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Kurzfassung

Der Fingerabdruck ist eine der am weitesten verbreiteten biometrischen Modalitdten und eig-
net sich hervorragend zur Identitdtsiiberpriifung, vor allem aufgrund der Einzigartigkeit und
Besténdigkeit von Papillarleisten und deren Mustern. Fingerabdruckerkennung wird von Straf-
verfolgung und Grenzkontrolle bis hin zur Absicherung personlicher Geréte und finanzieller
Transaktionen benutzt. Wéhrend Fingerabdriicke traditionell durch direkten Kontakt erfasst
werden, bieten kontaktlose Methoden Vorteile beziiglich Hygiene, Sicherheit und Benutzer-
freundlichkeit. Die praktische Anwendung wird jedoch durch die freie Prisentation der Hand,
wechselnden Aufnahmeumgebungen sowie der Notwendigkeit mit bestehenden, kontaktbasierten
Fingerabdruckdatenbanken interoperabel zu bleiben, erschwert. Diese Dissertation prasentiert
eine Reihe von Algorithmen und Methoden, um diese Probleme entlang der gesamten Erken-
nungspipeline zu adressieren. Die Beitrage umfassen Losungen fiir die Bildnormalisierung, die
Qualitatssicherung der Daten, die robuste Validierung und die Privatsphére schiitzende Finger-
abdrucksvergleiche, wodurch Genauigkeit, Zuverlassigkeit und der Datenschutz von kontaktlosen
Fingerabdrucksystemen verbessert werden.

Ein notwendiger Schritt in jedem kontaktlosen Sensorsystem ist die prézise Segmentierung der
Fingerspitze vom Hintergrund, welcher komplex und dynamisch sein kann. Diese Arbeit stellt
drei neue Deep-Learning-Architekturen fiir diese Aufgabe vor. Das erste Modell ist eine Variation
der U-Net Architektur und wurde fiir bereits zugeschnittene Einzelfingerbilder entwickelt. Es
iibertrifft bestehende State-of-the-Art (SOTA) Segmentierungsmodelle in Genauigkeit [217].
Darauf aufbauend wurde FingerUNeSt++ entwickelt, welches einen ResNeSt-Encoder mit einem
UNet++-dhnlichen Decoder kombiniert und eine durchschnittliche Intersection-over-Union (mloU)
von 99% erreicht und damit bestehende SOTA Methoden erneut tibertrifft. Das dritte Modell,
TipSegNet, macht den vorgelagerten Fingerdetektionsschritt {iberfliissig, indem es alle vier
Fingerspitzen direkt aus einem Bild der Hand segmentiert und klassifiziert. Durch die Nutzung
eines ResNeXt-101-Backbones mit einem Feature Pyramid Network (FPN) erreicht TipSegNet
eine SOTA-Leistung mit einer mIoU von 99% und Genauigkeit von 100%.

Um die Interoperabilitdt mit kontaktbasierten Systemen zu verbessern, miissen die geometri-
schen Verzerrungen bei kontaktlosen Aufnahmen korrigiert werden. Im Rahmen dieser Disserta-
tion wurde eine Verarbeitungspipeline entwickelt, welche Rotationen sowohl in der Bildebene
(Hand-Drehung) als auch aus der Bildebene heraus (Hand-Kippung) korrigiert und anschlieBend
die Fingeroberflichentextur mittels parametrischer Entzerrungsmodelle ebnet. Dabei kann auf
verschiedene parametrische Entzerrungsmodelle zuriickgegriffen werden, welche das Abrollen
verschiedener Fingerformen auf dem Sensor simulieren. Fiir die Drehkorrektur wird die im vor-
herigen Absatz beschriebene Segmentierungsmaske zur Bestimmung der zentralen Fingerachse
verwendet. Fir die Kippkorrektur kommt die Segmentierungsmaske erneut zum Einsatz um die
Querschnittsbreite eines ellipsoiden Fingermodells zu bestimmen und um dann, mithilfe des
detektierten Cores als Referenzpunkt, die Kippkorrektur durchzufiihren. Bei der Evaluierung
reduzierte eine fingerspezifische Anwendung dieser Prozessschritte die Equal-Error-Rate (EER)
fiir den Abgleich von kontaktlosen mit kontaktbasierten Abdriicken um relative 36,9 % (von
1,57 % auf 0,99 % EER). Eine zuséitzliche empirische Analyse der Position des Cores von iiber
40.000 Fingerabdriicken zeigte, dass dessen Position nicht geometrisch zentriert ist und syste-
matische, modalitatsbedingte Abweichungen sowie eine natiirliche Variabilitat von 6-12 % der



Fingerbreite aufweist. Diese Studie quantifiziert eine grundlegende Grenze fiir die Genauigkeit
von Prasentationskorrekturmethoden, die ausschliefSlich auf dem Core als Referenzpunkt basieren,
und identifiziert die nicht-zentrale Fischer-(NCF)-Verteilung als passendes statistisches Modell
fiir dessen Position. Eine fingerspezifische Auswertung wurde ebenfalls durchgefiihrt.

Fiir die finale Identifikation eines Fingerabdrucks ist dessen Qualitét, sowie die Qualitdt der
Referenzaufnahme, entscheidend. Diese Arbeit begegnet dem Mangel an spezifischen Qualitéts-
metriken fiir mobile kontaktlose Fingerabdriicke durch die Evaluierung von MCLFI(Q), einer
Adaption des etablierten NFIQ 2 Frameworks. Durch das erneute Trainieren des Random-
Forest-Klassifikators von NFIQ 2 auf modalitéatsspezifischen, synthetischen Daten zeigt MCLFIQ)
eine verbesserte Leistung bei der Vorhersage der Qualitit von kontaktlos aufgenommenen Fin-
gerabdriicke im Vergleich zum urspriinglichen NFIQ 2.2 und anderen Standardmetriken. Das
angepasste Modell priorisiert Merkmale, die mit Bildschirfe und lokaler Klarheit der Papil-
larleisten zusammenhéngen, welche die dominanten Qualitdtsfaktoren bei mobilen Aufnahmen
sind.

Dariiber hinaus wird in dieser Dissertation ein neuartiges, self-supervised Framework zur
Erkennung von Stiicklungs-Artefakten vorgestellt. Diese Artefakte kénnen wahrend des Zusam-
mensetzens von mehreren Finger-Einzelaufnahmen zu einem Master-Fingerabdruck entstehen.
Dieses Problem wird von Standard-Qualitdtsmetriken, wie zum Beispiel NFIQ und auch von
adaptierten Metriken wie MCLFIQ, nicht erfasst. Durch die programmatische Erzeugung von
Artefakten wurde ein Deep-Learning-Modell trainiert um diese Defekte zu erkennen, ohne manu-
elle Annotierungsarbeit zu benotigen. Der resultierende Detektor ist genau (IoU > 90%), robust
gegeniiber anderen Qualitdtsméngeln des Fingerabdrucks und generalisiert gut {iber verschiedene
Fingerabdruckmodalitdten (kontaktlos, gerollt, flach).

Die Validierung dieser komplexen Algorithmen erfordert standardisierte und wiederholbare
Testmethoden. Zu diesem Zweck wurde die Herstellung von physikalisch-synthetischen Finger-
phantomen untersucht. Verschiedene Herstellungstechniken (direkte Lasergravur, CNC-Fréasen,
3D-Druck von Gussformen) und Materialien (Silikon, Gelatine, Elastomer) wurden getestet. Die
Arbeit zeigt, dass hochprézise, stabile und physikalisch realistische 3D-Phantome erfolgreich
hergestellt werden kénnen, insbesondere durch den Guss von Silikon in hochprézise Gussformen.
Diese Phantome replizieren erfolgreich einen Fingerabdruck und dienen als Werkzeuge fiir die
objektive und wiederholbare Evaluierung der Leistungsfahigkeit von Sensoren und Verarbeitungs-
algorithmen, ohne den Einsatz von echten Fingerabdriicken.

Um den Einsatz der Fingerabdruckerkennung in datenschutz-sensitiven Anwendungen wie dem
Abgleich von Fahndungslisten an Grenzkontrollen zu ermdéglichen, demonstriert diese Arbeit eine
praktische, die Privatsphéire wahrende Losung. Ein SOTA Minutien-basierter Vergleichsalgorith-
mus, SourceAFIS, wurde erfolgreich fiir die Ausfithrung in einem Multiparty Computation (MPC)
Framework adaptiert. Durch algorithmische Umstrukturierung von Operationen welche im MPC
Protokoll stark rechenintensiv sind und die Nutzung von Klartextberechnungen fiir nicht-sensitive
Zwischendaten erreicht die Implementierung eine Abgleichzeit von ungefahr 17 Sekunden. Diese
Geschwindigkeit wird unter Beibehaltung einer hohen, mit dem Klartext-Algorithmen vergleichba-
ren Erkennungsgenauigkeit erzielt, wodurch ein sicherer Fingerabdruckabgleich unter realistischen
Bedingungen praktisch umsetzbar wird.

Abschlielend zeigt diese Arbeit, dass die Herausforderungen, die mit einer vollstindigen
End-to-End-Pipeline fiir die sichere, kontaktlose Fingerabdruckerkennung einhergehen, geltst
werden kénnen. Durch die Integration der entwickelten Losungen wird der Weg von den erfassten
Rohbildern zu standardisierten und interoperablen biometrischen Templates ermoglicht. Die
Relevanz dieses integrierten Ansatzes liegt darin, Hochsicherheitsanwendungen auf kontaktlosen
Systemen zu ermoglichen, wie beispielsweise den Abgleich mit Fahndungslisten an Grenzkontrollen
durch einen Beamten mittels eines Standard-Smartphones.



Abstract

Fingerprint recognition is a widely used biometric modality because of its uniqueness and
persistence of friction ridge patterns, which provide a reliable means of verifying identity. It is
a key technology in applications ranging from law enforcement and border control to securing
personal devices and financial transactions. While traditionally acquired through direct contact,
contactless methods offer advantages in hygiene and user convenience. However, practical
deployment is challenged by the unconstrained nature of the acquisition process, which introduces
variations in finger pose, illumination, and scale, while still requiring to be interoperability with
large, legacy contact-based fingerprint databases. This thesis presents a set of algorithms and
methodologies to address these problems across the recognition pipeline, from image capture to
secure template comparison. The contributions include solutions for image normalization, data
assurance, robust validation, and secure deployment, which improve the accuracy, reliability, and
privacy of contactless fingerprint systems.

A necessary step in any contactless pipeline is the accurate segmentation of the fingertip
from its background, which is often complex and variable. This work proposes three novel deep
learning architectures for this task. The first is a custom U-Net-based model for pre-cropped
single-finger images that outperforms existing segmentation models [217]. This was improved
with FingerUNeSt++, which combines a ResNeSt encoder with a UNet++-like decoder, achieving
a mean Intersection-over-Union (mloU) of 99% on the test set. The third model, TipSegNet,
removes the need for a separate finger detection step by segmenting and labeling all four fingertips
directly from a whole-hand image. Using a ResNeXt-101 backbone with a Feature Pyramid
Network (FPN) to handle multi-scale objects, TipSegNet obtains an mIoU of 99% and an accuracy
of 100%.

Interoperability with contact-based systems requires correcting the geometric distortions in
contactless captures. This research developed a processing pipeline to correct for in-plane (yaw)
and out-of-plane (roll) rotations, which then flattens the fingertip texture using parametric
unwarping models. The pipeline uses the segmentation mask for yaw correction and an elliptical
finger model with the detected core for roll correction. On an operational dataset, a finger-wise
optimized application of the pipeline reduced the Equal Error Rate (EER) for contactless-to-
contact-based comparison by a relative 36.9% (from 1.57% to 0.99%). A large-scale empirical
analysis of the fingerprint core’s position across over 40,000 samples showed that its location is
not geometrically centered, with systematic, modality-induced biases and a natural variability of
6-12% of the finger’s width. This study quantifies a limit on the accuracy of alignment methods
that rely on the core and identifies the Non-Central Fischer (NCF) distribution as the best-fitting
statistical model for its position for most fingers, including a finger-dependent analysis.

The quality of a captured sample affects recognition performance. This work addresses the
absence of dedicated quality metrics for mobile contactless fingerprints by adapting the established
NFIQ 2 framework, resulting in MCLFIQ). By retraining the NFIQ 2 random forest classifier
on modality-specific synthetic data, MCLFIQ shows improved performance in predicting the
utility of contactless samples compared to the original NFIQ 2.2 and other baselines. The new
model prioritizes features related to image sharpness and local ridge clarity, which are key quality
factors in mobile captures. Additionally, this thesis introduces a self-supervised framework to
detect structural artifacts from fingerprint mosaicking, a problem not handled by standard quality



metrics. A deep learning model was trained on programmatically generated artifacts to detect
these defects without manual annotation. The resulting detector is accurate (IoU > 0.9), robust
to other quality defects, and generalizes across different fingerprint modalities (contactless, rolled,
slap).

The validation of these algorithms requires standardized testing methods. This research
investigated the manufacturing of physical synthetic fingerprint phantoms, evaluating various
fabrication techniques (direct laser engraving, CNC machining, 3D printing of molds) and
materials (silicone, gelatin, elastomer). The work shows that high-fidelity, stable, and realistic
3D phantoms can be produced, particularly using silicone cast in high-precision molds. These
phantoms replicate a known ground-truth pattern and provide a repeatable method for evaluating
sensor and algorithm performance.

For privacy-sensitive applications like watchlist checks, this thesis presents a practical privacy-
preserving comparison solution. The minutiae-based comparison algorithm SourceAFIS was
adapted for execution within a Multiparty Computation (MPC) framework. Through algorithmic
refactoring and the use of plaintext computations for non-sensitive data, the implementation
achieves a comparison time of approximately 17 seconds while maintaining high recognition accu-
racy comparable to its plaintext counterpart. This makes secure remote fingerprint comparison
practical for real-world scenarios.

Finally, this thesis shows that the challenges accompanying a complete, end-to-end pipeline for
secure contactless fingerprint recognition can be solved. By integrating the developed solutions,
one can go from raw images captured to standardized and interoperable biometric templates.
The relevance of this integrated approach is its ability to enable high-security applications on
contactless systems, such as an agent performing a watchlist check at a border using a standard
smartphone.
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Chapter 1

Introduction

1.1 Motivation and Problem Statement

From unlocking smartphones to accessing restricted areas, verifying a person’s identity or
identifying an unknown individual is a common requirement in many systems. Traditional
methods such as passwords, PINs, or physical tokens are widely used, but they can be forgotten,
lost, stolen, or shared. These weaknesses create security risks and usability problems.

To address these issues, biometric authentication uses biological traits to either verify a claimed
identity or determine who someone is. Biometrics are tied to the individual and cannot easily
be transferred or replicated, which makes them a useful alternative. Common biometric traits
include facial features, iris patterns, voice, gait, and DNA. Among these, fingerprint recognition
is one of the oldest and most widely used methods. The process of identifying individuals by
comparing fingerprints is known as dactyloscopy.

The use of dactyloscopy in criminal investigations has a rich history. In 1893 the Troup
Committee, named after its chairman Charles Edward Troup was formed to investigate ways
to identify habitual criminals in England. As a result, in 1894, all newly arrested criminals in
England and Bengal had their fingerprints recorded. [11]

In 1892, in Buenos Aires, Argentina, a murder was solved using thumbprint evidence found
at the crime scene. The Rojas murder case is considered to be the first homicide solved by
fingerprint evidence, and Argentina became the first country to rely solely on fingerprints as a
method of individualization. Another criminal case in Bengal in 1898 is considered to be the
first case in which fingerprint evidence was used to secure a conviction. [11]

These early successes led to the widespread adoption of fingerprint databases by law enforcement
agencies worldwide, enabling the identification of suspects, solving of crimes, and maintenance of
criminal records. The uniqueness and permanence of fingerprint patterns allows authorities to
match crime scene evidence to individuals with high accuracy.

Beyond criminal investigations, fingerprint recognition has become a key technology in border
control and immigration. Many countries deploy fingerprint-based biometric systems at airports
and border crossings to verify traveler identities [65], combat identity fraud [159, 198], and ensure
national security. Moreover, fingerprint biometrics have been widely adopted in government-
issued identity programs, such as Indias biometric identity program called Aadhar. It voluntarily
collects the facial image, both iris and the 10 finger prints of Indian citizens and acts as a
digital identity document [104]. National identification systems, voter registration programs
[36], and social welfare distribution schemes [178] increasingly rely on fingerprints to ensure that
benefits reach the intended recipients while preventing fraud. In many developing nations, where
traditional forms of identity documentation are less reliable, biometric identification provides
a secure and scalable solution for establishing and verifying identity. Another application of
fingerprint recognition is in financial transactions and banking. Biometric authentication has
become a standard feature in mobile banking apps and payment verification systems. The
integration of fingerprint recognition in access control is another major area of application [59].
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Many organizations use biometric attendance systems and access control solutions to regulate
entry into secure facilities [201]. Finally, consumer electronics and personal device security
represent a rapidly growing domain for fingerprint biometrics. Smartphones, laptops, and smart
home devices increasingly incorporate fingerprint recognition as a way to unlock the device.

The strength of fingerprint recognition lies in the unique characteristics of fingerprint patterns.
These patterns of ridges and valleys are highly distinctive, even between identical twins [251], and
remain stable throughout an individual’s life [276]. Historically, the acquisition of fingerprints was
a straightforward process, relying on ink, where a user would press or roll their inked finger on a
piece of paper. The next step was the introduction of contact-based sensors, where a user would
press or roll their finger against a platen. This simplicity of the contact-based sensor, coupled
with the high accuracy achievable with automated biometric identification systems (ABIS), led to
the widespread adoption of fingerprint recognition and the creation of massive, legacy databases
by law enforcement and government agencies.

However, the traditional contact-based approach has limitations that have become increasingly
apparent in recent years. With the onset of the COVID-19 pandemic, hygiene has become a
major consideration. Contact-based sensors require users to share a common surface, creating a
potential vector for the transmission of germs and infectious diseases [176]. This concern has
created a strong demand for contactless alternatives across various sectors. Beyond hygiene,
contact-based acquisition can also be inconvenient and uncomfortable. Users must carefully
position and press their finger against the sensor, which can be challenging for individuals with
dry, oily, or damaged skin, or in situations with limited dexterity. Moreover, the contact itself
introduces non-linear distortions to the finger, and therefore to the fingerprint, which are hard
to reverse [237]. Finally, contact-based methods are also prone to creating latent prints on the
sensors, which create privacy issues and introduce artifacts into the recorded fingerprints.

These limitations together with advances in imaging technology and computer vision have led
to a shift towards contactless fingerprint recognition. Contactless acquisition removes the risk of
cross-contamination, improves user comfort, and reduces distortions. To realize these benefits for
the use-case of identity identification, contactless systems must solve the interoperability problem
with existing contact-based databases. This is important to allow for a smooth transitions without
loss of historical information of already existing fingerprint databases [217]. This interoperability
problem arises from differences in image acquisition. In contact-based sensing, the physical
contact between the fingertip and platen in contact-based devices deforms the skin, introducing
distortions. For contactless acquisition on the other hand, variations in finger pose (roll, pitch,
and yaw are unconstrained) and hand distance can introduce geometric distortions [247] and
scale inconsistencies. Scale inconsistencies make the same fingerprint appear different sizes across
captures, and compensating for this variation is challenging [87]. Many fingerprint comparison
algorithms, particularly those developed for legacy systems, are sensitive to scale differences,
causing comparisons to fail, even for the same fingerprint [133]. Image quality consistency is
also a challenge [133]. Uneven illumination, shadows, specular reflections, and focus issues
degrade contactless images, obscure ridge-valley structures and add noise, further complicating
comparison beyond the pose and scale issues.

With the introduction of deep learning approaches, which utilize large amounts of training
data to solve a task, the importance of task-specific labeled fingerprint datasets grew. However,
acquiring and annotating large-scale, high-quality fingerprint datasets is a labor intensive and
expensive process. Real-world data collection is moreover also subject to strict privacy regulations.
Furthermore, obtaining accurate ground truth labels for tasks like segmentation, core or minutiae
point detection, and especially artifact detection can be extremely difficult, often requiring
manual annotation by dactyloscopy experts. This data scarcity has inspired the development
and use of synthetic fingerprint generators. These generators offer a way to create perfectly
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labeled data, encompassing a wide range of variations of minutiae pattern, ridge orientations,
fingerprint artifacts, and image quality. Building upon the concept of synthetic fingerprint images,
the field is progressing towards the creation of physical, synthetic fingers. These 3D replicas,
also called phantoms, can be generated using synthetic fingerprint data mapped to arbitrary
finger geometries. They offer a standardized approach to biometric system evaluation and
sensor development. Synthetic fingers eliminate the variability and ethical concerns associated
with using real human subjects. They enable precise control over fingerprint characteristics,
replicating common fingerprint types as well as edge cases and even skin properties like dryness
or elasticity. Furthermore, if combined with a robotic operator, they allow control over more
extensive properties such as presentation pose for contactless sensors and pressure, rolling speed
or others for contact-based sensors.

However, the creation of realistic and effective synthetic fingers presents its own set of challenges.
Different production methodologies, such as 3D printing, molding, and casting, result in varying
levels of fidelity in replicating the details of fingerprints, including ridge structure, pores, and
tactile properties.

For effective fingerprint enrollment, capturing a substantial portion of the fingertip surface
is important. A larger initial enrollment image provides more biometric data, increasing the
certainty when comparing fingerprints by future downstream applications. Furthermore, it
allows to work more reliable with latent partial prints where only small sections of a finger are
found, as can be the case for example at crime scenes. In traditional contact-based systems
this is accomplished through rolled fingerprint acquisition, where the finger is rolled nail-to-nail,
capturing the entire fingerprint surface. This extensive surface area, and the resulting increase in
identifiable minutiae, make rolled fingerprints the preferred method for enrollment.

Contactless systems aim to replicate the information captured by rolled fingerprints. How-
ever, without physical contact to guide the finger, contactless acquisition either records a 3D
representation of the fingertip [126], or uses a mosaicking process [49, 109, 163, 252] to stitch
together a complete image of the fingerprint. This second approach involves stitching together
multiple partial images, acquired as the finger is presented to simulate the rolling motion. This
process is prone to errors, introducing mosaicking artifacts such as misaligned ridges, duplicated
or missing minutiae, and blurred regions. These artifacts present a significant challenge in
contactless rolled fingerprint acquisition, and to a lesser extend also in contact-based fingerprint
acquisition, potentially compromising comparison accuracy and leading to misidentification or
non-identification. A further complication is the lack of robust quality assessment metrics specifi-
cally for contactless fingerprints, and even more so for contactless rolled fingerprints. Existing
metrics, like NIST Fingerprint Image Quality (NFIQ) 2 [246], are primarily designed and trained
for contact-based images and do not address the unique challenges of contactless acquisition and
mosaicking artifacts.

