], also known as the inter-
section over union (IoU) loss, which is particularly effective for
segmentation tasks. The Jaccard loss is defined as:

ANB
AUB

; (1)

Jaccardloss =1 — ’

where A is the predicted segmentation mask and B is the
ground truth mask.

We utilize stochastic gradient descent (SGD) as the opti-
mizer for training the model. The hyperparameters for SGD
include a momentum of 0.9 to accelerate convergence and a
learning rate of 8 X 10",
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TasLE 2: Comparison of final loss during training and validation.

Model Training loss Validation loss

Baseline 3.82x107"

FingerUNeSt+-+ 2.075x 1072 2.095x 1072

Note: The baseline is not trained, therefore, no training loss.

TasLE 3: Comparison of accuracy, mean intersection over union (MIoU), F1, and F2 scores for the different model architectures.

Model Accuracy (%) MIoU (%) F1 (%) F2 (%) Parameters
Baseline 85.31 85.31 92.07 96.67 —
EfficientUNet++" 87.56 49.72 — — 6.3x10°
Squeeze U-Net* 96.42 85.73 — — 2.5 x 10°
Adapted U-Net* 97.85 91.38 — — 1.0x107
FingerUNeSt++ 99.45 99.31 99.65 99.52 5.1% 107

Note: Bold indicates best performing values.
“The values were taken from Ruzicka et al. [4].

Bl T R

A e .

FiGUrE 1: (a) Baseline segmentation results and input images. (b) UNet++ segmentation results, input images are blurred for privacy reasons.

2.3. Experiment. We utilize the same dataset as in [4], which
consisted of 5828 manually annotated hand images from two
different recording setups. The data is split into 1457 images for
validation, 1822 images for testing, and 2549 images for train-
ing. All metrics are calculated on the test set, which was not
shown to the model during training.

3. Results

This section presents the results of our segmentation model,
comparing its performance against a baseline method as well as
SOTA segmentation models.

The training and validation losses for the FingerUNeSt++
model and the validation loss for the baseline method are
summarized in Table 2. The baseline method, which is not
trained, shows a validation loss of 0.382. In contrast, the
FingerUNeSt++ model achieves much lower training and
validation losses.

Table 3 provides a detailed comparison of the performance
metrics for different model architectures, including accuracy,
mean IoU (MIoU), F1, and F2 scores. The FingerUNeSt++
model outperforms the baseline and all other architectures
across all metrics, achieving an accuracy of 99.45%, MIoU of
99.31%, F1 score of 99.65%, and F2 score of 99.52%.

We also measured the inference time over a batched input
and found a processing time of 12ms on a laptop with a
Quadro M3000M and a time of 0.2 ms on a workstation with
a Nvidia GeForce RTX 3090.

Figure 1a,b shows qualitative comparisons of the segmen-
tation results. The baseline method produces segmentation
masks with noticeable errors, while the FingerUNeSt++ model
delivers precise and accurate segmentation of the fingertip
regions.

4. Discussion

Our study presents a significant advancement in the segmen-
tation of fingertips in contactless fingerprint imaging by
leveraging a novel deep learning approach. In this discussion,
we will analyze the implications of our findings, the perfor-
mance of our proposed model, and potential limitations and
future directions.

The results demonstrate that our FingerUNeSt++ model
with a ResNeSt-50d encoder substantially outperforms both
the baseline Otsu thresholding method and other advanced
segmentation models. Specifically, our model achieves an accu-
racy of 99.45%, a MIoU of 99.31%, an F1 score of 99.65%, and
an F2 score of 99.52%. These metrics underscore the model’s
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robustness and precision in segmenting fingertip regions from
contactless fingerprint images.
The improvements can be attributed to several factors:

e Enhanced feature extraction: The ResNeSt-50d encoder
effectively captures complex features due to its split
attention blocks, which allow the network to focus on
different feature subsets simultaneously. This results in
superior feature representation, crucial for handling the
variability in contactless fingerprint images.

e Dense skip connections: UNet++’s densely connected
skip pathways facilitate the capture of fine-grained
details by effectively combining high-resolution spatial
information from the encoder with the decoder, enhanc-
ing segmentation accuracy.

e Extended data augmentation: The comprehensive aug-
mentation techniques, including perspective change,
Gaussian blur, and histogram equalization, significantly
improve the model’s generalizability to varying record-
ing conditions and perspectives.

The accuracy of fingertip segmentation directly influences
the performance of downstream tasks such as pose correction,
feature-based comparison, and overall fingerprint recognition.
While improved segmentation can enhance comparison by
providing a cleaner input, its role extends beyond simply
removing low-quality regions. The precise delineation of the
fingertip boundary is essential for preprocessing steps, most
notably pose correction. As described in [4, 6], pose correction
algorithms rely heavily on the accurate segmentation mask to
estimate the 3D geometry of the finger. The mask defines the
contour used to construct a 3D model of the fingertip. Inaccu-
racies in the segmentation, such as including background pixels
or excluding parts of the true fingertip, will directly translate to
errors in the 3D model, leading to incorrect pose normalization
and degraded comparison performance. Therefore, the seg-
mentation is not primarily a quality filter, but a crucial geomet-
ric foundation. This is particularly important for contactless
fingerprint systems, where variations in perspective and envi-
ronmental conditions can introduce additional challenges.

While our model shows promising results, its inference
time is a critical factor for real-time applications. The reported
inference time of 12 ms on a laptop with a Quadro M3000M
GPU and 0.2 ms on a workstation with an Nvidia GeForce RTX
3090 GPU indicates its potential for real-time use, though
deployment on devices with less computational power may
require further optimization.

Despite its high performance, the model’s complexity and
parameter count (50.9 million parameters) may pose chal-
lenges for deployment in resource-constrained environments.
Future work could focus on model compression techniques,
such as pruning and quantization, to reduce the computational
load without compromising accuracy.

5. Conclusion

Our study introduces a novel deep learning approach for fin-
gertip segmentation in contactless fingerprint imaging called

FingerUNeSt++, combining the strengths of UNet++ and
ResNeSt-50d. The proposed model demonstrates superior per-
formance in terms of segmentation accuracy, making it a
promising solution for enhancing the reliability and effective-
ness of contactless fingerprint systems. Future work will be
focused on optimizing the model for real-time applications
and further improving its generalizability.
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