Despite the challenges described in the previous paragraphs, contactless fingerprint recognition
holds many benefits for secure, hygienic and convenient authentication. However, as biometric
systems become more integrated into applications, data privacy and data safety become more
and more important. Unlike passwords, which can be reset when compromised, biometric data
is immutable. This makes the transmission and sharing of biometric information particularly
sensitive. It requires protection against both accidental leaks and malicious misuse. Traditional
fingerprint authentication relies on storing and processing biometric data locally on secure
hardware, relying on trusted partners when sharing the biometric data. However, this approach
limits broader applications, such as remote identity verification or identity identification/verifi-
cation with a non-trustworthy partner. Multi-party computation (MPC) offers an alternative
by enabling secure fingerprint comparison without exposing raw biometric data [151]. However,
MPC introduces significant computational overhead, especially for minutiae-based template
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comparison algorithms. Despite these challenges, recent advancements in MPC protocols leading
to reduced computational demands have made privacy-preserving biometric template comparison
increasingly practical.

1.2 Research Challenges and Contributions

This thesis aims to address key technical challenges hindering the widespread adoption and
interoperability of contactless fingerprint recognition systems, as described in section 1.1. The
objective is to develop and evaluate novel algorithms and methods that improve the accuracy,
robustness, and privacy of contactless fingerprint acquisition. To achieve this, the research is
guided by the following questions:

RQ1 How can segmentation of fingerprints from contactless hand images be made more accurate
and robust across different environments?

RQ2 What techniques can effectively correct pose variations in contactless fingerprints to enhance
comparison accuracy?

RQ3 How can core point detection in contactless images be improved to enable better alignment
with contact-based databases?

RQ4 What are the problems of established fingerprints quality assessment metrics and what can
be changed to improve their performance on contactless fingerprint images?

RQ5 How can we detect errors in the mosaicking process of contactless fingerprint sensor systems?

RQ6 Can we produce realistic, synthetic 3D fingers and how do they perform compared to real
fingers? What manufacturing techniques can be used?

RQ7 How can we create a privacy preserving comparison approach that circumvents the risk of
exposing biometric data to other parties?

These questions are explored throughout the thesis, with each chapter addressing a specific
research challenge, which is linked to one to many research questions.

1.3 Thesis Outline
This thesis is structured as follows:

Chapter 2: Background provides a comprehensive overview of the fundamental principles
of fingerprint recognition, including fingerprint history and anatomy, image acquisition, pre-
processing, feature extraction, and comparison, as well as an introduction to the fundamental
computer vision and deep learning techniques, such as artificial neural networks, training of deep
learning models, convolutional neural networks and more specialized architectures, that build
the basis on which the research was conducted.

Chapter 3: Development of Contactless Fingerprint Detection Algorithms is the core
of the thesis, presenting the novel algorithms and methods developed to address the challenges
outlined in the previous section 1.2. This chapter is divided into seven sections:
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— Section 3.1: Fingerprint Segmentation in Contactless Images discusses the difficul-
ties in accurately segmenting contactless fingerprint images due to variations in lighting,
complex backgrounds, and skin tones. It then presents proposed novel segmentation algo-
rithms (Custom U-Net based algorithm, FingerUNeSt++ and TipSegNet) and details their
implementation, evaluation, and results.

— Section 3.2: Fingerprint Core Location focuses on the empiric position of the fingerprint
core relative to the fingerprint pattern and an accurate way of detecting the core point in
contactless fingerprints. The section includes a description of the empirical analysis and
the outcomes, as well as the proposed deep learning algorithm to localize the core, the
experimental setup and results of the core localization.

— Section 3.3: Pose Correction and Unwarping for Contactless Fingerprints ad-
dresses the challenge of pose variations (roll and yaw) and non-linear distortions in contactless
images. It proposes a method combining geometric transformations and deep learning to
correct these distortions. The section includes algorithm descriptions, experimental setup,
results, and a critical discussion.

— Section 3.4: Contactless Fingerprint Quality Assessment discusses the need for a
reliable quality assessment metric specifically designed for contactless fingerprints. It will
describe the adaption of NFIQ 2 to contactless fingerprint images, leading to MCLFIQ, and
validate the effectiveness of this approach.

— Section 3.5: Fingerprint Mosaicking Artifact Detection addresses the artifacts
introduced during the mosaicking process. This process is used to capture a full nail-to-nail
fingerprint in both contact-based and contactless scenarios. A novel deep learning-based
detection method is proposed to identify and score these artifacts.

— Section 3.6: Synthetic Finger Phantoms addresses the production of synthetic 3D
fingers based on synthetic fingerprints. Different manufacturing approaches are presented,
compared and tested.

— Section 3.7: Privacy Preserving Fingerprint Comparison explores techniques for
secure and privacy-preserving fingerprint comparison. It proposes an optimized minutiae-
based comparison algorithm using Multi-Party Computation (MPC) for efficient encrypted
fingerprint comparisons.

Chapter 4: Conclusion summarizes the key findings and contributions of the thesis. It
additionally provides a fictive use-case showing the expected effect of combining the algorithms
developed in this thesis on a real-world scenario.



Chapter 2
Background

This chapter provides an introduction to the field of fingerprint recognition as well as a short
overview of the most important algorithmic discoveries in the field of computer vision and deep
learning, which can be applied to the broader context of fingerprint recognition. It begins by
reviewing the principles of fingerprint recognition, covering aspects from finger anatomy to image
processing and fingerprint comparison. Subsequently, it continues by explaining the specific
contactless fingerprint recognition, highlighting the evolution of the field, the state-of-the-art,
and the persistent challenges that motivate this research. The goal is to provide a thorough and
comprehensive overview of what is currently known, in order to show where improvement is
possible.

Fingerprint recognition stands as one of the most established and reliable biometric modalities,
playing an important role in forensic science, access control, and personal identification. It builds
on the uniqueness and persistence of fingerprint patterns.

2.1 Fingerprint History

Friction ridge skin, which has unique patters and stays mostly persistent throughout an individ-
ual’s lifetime (except injury or disease) [276], forms the foundation for fingerprint-based biometric
identification. This biological characteristic has a long and rich history, predating its widespread
adoption in modern forensic science.

The use of fingerprints can be traced back to ancient civilizations. Archaeological evidence
shows impressions, both accidental and intentional, on artifacts such as 6000-year-old earthenware
discovered in northwest China. The earliest deliberate use is found in clay seals used for documents
during China’s Qin Dynasty (221-206 B.C.), demonstrating an understanding of fingerprints
for proving authorship and preventing tampering. The Chinese recognized the value of friction
ridge impressions for individualization perhaps as early as 300 B.C. and in Japan as early as A.D.
702. A Japanese domestic law enacted in A.D. 702 hints at a similar understanding. European
scientists began detailed observation of friction ridge skin in the 17th and 18th centuries, with
Dr. Nehemiah Grew first describing it in detail in 1684. [11]

The systematic classification of fingerprints began to take shape in the 19th century. Dr.
Johannes E. Purkinje’s 1823 thesis classified fingerprints into nine pattern types, a precursor to
later, more comprehensive systems. Sir Francis Galton’s groundbreaking work in the late 19th
century, including his book Finger Prints (1892), established the uniqueness and permanence
of fingerprints and introduced the now-standard terminology for minutiae (Galton details).
Around the same time, Juan Vucetich developed a fingerprint classification system and first used
fingerprints for criminal identification in Argentina. Sir Edward Richard Henry, building upon
Galton’s work, developed the Henry classification system in the late 19th century, which achieved
widespread adoption. [11]

Concurrent with the development of classification systems, scientific advancements deepened
our understanding of friction ridge skin. In 1880, Henry Faulds published on the value of
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fingerprints for identification, including their potential use at crime scenes. Researchers like
Hermann Welcker and Sir William James Herschel conducted studies on the permanence of
friction ridges. Embryological studies by scientists such as Arthur Kollmann, Harris Hawthorne
Wilder and Inez Whipple revealed the formation of friction ridges and volar pads during fetal
development. [11]

In 1971, the first optical fingerprint capture machines began to appear [277] and in 1975 the
FBI started funding the development of sensors and minutiae extraction technologies. Through
the 1980s and 1990s, optical slap scanners (FTIR-based) became standard in law enforcement
AFIS systems. Notably, in 1998 Siemens demonstrated the first smartphone with an embedded
fingerprint sensor, spurring others (Motorola, Apple, etc.) to follow [277]. Apple’s 2013 Touch ID
(capacitive) and later developments brought fingerprint sensors to millions of consumers. In the
late 2010s, under-display sensors emerged: first optical (e.g. Vivo in 2018) and soon ultrasonic
in OLED screens (e.g. Samsung S10 in 2019) [277]. Thermal sensors (using heat patterns) and
multispectral optical sensors (capturing sub-surface detail) also appeared in niche roles (car
locks, government ID scanners). Recently (2023), agencies have even begun experimenting with
contactless capture (e.g. smartphone-camera fingerprints in FBI pilot projects) [68].

2.2 Anatomy and Fingerprint Features

The physical structure of friction ridge skin is the basis for its use as a biometric trait. It consists
of two primary layers: the epidermis (outer layer) and the dermis (inner layer). The epidermis
itself has multiple layers, with the stratum corneum (surface layer) being composed of dead cells
and the stratum basale (basal layer) being responsible for generating new skin cells. Friction
ridges are formed by the intricate arrangement of raised ridges and furrows (valleys) on the
surface of the skin. These patterns are not superficial, they are anchored by a double row of
papillae pegging into the dermis. [149]
Fingerprint features are typically described at three levels of detail:

1. Level 1 Features (overall ridge flow): This level refers to the overall pattern formed by the
flow of ridges. The primary pattern types are:

e Arches: Ridges enter from one side of the finger and exit on the other, forming a
wave-like pattern. Subtypes include plain arches (smooth, wave-like) and tented arches
(with a sharp, upward thrust). Arches are the least common pattern type, appearing
with low distribution rates.

e Loops: Ridges enter and exit on the same side of the finger, curving around a central
point. Loops are classified as radial (loop opens towards the thumb) or ulnar (loop
opens towards the little finger), based on their orientation. Loops are more common
patterns.

e Whorls: Ridges form circular or spiral patterns around a central point. Subtypes
include plain whorls, central pocket loop whorls, double loop whorls (two separate loop
formations), and accidental whorls (combinations of patterns or irregular patterns).
Whorls are less common than loops but more frequent than arches.

Within these patterns, two specific points of interest are used for classification and alignment.
The approximate center of the fingerprint pattern, which is called core and second, the
triangular areas where ridges from three different directions converge, also called deltas.

2. Level 2 Features (minutiae): These are the small, specific details within the ridge patterns,
also known as Galton details. They are the primary features used for fingerprint comparison.
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Fig. 2.1: Overview of the different feature levels with example images, taken from [13].

The two most common minutiae types are ridge endings: Points where a ridge terminates
and bifurcations: Points where a ridge splits into two branches. Other, rarer, types include
line fragments (very short ridges), line units (short, isolated ridges), enclosures/eyes (ridges
that bifurcate and rejoin, forming an enclosed space), and hooks (short branches off a main
ridge). Minutiae are defined by their location (x, y coordinates on the fingerprint image),
their angle (the direction of the ridge at that point), and their type (ending, bifurcation,
etc.). ABIS system often only work with ridge endings and bifurcations.

3. Level 3 Features (pores and ridge details): These are scars, warts ceases, as well as very fine
details of the ridge itself. Those fine details require high-resolution imaging to be reliably
captured and used. They consist of the positions, distributions, and shapes of sweat pores
along the ridges or the shapes of the ridge edges (edgeoscopy). This includes features
like ridge indentations, protrusions, and angles, as well as incipient ridges, which are thin,
immature ridges that appear between the main ridges. Level 3 features are primarily used
in high-resolution scenarios, such as comparing partial fingerprints, when image quality is
exceptionally good. They can provide additional discriminating information to supplement
Level 2 features.
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The distinctiveness of fingerprints comes from the fact that no two individuals, not even identical
twins, share the same fingerprint patterns at Level 2 and Level 3 detail. This individuality is a
result of the complex interplay of genetic and environmental factors during fetal development.
The genes provide the general blueprint for ridge patterns, but the precise arrangement of
minutiae and pores is influenced by random events and the specific environment within the womb
during weeks 10-17 of gestation, when the volar pads (transient swellings of tissue on the palms
and soles) regress and friction ridges begin to form. [149]

The patterns formed during fetal development remain remarkably consistent throughout an
individual’s lifetime. Superficial injuries to the epidermis will result in the ridges regrowing in
their original pattern. Only deep damage to the dermis, significant scarring, decomposition, or
certain skin diseases can permanently alter the friction ridge pattern. This immutability is very
important for fingerprint recognition’s reliability. [267]

2.3 Fingerprint Image Acquisition

The accuracy and reliability of any fingerprint-based biometric system depends on the quality of
the acquired fingerprint images. The method used to capture these images significantly influences
their characteristics and subsequent processing steps required to use them in downstream
applications such as ABISs [108, 276]. Fingerprint acquisition techniques can be broadly
categorized into traditional inked methods, contact-based live scan technologies, and contactless
methods.

Historically, fingerprint acquisition relied on the inked method, a manual process involving the
application of ink to the fingertip and then pressing or rolling the finger onto a paper card [11].
While serving as a foundational technique, inked fingerprinting is inherently prone to distortions.
These are a result of uneven ink distribution, smudging, and variations in applied pressure,
making it unsuitable for modern, automated biometric systems.

Contact-based live scan technologies represent a significant advancement, utilizing sensors
where the user places their finger directly on a platen surface. Several sensor types exist, each
with distinct operating principles. Optical sensors, often employing Frustrated Total Internal
Reflection (FTIR), use a light source and a prism. When a finger is placed on the platen, the
ridges make contact with the surface, frustrating the total internal reflection of light, while
the valleys remain separated by an air gap. This creates a contrast difference that forms the
fingerprint image [16, 154, 196]. While FTIR-based optical sensors are well-established and
widely used, they are susceptible to image degradation from dirt, latent fingerprint residues, and
variations in skin condition, such as dryness or excessive moisture [270].

Capacitive sensors utilize arrays of tiny capacitors. The capacitance between the sensor and
the finger varies depending on whether a ridge (touching the sensor) or a valley (separated by an
air gap) is present [196, 253, 263, 273]. This variation in capacitance is then used to construct the
fingerprint image. Capacitive sensors are known for their high precision and improved resistance
to spoofing attacks compared to some optical methods [71]. However, they may be affected by
extremely dry or damaged skin, and the sensor size can sometimes limit the captured fingerprint
area.

Ultrasonic sensors operate by emitting ultrasonic pulses and measuring the resulting echoes.
The echoes differ between ridges and valleys due to the varying acoustic impedance, allowing for
the creation of a detailed, often 3D, map of the fingerprint [78, 153, 214]. Ultrasonic imaging can
penetrate the outer layer of skin, resulting in high-quality images that are less susceptible to
contamination from dirt and moisture. However, these sensors tend to be more expensive and
potentially slower than other technologies.
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Thermal sensors measure temperature differences between the ridges (which are in contact
with the sensor and therefore warmer) and the valleys (which are cooler due to the air gap) [91].
Thermal sensors can operate effectively under a range of skin conditions, including both wet and
dry fingers, and offer good security. However, they can be sensitive to changes in the ambient
temperature and have a higher cost compared to some other sensor types.

Multispectral imaging captures fingerprint images at multiple wavelengths and polarization
conditions [211, 285]. This approach allows for the acquisition of both surface and subsurface
fingerprint features, making it robust to variations in skin condition, such as dirt, moisture, and
even poor contact [211]. Multispectral imaging also has shown potential in detecting spoofing
attempts. The main drawbacks are the increased complexity and higher cost of multispectral
systems.

Contactless fingerprint acquisition can be seen as the next step, following after the progressive
development of contact-based live-scan device. Contactless methods, typically optical, employ
cameras and computer vision algorithms to capture fingerprint images without any physical
contact between the finger and a sensor [87, 217]. Some contactless systems incorporate structured
or specialized lighting to enhance image quality. The primary advantages of contactless acquisition
are improved hygiene [176, 275] and a reduction in the non-linear skin distortions that occur
when a finger is pressed against a platen [237]. Furthermore, 3D contactless systems take this
a step further by creating a three-dimensional model of the fingertip, using techniques such
as Time-of-Flight (TOF) sensors, structured light, stereo vision, or shape from focus/defocus
[127, 169]. This 3D representation captures a more complete depiction of the fingerprint, which
can potentially improve comparison accuracy, especially when dealing with rolled fingerprint
equivalents [87]. Users also generally prefer contactless acquisition over contact based [176].

Latent fingerprint acquisition, while distinct from live scan methods, is another biometric
use-case required in forensic science. Latent fingerprints are impressions left unintentionally, for
example, at crime scenes [3, 37, 72]. Recovering these prints involves techniques such as dusting
with fine powders or applying chemical enhancements like ninhydrin or cyanoacrylate fuming to
make the invisible ridge patterns visible [128].

To ensure consistency and interoperability, several standards have been established for fin-
gerprint image acquisition. The FBI’'s Appendix F specifies image quality requirements for
large-scale fingerprint comparison and human expert comparison [61]. PIV-071006 provides a less
strict standard, primarily intended for one-to-one verification scenarios [131]. Image resolution,
typically measured in dots per inch (DPI), is one of the most important parameters specified in
these standards [157].

2.4 Fingerprint Image Pre-processing

Raw fingerprint images, independently whether they were obtained through contact-based or
contactless sensors, do seldom have the quality required for direct feature extraction. Factors
such as the sensor’s internal electronics [156, 270] or optical components, variations in skin
conditions such as dryness, wetness, or the presence of contaminants [91, 156], and, specifically
for contactless acquisition, uneven illumination and specular reflections [91] reduce the fidelity
of the fingerprint recording. Pre-processing techniques are therefore used to reduce the impact
of these factors. The goal of pre-processing is to enhance the clarity of the ridge and valley
structures while avoiding introducing false information. This improves the accuracy and reliability
of subsequent feature extraction stages and, consequently, the overall system performance.
Contact-based and contactless fingerprint acquisition methods present distinct challenges that
require different pre-processing approaches. Contact-based fingerprint images are characterized



22 2 Background

by non-linear distortions, which are however consistent over subsequent recordings and are
therefore only relevant if comparing the fingerprint recordings with recordings from contactless
sensor modalities. These distortions arise from the elastic deformation of the fingertip skin as it
is pressed against the sensor platen [237, 275]. In contrast, contactless images, while free from
pressure-induced distortions, are susceptible to issues like pose induced geometric distortion,
uneven illumination, specular reflections (glare), variations in focus, and motion blur [91].

The typical fingerprint image pre-processing pipeline involves a sequence of operations, each
addressing specific image degradations. Fingerprint images often show low contrast between ridges
and valleys, hindering accurate feature detection. Image enhancement techniques therefore aim to
improve this contrast using various approaches. Histogram equalization is a widely used technique
that redistributes pixel intensities across the entire image, thereby enhancing overall contrast [35].
It operates by transforming the image’s intensity histogram to approximate a uniform distribution.
However, global histogram equalization may not be optimal for images with significant local
variations in contrast. Adaptive histogram equalization (AHE) addresses this limitation by
dividing the image into smaller regions and performing histogram equalization separately within
each region [185]. This localized approach is particularly beneficial for contactless fingerprint
images, which often exhibit uneven illumination due to variations in finger-to-sensor distance
and ambient lighting conditions. Contrast Limited Adaptive Histogram Equalization (CLAHE)
further improves upon AHE by limiting the amplification of noise in relatively homogeneous
regions. Furthermore, variations in illumination or sensor sensitivity can result in images that
are either too dark (under-exposed) or too bright (over-exposed). Brightness adjustment aims to
normalize the overall image brightness to a standard level, making the ridge structures more
discernible [253]. One common approach is to adjust the mean gray value of the image to a
predefined target value [99]. This ensures consistency across different images and facilitates
subsequent processing steps.

Noise, which will be present in any image acquisition process, can be seen as random variations
in pixel intensities that can obscure the true fingerprint pattern. Noise reduction filters aim
to suppress this noise while preserving image details. Gaussian filtering is a linear smoothing
technique that employs a Gaussian kernel to perform a weighted average of pixel values within
a neighborhood [35]. The Gaussian kernel’s weights are determined by a Gaussian function,
effectively blurring the image and reducing high-frequency noise components. The degree of
smoothing is controlled by the standard deviation of the Gaussian function. Another common
technique, median filtering, is a non-linear filtering technique that replaces each pixel’s value
with the median value of its neighboring pixels [108]. This approach is particularly effective at
removing salt-and-pepper noise, characterized by isolated bright and dark pixels, while preserving
edges better than linear smoothing filters. Beyond Gaussian and median filters, other noise
reduction techniques are available, each with its own strengths and weaknesses. Anisotropic
diffusion filters, for example, are designed to reduce noise while preserving edges and fine details
by selectively smoothing along the direction of image gradients [99]. The selection of a suitable
filter depends on the type and level of noise and the recording conditions.

Binarization is the process of converting a grayscale fingerprint image into a binary image,
consisting of only black and white pixels. This simplifies the representation, typically assigning
black pixels to ridges and white pixels to valleys. This process helps subsequent feature extraction
by clearly delineating the ridge structure. Global thresholding techniques, like Otsu’s method,
are used to determine the separation. Otsu’s method is a widely used automatic thresholding
technique that selects a global threshold value based on the image’s histogram [180]. It aims
to find the threshold that minimizes the intra-class variance (variance within the foreground
and background classes) or, equivalently, maximizes the inter-class variance (variance between
the foreground and background classes). However, adaptive thresholding techniques, unlike
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global thresholding, compute different threshold values for different regions of the image [185].
This adaptability makes them more robust to variations in illumination and contrast, which
are commonly encountered in contactless fingerprint images. Adaptive thresholding methods
typically calculate the threshold for each pixel based on the statistics of its local neighborhood.
Binarization, in the context of fingerprints, is essentially a segmentation of the image, and it is
therefore closely connected [286].

Segmentation is the process of isolating the region of interest (ROI), which is the fingerprint
itself, from the background. Accurate segmentation is especially important in contactless
recording scenarios where the background can be complex and variable, potentially containing
non-fingerprint objects or textures [87, 116]. The segmentation performance has a direct impact
on downstream tasks such as pose correction [217, 247] and feature-based comparison [87], both
of which rely on a precise mask of the fingertip region to separate it from the background.

Traditionally, fingertip segmentation methods have focused on isolating a single fingertip from
the background. These methods can be broadly categorized into color-, or brightness for grayscale
images, -based, machine learning-based, and shape-based approaches. Color-based methods
use the skin tone of fingertips to differentiate them from the background [18, 116]. Machine
learning-based methods, on the other hand, use algorithms trained on labeled data to identify and
delineate fingertip regions [164, 190]. Shape-based methods leverage the characteristic geometric
properties of the fingertip, such as its elliptical shape and curvature, to perform segmentation
[288]. More recent approaches in contactless fingerprint recognition have moved towards directly
segmenting fingertips from hand images, bypassing the need for a separate fingertip detection
step [164, 190]. This approach simplifies the processing pipeline and can improve efficiency.
Deep learning, particularly the use of convolutional neural networks (CNNs), has significantly
advanced the field of contactless fingerprint segmentation [80, 82].

Ridge thinning, also known as skeletonization, is a process that reduces the width of the ridges
in a binary fingerprint image to a single pixel while preserving the connectivity and overall
structure of the ridge pattern [170]. This simplified representation facilitates feature extraction,
particularly the detection of minutiae. Thinning algorithms typically employ morphological
operations, such as erosion and dilation, to iteratively remove pixels from the boundaries of
ridges until only a one-pixel-wide skeleton remains [170]. The Zhang-Suen algorithm is a classic
and widely used thinning algorithm that iteratively removes pixels based on specific connectivity
criteria [41].

The orientation field represents the local direction of the ridges at each point in the fingerprint
image. It is used in various fingerprint processing stages, including image enhancement, scale
normalization, minutiae extraction, and fingerprint alignment during comparison [34, 268].
Gradient-based methods are often applied, where the orientation field is calculated by calculating
the gradient of the image intensity at each pixel [262]. The gradient direction, perpendicular to
the ridge direction, provides an estimate of the local ridge orientation. Slit-based methods are
another option. These methods utilize specially designed filters, or slits, to analyze the local ridge
pattern and determine the dominant orientation. Gabor filters, tuned to specific frequencies and
orientations, are commonly used for this purpose.

Fingerprint images are typically acquired at different resolutions, depending on the sensor used.
To ensure interoperability and compatibility with standard fingerprint databases and comparison
algorithms, it is often necessary to normalize the image resolution to a standard value, as for
example, specified in the FBI's Appendix F [61]. For systems which are not able to correct for
scale variations, this implies scaling the fingerprint image such that the ridge distance is set to a
fixed value.

The quality of pre-processing has a direct and significant impact on the accuracy and reliability
of subsequent fingerprint analysis steps. Noise and artifacts in the image can be misinterpreted



24 2 Background

as genuine minutiae, leading to false detections. Poor contrast or inadequate noise reduction can
obscure genuine minutiae, causing them to be missed during feature extraction. Errors in the
estimated orientation field can lead to incorrect fingerprint classification, which interfere with
the comparison process.

2.5 Fingerprint Feature Extraction

Fingerprint feature extraction is the step that transforms the information of the preprocessed
fingerprint image into a representation suitable for comparison and recognition. While various
features can be extracted, this thesis primarily focuses on two key approaches: traditional
minutiae extraction and the more recent development of learned fingerprint representations, often
referred to as embeddings.

The process of minutiae extraction requires a preprocessed fingerprint image that has been
binarized, thinned, and enhanced to improve the clarity of the ridge structure [99, 157]. Then,
the so called crossing number is calculated. The crossing number is defined as the number of
ridge transitions (changes from ridge to valley, or valley to ridge) along a small neighborhood
around a given pixel [106, 154]. It is calculated by summing the differences between adjacent
pixel pairs in an eight-connected neighborhood and dividing the result by two [157]. A pixel
on a ridge ending will have a crossing number of 1, while a pixel on a bifurcation will have a
crossing number of 3 [106, 157]. Pixels on continuous ridges have a crossing number of 2, and
are therefore not minutiae.

Despite preprocessing, the initial minutiae extraction often includes spurious minutiae caused
by noise, artifacts, or remaining imperfections in the image. Therefore, a post-processing stage is
typically used to suppress these false minutiae. This stage commonly employs a combination
of heuristics and rules based on geometric and topological relationships between the detected
minutiae. For instance, distance-based rules dictate that minutiae located too close to each other
are likely to be spurious, representing the same feature detected multiple times [157]. Angle-
based rules can identify and eliminate pairs of ridge endings that point in opposite directions
and are very close, as these likely represent a single broken ridge rather than two distinct
endings. Minutiae located near the boundary of the fingerprint region are often unreliable due to
incomplete ridge information and are therefore typically removed [71]. Furthermore, analyzing
the surrounding ridge structure provides valuable context for validating minutiae, since genuine
minutiae should be consistent with the local ridge flow [287].

Once a reliable set of minutiae has been extracted and refined, each minutia is represented by
its location (x, y coordinates in the fingerprint image), its angle (the orientation or direction of
the ridge at that point, typically measured in degrees or radians relative to a reference axis),
and its type (classified as either a ridge ending or a bifurcation) [157]. This (x, y, angle, type)
representation forms the basis for many traditional fingerprint comparison algorithms.

Regardless of the feature extraction method used, assessing the quality of the extracted features
can improve the fingerprint comparison. Confidence measures are often assigned to individual
minutiae, indicating the reliability of their detection. These confidence scores can be based on
factors such as local ridge clarity, contrast, and the degree of agreement with the estimated
orientation field [71, 117]. In addition to individual minutiae confidence, overall quality scores
are often computed for the entire set of extracted features. These scores provide an indication of
the overall reliability of the fingerprint representation [4].

While minutiae are the most widely used features, other fingerprint characteristics can also
provide useful information. Singular points, namely cores and deltas, are important global
features. Cores represent the approximate center of the fingerprint pattern, while deltas are
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triangular regions where ridges from three different directions converge [17, 157]. Singular points
are valuable for fingerprint classification, alignment, and indexing. The ridge count, defined as
the number of ridges between two specific points (such as a core and delta, or two minutiae), is
another useful feature [157]. The local ridge frequency, which is the reciprocal of the average
inter-ridge distance, provides information about the density of the ridge pattern [99, 154]. Texture
features, derived from the gray-level distribution in the fingerprint image, often using techniques
like Gabor filter responses, can also capture discriminating information [107].

In recent years, a new, deep learning based fingerprint feature extraction approach was
introduced: learned fingerprint representations, or embeddings. Unlike manually designed
features like minutiae, these representations are automatically learned from data and converted
into a fixed-sized vector space. The input to these learning-based methods can vary, it may be
the raw or preprocessed fingerprint image, the frequency spectrum of the image [87], or even a
set of extracted minutiae locations and orientations [32]. Deep learning architectures, such as
Convolutional Neural Networks (CNNs) [32], Autoencoders [186, 282], or Transformers [88], are
employed to learn hierarchical features from the input data. The output is typically a fixed-length
vector, referred to as an embedding, which represents the fingerprint in a high-dimensional feature
space [32, 284]. The goal is to create embeddings that are both compact, enabling efficient
storage and comparison, and discriminative, ensuring that different fingerprints are mapped to
distinct regions in the embedding space [32]. These fixed-size embeddings over advantages such
as fast encryption and efficient, privacy-preserving comparison operations [205].

2.6 Fingerprint Comparison

Fingerprint comparison, also frequently referred to as fingerprint recognition, is the process of
determining the degree of similarity between two fingerprint impressions. The goal is to assess
the likelihood that the two fingerprints originated from the same finger [157].

Fingerprint comparison systems are broadly categorized into two main types: verification and
identification. Verification, also known as 1:1 comparison, involves comparing a query fingerprint
against a single claimed identity’s fingerprint [157]. This is commonly used in access control
applications, where a user claims an identity and provides their fingerprint to verify that claim.
Identification, or 1:N comparison, involves comparing a query fingerprint against a database of
fingerprints to find the best match (or determine that no match exists) [157]. This is used in
forensic investigations and large-scale identification systems, where the identity of the individual
providing the query fingerprint is unknown.

The dominant approach to fingerprint comparison is minutiae-based comparison, which relies
on comparing the sets of minutiae extracted from the two fingerprints [106, 157]. This process
typically involves several key stages: alignment, pairing, scoring, and thresholding.

Alignment is the first step, aiming to find the optimal spatial transformation that brings the
two minutiae sets into the best possible correspondence. This transformation typically involves
translation (shifting the position) and rotation, and may sometimes include scaling [32, 106]. Two
main alignment strategies exist: global and local. Global alignment seeks a single transformation
that applies to the entire fingerprint [106]. This approach often leverages global features such as
singular points (cores and deltas) [17] or the overall orientation field [209] to guide the alignment
process. However, global alignment can be less effective when dealing with significant non-linear
distortion, which is common in contact-based fingerprint images due to the elasticity of the skin.
Local alignment, in contrast, attempts to mitigate the effects of non-linear distortion by applying
multiple local transformations to different regions of the fingerprint [20, 209]. This approach
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often utilizes local minutiae descriptors, which capture the characteristics of the ridge structure
in the immediate vicinity of each minutia [70], or analyzes local ridge structures directly [97].

Once the minutiae sets have been aligned, the next step is minutiae pairing, which involves
establishing correspondences between minutiae in the two sets [157]. This is not a trivial task, as
one or both fingerprint impressions may contain missing minutiae (due to poor image quality or
incomplete capture) or spurious minutiae (resulting from noise or artifacts in the preprocessing
stages). Furthermore, the overlap between the two fingerprints may be limited, especially in
partial fingerprint scenarios. Common methods for minutiae pairing include threshold-based
pairing, which establishes correspondences based on distance and angle difference thresholds
between minutiae [114], and relaxation methods, which iteratively refine the pairing based on
the consistency of neighboring minutiae pairs [249].

After pairing, a similarity score is calculated to quantify the degree of similarity between the
two minutiae sets [157]. This score typically takes into account several factors, including the
number of mated minutiae, the distances between paired minutiae, the differences in their angles,
the types of minutiae (ridge endings or bifurcations), and the consistency of ridge counts between
corresponding minutiae pairs [106, 113]. Scoring approaches can range from simple weighted
sums of these factors to more sophisticated statistical models.

Finally, a thresholding step is performed, where the calculated similarity score is compared to a
predefined threshold to make a match/non-match decision [157]. The selection of this threshold is
part system design, as it balances the false acceptance rate (FAR) — the probability of incorrectly
declaring a match between fingerprints from different fingers — and the false rejection rate (FRR)
— the probability of incorrectly declaring a non-match between fingerprints from the same finger.

While minutiae-based comparison is the most prevalent approach, other methods exist.
Embedding-based comparison involves comparing learned fingerprint representations (embed-
dings) using a distance metric to determine the likelihood of a match [32, 87]. Correlation-based
comparison directly compares fingerprint images using correlation measures, assessing the similar-
ity of pixel intensity patterns [19]. However, this approach is generally sensitive to displacement
and rotation between the fingerprint images. Image-based comparison utilizes image features,
such as texture characteristics or ridge frequency, without explicitly extracting minutiae [173].
Pattern-based or ridge-based comparison leverages the entire ridge pattern, including Level 1
features like overall pattern type (arch, loop, whorl), for comparison [107].

The performance of any fingerprint comparison method is influenced by several factors. Poor
image quality, characterized by noise, low contrast, or blurring, significantly reduces comparison
accuracy [4]. Non-linear distortion, caused by the elastic deformation of the skin during contact-
based acquisition, degrades performance, particularly for methods relying on global alignment [20,
208]. Partial fingerprints, where only a portion of the complete fingerprint is available, present a
challenge due to the limited overlap and reduced number of comparable features [113]. Latent
fingerprints, often encountered in forensic investigations, are particularly challenging due to their
typically poor quality, partial nature, and presence of distortion and noise [110]. In the context
of identification (1:N comparison), the size of the reference database also plays a role. Larger
databases inherently increase the probability of false matches [54].

2.7 Computer Vision

Computer vision is a multidisciplinary field focused on enabling computers to extract and
interpret information from digital images and videos [75, 195, 245]. It draws on methods and
ideas from image processing, pattern recognition, machine learning, and artificial intelligence
[238]. Applications of computer vision are wide-ranging and include object detection [290], image
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classification [125], scene understanding [93], image restoration [254], medical imaging analysis
[140], autonomous driving [26], robotics [231], and augmented reality [7].

Digital images are typically represented as matrices of numerical values. Each value in the
matrix corresponds to a pixel location (z,y)and indicates either intensity (in grayscale images)
or color (in color images) [85, 175]. Grayscale images assign a single value per pixel, usually in
the range 0 (black) to 255 (white) [85]. Color images use multiple channels—commonly red (R),
green (G), and blue (B)—to represent pixel color. This can be expressed as

I(z,y) = [R(z,y),G(x,y), B(z,y)], (2.1)

where (z,y) denotes the pixel coordinates, and R, G, and B represent the respective color channel
values.

Computer vision relies on basic image processing operations as foundational tools for more
complex algorithms. These operations are generally divided into point operations and neighbor-
hood operations. Point operations modify each pixel independently of its neighbors [85, 175].
Common examples include brightness adjustment (adding a constant to each pixel), contrast
enhancement (expanding the range of intensity values), and thresholding (converting an image
to binary by assigning pixel values based on a set threshold) [85]. A general form of a point
operation is

9(z,y) = T[f (z,y)], (2.2)

where f(z,y) is the input pixel value, g(z,y) is the output pixel value, and 7" is the transformation
function.

Neighborhood operations, or filtering, update a pixel’s value based on its surrounding pixels
[85, 175]. A common example is linear filtering, where a kernel (a small matrix of coefficients)
is convolved with the image [85]. The new pixel value is a weighted sum of neighboring values,
determined by the kernel

g@y) = > > fla—iy—j)-hiij), (2.3)
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where h(i, j) are the kernel coefficients, and m,n € NT determine the half-width and half-height
of the kernel, respectively. The kernel size is thus (2m + 1) x (2n + 1). Different kernels produce
different effects. Smoothing filters (e.g., Gaussian and mean filters) reduce noise and blur the
image. Sharpening filters (e.g., Laplacian and unsharp masking) enhance edges and details [278].
Edge detection filters, such as the Sobel [236], Prewitt [188], and Canny [31] operators, highlight
boundaries between regions. In addition to filtering, geometric transformations alter the spatial
layout of an image [85, 175]. These include scaling, rotation, translation, affine transformations
(combinations of geometric modifications), and perspective transformations (to simulate changes
in viewpoint) [92].

Building on basic image processing techniques, feature extraction focuses on identifying and
representing distinctive elements within an image [148, 212]. The main goal is dimensionality
reduction: to represent image content in a more compact form while retaining information needed
for tasks like object recognition or image retrieval. As discussed in Section 2.5, fingerprint analysis
often emphasizes minutiae extraction. In general computer vision, however, a broader range
of features is considered. Common examples include edges, which indicate boundaries between
regions with different intensities, corners, which mark points of rapid intensity change, and blobs,
which refer to areas that differ from their surroundings in intensity or texture [139]. Advanced
feature descriptors such as SIFT (Scale-Invariant Feature Transform) [148], SURF (Speeded-Up
Robust Features) [15], and ORB (Oriented FAST and Rotated BRIEF) [212] are designed to be
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robust to changes in scale, rotation, and lighting conditions. These methods usually involve two
stages: detecting keypoints and computing descriptors, which are vector representations of the
local image region around each keypoint. While similar in structure to fingerprint embedding
techniques (Section 2.5), these general-purpose methods are not specifically designed for the
ridge-valley patterns of fingerprints.

A key task in computer vision is object detection and recognition, which involves both locating
objects in an image and identifying their categories [69, 260]. Early methods included template
comparison, where a reference image is slid across the input image and a similarity score is
computed at each location to find matches [29]. Feature-based methods extract local features
(e.g., SIFT or HOG) and use classifiers like Support Vector Machines (SVMs) [48] or Adaboost
[76] to identify objects based on those features. Recent advances rely on deep learning and can
be divided into two main categories: two-stage and one-stage detectors. Two-stage detectors,
such as Faster R-CNN [202], first generate candidate object regions and then classify and refine
them. One-stage detectors, including YOLO (You Only Look Once) [200] and SSD (Single Shot
MultiBox Detector) [143], perform detection in a single pass through the network, typically
offering faster performance at the cost of some accuracy. Many of these methods use anchor
boxes, which are predefined bounding boxes of different shapes and sizes, as initial estimates
for object positions [202]. The network then predicts adjustments to these boxes and assigns
confidence scores. More recently, anchor-free methods have been introduced that predict object
locations directly without relying on predefined anchors [254, 290], offering simpler design and
better adaptability. Non-maximum suppression (NMS) [171] is a common post-processing step
used to remove duplicate detections by keeping only the highest-scoring box for each object and
discarding overlapping boxes.

Image segmentation is another important task in computer vision. It involves dividing an image
into regions that correspond to objects or parts of objects [161]. Traditional methods include
thresholding, which assigns pixel classes based on intensity values compared to a threshold [180],
and clustering techniques, such as k-means [150], which group pixels by similarity in features like
intensity, color, or texture. While these methods are still useful, deep learning approaches have
become dominant. Convolutional neural networks (CNNs) have achieved strong performance on
segmentation tasks [161, 206], thanks to their ability to model complex features and contextual
relationships within the image.

2.8 Deep Learning

Deep learning is a subfield of machine learning that uses artificial neural networks with multiple
layers (hence deep) to automatically learn hierarchical representations from data [86, 129]. This
representation learning capability distinguishes deep learning from traditional machine learning
approaches, which often rely on manually engineered features. The motivation behind deep
learning comes from the limitations of hand-engineered features, which can be time-consuming
to design, suboptimal for complex tasks, and difficult to adapt to new data or domains. Deep
learning automates the feature extraction process, allowing the network to learn relevant features
directly from the input data [22]. The power of deep learning lies in its ability to model complex,
non-linear relationships within large datasets, leading to significant advancements in various
fields, including computer vision.

2.8.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) form the foundation of deep learning. The basic building
block of an ANN is the neuron (or perceptron) [207], which receives multiple inputs, performs a
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weighted sum, adds a bias term, and then applies an activation function to produce an output.
Mathematically, this can be represented as:

output = activation (Z(wl i) + b) , (2.4)

%

where z; are the inputs, w; are the corresponding weights, b is the bias, and activation is the
activation function. Depending on the model architecture and also sometimes position of the
neuron inside the network, the equation for the neuron can slightly change. For example, in
modern transformer architectures and also often in convolutional layers, the bias term is typically
left out. The reason for this is that the layers are mostly followed by a normalization layer, which
effectively removes any bias term, and leaving the bias away reduces model overhead. Activation
functions introduce non-linearity into the network, enabling it to learn complex patterns that
cannot be modeled by linear functions alone. Common activation functions include the sigmoid
function, the hyperbolic tangent (tanh) function, and the Rectified Linear Unit (ReLU) [167].
ReLU, defined as f(z) = max(0, z), is particularly popular due to its simplicity, computational
efficiency, and ability to mitigate the vanishing gradient problem (discussed later) [84]. Neurons
are organized into layers: an input layer that receives the initial data, one or more hidden layers
that perform intermediate computations, and an output layer that produces the final result. In
feedforward networks, the most common type of ANN, information flows in one direction, from
the input layer through the hidden layers to the output layer, without any cycles or feedback
connections [86].

2.8.2 Training

Training an ANN involves adjusting its weights and biases to minimize the difference between
its predictions and the ground truth labels. This is achieved through a process that involves a
loss function, backpropagation, and an optimization algorithm. The loss function (also called a
cost function or objective function) quantifies the discrepancy between the network’s output and
the desired output (also called ground truth) for a given input [86]. The choice of loss function
is task-specific. For example, mean squared error is commonly used for regression tasks, while
cross-entropy is often used for classification. Regularization terms are often added to the loss
function to prevent overfitting, where the model learns the training data too well and performs
poorly on unseen data. L1 (also called Lasso regression) and L2 (also called Ridge regression)
regularization, for example, add penalties based on the magnitude of the network’s weights, thus
encouraging smaller weights and simpler models [172].

Backpropagation is an algorithm for efficiently computing the gradient of the loss function with
respect to the network’s weights and biases [213]. It uses the chain rule to derive the gradient of
the loss over each model weight or bias. This gradient indicates the direction and magnitude in
which the weights and biases should be adjusted to reduce the loss. An optimization algorithm,
such as Gradient Descent (GD), Stochastic Gradient Descent (SGD) [204], or Adam [120], is
then used to update the weights and biases based on the computed gradient. These optimization
algorithms differ primarily in how they compute and apply gradients.

Gradient Descent (Equation 2.5) calculates the gradient over the entire training set, resulting
in a stable but potentially slow update. Stochastic Gradient Descent (Equation 2.6), on the other
hand, estimates the gradient using only a small random subset of training samples (a mini-batch),
which allows faster and more frequent updates at the cost of added noise. A common extension
of SGD is the inclusion of momentum (Equation 2.7), which accumulates a velocity vector to
smooth out updates and help the optimization process escape shallow local minima.
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RMSProp (Equation 2.8) improves upon SGD by using a moving average of squared gradients
to normalize the learning rate for each parameter, effectively damping oscillations in steep
directions. Adam (Equation 2.9) combines momentum and RMSProp by computing both the
first moment (mean) and the second moment (uncentered variance) of the gradients, and applies
bias corrections to these estimates, resulting in an adaptive and efficient optimizer.

Gradient Descent (GD):  6;41 =60, —n - VoL(6y), (2.5)
Stochastic Gradient Descent (SGD): 0iy1 =6, —n- VoLp(0:), (2.6)
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In these equations, #; denotes the model parameters (weights and biases) at iteration ¢, and 7
represents the learning rate, a hyperparameter that controls the step size during optimization.
The function £ refers to the loss, while VgL is the gradient of the loss with respect to 6, computed
over the entire dataset or a mini-batch B. For SGD with momentum, v; is the accumulated
velocity vector and v is the momentum coefficient. In RMSProp, v; tracks the exponentially
weighted moving average of squared gradients, with § controlling the exponential decay rate.
Adam extends this idea by introducing two separate moving averages: my, the first moment
(mean) with decay rate (i, and v, the second moment (variance) with decay rate 2. The
bias-corrected estimates m; and ¥; are used to ensure stable parameter updates, and ¢ is a small
constant added to avoid division by zero.

Following the choice of optimization algorithm, normalization plays an important role in
stabilizing and accelerating ANN training. Feature scaling ensures that input features have
comparable value ranges, reducing the risk that features with larger magnitudes dominate the
learning process. Common approaches include min-max scaling and standardization (z-score
normalization). In addition to input normalization, Batch Normalization [105] is often applied
to the activations within each mini-batch during training. This reduces internal covariate
shift—changes in the distribution of layer inputs over time, helping to improve convergence speed
and training stability. Layer Normalization [8] is a related method that normalizes across the
features of individual training samples rather than across the batch dimension.

Training large and deep neural networks from scratch typically requires access to extensive
datasets and substantial computational resources. Collecting and labeling such datasets can be
expensive and time-consuming, and the computational demands of training may limit practical use,
especially in resource-constrained settings. Two common strategies to mitigate these challenges
are transfer learning and data augmentation.
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Transfer learning [181] makes use of models pre-trained on large-scale datasets, such as
ImageNet [55], and adapts them to new but related tasks. Instead of training a model from
randomly initialized weights, training begins from a pre-trained model that has already learned
a general set of features. This approach is particularly useful when the target dataset is small.
The process of adapting the model to the new task is called fine-tuning. A common fine-tuning
strategy is to freeze the early layers of the pre-trained model—those that typically extract
low-level features such as edges or textures—and only update the later layers that are more
task-specific. This allows the model to retain useful general representations while adapting to
the new domain.

Even when using transfer learning, the quantity and variety of training data can significantly
effect performance. Data augmentation [230] helps improve generalization by artificially increas-
ing the size and diversity of the training dataset. This is done by applying label-preserving
transformations to existing samples. Typical transformations include geometric changes such
as rotation, flipping, cropping, scaling, and translation, adjustments to color properties like
brightness, contrast, and saturation, and the addition of noise. These synthetic variations help
the model learn to be invariant to minor input changes, which reduces overfitting and improves
performance on unseen data.

Deep learning frameworks such as TensorFlow [1], PyTorch [184], and Keras [43] provide
built-in support for both transfer learning and data augmentation, making these techniques
accessible and widely adopted in practice.

An often overlooked yet important factor in training neural networks is the initialization of
the model’s weights. Poor initialization can lead to vanishing or exploding gradients, which may
slow down or even prevent convergence during training. To address this, several initialization
strategies have been proposed, each designed to preserve the variance of the activations and
gradients across layers.

For layers using sigmoid or tanh activation functions, the Xavier (or Glorot) initialization [84]
is commonly used. This method aims to maintain a consistent variance of activations between
layers by drawing weights from a distribution with variance

2
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where ni, and ngyt are the number of input and output units of the layer, respectively. Weights
are typically sampled either from a normal distribution
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or from a uniform distribution
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For layers using ReLU or its variants (such as Leaky ReLU or PReLU), He initialization [96] (also
known as Kaiming initialization) is preferred. ReL.U-based activations zero out negative values,
which affects the variance of the outputs. He initialization compensates for this by drawing
weights from a distribution with variance

Var(w) = 2

Nin
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Common implementations sample from

w~N(O,2> or w~U<—1/6,’/6>
Nin Nin Nin

depending on whether a normal or uniform distribution is used.

For convolutional layers, the same initialization schemes are applied, with ny, and ngu
corresponding to the number of input and output channels multiplied by the kernel size.

For recurrent neural networks (RNNs), weight initialization requires additional care due to
the recursive nature of their computation. Orthogonal initialization is often used for recurrent
weight matrices to help preserve long-term dependencies [224]. This method ensures that the
gradient norms remain stable over time by initializing weights with orthogonal matrices drawn
from a distribution that preserves the spectral radius.

Biases are typically initialized to zero, though in some cases (e.g., in LSTM networks), specific
biases (such as the forget gate bias) are initialized to positive values to encourage gradient flow
in early training.

Proper weight initialization improves training speed, stability, and the final performance of
the network. Most modern deep learning frameworks support these initialization strategies out
of the box, either as defaults or as configurable options for each layer.

2.8.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a widely used architecture in deep learning, particu-
larly effective for processing data with a grid-like topology, such as images. The core component
of CNNs is the convolutional layer [129], which applies a set of learnable filters (also referred
to as kernels) to the input data. Each filter is a small matrix of weights that moves across
the spatial dimensions of the input, performing an element-wise multiplication followed by a
summation. This operation produces a single value in the output feature map at each location
and is equivalent to the convolution operation defined in Equation 2.3, where f(x, y) represents
the input image (or feature map), h(i, j) represents the filter weights, and g(x, y) is the resulting
output feature map.
The discrete 2D convolution with bias b can be written as

Output(z,y) = ZZInput(x — i,y —j) - Filter(i,j) + b (2.10)
g

The stride determines how far the filter moves at each step. A stride of 1 results in a full coverage
of the input, while larger strides reduce the spatial resolution of the output. Padding controls the
spatial dimensions of the output feature map. Zero-padding, the most common form, adds rows
and columns of zeros around the input border to preserve input dimensions when using stride 1.

Pooling layers typically follow convolutional layers and reduce the spatial dimensions of feature
maps. This helps lower computational cost and introduces a degree of translational invariance,
making the model less sensitive to small shifts in the input. Common pooling operations include
max pooling, which selects the maximum value within a local region (e.g., a 2x2 window), and
average pooling, which computes the mean value over that region. By aggregating information
from nearby activations, pooling helps retain the presence of features even when their exact
location varies slightly. For example, a 2x2 max pooling layer with a stride of 2 reduces the
height and width of the feature map by half, while also increasing robustness to small translations
in the input.
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Fully connected layers are usually placed at the end of a CNN architecture. These layers
operate like those in standard feedforward neural networks, where each unit is connected to every
unit in the previous layer. They aggregate information extracted by preceding layers and are
often used for classification or regression tasks.

The final output before classification is typically a set of logits, which are unnormalized scores
for each class. For multi-class classification, these logits are passed through a softmax function

to obtain class probabilities
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where z. is the logit for class ¢, C is the total number of classes, and P(y = ¢|x) is the probability

of the input x belonging to class c¢. For binary or multi-label classification, a sigmoid function is
applied instead
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where o(z) maps the logit z to a probability between 0 and 1.

CNN architecture has evolved through several notable developments. The Neocognitron
[77] introduced early concepts such as local receptive fields and hierarchical feature extraction.
LeNet-5 [129] applied convolutional and pooling layers to digit recognition and was one of the
first CNNs trained with backpropagation. The success of AlexNet [55] on the ImageNet challenge
highlighted the scalability of deep CNNs and introduced practices like ReLLU activation, dropout,
and data augmentation.

Subsequent models improved upon AlexNet in various ways. ZFNet [280] adjusted filter sizes
and strides and offered visualizations to understand learned features. VGGNet [234] demonstrated
the effectiveness of deeper architectures with smaller filters. GoogLeNet [244] introduced the
Inception module, which combined filters of different sizes in parallel. ResNet [95] tackled
the vanishing gradient problem by introducing residual connections, which allow gradients to
propagate more effectively through very deep networks. DenseNet [101] extended this idea with
dense connectivity between layers to encourage feature reuse.

Recent architectures have focused on improving computational efficiency. MobileNets [100,
222] use depthwise separable convolutions to reduce the number of parameters and operations.
EfficientNet [248] scales network width, depth, and resolution in a balanced way using a compound
scaling method. These architectures, while initially designed for image classification, are widely
used as backbone networks for a variety of vision tasks.

2.8.4 Specialized Architectures

While CNNs have achieved strong performance in image classification, they face limitations
in tasks that require precise spatial information or handling of objects at multiple scales. In
particular, the repeated downsampling in standard CNNs reduces spatial resolution, making it
difficult to localize object boundaries accurately in tasks such as semantic segmentation [146].
Additionally, relying on features from a single resolution, typically from the deepest layers, is
often insufficient for detecting objects of varying sizes [137]. These limitations have led to the
development of specialized architectures tailored to these challenges. Two widely used examples
are U-Net and Feature Pyramid Networks (FPNs).

The U-Net architecture [206] was introduced for biomedical image segmentation, where precise
pixel-level predictions are required and labeled data is often limited. Earlier encoder-decoder
architectures for segmentation were able to extract high-level features but typically lost fine
spatial details due to downsampling. This loss made it difficult to segment small or thin structures
accurately.
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U-Net addresses this problem using a symmetric encoder-decoder design with skip connections.
The encoder, or contracting path, follows a standard CNN pattern of convolutional and pooling
layers that reduce spatial dimensions while capturing higher-level context. The decoder, or
expanding path, upsamples the feature maps using up-convolutions (also called transposed
convolutions) and combines them with corresponding feature maps from the encoder through
skip connections. These skip connections concatenate encoder feature maps with the decoder’s,
allowing the network to retain and reuse spatial detail that would otherwise be lost. This structure
improves both localization accuracy and gradient flow during training. The architecture’s layout
forms a U-shape, which gives the model its name. Although originally developed for medical
imaging, U-Net has been widely adopted for general semantic segmentation and related tasks.

Feature Pyramid Networks (FPNs) [137] were proposed to improve object detection, particularly
for detecting objects at multiple scales. Standard CNNs extract increasingly abstract features at
each layer, but deeper layers lack the spatial resolution needed for small objects, while earlier
layers lack semantic richness.

FPNs build a multi-scale feature representation by combining features from different depths of
a CNN. The architecture consists of three parts: a bottom-up pathway (the original backbone
CNN), a top-down pathway, and lateral connections. The bottom-up pathway generates feature
maps at progressively coarser spatial resolutions. The top-down pathway upsamples the deeper,
semantically rich feature maps. Lateral connections merge these with higher-resolution feature
maps from the bottom-up pathway using element-wise addition, typically after applying a 1x1
convolution to match dimensions. This produces a set of feature maps at multiple resolutions,
each containing both semantic and spatial information. These maps are then used for detection
at different object scales. FPNs are now a standard component in modern object detection and
instance segmentation systems due to their improved performance on small and large objects
alike.



Chapter 3

Development of Contactless Fingerprint
Algorithms

3.1 Fingerprint Segmentation in Contactless Images

Capturing a fingerprint without physical contact offers advantages in convenience and hygiene,
yet it comes with a problem: precisely identifying the fingertip within the captured image. This
process, known as segmentation, involves digitally isolating the region of interest, the fingerprint
area, from what is often a complex background. Figure 3.1 shows how an ideal segmentation
algorithm would create an output mask 3.1b for a given, cropped single-finger input 3.1a. Note
that this is the simplest case, where the cropped finger is provided as input.

The quality of this selection directly influences the success of subsequent stages, such as
correcting the finger’s three-dimensional pose and extracting features for comparison. Conse-
quently, without reliable segmentation, the system’s ability to accurately identify an individual
is compromised.

This section first introduces the specific difficulties encountered in fingertip segmentation in
contactless scenarios, followed by a review of existing approaches. Next, we will describe our
proposed segmentation algorithms, explain the experimental setup and end with a discussion.

(a) Example input: (b) Ideal output: Precise
Cropped finger mask

Fig. 3.1: Illustration of the input and desired precise output for single-finger segmentation.

3.1.1 Challenges of Contactless Fingerprint Segmentation

While contact-based approaches benefit from the finger being pressed against a platen, which
typically ensures a relatively uniform background, contactless acquisition captures images in
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unconstrained environments. This freedom results in highly variable and often complex back-
grounds, potentially cluttered with arbitrary objects, diverse textures, or even other parts of the
hand [116, 164, 165]. The effects of imprecise segmentation are substantial, as these inaccuracies
directly propagate to subsequent processes. For instance, errors in the segmentation mask lead
to a flawed 3D finger model, which is the basis for pose correction, thereby undermining the
integrity of feature extraction and the ultimate comparison performance [217, 247].

Additionally, several factors inherent to contactless imaging further compound the segmentation
challenge. The freedom in finger presentation allows for wide variations in roll, pitch, and yaw.
Such diverse poses can lead to foreshortening, self-occlusion, and non-canonical views of the
fingertip, making it difficult to define a consistent and recognizable shape for segmentation [215,
247]. Additionally, the visual appearance of the skin itself introduces variability. Differences
in pigmentation or the presence of contaminants like dirt can alter pixel intensities within the
fingertip region, complicating the delineation of a stable and clear boundary [164]. The visibility
of the fingertip can also be compromised. It may be partially occluded by other fingers or
not fully captured within the image frame, and such missing information makes it difficult to
establish the true contour of the finger, again impacting segmentation accuracy [190]. Moreover,
uncontrolled illumination conditions are a frequent issue. Uneven lighting, shadows cast by the
hand or external objects, and specular reflections (glare) from the skin can obscure fingerprint
details, create misleading false edges, or hide true boundaries, all of which can lead to significant
segmentation errors [116]. Lastly, inconsistencies during the image acquisition process, such
as subject movement or incorrect camera focus, can result in out-of-focus images or motion
blur. These degradations reduce overall image quality, leading to blurred or indistinct fingertip
boundaries that are inherently challenging to delineate with precision [190].

3.1.2 Related Work

In contact-based fingerprint acquisition, the finger is pressed against a sensor surface. While
this provides a relatively controlled environment, segmentation is still necessary. One reason is
to remove the noisy area at the borders of the image. Early, simple approaches often relied on
pixel brightness thresholding techniques. For instance, Otsu’s method [180] calculates a global
threshold based on the image brightness histogram to separate foreground and background pixels
[189]. This works well when there’s a clear bimodal distribution in the histogram, as is sometimes
the case with fingerprints, separating fingerprint and background [180]. However, variations
in pressure, skin conditions, or sensor noise can make global thresholding less effective. Other
traditional approaches involve analyzing local pixel features, like variance, mean, and coherence
[19, 52]. These features can help distinguish the structured ridge-valley pattern of the fingerprint
from the more random background noise. Rules based on combinations of those features can
then be established to segment the image [53].

Contactless systems, which capture images using cameras or other optical devices, offer
improved hygiene and usability [189], but suffer from issues that contact-based systems do not
have, as described in the previous section 3.1.1.

To address these problems, researchers explored more sophisticated image processing techniques.
One class of such methods are color-based approaches. Instead of operating directly on grayscale
images, these methods leverage the color information present in contactless images [116]. The
core idea is that skin exhibits a characteristic color signature, which can be used to differentiate
it from the background. A common strategy is to transform the image from the standard RGB
(Red, Green, Blue) color space to other color spaces like HSV (Hue, Saturation, Value), TSL
(Tint, Saturation and Lightness) or others, where skin color tends to cluster more distinctly [116,
255]. For example, utilizing the TSL color space, a simple pre-filtering in the RGB image can be
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done. Areas which are too blue/green and too dark, too yellow, or too green/blue compared to
other colors, are filtered. Afterwards the image is transformed to the TSL color space. Then
a normalization is done to get a normalized ST color space. Using upper and lower bounds
on the S and T values, segmentation is performed [255]. Another method first transforms the
image to the HSV color space, and then uses a normalized histogram, calculated from a reference
region, to segment the image using back-projection [116]. Also an option is to use a Gaussian
mixture model background subtraction, which models the background as a mixture of Gaussian
distributions and then subtracts it from the image [116]. While these approaches can improve
over simple thresholding, challenges related to consistent lighting and dynamic backgrounds
remain. Edge detection using methods like the Canny edge detector [31] can also be considered,
aiming to find the boundaries of the fingertip. However, noise sensitivity and incomplete edges
in low-quality images are their limitations. Region growing algorithms, starting from seed points
and expanding based on pixel similarity, offer another approach. But their reliance on good seed
point selection and sensitivity to image variations makes them less stable.

More and more, the field has shifted towards machine learning, particularly deep learning,
methods [164, 165, 190]. Convolutional Neural Networks (CNNs) have proven effective for image
segmentation due to their capacity to learn hierarchical features from data. Ronneberger et
al. [206] introduced U-Net, originally designed for biomedical image segmentation. Its encoder-
decoder structure with skip connections allows for multi-scale feature fusion, leading to precise
segmentation. Several U-Net variants have been proposed, each with specific improvements.
U-Net++ [289] introduces nested and dense skip connections for enhanced feature fusion, while
Squeeze-Unet [21] aims at reduced computational cost and memory footprint. EfficientUNet++
[232] utilizes the EfficientNet architecture to balance accuracy and efficiency. These U-Net
variations have been applied to both single-finger segmentation [190, 215] and direct fingertip
segmentation from hand images [216]. U-Net has also been adapted for 3D fingerprint enhancement
[141].

Beyond U-Net, other powerful semantic segmentation models like DeepLab [40] and Mask
R-CNN [94] have also been applied to contactless fingerprint segmentation [116]. A key building
block of nearly all computer vision models has been convolution. A key variation of it is
atrous convolution (dilated convolution). Unlike standard convolution, atrous convolution inserts
spaces between kernel values. This expands the receptive field without increasing parameters
or computation. The dilation rate controls the spacing, allowing the network to capture larger
contextual information while preserving spatial resolution.

Deeplab, a semantic segmentation model, builds upon this. Early DeepLab versions used
atrous convolutions to enlarge the receptive field. DeepLabv2 significantly advanced this with
Atrous Spatial Pyramid Pooling (ASPP). ASPP uses parallel atrous convolutional layers, each
with a different dilation rate, on the same input. Image pooling is also incorporated, for the
global context. This captures multi-scale information. These features are combined, creating a
representation for all object size variations. DeepLabv2 also utilized deeper backbone networks
(e.g., ResNet-101) and a fully connected Conditional Random Field (CRF) [124] for boundary
refinement, along changes of its learning rate policy.

While DeepLab and DeepLabv2 focuses on semantic segmentation, instance segmentation,
which is identifying and delineating individual object instances, is addressed by the Mask R-CNN
family of models. The progression starts with R-CNN (Regions with CNN features). R-CNN
first uses a selective search algorithm to propose candidate object regions. Each region is then
warped to a fixed size and fed into a convolutional neural network (CNN) to extract features.
Finally, these features are used for classification and bounding box regression, leading to an
object detection output.
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Fast R-CNN improved upon R-CNN [83]. Instead of processing each region proposal separately,
Fast R-CNN applies the CNN to the entire image to produce a feature map. Then, for each
region proposal (still obtained using selective search), a Region of Interest (Rol) Pooling layer
extracts a fixed-size feature vector from the feature map. This vector is used for classification
and bounding box regression. This shared computation significantly speeds up the process.

Faster R-CNN further refined this by replacing the slow selective search with a Region Proposal
Network (RPN) [202]. The RPN is a fully convolutional network that slides over the feature map.
At each position, it predicts objectness scores and bounding box refinements for a set of anchor
boxes (predefined bounding boxes). The second stage, identical to Fast R-CNN’s Rol pooling,
classification, and bounding box regression, then processes these RPN-generated proposals.

Mask R-CNN extends Faster R-CNN for instance segmentation [94]. It adds a mask branch,
a fully convolutional network that predicts a binary mask for each proposal, indicating pixel-
level object boundaries. Mask R-CNN also introduces RolAlign. Unlike RoIPool (in Faster
R-CNN), which can cause misalignments due to quantization, RoIAlign uses bilinear interpolation,
preserving spatial accuracy and improving mask quality. Therefore Mask R-CNN detects objects
and creates a pixel-accurate mask for each one.

The performance of these segmentation and detection models relies on the backbone network,
which is the core architecture responsible for extracting features from the input image. One of
the most influential ones is ResNet (Residual Network) [95]. ResNet introduced the concept of
residual connections (or skip connections). These connections allow the gradient to flow more
easily during training by adding the input of a block of layers to its output. This mitigates the
vanishing gradient problem, where gradients become extremely small as they are backpropagated
through very deep networks, hindering learning [95]. This allowed for the training of deeper
networks.

As a next step, ResNeXt was developed [271]. ResNeXt introduces the concept of cardinality,
which refers to the number of independent paths (transformations) within a building block.
Instead of simply making the network deeper or wider, ResNeXt increases cardinality. Each path
within a block performs the same operations (same topology), but on different subsets of the
input channels. These parallel transformations are then aggregated. This split-transform-merge
strategy allows the network to learn a richer set of features without a substantial increase in
parameter count or computational complexity.

ResNeSt (Split-Attention Networks) further refines this concept [281]. It incorporates split-
attention blocks. Within each block, the input is divided into groups (cardinality), and each
group is further split into subgroups (radix). Attention mechanisms are then applied within each
cardinal group, allowing the network to focus on different feature representations within each
group. The outputs of these attentive groups are then aggregated. This allows for a form of
channel-wise attention that is sensitive to different feature representations.

Another big architectural improvement came in the form of the Feature Pyramid Network
(FPN) [137]. FPNs address the challenge of multi-scale object detection and segmentation a bit
differently than the U-Net. A standard CNN produces a hierarchy of feature maps, with deeper
layers representing higher-level semantic information but at lower spatial resolution. FPNs create
a pyramid of feature maps, combining high-level, semantically strong features with low-level,
high-resolution features. They do this using a top-down pathway and lateral connections. The
top-down pathway upsamples the coarser, semantically richer feature maps, and the lateral
connections merge them with the corresponding feature maps from the bottom-up pathway
(the standard CNN feature extraction). This results in feature maps at multiple scales, all
with rich semantic information, enabling the detection and segmentation of objects at various
sizes. An example of the practical implementation is, for instance, TipSegNet, which leverages
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a ResNeXt-101 backbone in combination with an FPN, demonstrating how these architectural
components can be combined for specific tasks.

Processing pipelines have also evolved. Some approaches use a cascaded strategy, first employing
object detection to locate fingers and then applying segmentation to those regions individually
[116, 217]. While this simplifies the segmentation task, it depends on the initial detection
accuracy. In contrast, direct fingertip segmentation aims to segment all fingertips directly from
the hand image [216], eliminating the detection step and potentially increasing efficiency. In
both cases, most approaches predict the segmentation mask. Priesnitz et al. in [190] however
employed DeepLabv3+ to predict landmark points and construct circular fingertip segmentation
masks based on the predicted hand features.

Evaluating segmentation performance, especially in scenarios like fingerprint analysis where
the fingertip occupies a relatively small image portion, requires metrics beyond simple pixel-wise
accuracy. Pixel-wise accuracy can be misleading due to significant class imbalance. The dominant
background can lead to high accuracy even if the fingertip is entirely missed.

The Intersection over Union (IoU), also known as the Jaccard Index, addresses this issue. IoU
is calculated by dividing the area of intersection between the predicted segmentation mask ¢ and
the ground truth mask 7 by the area of their union. This can be visualized as
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ToU values range from 0 to 1, with 1 indicating perfect overlap between prediction and ground truth.
Because IoU considers both false positives and false negatives, it provides a balanced measure of
segmentation quality, placing emphasis on accurately segmenting the smaller foreground region
(the fingertip).

Several loss functions are commonly employed in segmentation, each with its own strengths
and weaknesses.

One option is the Jaccard Loss, which is directly derived from the IoU metric . It is calculated
as 1 - ToU. A perfect overlap therefore corresponds to a Jaccard loss of 0. Because of its
close relationship to IoU, Jaccard Loss naturally aims to optimize for the desired segmentation
outcome. However, a potential drawback is that it can sometimes lead to unstable gradients
during training, particularly in the initial stages. This instability stems from the fact that the
Jaccard index (and thus the Jaccard Loss) is not smoothly differentiable when dealing with
discrete pixel classifications (0 or 1). A small change in the predicted probabilities might not
change the discrete segmentation mask, resulting in a zero gradient, or it might flip a pixel,
causing a large jump in the loss, hence the instability. To mitigate this, a soft version of the
Jaccard Loss is often used [264]. Instead of calculating the intersection and union based on
discrete segmentation masks, the Soft Jaccard Loss uses the predicted probabilities directly. For
example, if py, represents the predicted probability of a pixel ¢ belonging to the foreground and
7; represents the ground truth (1 for foreground, 0 for background) of a given pixel i. The Soft
Jaccard Loss can be formulated as
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where € is a small constant (e.g., 1077) added to both the numerator and denominator to ensure
numerical stability, preventing division by zero and N is the total number of pixels. This
formulation allows for gradients to flow smoothly even when predicted probabilities are not
exactly 0 or 1, leading to more stable training. The Soft Jaccard Loss approximates the discrete
Jaccard Loss but provides a smoother optimization landscape.
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Another common choice is Cross-Entropy Loss, a standard loss function in classification tasks,
adaptable to pixel-wise segmentation. Cross-Entropy measures the dissimilarity between the
predicted probability distribution for each pixel and its true label. For binary segmentation
(fingertip vs. background), Binary Cross-Entropy (BCE) is used, while Categorical Cross-Entropy
(CCE) is applied to multi-class problems

1 N
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Note that c is the class index for C' classes and p?(jcb_) indicates the predicted probability of pixel
i belonging to class ¢, and 7;(9) the ground truth label of pixel i belonging to class ¢. While
Cross-Entropy is generally well-behaved and stable during training, it can be dominated by the
majority class (background) in imbalanced scenarios, potentially leading to poor performance on
the minority class (fingertip).

To address the class imbalance issue, Weighted Cross-Entropy Loss can be employed. This is a
modification of the standard cross-entropy, assigning different weights to each class. By giving
a higher weight to the minority class (fingertip), the loss function is encouraged to pay more
attention to its correct classification. While effective in mitigating class imbalance, Weighted
Cross-Entropy requires careful tuning of the class weights, which can be dataset-dependent.

Dice Loss offers another approach, related in concept to IoU. It is based on the Dice coefficient,
which is calculated as 2-(Area of Overlap) / (Total number of pixels in both masks). The Dice
Loss is then defined as 1 - Dice coefficient. Similar to IoU, Dice Loss measures the overlap
between sets, making it naturally suited for segmentation tasks. It often demonstrates good
performance in imbalanced situations. However, like Jaccard Loss, it can sometimes exhibit
unstable gradients, especially when the foreground region is very small.

Focal Loss was specifically designed to tackle class imbalance [138]. It modifies the cross-
entropy loss by introducing a modulating factor «. This factor down-weights the contribution
of well-classified examples, effectively focusing the training process on hard examples — those
that are misclassified or classified with low confidence. This focused approach makes Focal Loss
very effective in handling class imbalance, and it often outperforms weighted cross-entropy. A
drawback is the introduction of a hyperparameter (the focusing parameter) that requires tuning.
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Tversky Loss generalizes both Dice Loss and Jaccard Loss [221], as can be seen in the following
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It introduces two parameters, a and 3, to control the penalties assigned to False Positives and
False Negatives, respectively. This provides greater flexibility in adjusting the balance between
precision and recall, according to the specific needs of the application. However, using Tversky
loss needs tuning the o and the § parameters.

Sometimes, a combination of loss functions is used. Combining Dice Loss and Cross-Entropy
Loss, for example, can leverage the strengths of both approaches. The choice of the most
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appropriate metric and loss function depends on the specifics of the dataset and the desired
balance between correctly identifying the fingertip and minimizing false positives. In fingerprint
segmentation, where accurate delineation of the fingertip region is critical, metrics like IoU and
losses such as Dice, Jaccard, or Focal Loss are frequently favored for their ability to address class
imbalance and emphasize accurate foreground segmentation.

3.1.3 Proposed Segmentation Algorithm

This thesis explores three distinct deep-learning-based segmentation algorithms, each designed to
address specific challenges in contactless fingerprint image analysis. These algorithms progressively
build upon each other, improving in capabilities and addressing limitations found in previous
versions. We will progress from models requiring pre-cropped single-finger images to a model
capable of segmenting all four fingertips directly from a hand image.

3.1.3.1 Custom U-Net Based Architecture

The first model, introduced in our prior work, Improving Sensor Interoperability between Con-
tactless and Contact-Based Fingerprints using Pose Correction € Unwarping [217], represents a
custom U-Net-based architecture. This model was designed for segmenting the fingertip region
from a pre-cropped, single-finger image.

The architecture, depicted in Figure 3.2, is based on the foundational U-Net design, known for
its effectiveness in biomedical image segmentation [206]. A pre-trained MobileNet V2 serves as
the encoder [222], using transfer learning to extract low-level features. The decoder uses a series
of transposed convolutional layers to upsample the feature maps, progressively reconstructing the
segmentation mask. Critically, instead of traditional residual connections, we concatenate the
output of the previous layer with the input of the current layer, a design choice that enhances
feature propagation. Leaky ReLU activation functions are used throughout the decoder [272].
Batch normalization layers are incorporated to stabilize training and mitigate the vanishing
gradient problem [105]. The final layer uses a sigmoid activation function to produce a binary
segmentation mask.

Fig. 3.2: Architecture of the custom U-Net model for fingertip segmentation

3.1.3.2 FingerUNeSt++

Building upon the U-Net-based approach, we developed FingerUNeSt++, an enhanced archi-
tecture that integrates elements from both ResNeSt and UNet++ [289]. This model, like its
predecessor, operates on pre-cropped single-finger images. Its architecture is depicted in Figure
3.3. The model combines a ResNeSt-50d encoder with a simplified UNet++-like decoder. ResNeSt
introduces split-attention blocks, enabling the network to focus on different feature subsets simul-
taneously. This improves the model’s ability to capture diverse feature representations, important
for dealing with the variability present in contactless fingerprint images. The ResNeSt-50d
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variant offers a good balance between model depth and computational efficiency. The decoder
employs a simplified UNet++ structure. We utilize nearest-neighbor upscaling, standard ReLU
activations (instead of Leaky ReLU), and omit dropout layers. These simplifications streamline
the architecture, reduce computational complexity, and improve training time, while retaining
the benefits of the architecture. Following the UNet++ design, dense skip connections are used.
These connections facilitate the fusion of multi-scale features by combining high-level semantic
information from the decoder with low-level spatial information from the encoder.

Fig. 3.3: Architecture of the FingerUNeSt++ model for fingertip segmentation

3.1.3.3 TipSegNet

The third model, TipSegNet, introduced in TipSegNet: Fingertip Segmentation in Contactless
Fingerprint Imaging [216], represents a significant advancement. Unlike the previous models,
TipSegNet is designed to segment all four fingertips (excluding the thumb) directly from a
whole-hand image, eliminating the need for prior finger detection and cropping. TipSegNet
combines a ResNeXt-101 backbone [271] with a Feature Pyramid Network (FPN) decoder [137].
The ResNeXt-101 backbone provides feature extraction. ResNeXt introduces the concept of
cardinality, increasing the model’s capacity by using groups of transformations. This allows for
the capture of a richer and more diverse set of features, essential for distinguishing fingertips
from complex backgrounds. The FPN decoder generates a multi-scale feature representation. It
constructs a pyramid of feature maps, where each level represents the image at a different scale.
This multi-scale approach ensures that the model can accurately segment fingertips regardless of
their size or pose within the hand image. Lateral connections between the encoder and decoder
combine high-resolution features from the encoder with semantically strong features from the
decoder, further refining the segmentation.

To validate the design choices of TipSegNet, two key ablation studies were performed: First, the
backbone ablation. The ResNeXt-101 backbone was compared with smaller ResNet architectures
(ResNet-34, ResNet-50, and ResNet-101) to assess the impact of model complexity on segmentation
performance. While all tested models achieved high accuracy (near 0.999) and mlIoU (around
0.98), the larger ResNeXt-101 did provide a marginal improvement. This suggests that, for
this specific task, performance is approaching saturation, and the benefits of increased model
complexity are subtle. The study highlights the trade-off between computational cost and
performance gains, suggesting that smaller models might be suitable for resource-constrained
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Fig. 3.4: TipSegNet model architecture.

environments. Second, the data augmentation ablation. The impact of the extensive data
augmentation strategy was evaluated by training the model with: (a) full augmentation, (b)
minimal augmentation (reduced strength), and (c) no augmentation. The results showed that
while the prediction quality metrics (accuracy, mloU) were very similar across all three scenarios,
the training loss differed significantly. The model trained without augmentation reached the
lowest training loss, indicating that it had learned the training data very well, potentially to
the point of overfitting. The fully augmented model had a higher training loss, suggesting that
the augmentations made the task more challenging. This is a desirable outcome as it suggests
improved generalization ability to unseen data.

3.1.4 Experimental Evaluation and Results
3.1.4.1 Training Process

All three models were implemented and trained using the PyTorch 2 framework. A consistent
training methodology was employed, with some variations in the optimization parameters. All
models were trained using the Jaccard Loss function, also known as the Intersection over Union
(IoU) loss. The Custom U-Net based architecture from [217] and FingerUNeSt++ [215] use the
Stochastic Gradient Descent (SGD) optimizer [204]. To enhance model generalizability, and
to mitigate overfitting, an extensive data augmentation strategy was applied during training.
This strategy included a combination of geometric transformations and intensity adjustments:
resizing and cropping, horizontal flipping, random rotations, perspective changes, Gaussian
blur, solarization, posterization, and histogram equalization. These augmentations were applied
randomly and with varying probabilities, exposing the model to a wide range of variations in
finger pose, image quality, and simulated lighting conditions.

3.1.4.2 Model Complexity Comparison

Table 3.1 provides a comparison of the three models, as well as other SOTA models, in terms
of trainable parameters, floating-point operations (FLOPs) and application scope. The Input
column describes the expected model input, which can be either a cropped finger (Cropped
Finger), resulting for a previous detection stage or the image of the whole hand, which removed
the necessity of an object detection step before the segmentation. The output (Output) column
describes whether the model predicts two classes, background and fingertip, or has an individual
class for each finger’s fingertip. This means that the model can differentiate between for example
the index finger’s tip and the middle finger’s tip. The comparison in this table shows model
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Model Parameters FLOPs Input Output
Squeeze U-Net [217] 2.5 x 108 Cropped Finger Fingertip
EfficientUNet++ [217] 6.3 x 109 Cropped Finger Fingertip
Custom U-Net [217] 1 x 107 Cropped Finger Fingertip
FingerUNeSt++ [215] 5.1 x 10" 5 x 102 Cropped Finger Fingertip
DeepLabV3+ [116, 190] 6 x 10° 1 x 10 Whole Hand Fingertip
TipSegNet [216] 8 x 108 1 x 102  Whole Hand  Labeled Fingertip

Tab. 3.1: Overview of model complexity for the segmentation architectures evaluated. This
table details the number of trainable parameters, Floating-Point Operations (FLOPs),
input image type (Cropped Finger or Whole Hand), and output (Fingertip mask
or Labeled Fingertip mask). Comparisons include models developed in this thesis
(Custom U-Net, FingerUNeSt++, TipSegNet) and selected State-of-the-Art (SOTA)
models.

complexity via their parameter counts and computational cost. It should be viewed in combination
with the model efficacy comparison, which will be presented in section 3.1.4.4.

3.1.4.3 Dataset

In the paper Improving Sensor Interoperability between Contactless and Contact-Based Finger-
prints using Pose Correction € Unwarping [217], which evaluates Squeeze U-Net, Efficient UNet++
and a Custom U-Net, we leveraged the annotated dataset from [116] and extended it with new
manual annotations based on the dataset captured in the work of Weissenfeld et al. in [266].
The annotations were conducted partially on the hand level, meaning the input image was the
whole hand, and partially on the fingertip level. From the hand based annotations, we extracted
the fingertips. Similarly, in FingerUNeSt++: Improving Fingertip Segmentation in Contactless
Fingerprint Imaging using Deep Learning [220], we also work with cropped images of single
fingertips to fit the application as a follow up step after the detection. The dataset contains 5,828
manually annotated images, of which 1457 images were used for validation and 1822 images for
testing. The split was done on the user level, meaning no user appears in multiple sets (training,
validation or test set).

The TipSegNet: Fingertip Segmentation in Contactless Fingerprint Imaging paper [216] utilizes
a combination of the dataset annotated for the two papers above and a substantial in-house
dataset. The in-house dataset comprises of 2037 labeled hand images recorded using a smartphone,
capturing hands against diverse background scenarios. This in-house dataset was combined with
220 manually annotated hand images from the dataset annotated in [217]. For training, 1788
images were used, with separate sets of 224 images each for testing and validation. Figure 3.5
provides an example of the training data used, along with added augmentations and annotations.

3.1.4.4 Model Efficacy Comparison

Table 3.2 presents a comparative analysis of various models’ performance in fingertip and finger
segmentation tasks, utilizing Mean Intersection over Union (mlIoU) as the primary evaluation
metric, supplemented by accuracy where available. The table underscores the diversity of
approaches, ranging from classical image processing techniques like Otsu thresholding and
Gaussian Mixture models to advanced deep learning architectures such as EfficientUNet-++,
Squeeze U-Net, custom U-Net variations, FingerUNeSt++, DeepLabV3+, Mask R-CNN, HRNet,
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Fig. 3.5: Example of training data of the TipSegNet model, with augmentations used during
the training.

Segnet, and TipSegNet. A critical aspect of this comparison lies in the distinction between the
input data format (cropped single finger versus whole hand images) and the specific output
objectives (segmenting individual fingertips or entire fingers, with or without finger identity
labeling).

The models are broadly categorized based on their input scope: those designed for cropped
finger images and those processing whole hand images. Furthermore, the output is differentiated
between a binary mask isolating the fingertip or finger, and a labeled mask that additionally
identifies the specific finger to which the segmented region belongs. Models developed within the
scope of this thesis are denoted in italics.

Focusing initially on models designed for cropped single-finger inputs, traditional methods like
Otsu’s thresholding [180] achieve a respectable baseline mIoU of 0.85. However, as illustrated in
Figure 3.6, the resulting masks often suffer from noise, incomplete coverage (particularly near
the finger base), and inaccuracies within the fingertip region itself. Early deep learning models
applied to this task, such as EfficientUNet++ [217], showed varied results, with this specific
implementation yielding a lower mIoU (0.50) despite high accuracy, potentially indicating issues
with boundary precision. Other architectures like Squeeze U-Net [217] and the Custom U-Net
[217] developed during preliminary thesis work demonstrated significant improvements, reaching
mloU values of 0.86 and 0.91, respectively. Notably, the FingerUNeSt++ model [215], also
developed in this thesis, achieved near-perfect performance with an mloU and Accuracy of 0.99.
The qualitative difference is evident when comparing the noisy Otsu outputs (Figure 3.6) with
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Model mloU  Accuracy Input Output
EfficientUNet++ [217]  0.50 0.88 Cropped Finger Fingertip
Otsu [180] 0.85 0.85 Cropped Finger Fingertip
Squeeze U-Net [217] 0.86 0.96 Cropped Finger Fingertip
Custom U-Net [217] 0.91 0.98 Cropped Finger Fingertip
FingerUNeSt++ [215] 0.99 0.99 Cropped Finger Fingertip
Gaussian Mixture [116]  0.31 - Whole Hand Finger
Color Histogram [116] 0.38 - Whole Hand Finger

Otsu [190] 0.92 - Whole Hand Finger
DeepLabV3+ [190] 0.95 - Whole Hand Fingertip
Mask R-CNN [116] 0.96 - Whole Hand Fingertip
HRNet [116] 0.85 - Whole Hand  Labeled Fingertip
Segnet [116] 0.90 - Whole Hand  Labeled Fingertip
DeepLabV3+ [116] 0.93 - Whole Hand ~ Labeled Fingertip
TipSegNet [216] 0.99 1.00 Whole Hand  Labeled Fingertip

Tab. 3.2: Comparison of model efficacy across different architectures and input types. The
mloU (Mean Intersection over Union) is the primary metric, with accuracy provided
where available. Models are sorted according to their mIoU performance inside each
group. Note the distinction between models operating on cropped single fingers and
those processing whole-hand images, as well as the output of either a single mask
for each fingertip (Fingertip) or a labeled mask (Labeled Fingertip) that indicates to
which finger this fingertip belongs to. The models written in italic were created in
the context of this thesis.

the clean and precise masks generated by FingerUNeSt++ (Figure 3.7), which closely resemble
the ideal segmentation target shown in Figures 3.1a and 3.1b.

Transitioning to the more challenging task of segmenting fingertips from whole-hand images, the
limitations of simpler methods become more apparent. Gaussian Mixture and Color Histogram
approaches [116] yield very low mloU scores (0.31 and 0.38), indicating their inadequacy for
reliably locating and segmenting finger regions in complex backgrounds. While Otsu’s method,
potentially with specific pre-processing or application context [190], performs better (mIoU
0.92), deep learning models again demonstrate superior capabilities for producing unlabeled
fingertip masks. DeepLabV3+ [190] and Mask R-CNN [116] achieve high mIoU scores of 0.95
and 0.96, respectively, showing their effectiveness in identifying fingertip regions within the full
hand context.

The most complex task involves not only segmenting but also correctly labeling each fingertip
(e.g., distinguishing the index finger mask from the middle finger mask). For this Labeled
Fingertip output category, several deep learning architectures like HRNet, DeepLabV3+, and
Segnet [116] provide strong results, with mIoU scores ranging from 0.85 to 0.93. However, the
TipSegNet model [216], developed as part of this thesis, sets a new benchmark, achieving an
outstanding mloU of 0.99 and a perfect Accuracy of 1.00. Figure 3.8 visually confirms this high
performance, showing a random example from the test set, where TipSegNet accurately segments
and labels all visible fingertips, closely matching the ground truth. Despite this exceptional
performance, Figure 3.9 shows that even state-of-the-art models can have minor imperfections or
struggle in particularly challenging cases, highlighting the complexities of image segmentation.
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Fig. 3.6: Qualitative results of Otsu’s thresholding method applied to cropped fingertip images.
The left image in each pair is the input, and the right is the generated binary mask.
Note the presence of noise and incomplete segmentation, especially at the bottom
edges.

3.1.5 Discussion

The experimental evaluation presented in the preceding sections highlights performance of the
developed contactless fingertip segmentation models within this thesis. Moving beyond traditional
methods like Otsu thresholding, Gaussian mixture or color histograms, which struggle with the
inherent complexities of contactless imaging (as confirmed in Table 3.2 and Figure 3.6), the
proposed architectures demonstrate substantial improvements in accuracy and generalizability.

The development of the segmentation algorithms in this thesis followed a deliberate progres-
sion, addressing increasingly complex challenges. The initial Custom U-Net (see Section 3.1.3.1)
established a strong baseline for single-finger segmentation. However, to push the performance
to near-perfect levels required for subsequent geometric modeling, the more advanced Fin-
gerUNeSt++ architecture (see Section 3.1.3.2) was developed, incorporating the feature-richness
of ResNeSt. Both of these models, however, relied on a pre-cropped finger input. To create a truly
practical end-to-end system and remove this dependency, the final and most advanced model,
TipSegNet (see Section 3.1.3.3), was designed. Its ability to perform multi-class segmentation
directly from a whole-hand image represents a significant step towards a fully automated pipeline.

3.1.5.1 Architectural Progression and Performance

These contributions address the challenges outlined in Section 3.1.1. The deep learning models,
particularly FingerUNeSt++ and TipSegNet, use hierarchical feature extraction capabilities
inherent in their backbones (ResNeSt-50d and ResNeXt-101, respectively). This enables them to
identify fingertip regions even in complex and variable backgrounds, which is the main limitation
for simpler thresholding or color-based methods [116]. The extensive data augmentation strategies
employed during training further enable the models to generalize across variations in lighting,
skin tone, focus, and minor pose deviations, which are common pitfalls in contactless acquisition
[116, 190].
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Fig. 3.7: Qualitative segmentation results from the Finger UNeSt++ model on cropped fingertip
images. The left image in each pair is the input, and the right is the predicted binary
magsk. The outputs are significantly cleaner and more accurate compared to the Otsu
baseline (Figure 3.6).

28
-

Initial work of this thesis focused on refining segmentation for pre-cropped single-finger inputs,
leading to FingerUNeSt++ [215]. By combining the feature richness of ResNeSt with the dense
connectivity of UNet++, this model achieved near-perfect scores (0.99 mIoU and Accuracy, Table
3.2), significantly outperforming both the baseline and earlier U-Net variants like the Custom
U-Net developed in [217] (Figure 3.7).

As a next step, we approached the challenge of direct multi-finger segmentation from whole-
hand images, resulting in TipSegNet [216]. This model eliminates the need for a cascaded
approach often seen in related work [116, 217]. The combination of a ResNeXt backbone and a
Feature Pyramid Network (FPN) proved highly effective. The FPN decoder explicitly addresses
scale variations inherent in viewing multiple fingers at different distances and poses within a
single hand image. TipSegNet’s state-of-the-art performance (0.99 mlIoU, 1.00 Accuracy) showed
that a multi-scale approach for complex scene understanding can be highly performant, setting a
new benchmark for labeled fingertip segmentation from whole hands (Table 3.2 and Figure 3.8).

The ablation studies performed for TipSegNet provided valuable insights. While larger
backbones like ResNeXt-101 offered marginal gains over smaller ResNets, the near-saturation of
performance metrics suggests that for this task and dataset, the complexity might be approaching
a point of diminishing returns. While SOTA performance was achieved, more computationally
efficient backbones could offer a practical alternative in resource-constrained scenarios. Similarly,
the data augmentation study confirmed its importance for generalization, making the learning
task harder (higher training loss) but ultimately leading to a more robust model less prone to
overfitting.

3.1.5.2 Implications and Limitations

Accurate segmentation is important for the reliability of entire contactless fingerprint recognition
systems. As demonstrated in [217], precise fingertip masks are critical inputs for downstream
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Fig. 3.8: Example of multi-finger segmentation and labeling by the TipSegNet model. From
left to right: Input whole-hand image, Ground Truth segmentation (colored labels),
Predicted segmentation (colored labels), and Background mask (class 0). Subsequent
smaller images show individual predicted masks for each finger class. The prediction
closely matches the ground truth.
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Fig. 3.9: Examples illustrating failure cases of the TipSegNet model. While overall performance
is high, slight deviations from the ground truth can occur in the predicted masks,
particularly around rare finger deformities or when the fingertips are largely covered
or outside the frame. The input images are blurred for this visualization for privacy
reasons.

tasks like pose correction and unwarping, which aim to bridge the gap between contactless
and contact-based domains for improved interoperability. The high-fidelity masks generated
by FingerUNeSt++ and TipSegNet provide a significantly more reliable foundation for these
subsequent steps compared to traditional methods or less accurate deep learning models.
While achieving SOTA performance, the models, especially TipSegNet with its 800M param-
eters (Table 3.1), demand considerable computational resources. This could pose challenges
for deployment on low-power devices like smartphones or embedded systems, where models
like Squeeze U-Net [217] might be preferred despite lower accuracy. Inference speed, while
adequate on high-end GPUs (Table 2 in [215]), needs consideration for real-time applications
on edge devices. Furthermore, despite extensive augmentation, generalization to truly unseen
environments, extreme lighting conditions, or populations vastly different from the training
data may still present challenges. Even TipSegNet exhibits minor imperfections, particularly at
boundaries or in difficult cases (Figure 3.9), and its current implementation excludes the thumb.
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3.2 Fingerprint Core Localization

For this section of the thesis, we transition from the segmentation of the fingertip vs background
to finding a specific landmark point in the friction ridge pattern of the fingerprint. This landmark
point is called the core and the core’s location is frequently utilized in fingerprint analysis.
Applications include template alignment prior to comparison [158], classification of the fingerprint
pattern type [115], and serving as a reference point for estimating and correcting pose variations
in contactless fingerprint systems [217, 247].

The core is commonly defined either as the point of maximum ridge curvature or the topmost
point of the innermost recurving ridge [158]. This section addresses a fundamental question: How
accurately can we detect fingerprint cores, and what are the inherent limitations of core-based
alignment systems? We tackle this through two complementary approaches: first, developing
a high-performance deep learning detector to achieve state-of-the-art detection accuracy [217],
and second, conducting the first large-scale empirical analysis of core position variability to
understand the theoretical limits of any core-based system that assume centrality of the core’s
location relative to the fingerprint pattern [220].

3.2.1 Challenges of Accurate Core Detection

Reliably locating the fingerprint core presents several challenges. General image quality degrada-
tion is a major factor. Sensor noise, low contrast between ridges and valleys, smudging artifacts
(particularly in contact-based prints), or blur and lower resolution (common in contactless
captures) can significantly obscure the fine ridge structures required for accurate core detection.

Contactless fingerprint imaging introduces additional complications unique to its capture
modality. Specular reflections from the skin surface can create bright spots that interfere with
pattern analysis. Uneven illumination across the finger can lead to inconsistent contrast, making
ridge delineation difficult. Furthermore, perspective distortions arising from variations in finger
pose (roll, pitch, yaw) relative to the sensor can alter the apparent location and shape of the
core region within the captured image.

Beyond image quality and capture artifacts, the definition and even the existence of the
core itself introduce ambiguity. As mentioned, different definitions based on ridge curvature
[241] or the geometry of the innermost loop [9] (this is the definition provided in the ISO/IEC
19794-1:2011) are employed. Critically, cores are definitionally absent in certain fingerprint
patterns, such as the arch type [5]. Other patterns, like whorls or double loops, can have two
distinct cores [5]. This requires a clear strategy within any core-dependent algorithm for handling
cases with no core or multiple cores, perhaps by selecting a canonical core or using alternative
reference points.

The consequences of inaccurate core detection can impact downstream fingerprint processing
tasks. Errors in core localization during the alignment stage lead to misregistered templates,
resulting in reduced comparison scores and an increase in false rejections (missed matches). In
pose correction frameworks that heavily rely on the core as a primary reference point [217, 247],
localization errors directly propagate into the geometric transformation calculations, potentially
leading to incorrect pose estimates and hindering interoperability efforts.

3.2.2 Related Works

Traditional algorithms for fingerprint core detection have primarily focused on analyzing character-
istics of the ridge flow pattern. One category of methods analyzes the fingerprint orientation field,
identifying cores by detecting specific rotational patterns using techniques like the Poincaré Index
[17] or by applying complex filtering methods [118]. Another category focuses on ridge curvature,
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aiming to locate the core at points where curvature is maximal [241]. Other approaches attempt
to directly identify specific ridge structures according to standard definitions, such as locating
the topmost point of the innermost recurving loop as specified in ISO/TEC 19794-1:2011 [9]. It is
also common practice, particularly in commercial Automated Fingerprint Identification Systems
(AFIS) like the Innovatrics IDKit used in our centrality analysis [220], to employ sophisticated,
often proprietary (black-box), methods for core detection. These traditional methods often lack
generalization over different modalities, being sensitive to image noise, variations in quality, and
the ambiguities in core definitions.

One research direction frames core detection as a keypoint regression problem, where a neural
network is trained to directly predict the (x, y) coordinates of the core [250]. An alternative
research strategy, adopted in this thesis [217] and detailed below, treats core detection as
a segmentation or heatmap prediction task. In this formulation, the network outputs a 2D
probability map where the intensity at each pixel indicates the likelihood of the core’s presence.
This heatmap approach can better represent and handle the uncertainty associated with the
core’s precise location in the case of no or multiple cores. Architectures like the U-Net [206] have
proven particularly well-suited for such segmentation-based localization tasks [217].

While methods for detecting the core are relatively well-studied, the systematic analysis of
the core’s statistical distribution and its typical location relative to the overall finger shape
(its centrality) has received limited attention. The work presented in [220], discussed later in
this section, provides, to our knowledge, the first large-scale empirical investigation into core
centrality across substantial datasets of both rolled and plain fingerprint captures.

3.2.3 A Deep Learning Approach for Fingerprint Core Detection

Addressing the need for core detection, this thesis developed and evaluated a U-Net based deep
learning model, leveraging the heatmap prediction approach also used for segmentation in [217].

3.2.3.1 Proposed Heatmap-Based Detection Algorithm

To implement the core detection, we utilized the same custom U-Net-based architecture previously
described for fingertip segmentation (Section 3.1.3.1, Figure 3.2). This architecture features a
MobileNetV2 [222] encoder backbone combined with a U-Net decoder structure incorporating
skip connections (via concatenation), batch normalization [105], and leaky ReLU activations
[272]. As mentioned, the core detection task was framed as a pixel-wise segmentation problem.
Instead of outputting coordinates, the model is trained to output a 2D probability map, often
called a heatmap. The intensity at each pixel in this heatmap represents the likelihood of the
core’s presence. This approach provides a richer output than simple coordinates and implicitly
encodes spatial uncertainty about the core’s exact position.

3.2.3.2 Annotation Strategy for Core Location Training

A key aspect of training this model is the annotation strategy for the ground truth heatmaps
(conceptually shown in Figure 3.10). Rather than labeling a single ground truth pixel for the
core location, we employed a target representation centered on the core but spatially distributed.
Specifically, the ground truth was rendered as a circular region with a radial probability fall-off,
following a 2D Gaussian profile. This soft annotation approach was chosen for several reasons. It
provides a degree of tolerance for ambiguities and minor inaccuracies in annotating the exact
core location. It also yields smoother gradients during the backpropagation compared to sparse
single-pixel labels, which can contribute to more stable and effective model training. Furthermore,
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this probabilistic target better represents the positional uncertainty often associated with the
core concept itself.

The ground truth core locations used to center these heatmap annotations were primarily based
on the ISO definition (innermost loop’s topmost point) where applicable [217, 220]. Importantly,
for fingerprint pattern types lacking a true core, such as arches, a consistent landmark was still
needed for potential use in subsequent pose correction steps. Therefore, during dataset creation
for these arch-type cases, a reference point visually placed in the center of the fingerprint pattern
was manually annotated to serve as the target location for the heatmap [217, 220]. This ensures
the model learns to predict a consistent reference point even in the absence of a formally defined
core. Of course, if the core detection model is designed to be used for classification of fingerprint
pattern types, this step should be left out.

(a) 0.1 (b) 1073 (c) 1075

Fig. 3.10: Conceptual illustration of annotated core position for different fall-off rates, similar
to Figure 3 in [217]. (a) Fast fall-off (e.g., 0.1); (b) Medium fall-off (e.g.,1073); (c)
Slow fall-off (e.g., 107).

3.2.3.3 Implementation and Training Details

The model benefited from transfer learning, initializing the MobileNetV2 encoder with weights
pre-trained on a large image dataset [222]. The network was trained using a binary cross-entropy
loss function, suitable for the probabilistic heatmap output (predicting the likelihood of the
core’s presence vs absence at each pixel). Optimization was performed using Stochastic Gradient
Descent (SGD) [204]. As implemented, this core detection model operates on pre-cropped
single-finger images, meaning it relies on an upstream process (like the segmentation model
described in Section 3.1) to first detect and isolate the fingertip region from the broader image
context.

3.2.3.4 Performance Evaluation of the Core Detector

To assess the effectiveness of the developed core detection model, a rigorous evaluation was
conducted [217]. A dedicated dataset was specifically created for this purpose, using a subset of
the contactless fingerprint data collected in [266]. Annotations involved a semi-automatic process:
initial core locations for the training set were generated using the Innovatrics IDKit commercial
comparison algorithm [103], followed by manual review and correction to improve accuracy. To
ensure the highest quality ground truth for evaluation, the validation and test set annotations
were performed entirely manually. The dataset was carefully divided into user-disjoint training,
validation, and testing splits to prevent data leakage and allow for a realistic assessment of
generalization performance.

The primary metric for evaluating localization accuracy was the Average Euclidean Distance,
measured in pixels, between the predicted core location (derived from the maximum likelihood
pixel in the output heatmap) and the manually validated ground truth annotation. Additionally,
the average number of distinct connected regions detected in the heatmap output was monitored
to assess whether the model was prone to producing spurious, non-core detections [217].
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(a) Cropped finger input (b) Prediction heatmap

(c) Cropped finger input (d) Prediction heatmap

Fig. 3.11: Exemplary core position predictions by the Custom U-Net model on images from the
test set.

The performance of our custom U-Net architecture was benchmarked against two contemporary,
efficient U-Net variants adapted for the same core detection task: Squeeze U-Net [21] and
EfficientUNet++ [232]. Furthermore, an ablation study was performed specifically on our custom
U-Net model to investigate the impact of the ground truth heatmap’s radial fall-off rate on
detection accuracy. This involved retraining and evaluating the model with three different fall-off
profiles, corresponding to rates of 0.1, 1073, and 107> [217].

3.2.3.5 Results

Model ‘ Avg. Distance [px] Inf. Speed [s]
Custom U-Net [217] 9.49 0.16
EfficientUNet+-+ [232] 11.03 0.12
Squeeze U-Net [21] 9.63 0.10

Tab. 3.3: Average pixel distance (Avg. Distance) and inference speed (Inf. Speed) is seconds
of the tested models running on a GTX 3090 with a fall-off rate of 107°. For both
metrics, lower is better. The Custom U-Net is the model developed in the context of
this thesis.
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The quantitative evaluation results, presented in detail in Table 3.3 and in publication [217,
Table 3], confirmed the effectiveness of the proposed custom U-Net architecture. It achieved the
lowest average FEuclidean pixel distance error, measuring 9.49 pixels, outperforming both Squeeze
U-Net (9.63 pixels) and EfficientUNet++ (11.03 pixels) on this task. This accuracy was attained
while maintaining competitive inference speeds compared to the other models. Figure 3.11 shows
the models performance on a random example from the test set.

The ablation study focusing on the annotation fall-off rate provided a clear finding: the slowest
fall-off rate tested (10~°), corresponding to the smoothest and broadest target heatmap, resulted
in the best detection accuracy (9.49 pixels vs. 23.46 pixels for 1073 and 38.47 pixels for 0.1).

The results suggests that providing a less sharply localized, more distributed target signal
during training is beneficial for learning accurate core localization with this heatmap prediction
approach. Encouragingly, all tested models consistently learned to predict a single, connected
region corresponding to the core location, indicating they were not prone to generating spurious
detections.

3.2.4 Empirical Analysis of Fingerprint Core Centrality and Distribution

In addition to developing a detection model, the second approach involved a large-scale empirical
investigation into the position and distribution of the fingerprint core within the finger area.
This analysis, detailed in Centrality of the Fingerprint Core Location [220], provides insights into
the properties of this landmark.

3.2.4.1 Datasets and Methodology for Centrality Analysis

This analysis utilized a larger and more diverse data collection than the detector evaluation. Six
datasets were combined: the publicly available NIST Special Databases SD300a, SD302a, and
SD302b [73, 74], the Neurotechnology dataset, the PolyU contact-based dataset [136], and the
in-house AIT dataset collected in [266]. Some of the datasets provide a finger position description
for each of the recorded fingerprints, which we denote in the FGP scheme introduced by NIST
[168, p. 18], depicted in 3.4.

Finger Right Left
Thumb 1 6
Index 2 7
Middle 3 8
Ring 4 9
Little 5 10
Plain Thumb 11 12
Unknown 0 0

Tab. 3.4: FGP values mapped to finger names.

This aggregation of datasets provided a substantial number of samples for both rolled fingerprint
impressions (30,602 samples) and plain (flat) fingerprint impressions (9,568 samples), allowing
for comparisons between these common capture types. Table 3.5 provides an overview of the
number of fingers present in each dataset.

The methodology involved several processing steps applied to each fingerprint image. First,
the fingerprint region was segmented from the background using NIST’s publicly available nfseg
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FGP | AIT NIST 300a NIST 302a NIST 302b +
1 1083 815 935 521 3354
2 875 801 981 542 3199
3 528 819 981 605 2933
4 523 832 984 632 2971
5 941 803 952 616 3312
6 1077 797 889 905 3268
7 512 806 963 975 2856
8 522 813 942 609 2886
9 525 816 993 630 2964
10 525 791 940 603 2859
+ 7111 8193 9560 5829 30602

(a) Number of rolled fingerprints.

FGP ‘ NIST 300a NIST 302b Neurotechnology PolyU +

0 0 0 840 2776 | 3616
1 0 226 0 0 226

2 704 228 0 0 932

3 662 255 0 0 917

4 768 270 0 0 1038
5 653 244 0 0 897
11 779 11 0 0 790

6 0 236 0 0 236

7 771 236 0 0 907

8 650 234 0 0 884

9 779 257 0 0 936
10 675 231 0 0 906
12 748 151 0 0 899

+ 7189 2579 840 2776 | 9568

(b) Number of plain fingerprints.

Tab. 3.5: Finger-wise overview of dataset statistics for rolled and plain fingerprints used in the

empirical study.

tool, which also rotates the segmented fingerprint to align its primary axis of symmetry with the
vertical axis. Second, the core point(s) were detected using the commercial Innovatrics IDKit
software [103]. If multiple cores were detected, their mean position was used. Third, based on the
segmented finger area and the detected core position, several metrics were calculated to quantify
the core’s location relative to the finger’s geometric center. These metrics, formally defined in
[220], are important for understanding core position variability:

o Core Offset (0%, 0Y

core’ rcore
from the geometric center of the cropped (segmented) fingerprint image. o

the horizontal offset, and 0¥ .. represents the vertical offset.

core

o Relative Core Offset (r0%,,.,r0Y

core’ core

): This is the raw distance, in pixels, of the detected core point

xT

core TEPrESENts

): To make comparisons independent of image size or

finger width/height, the raw offsets are normalized. The relative core offset is calculated
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by dividing the raw offset by the half-width (Weropped/2) or half-height (Hepopped/2) of the
cropped fingerprint image. For the horizontal component
0 207

x
Togore = W o 2 = W e (37)
cropped/ cropped

The calculation for 7oY., is analogous using the image height H,,,cq. These relative

offsets range from -1 (core at the left/top edge) to +1 (core at the right/bottom edge),
with 0 indicating perfect geometric centering.

o Bias (beore): This metric specifically quantifies any systematic horizontal shift in the core’s
position, potentially introduced by procedural factors like rolling. It is calculated as the
mean of the horizontal relative core offsets (ro%,,..) across all samples for a specific finger
or group

1
beore(f) = Ff Z Togcﬂore;iv (3.8)
i=1

where f denotes the specific finger position (e.g., right index), Ny is the number of samples
for that finger, and ¢ indexes the samples. A non-zero bias suggests a systematic tendency
for the core to be offset horizontally.

o Average Relative Offset (ARO, aro® ., aro¥,..): This measures the average magnitude
of the core’s deviation from the geometric center, without correcting for any systematic
bias. It is calculated as the mean of the absolute values of the relative core offsets for a

given finger f, N
1 f
aTogore(f) = Ff Z ‘rogore;i‘ (39)
=1

The calculation for aro?,,. is analogous. ARO provides a measure of the overall expected

deviation from the center in practical scenarios where bias might be present.

o Corrected Average Relative Offset (CARO, caro®,.): This metric measures the
average magnitude of the core’s deviation after accounting for the systematic horizontal
bias (beore)- It isolates the random or non-systematic component of the core’s horizontal

scatter around its mean (biased) position

Ny
T 1 T
Carocore(f) = Ff Z ’rocore;i - bcore(f)| (310)
i=1

CARO helps understand the core’s positional variability independent of procedural biases.
(Note: A vertical bias correction was deemed unnecessary as no significant systematic
vertical bias was found comparable to the horizontal rolling bias).

3.2.4.2 Key Findings from the Centrality Analysis

The analysis yielded several findings regarding core location properties. A statistically significant
horizontal bias (beore) in core position was observed for rolled fingerprints, as can be seen in Table
3.6. Critically, the direction of this bias differed systematically between left-hand fingers compared
to right-hand fingers. This systematic left-right difference, contrasted with the finding that such
consistent bias was largely absent in plain fingerprint impressions (Table 5 of [220]), strongly
suggesting that the bias originated primarily from the mechanics of the rolling procedure itself
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(likely related to finger rotation direction or pressure application) rather than from anatomical
asyminetry.

FGP  Bias [%] | FGP  Bias [%]

2.90 (4.10) 6 0.42 (-0.78)
0.67 (1.14) 7 0.33 (-0.17)
3.27 (4.31) 8 -1.11 (-1.92)
5.17 (5.33) 9 -3.62 (-3.77)
5 4.89 (5.67) | 10  -0.50 (-0.78)
Tab. 3.6: Rolled fingerprint bias for averaged core x-Positions. Values in parenthesis show the
bias for core x-positions when multiple cores inside a given fingerprint are not averaged
over.

= W N =

Furthermore, even after computationally correcting for this identified rolling bias, the analysis
revealed that the fingerprint core does not, on average, reside precisely at the geometric center of
the segmented fingerprint area. The corrected average relative offset in the horizontal direction
(carol,,.) was found to range between 5.7% (£5.2%) and 7.6% (£6.9%) of the half-finger-width,

varying slightly depending on the specific finger. This can be seen in Table 3.7. A significant
average deviation from the center was also consistently observed in the vertical direction (aro?,,.),

ranging from approximately 9% (+6%) to 12% (£8%) of the half-finger-height for the rolled print
samples analyzed. This empirically quantifies the typical extent to which the core is non-central.

FGP  CARO (ARO) [%] | FGP  CARO (ARO) [%]

6.7+£56(7T4+£59) | 6 72462 (7.7+6.4)
76+69B85+71)| 7 T7.0+6.0(7.7+6.3)
6.6 +£5.7(7.3+60) | 8 7.0=+57(7.4+6.0)
( )

)

57+52(6.6£56)| 9 63+55(69+58
6.4+53(7.2+55) | 10 6.6=+54(7.2+57

Tab. 3.7: CARO (ARO) scores for rolled fingerprints

QU i W N

This procedure is often described as the parametric bootstrap test in literature [81, 121, 242].

Investigating the statistical nature of this positional variability, standard tests for normality
(specifically, the Anderson-Darling test) strongly rejected the hypothesis that core positions
follow a simple Normal (Gaussian) distribution, particularly for the dataset of rolled fingerprints.
To identify a better fitting statistical model, further analysis using the Bayesian Information
Criterion (BIC) [227] and Monte Carlo Goodness-of-Fit tests was conducted. The BIC combines
the complexity of a model with its performance into one score and we used it to limit the search
space of possible distributions. We started with a set of 110 distributions and selected a set of
the 10 best matching distributions for each finger. For the next step, we used the Monte Carlo
Goodness-of-Fit test, which is also often described as parametric bootstrap test in literature
[81, 121, 242], to give a final ranking. Traditionally, goodness-of-fit tests use pre-calculated
critical values based on fixed significance levels. The Generalized Monte Carlo goodness-of-fit
procedure however performs Monte Carlo trials adapted to their particular data and this works
as follows. First, the estimation of unknown parameters in the specified distribution family is
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conducted using maximum likelihood estimation. The estimated parameters define the null-
hypothesized distribution, representing the distribution from which the data were assumed to be
sampled under the null hypothesis. We calculate the Anderson-Darling statistic for the given
finger-wise rogore. Subsequently, numerous new samples, each comprising of the same number of
observations as the original data, were drawn from the null-hypothesized distribution. For each
drawn sample, unknown parameters were re-estimated, and the corresponding Anderson-Darling
statistic was calculated between the sample and its fitted distribution. These computed statistic
values collectively formed the Monte Carlo null distribution, distinct from the aforementioned
null-hypothesized distribution. The p-value of the goodness-of-fit test is determined as the
proportion of statistic values in the Monte Carlo null distribution that are as extreme as or more
extreme than the statistic value computed for the provided data. Specifically, the p-value is
calculated as the ratio of the number of statistic values in the Monte Carlo null distribution
greater than or equal to the statistic value of the data plus one to the total number of elements
in the Monte Carlo null distribution also plus one. [135]

This analysis indicated that the Non-Central Fischer (NCF) distribution provided the best
statistical fit for describing the core’s positional distribution in most of the scenarios examined,
especially for rolled fingerprints. The results for all fingers can be seen in Table 3.8.

- Plain Rolled
- X y X y
FGP | Dist. p [%] | Dist. p [%)] | Dist. p [%] | Dist. p [%]

0 Dag 70 | NCF 78 - - - -
1 LNo 67 NCF 20 Bur 11 NCF 95
2 LNo 56 Bur 60 NCF 32 NCF 71
3 Bur 47 NCF 80 NCF 37 Bur 37
4 NCF 94 NCF 55 NCF 85 Bur 29
5 NCF 50 |NCF 73 |NCF &4 Bur 42
6 NCF 84 NCF 44 NCF 65 Bur 36
7 NCF 56 Bur 55 NCF 73 NCF 74
8 NCF 28 NCF 54 NCF 33 NCF 30
9 NCF 67 Bur 31 NCF 60 NCF 78
10 Nor 75 NCF 67 Bur 41 NCF 61
11 | NCF 33 Bur 43 - - - -
12 Nor 72 NCF 23 - - - -

Tab. 3.8: Best fitting distributions - Non-Central Fischer (NCF), Dagum (Dag), Lognorm (LNo),
Burr (Bur), Norm (Nor)

Finally, the relationship between core position and standardized fingerprint image quality
was explored by calculating the Spearman rank correlation between the relative core offsets
(rok,,.,ro¥,,.) and the NFIQ 2 quality score [246]. For rolled fingerprints, this revealed a weak but

core? core
statistically significant positive correlation (correlation coefficient ~ 0.23) between the vertical
core offset (ro¥,..) and the NFIQ 2 score. This finding suggests that the NFIQ 2 metric exhibits a
slight preference for rolled prints where the core is located lower down (further from the fingertip,
closer to the base) relative to the geometric center. In contrast, no consistent or statistically
significant correlation was found between the horizontal core offset (ro%,.) and NFIQ 2 for
rolled prints. The correlations observed for plain prints were generally weaker and often lacked

statistical significance, as depicted in Figure 3.12.
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Mean Core Offset Correlation with NFIQ 2
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Fig. 3.12: Correlations between the Mean Core Offset in X and Y direction and the NFIQ
2 score for rolled (blue) and plain (orange) fingerprint recordings, for each finger
position (see markers in legend).

3.2.5 Discussion

The deep learning model developed for core detection demonstrated high accuracy, achieving a
low average localization error (9.49 pixels) [217]. The effectiveness of framing the problem as
heatmap segmentation using a U-Net architecture, combined with a soft annotation strategy
(slow fall-off Gaussian heatmap), proved successful in training a precise detector.

Moreover, the core centrality analysis [220] provides context by investigating the nature of the
feature being detected. The key takeaway is that the fingerprint core is demonstrably not located
precisely at the geometric center of the finger area, nor is its position perfectly fixed. It deviates
systematically by approximately 6-8% horizontally (after bias correction) and 9-12% vertically
from the center. This empirical quantification challenges the common simplifying assumption
of perfect core centrality often made in algorithms and establishes a baseline level of positional
variability that any system relying on the core must contend with.

The strong evidence indicating that the horizontal bias observed in rolled prints is primarily
an artifact of the rolling procedure itself has significant implications for system interoperability.
Algorithms designed to process fingerprints from different modalities (rolled, plain, contactless)
may need to explicitly account for these distinct, modality-induced systematic offsets in core
position to achieve accurate cross-comparisons.

Identifying the Non-Central Fischer (NCF) distribution as a more accurate statistical model for
core position moves beyond simple assumptions of normality. This finding can be directly applied
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to enhance the realism of synthetic fingerprint generation by sampling core positions according
to this distribution, potentially leading to more better training and testing data quality.

The finding that the NFIQ 2 quality metric shows a slight preference for lower-positioned cores
specifically in rolled prints requires further research. It remains unclear whether this correlation
reflects genuine fingerprint quality characteristics often found in that region of rolled prints,
whether it represents a subtle characteristic or bias within the NFIQ 2 algorithm itself when
evaluating rolled captures or whether there is no causal reason behind the correlation. The
lack of a similar strong correlation for horizontal position suggests NFIQ 2 is less sensitive to
side-to-side variations within the typical range observed.

3.2.5.1 Impact on Research Questions

The findings from the core detection development and centrality analysis directly inform several
key research questions posed in this thesis:

RQ3 (How can core point detection in contactless images be improved to enable
better alignment with contact-based databases?): This work directly addresses RQ3 by
presenting a high-performance deep learning heatmap prediction method for core detection [217].
The achieved low localization error (9.49 pixels) demonstrates a significant improvement in core
detection capabilities. However, the centrality analysis [220] simultaneously reveals a fundamental
limitation: the target landmark (the core) itself exhibits positional variability (approx. 6-8%
horizontally and 9-12% vertically from the geometric center, even after bias correction). This
uncertainty in the core’s true location places a practical upper bound on the alignment accuracy
achievable based solely on detecting this single point, even with a perfect detector. Thus, while
core detection is improved, perfect alignment using only the core remains challenging due to the
core’s natural variance.

RQ2 (What techniques can effectively correct pose variations in contactless finger-
prints to enhance comparison accuracy?): The empirical quantification of core deviation
and the identification of rolling-induced bias are highly relevant to RQ2. Any pose correction
technique that relies on the core as a primary reference point must contend with its variability.
Effective techniques will need to be robust to this level of positional uncertainty (approx. 6-12%
of finger dimensions) or be augmented with additional, potentially more stable, landmarks.
Furthermore, the finding of a significant, modality-specific (rolling-induced) bias in core position
suggests that pose correction frameworks aiming for interoperability across capture methods
(rolled, plain, contactless) may require modality-dependent adjustments or calibrations to achieve
optimal performance.

RQ1 (How can segmentation of fingerprints from contactless hand images be made
more accurate and robust across different environments?): While this section focuses
on core localization, its success is coupled to RQ1. The developed core detection model [217]
operates on pre-cropped single-finger images, underscoring its reliance on accurate upstream
segmentation (as addressed by work related to RQ1, e.g., Section 3.1). High-quality segmentation
is therefore a critical enabler for precise core detection, which in turn is foundational for effective
pose correction (RQ2).

RQ4 (What are the problems of established fingerprints quality assessment metrics
and what can be change to improve their performance on contactless fingerprint
images?): The core centrality analysis [220] provided an interesting insight related to RQ4 by
examining the correlation between core position and NFIQ 2 scores [246]. The observation of a
weak but significant positive correlation between vertical core offset (core lower on the finger)
and NFIQ 2 scores for rolled prints suggests that established quality metrics might have subtle
interactions with landmark positions or capture-induced characteristics. This shows the need to
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understand how such metrics behave across different modalities and processing steps, which is
important for developing or adapting quality assessment specifically for contactless fingerprints.

RQ6 (Can we produce synthetic 3D fingers and how do they perform compared to
real fingers? What manufacturing techniques can be used?): The empirical finding that
the Non-Central Fischer (NCF) distribution accurately models core positional variability [220]
directly contributes to RQ6. This statistical model can be integrated into synthetic fingerprint
generation algorithms to create more realistic datasets where core points are not simplistically
centered but are distributed according to observed natural patterns. This enhanced realism
in synthetic data is useful for training and testing various fingerprint processing algorithms,
including core detectors and pose correction methods.

3.2.5.2 Limitations

Certain limitations pertaining to these studies should be acknowledged. The core detection
model developed and evaluated in [217] currently requires a pre-cropped single-finger image
as input, relying on an upstream detection or segmentation process. The large-scale centrality
analysis [220], while leveraging large amounts of data, utilized a commercial software (IDKit) for
the initial core detection step. Although validation on manually checked subsets showed high
accuracy, the possibility of minor errors introduced by the automated detector in the full dataset
cannot be entirely excluded. Finally, as with any empirical study, the specific characteristics (e.g.,
demographics, acquisition protocols) of the datasets used might influence the generalizability of
the centrality and distribution findings.

3.2.5.3 Future Research Directions

The insights gained from this work suggest several avenues for future research. Developing end-to-
end deep learning architectures capable of performing simultaneous finger detection, segmentation,
and core localization directly from full hand images would simplify preprocessing pipelines.
Integrating the validated Non-Central Fischer (NCF) distribution model into synthetic fingerprint
generation algorithms could produce datasets with more realistic core position variability for
training and testing purposes. Conducting targeted studies analyzing core location stability and
distribution specifically across different types of contactless sensors and under various challenging
contactless capture conditions (e.g., varying distances, angles, motion blur during mobile capture)
is needed. Undertaking a deeper investigation into the observed correlation between NFIQ 2
quality scores and vertical core position in rolled prints could clarify its origin and implications
for fingerprint quality assessment methodologies. Finally, given the demonstrated variability of
the core, exploring the potential of using additional, possibly more positionally stable, landmarks
within the fingerprint (such as friction ridge creases, delta points when present, or distinctive
minutiae configurations) either in conjunction with or as alternatives to the core holds promise
for developing more accurate pose estimation techniques, especially important for contactless
fingerprint applications.

3.3 Pose Correction and Unwarping for Contactless Fingerprints

While contactless fingerprint capture offers advantages like hygiene [176] and avoids pressure
distortions common in contact-based methods [237], it introduces significant geometric variations.
Fingers can be presented to the sensor at various angles, and the natural curvature of the
fingertip leads to a non-flat representation in the 2D image. These geometric inconsistencies pose
challenges for accurate fingerprint comparison, especially when comparing contactless images to
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(a) Roll

(b) Pitch

Fig. 3.13: Visualization of the three different hand rotations.

the large existing databases of contact-based prints [193, 217]. To achieve reliable interoperability,
these variations must be addressed. This section introduces algorithms developed to correct for
the finger’s pose (orientation) relative to the sensor and to computationally flatten (unwarp) the
fingerprint image, thereby reducing geometric differences between capture methods.

3.3.1 Challenges of Pose Variations in Contactless Fingerprints

A primary challenge in contactless fingerprint acquisition is the variability in finger presentation
pose [217, Section 1, 2.3]. Unlike contact-based systems where the finger is pressed onto a platen,
contactless methods allow the user to present their finger with freedom in orientation. This
freedom results in variations along three rotational axes:

e Roll: Rotation of the finger around its own long axis, shown in Figure 3.13a.
e Pitch: Up-or-down tilt of the fingertip relative to the sensor, shown in Figure 3.13b.
e Yaw: Left-or-right tilt of the fingertip parallel to the sensor, shown in Figure 3.13c.

These variations in roll, pitch, and yaw lead to perspective changes and therefore geometric
distortions in the captured 2D image when compared to a standard frontal view [217, 247].

Such geometric distortions directly impact the performance of fingerprint recognition systems.
Feature extraction algorithms may incorrectly estimate the location and orientation of minutiae
due to the distorted perspective [217, Section 1]. More critically, comparison algorithms struggle
to align fingerprints captured with different poses. Misalignment leads to fewer correctly matched
minutiae pairs and consequently, lower comparison scores, increasing the likelihood of false
rejections (failing to match prints from the same finger) [136]. This problem is even more
challenging when attempting to compare contactless fingerprints against contact-based databases
[193]. The inherent geometric differences between a perspective contactless capture and a
potentially pressure-distorted contact-based capture are hinder system interoperability [217,
Section 1]. Therefore, correcting these pose variations is a necessary step towards building reliable
contactless systems that can effectively utilize existing fingerprint data [217, Section 1, 2.3].
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3.3.2 Related Works

Initial attempts to address pose variations, particularly lateral rotation (roll), focused on trans-
forming extracted features rather than the image itself. Tan and Kumar [247] proposed an
approach based on modeling the finger as an ellipsoid. By estimating the lateral rotation angle
from the detected core point’s position relative to the finger edges, they derived geometric trans-
formations to correct the locations and angles of extracted minutiae points. While providing a
geometric framework, this method’s limitation lies in its application solely to minutiae, preventing
further image-based enhancements after correction [217, Section 2.3] or the use of texture-based
template comparison approaches.

Subsequent research shifted towards correcting the pose of the entire fingerprint image, allowing
for subsequent processing like unwarping. Dabouei et al. [50] introduced a deep learning approach,
training a network to learn a robust thin-plate spline transformation that directly warped the
contactless fingerprint image to correct for pose distortions. This learned approach demonstrated
effectiveness but lacked an explicit underlying geometric model or a clear mathematical mapping
function relating the input pose to the output correction [217, Section 2.3].

The work detailed in this publication [217], upon which this part of the thesis is based, combines
geometric modeling and deep learning. It utilizes deep learning models for prerequisite steps like
fingertip segmentation and core point localization [217, Section 2.3.1, 2.3.2], which provide the
inputs (finger contour and reference point) for the pose correction calculations. The correction
itself employs classical geometric transformations applied to the entire image. It involves a
two-stage process: first, correcting the in-plane horizontal rotation (yaw) based on the finger’s
axis derived from the segmentation mask, and second, correcting the out-of-plane lateral rotation
(roll) using the detected core point and the assumed elliptical cross-section model, similar to the
geometric foundation laid by Tan and Kumar [247] but applied to the image intensities [217,
Section 2.3.3].

Beyond correcting the overall finger orientation relative to the sensor, the inherent 3D curvature
of the fingertip surface needs to be addressed to simulate a flattened, contact-based impression.
This process, termed unwarping or unwrapping, aims to computationally flatten the captured
fingerprint texture. Sollinger and Uhl [237] systematically investigated various parametric
unwarping models. Based on simplified assumptions of the finger’s 3D shape, such as a cylinder
or an ellipsoid, they developed circular, elliptic, and bidirectional unwarping methods, where
bidirectionality implies unwarping of the curvature also along the longitudinal direction of the
fingertip, to transform the curved surface into a 2D plane. These methods provide computationally
efficient ways to reduce the geometric discrepancy caused by finger curvature. The pipeline
presented in [217] incorporates these unwarping techniques as a subsequent step applied after
the proposed pose correction, demonstrating that addressing pose and curvature sequentially can
significantly improve comparison performance [217, Section 2.4, 4.3].

The effectiveness of many pose correction and unwarping algorithms, particularly those relying
on geometric models like the one presented here [217], depend on the accuracy of preceding
steps. Fingertip segmentation is used to define the finger’s boundaries and derive its axis or
contour [217, Section 2.3.1, 5.1], often achieved using deep learning models like U-Net and its
variants [206, 215, 217]. See section 3.1 for more details. Similarly, detection of landmarks like
the fingerprint core is required when used as a reference point for rotation estimation [217, 247,
Section 2.3.2, 3.2]. This topic is presented in more details in 3.2. Therefore, advancements in
segmentation and landmark detection directly benefit the development of more accurate pose
correction and unwarping techniques.
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3.3.3 Proposed Pose Correction Algorithm

Our pose correction approach aims to computationally rectify the three-dimensional orientation
of the captured fingertip, transforming the image to an approximate standard frontal view.
This aims to improve alignment for subsequent template comparison [217, Section 2.3]. Unlike
methods that only adjust the coordinates of extracted minutiae points [247], our algorithm
operates on the entire fingerprint image intensity values. This transformation allows us to apply
further processing steps, such as surface unwarping, to the pose-corrected image [217, Section 1.1,
2.3]. The process relies fundamentally on accurate initial fingertip segmentation and core point
localization, and consists of two main rotation correction steps addressing in-plane (horizontal)
and out-of-plane (lateral) rotations.

3.3.3.1 Horizontal Rotation Correction

The first step corrects the rotation within the image plane (yaw angle, or horizontal rotation).
This addresses fingers presented tilted left or right in the image frame. This step requires an
accurate segmentation mask delineating the fingertip from the background. Instead of fitting a
simple rectangular bounding box to the mask, which can be sensitive to noise or irregular finger
shapes [189], we determine the finger’s central longitudinal axis differently.

From the segmentation mask, we extract the boundary contour points. For each horizontal
row of pixels intersecting the mask, we identify the midpoint between the leftmost and rightmost
contour points in that row. A linear function (representing the finger’s central axis) is then fitted
to these midpoints using least squares [217, Section 2.3.1]. The slope of this fitted line indicates
the finger’s orientation in the image plane. Let this slope correspond to an angle 6,..;;. The entire
image is then rotated by —6,.,; around the image center such that the finger’s central axis aligns
vertically with the image axis [217, Section 2.3.1]. This method is less susceptible to outliers or
minor imperfections in the segmentation boundary compared to the standard rotated bounding
box technique.

3.3.3.2 Lateral Rotation Correction

The second step addresses the out-of-plane rotation (roll, collectively termed lateral rotation).
This correction aims to transform the image as if the finger was viewed directly from the front,
without addressing the distortions introduced from the pitch.

To mathematically model and correct for lateral rotation, we need an assumption about the
finger’s 3D geometry. Following the approach presented by Tan and Kumar [247], we model the
fingertip surface as a 3D shape whose cross-sections perpendicular to its longitudinal axis are
ellipses [217, Section 2.3.3]. Let an ellipse in a frontal view cross-section (in a local y-z coordinate
system, where y is width and z is depth) be parameterized by angle 0 as

y = acos(0) (3.11)
z = bsin(6), (3.12)

where a and b are the semi-major (half-width) and semi-minor (half-depth) axes, respectively.
Furthermore, based on empirical observations and the work of Tan and Kumar, we assume
a constant ratio k between the major and minor axes. In our practical implementation, this
major-to-minor axis ratio k = a/b is fixed at 1.2 [217, Section 2.3.3], while we show in the
following derivation that the equations can be solved without fixing the axis ratio.

Using the ellipsoid model, we can define the effect of a lateral rotation (roll by the view angle)
a around an axis parallel to the finger’s length (approximated as rotation around the z-axis in
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the local y-z plane). According to Tan and Kumar [247, Eq. 2], the original coordinates (y, )
are transformed into the observed coordinates (y', z’) in the sensor’s view plane (after horizontal
rotation correction) as follows

y' = ycos(a) — zsin(a) = acos(f) cos(a) — bsin(f) sin(a), (3.13)
2/ = ysin(a) + 2z cos(a) = acos(f) sin(a) + bsin(#) cos(a) (3.14)
Here, 9/ represents the observed horizontal coordinate within the slice in the captured image,
while 2’ represents the depth component which is not directly observed. Tan and Kumar further

showed [247, Eq. 3, 4] that the expression for the observed coordinate 3’ can be rewritten using
sum-to-product identities in the form of a phase-shifted cosine wave

y' = A'cos(6 + B'), (3.15)

where the observed amplitude A" and phase shift B’ are functions of the original ellipse parameters
and the rotation angle «

A =\ /(acos(a))? + (bsin(a))?2, (3.16)
B/:arctan<bsm ) arctan< tan (o )) (3.17)

a COb

The observed amplitude A’ corresponds to half the width of the projected ellipse visible in the
captured image slice. Also, the equation for the depth component, although not directly visible,
can be written as

2= C"cos(0 — D), (3.18)

where the amplitude C” of the theoretically observable depth and phase shift D’ are functions of
again the original ellipse parameters and the rotation angle «

' = \/(asin(a))? + (beos(a))?, (3.19)
D' = arctan (asmEZ;) (3.20)

The correction furthermore requires a stable reference point on the finger surface. We utilize the
fingerprint core, as described in section 3.2 as this reference [217, Section 2.3.2, 2.3.3, Figure 4].
The core’s position relative to the finger edges in the horizontally-rotated image provides the key
information to estimate the lateral viewing angle.

Let the horizontally rotated image be considered. For a given horizontal slice passing through
the core, let P/ and P; be the coordinates of the left and right finger edges (derived from the
segmentation mask), and let P! be the coordinate of the detected core. Note that the points P,
and P/ are not special in any way in the transformed image, because they are no longer edge
points in this view.

The lateral rotation angle a (defined as the negative viewing angle relative to the frontal view)
influences the apparent position of the core between the edges due to perspective projection of
the curved surface.
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Tan and Kumar [247] showed that the lateral rotation angle o can be related to the ratio of
distances between the edges and the core. Let the measured distances be dj. = || P, — F/|| and
der = ||P. — P||. We define the ratio R as

di. PP

R:=—= ,
der  PLP!

(3.21)

where we know that the edge points are at positions A’ and —A’ of the observed, rotated ellipse.
Furthermore, we know that the core sits at § = —7 for the ellipsis in the non-rotated view. We
can calculate the core position in the observed, rotated ellipse by utilizing equation 3.15, leading
to

Yeore = 0, (3.22)
=A cos(—g + B) (3.23)

/
ycore

The distances dj. = ||P, — P/|| and d., = ||P, — P!|| can then be expressed as

(%:A+A®%€+B% (3.24)
dep = A — A cos(—g + B) (3.25)
A4 Alcos(-5 + B)
Al — Al cos(—5 + B')
R 1+ 1cos(—% + B')
~ 1—1cos(—3+ B’)
1+ 1sin(B’)
_ 2
= s (3:26)

This ratio R can be directly measured from the horizontally rotated image and the detected core
position. The relationship between R and the viewing angle a, under the elliptical cross-section
assumption, is derived through the geometry of projecting the ellipse onto the image plane. If
B’ represents the phase angle in the projected ellipse description, which is related to a via the
ellipse parameters a and b as B’ = arctan(g tan(a)) (assuming standard ellipse parameterization
context), we substitute this into Equation 3.26. By substituting the expression for B’ into 3.26,
we get a direct relationship between the measurable ratio R and the desired angle a:
1+ sin (arctan (b tan(a)))

a

R= (3.27)
1 —sin (arctan (g tan(a)))
We now wish to solve Equation 3.27 for the angle a.
Let S = sin (arctan (2 tan(a))). The equation becomes
R itS (3.28)

1-5
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Assuming R # —1 (which is guaranteed as R is a ratio of distances, hence R > 0), we can solve
for S

R1-8)=1+58

R—RS=1+5
R—1=5+RS
R—1=5(1+R)
R—1
=2 2
R+1 (3:29)

Now, let’s express S directly in terms of tan(«). Let u = arctan (g tan(a)). By definition,
tan(u) = 2tan(a), and v € (—7/2,7/2). We want to find S = sin(u). We use the identity

T a
sin?(u) + cos?(u) = 1. Dividing by cos?(u) (assuming cos(u) # 0, which is true for u €

(=7/2,7/2))

1
tan?(u) + 1 = sec*(u) = —5—
an“(u) sec” (u) T
1
N 2 —
cos” (u) 1+ tan?(u)

1 ~ tan®(u)
1 +tan?(u) 1+ tan?(u)

— sin?(u) =1 —cos?(u) =1 —

tan(u)
1+tan2(u)
the same sign. Therefore, we must take the positive root

Taking the square root, sin(u) = + . Since u € (—n/2,7/2), sin(u) and tan(u) have

sin(u) = _ tan(w)
1 + tan?(u)
Substitute tan(u) = 2 tan(a)
G b tan(a) :
\/1 + (3 tan(a))
b tan(a)

1+ 2—2 tan?(a)

b
4 tan(a)
a?+b2 tan?(a)
a2

b tan(a) .
== —m (ASSumlng a # 0)

B btan(z) |al

- a a? + b2 tan?(«)

_ sgn(a) btan(a) (3.30)
a? + b2 tan? ()




3.3 Pose Correction and Unwarping for Contactless Fingerprints 69

Here, sgn(a) = |a|/a is the sign function. We assume a, b # 0.
Equating the two expressions for S (Equations 3.29 and 3.30)

R—1  sgn(a)btan(a)
R+1 a? + b2 tan? ()

(3.31)

To solve for tan(«), we square both sides. Note that squaring introduces extraneous solutions,
which we must consider later.

R—1\? [ sgn(a)btan(a) ’
<R+1> - a? + b2 tan?(a)

(R—1)° _ (sgn(a))? b? tan?(a)

(R+1)? a? + b2 tan?(«)

(R—1)>  b*tan*(a) _ B

FTTF ~ F e (en(@)’ =1 fora #0)

Let T = tan?(a). Assume b # 0 and R > 0. If R = 0, the LHS is 1, requiring S = —1, which
implies y = —7/2, meaning gtan(a) — —00. The denominator below (4b?R) becomes zero, so
we assume R > 0.

(R—1)*(a® +b*T) = (R + 1)**T

Q2(R—1)? + PT(R - >—M<R+n
A*(R—12 =0T [(R+1)? — (R—1)?|
a*(R—1)% = [(R2 +2R+1) — (R? = 2R + 1)]
a*(R —1)* = b’T[4R]
2
T = tan*(a) = 2 (592_}21)
Taking the square root
tan(a) = + a((R-1)2  |a||R—1]

4R T 2blVR
Since a represents the major axis and b the minor axis of the elliptical finger model, we know

that they are positive.
a(R—1)

20vR

In order to figure out which sign is correct, we must check against the equation before squaring
(Equation 3.31).

tan(a) = + (3.32)
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a(R—1)
20vVR

i)t (47
oo ()
sgn(a) a(R —1)/(2VR)

5 | b2a2(R—1)2
O+ "R

sgn(a) a(R —1)/(2VR)

\/a2 (1 + %)
sgn(a) a(R —1)/(2VR)

/4 2_
|a‘ R+R4R2R+1

sgn(a) a(R — 1)/(2VR)

R242R+1
|a|\/ ~4ir

sgn(a) a(R — 1)/(2VR)

ol 2
sgn(a) a(R —1)/(2VR)
lal|R +1]/(2VR)

_ sgn(a)a(R—1) ince —
= SR (Since R>0,R+1>0,|R+1|=R+1)
_ Jal(R-1)

la|(R+ 1)
_R-1
 R+1

Case 1: tan(a) = Substitute into the RHS of Equation 3.31

RHS =

(Since sgn(a)a = |al)

This matches the LHS of Equation 3.31. So, tan(«a) = ag(bRi\;E}) is a valid solution.
Case 2: tan(a) = —aéi/%) = az(z\_/%)' Substituting this into the RHS of Equation 3.31: The

denominator y/a? + b2 tan?(a) remains the same because tan?(«) is unchanged.

a(l-R
()
a? + b2 tan?(q)
_ sgn(a)a(l - R)/(2VR)
lal(R+1)/(2VR)
_ sgn(a)a(l - R)
la|(R+ 1)
(- R)
la|(R+1)
1-R

R+1
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This only matches the LHS % if }Q;Jﬁ = g—ﬁ, which implies 1 — R = R—1, or 2 = 2R, meaning
R =1. If R =1, both formulas give tan(«) = 0, indicating that we observed no rotation because
the core is found at the center.

The structure of the original equation R = (1+5)/(1 —.5) has a symmetry, which is the reason

we found two solutions. If we replace R with 1/R, we get

1+ 5

VR=1"%

which solves to

1/R—1
1/R+1
1-R

1R
=-S5

S =

So, if (R, «) is a solution pair leading to S, then (1/R, o) is a solution pair leading to S’ = —S.
We have sin(arctan(% tan(a'))) = — sin(arctan(% tan(a))). Since sin(—u) = —sin(u) and arctan
maps to (—m/2,7/2), this implies

b
arctan(a tan(a')) =

- arctan(a tan(a)) =

arctan(—g tan(a))

Taking tan of both sides gives gtan(o/) = —g tan(a), so tan(a’) = —tan(«). Therefore, the
solution corresponding to 1/R has the negative tangent of the solution corresponding to R.
The first solution form tan(a) = GQ(;\_/? solves the equation for 1/R. The second solution form

tan(a) = aéf\;%) solves the equation for R.

Thus, the two solutions found arise naturally from this symmetry. Depending on whether
the measured ratio is R or 1/R (which might depend on labeling conventions), one of the two
formulas applies. Both can be presented as potential solutions stemming from the equation
structure.

The solutions for « are then given by

a—aR
a = arctan | —— | + nw (Corresponds to 1/R case, or tan(o’ 3.33
(%) +nm (Corresponds to 1/ CORNNNCES
and
a = arctan (aR—a) +nm (Corresponds to R case, or tan(a)) (3.34)
20VR Y ’ '

for any integer n. The arctan function returns the principal value in (—n/2,7/2). The addition
of nm accounts for the periodicity of the tangent function. Note however that for our usecase of
calculating the lateral rotation angle based on the core offset, it does not make sense to consider
angles outside the range of (—7/2,7/2), therefore, n can be set to zero.

Once « is estimated, we use the elliptical model again to transform the pixel intensities to the
frontal view. For each pixel (2/,y') in the observed image, we calculate its corresponding 3D
coordinates on the ellipsoid based on the calculated lateral rotation angle . We then apply the
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o il

(c) Original Image (d) Pose Corrected Image

Fig. 3.14: Effect of pose correction on two example recordings. Index finger in 3.14a and 3.14b
and middle finger in 3.14c and 3.14d.

inverse rotation by —« to find the corresponding 3D point on the rotated ellipsoid model, which
corresponds to an axes parallel ellipsoid. The parameters of the ellipsoid at each slice (major axis
a, minor axis b = a/1.2) are determined using the width of the finger contour in the observed
image at that slice. We then project the rotated 3D point back onto the original sensor plane to
find the target pixel coordinates (z,y) in the input (horizontally-rotated) image. The intensity
value at (z,y) (using interpolation if necessary) are set to be the source pixel’s (2/,y') value.
This process effectively unrotates the finger surface texture onto the frontal plane [217, Section
2.3.3]. Regions of the target frontal view that correspond to parts of the ellipsoid invisible in
the original rotated view (occluded surfaces) are filled with a background value. The result is a
pose-corrected image, aligned as if captured from a direct frontal viewpoint (exemplary shown in
Figure 3.14), ready for the subsequent unwarping step.
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3.3.4 Proposed Unwarping Algorithm

Even after correcting the overall orientation of the finger using the pose correction algorithm
described previously (Section 3.3.3), the resulting image still represents an perspective projection
of the inherently curved fingertip surface, because it was taken by a camera with a finite focus
length. To further improve interoperability between contactless captures and flattened contact-
based impressions, a subsequent unwarping step is required [217, Section 2.4]. This step aims to
computationally flatten the fingerprint texture, simulating an orthographic projection of the 3D
fingerprint.

In our work presented in [217], we integrated and evaluated several parametric unwarping
algorithms, originally proposed and detailed by Sollinger and Uhl in their publication Optimizing
contactless to contact-based fingerprint comparison using simple parametric warping models [237].
These algorithms operate by assuming a simplified 3D model of the finger’s shape and then
mathematically mapping the captured texture onto a flat 2D plane.

The specific methods explored, following the work of Séllinger and Uhl [237], include:

e Circular Unwarping: This approach models the finger as a cylinder, leading to a circular
cross-section. The captured image texture is then projected onto the unfolded surface
of this cylinder. As investigated in [217, Section 2.4], two variants of this method were
considered: one using a fixed cylinder radius determined from the overall image width, and
another employing an adaptive radius. The adaptive approach uses the fingertip contour
derived from the segmentation mask (obtained as described in Section 3.3.3.1) to estimate
the finger width, and thus the cylinder radius, locally for each part of the finger.

e Elliptic Unwarping: Recognizing that a simple cylinder might not capture the finger’s
shape, this method assumes an elliptical cross-section, consistent with the model used in
the lateral pose correction step (Section 3.3.3.2). The texture is then unwarped from the
surface of this assumed ellipsoid [237].

o Bidirectional Unwarping: This method aims to better account for the rounded fingertip.
As described by Séllinger and Uhl [237], it combines two circular unwarping operations:
one along the main finger axis and another perpendicular to it [217, Section 2.4].

These unwarping algorithms, developed by Séllinger and Uhl [237], were applied as a post-
processing step after our proposed pose correction within the pipeline evaluated in [217, Section
4.3]. The goal was to assess their combined effect on reducing geometric distortions and improving
the interoperability between contactless and contact-based fingerprint templates. The visual
impact of applying these different unwarping techniques to a contactless fingerprint image is
illustrated in Figure 5 of the paper [217, Figure 5].

3.3.5 Experimental Evaluation and Results

To assess the efficacy of the proposed pose correction and unwarping pipeline, we focused on its
impact on contactless to contact-based fingerprint comparison performance [217]. The overall
processing pipeline, consisting of the live preprocessing steps and the postprocessing steps
including pose correction and unwarping evaluated in this section, is illustrated in Figure 3.15.

3.3.5.1 Dataset and Demographics

The evaluation utilized a dataset comprising both contactless and contact-based fingerprint
recordings obtained from a law enforcement agency’s operational data [217, Section 3.2.3]. Due
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Live Pre-processing Post-processing

Enhance Segment
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Fig. 3.15: The preprocessing and postprocessing pipeline evaluated. The input is the raw
grayscale image from the contactless sensor. Live preprocessing runs in real-time
and involves detecting fingertips, enhancing the cropped images, and scoring their
sharpness. The results are saved. Postprocessing, performed later, involves segmenting
the finger contour, locating the finger’s core, using these to perform horizontal and
lateral rotation corrections, and finally unwarping the pose-corrected image before
template comparison. Adapted from Figure 1 in [217].

to time and computational constraints, a representative random subset of 78 participants from
the larger dataset collected in [266] was selected for this evaluation, encompassing a total of
37,162 contactless fingerprint images [217, Section 1.1, 3.2.3].

Contactless images were captured using the sensor prototype detailed in [217, Section 2.1].
Contact-based counterparts consisted of rolled fingerprint images acquired using a commercially
available Idemia TP 5300 scanner at a resolution of 1000 DPI [217, Section 3.2.3]. Before analysis,
the dataset underwent a cleaning process to correct finger identification errors introduced during
acquisition, involving the correction of mappings for 102 finger instances and the exclusion of 25
individual fingers where a definitive assignment between contactless and contact-based recordings
could not be established [217, Section 3.2.6].

The participants had diverse demographics, with gender and origin information not available
for only three individuals. Of the remaining 75 participants, 42 were identified as male and
33 as female. Geographic origin was varied: Asia was the most represented continent with
50 participants (24 male, 26 female) from eight different countries (predominantly Syria (36),
Afghanistan (5), and China (3)). Africa was represented by 10 participants (all male) from nine
countries (primarily Somalia (4) and Nigeria (2)). Europe contributed 5 participants (all male)
from five countries (including Ukraine (3) and Tirkiye (2)) [217, Section 3.2.4, Figure 7]. The
age and country of origin distributions for these 75 participants are visualized in Figure 3.16.

A quality analysis using the NIST Fingerprint Image Quality 2 (NFIQ 2) metric [246] was
performed on both the contact-based and the preprocessed contactless images (after live pre-
processing including enhancement [116] but before pose correction/unwarping). It is important
to remember that NFIQ 2 was designed and trained specifically for contact-based, plain (flat)
fingerprint images [246], whereas in this analysis, it was applied to contact-based rolled impres-
sions and contactless images. Therefore, the application of NFIQ 2 here falls outside its intended
scope. Given the mismatch between the NFIQ 2 design and the image types analyzed, these
quality scores should be considered only as a rough indication of potential sample utility, rather
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Fig. 3.16: Age and country of origin distribution, separated by gender, for the 75 participants
(out of 78 total) with available demographic information used in the contactless to
contact-based template comparison dataset. Adapted from Figure 7 in [217].

than a direct measure. Furthermore, as noted in [189], NFIQ 2 scores are not directly indicative
of comparison performance (which can be measured by EER or similar metrics), but predict the
sample utility.

The results, detailed in 3.9, showed that the contact-based rolled prints (Idemia TP 5300) had a
higher average NFIQ 2 score (50.0 £ 18.9) compared to the contactless images (32.3 £ 13.5). The
contact-based images also exhibited a wider score range ([2, 93]) and larger interquartile range
(IQR [37, 63]) compared to the contactless images (range [0, 91], IQR [22, 42]). When compared
to scores from publicly available contact-based datasets reported in [189], the contact-based
portion of this dataset demonstrated relatively high quality (50 + 18 vs. e.g., MCYT dp: 38 £+ 15,
FVCO06: 36+9), while the contactless scores were comparatively low (32414) [217, Section 3.2.5].
It is important to note that NFIQ 2 calculation failed for 3,464 contactless images, primarily due
to the recognized fingerprint area being too small [217, Section 3.2.5].

3.3.5.2 Evaluation Methodology

The primary metric used to evaluate the impact of the proposed pipeline was the Equal Error
Rate (EER). EER represents the point where the False Acceptance Rate (FAR) equals the False
Rejection Rate (FRR) and is a standard measure for biometric system performance, with lower
values indicating better accuracy [217, Section 1.1, 3.1].

For each finger of each participant in a recording session, the top five sharpest contactless
fingerprint images were selected based on the sharpness score calculated during the live prepro-
cessing stage (Section 2.2 in [217]). Templates were generated for these five selected contactless
images and for all available contact-based rolled print templates using the commercial IDKit
software from Innovatrics [103]. Each of the five contactless templates was then compared against
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Recording Mode |~ Al | Thumb Index Middle Ring Little
Contact-based | 50.0+18.9 | 554+ 134 54.6+18.2 50.6+16.5 46.0+188 43.5+23.3
[Min, Max)] 2,93] [13,92] [10,93] 3, 85] [3,93] 2,90]
[90.25, qo.75] [37,63] [48,63] [42,67] (39, 62] [34, 60] [25,62]
[90.10, 90.90] 24, 74] [39,72] 28, 76] [31,73] (21, 70] [12,75]
Contactless 323+135 | 388+£10.1 31.7£135 357+£128 309+13.2 23.6+125
[Min, Maz) [0,91] [0,82] [0,80] [0,81] [0, 86] [0,91]
[q0.25, 90.75] 22, 42] 33, 46] 22, 41] 26, 45] 20, 41] [14,32]
[90.10, G0.90] [14,49] 25, 51] 14, 50] [18,52] (14, 48] (8, 40]

Tab. 3.9: Mean NIFQ 2 scores with standard deviation for the contact-based recordings collected
using the Idemia TP 5300 sensor as well as the contactless recordings after the pre-
processing stage. Taken from [217] and extend to show more extensive metrics like
minimum and maximum ([Min, Max]) and different quartile ranges ([¢start; Gend])-

all contact-based templates of the corresponding finger from the same participant (generating
genuine scores) and against templates from the other participants (generating imposter scores).
This approach accounts for variations in recording quality by focusing on the sharpest images
and reduces the total number of comparisons needed compared to using all captured images [217,
Section 3.1].

To assess the variability of the EER results, a random subsampling strategy was employed. For
each EER calculation, 80% of the genuine scores and 80% of the imposter scores were randomly
selected. This subsampling and EER calculation process was repeated 100 times. The final
reported EER values represent the mean and standard deviation across these 100 repetitions
[217, Section 3.1, 4.3].

3.3.5.3 Comparison Performance Results (EER)

The experimental results, detailed in [217, Table 5] and shown in Table 3.10, demonstrate the
impact of the different processing steps on the contactless-to-contact-based comparison EER.
The baseline performance, using only the standard preprocessing pipeline (including Kauba
et al. enhancement [116]) without any subsequent pose correction or unwarping, yielded an
overall mean EER of 1.57 £ 0.11 % across all fingers (Row B). Applying only the proposed pose
correction algorithm (Section 3.3.3) resulted in a slight increase in the overall EER to 1.61 +
0.10 %. However, examining individual fingers revealed improvements for the Thumb and Ring
fingers, offset by degradations for others, indicating a finger-specific impact (Row PC). Applying
only the unwarping methods (introduced by [237]) without prior pose correction showed that
Elliptic unwarping (El) provided the largest average EER reduction compared to the baseline,
achieving an overall EER of 1.35 £ 0.10 %, representing a 14.0% relative improvement (Row El).
The core evaluation involved combining pose correction with the various unwarping techniques.
When applied after pose correction, Bidirectional unwarping (Bi) yielded the largest average
improvement over the pose-correction-only result, reaching an EER of 1.47 4+ 0.08 % (a 6.4%
relative improvement compared to pose correction only) (Row PC+Bi). Elliptic unwarping after
pose correction (PC+El) achieved a similar overall EER of 1.48 &+ 0.11 % (Row PC+El). The
results in 3.10 showed that the optimal enhancement strategy (including whether to apply pose
correction and which unwarping method to use) varied significantly depending on the specific
finger. By selecting the best performing combination for each finger individually based on the
lowest EER in Table 5, a finger-wise combined enhancement pipeline was constructed. This
involved:
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Enhancement | All [%] | Thumb [%] Index [%)] Middle [%] Ring [%] Little [%]
B 1.57+0.11 2.38 £0.58 1.124+0.13 1.28 +£0.21 0.85 £ 0.23 2.97+£0.33
CF 1.46 +0.08 0.47+ 0.02 1.39+0.14 0.89 +£0.20 1.124+0.19 3.04 £ 0.34
CA 3.30£0.19 1.51£0.20 1.69 £ 0.57 2.28+0.35 0.85 £ 0.50 8.67 +0.84
El 1.35 + 0.10 0.82 £0.22 0.94 £ 0.16 0.66 + 0.15 0.98 +0.15 3.43 +0.34
Bi 1.37+£0.10 1.52 4+ 0.22 1.33+0.31 1.00 £ 0.18 1.31 +0.17 1.77 + 0.15
PC 1.61 £0.10 0.78 £ 0.40 2.03 £ 0.39 1.68 £0.37 0.94 £0.22 2.04 £0.21
PC + CF 1.62 £ 0.08 0.68 £ 0.05 2.00 +£0.19 0.80 £ 0.19 1.454+0.21 2.15£0.13
PC + CA 2.274+0.14 0.52 £ 0.06 3.02+0.19 0.63 £ 0.10 2.16 £0.28 3.12+0.14
PC + El 1.48 +£0.11 0.41 + 0.16 1.45+0.26 0.89 +0.22 1.06 = 0.16 2.60 £0.15
PC + Bi 1.47 £ 0.08 0.57 £ 0.16 1.76 £0.29 0.79 +£0.10 1.96 +0.18 1.98 +£0.20

Tab. 3.10:

Equal error rates (EERs) given in percentages for contactless to contact-based

template comparison. Depicted are mean and standard deviation of EERs for 100
random sub-samples containing 80% of the template comparison scores. The baseline
was calculated for the enhanced images after the pre-processing pipeline without
any further post-processing steps. Results for the Pose correction (PC) run were
calculated by applying pose correction as a post-processing step to the results of the
baseline (B). For the next runs, additional unwarping was added: Circular unwarping
with fixed finger width (CF), circular unwarping with an adaptive finger width (CA),
elliptic unwarping with a fixed finger width (El) and finally bidirectional unwarping
with a fixed finger width (Bi). Bold entries highlight the best score for this column
and italicized entries the best score for the row. Ties are broken by smaller standard
deviation. Taken from [217].

o Thumb: Pose Correction + Elliptic Unwarping (PC+El)
o Index: Elliptic Unwarping only (El)

o Middle: Elliptic Unwarping only (El)

o Ring: Baseline preprocessing only (None)

o Little: Bidirectional Unwarping only (Bi)

This finger-wise approach, detailed in [217, Table 6], achieved the lowest overall EER of 0.99 +
0.07 %. This represents an absolute reduction of 0.58 percentage points and a relative decrease
in EER of 36.9% compared to the baseline performance [217, Section 4.3, 6].

3.3.5.4 Image Utility Results (NFIQ 2)

To complement the EER analysis, the impact of the enhancement pipeline on image quality was
assessed using NFIQ 2 scores [217, Section 4.4]. Exemplarily, the NFIQ 2 scores were calculated
for the contactless images after applying both pose correction and bidirectional unwarping
(PC+Bi), one of the effective combined methods. The results are presented in 3.11.

Compared to the NFIQ 2 scores of the baseline preprocessed contactless images (see Table
3.9), the combined enhancement (PC+Bi) led to an increase in the average NFIQ 2 score
across all fingers from 32.3 + 13.5 to 33.5 £+ 10.9. This constitutes a relative increase of 3.72%.
Furthermore, the standard deviation decreased from 13.5 to 10.9, indicating a reduction in quality
score volatility by 19.26%.

Analysis per finger showed improvements in average NFIQ 2 scores for the Thumb (+7.22%),
Index (+4.1%), Ring (+1.29%), and Little (+15.25%) fingers. Only the Middle finger showed a
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- | All | Thumb Index Middle Ring Little
Mean =+ Std. | 33.54+10.9 | 41.64+7.0 33.0£10.8 3504102 31.3+10.8 27.2+9.8
[Min, Maz] [0,71] 10, 71] [1,71] [2, 64] 1, 60] [0, 69]
[90.105 40.90] (18, 46] 32, 49] (17, 45] 20, 46] (16, 44] [14, 40]

Tab. 3.11: NIFQ 2 scores for the contactless recordings after the post-processing stage with
bidirectional unwarping, taken from [217].

slight decrease (-1.96%). Importantly, the variability (standard deviation) of NFIQ 2 scores was
reduced for all fingers: Thumb (-30.69%), Index (-20.00%), Middle (-20.31%), Ring (-18.18%),
and Little (-21.60%). This suggests that the pose correction and unwarping steps generally not
only slightly improve the average measurable feature quality but also make the quality more
consistent across recordings.

3.3.6 Discussion

The experimental results confirm that addressing geometric variations through pose correc-
tion and surface unwarping significantly enhances the interoperability between contactless and
contact-based fingerprint systems. The developed pipeline, combining pose correction steps with
unwarping techniques, achieved a substantial relative reduction in Equal Error Rate (EER) of
36.9% compared to a baseline using only standard preprocessing. This finding directly addresses
the core challenge outlined in Section 3.3.1, demonstrating a way to mitigate the geometric
inconsistencies inherent in contactless capture.

While the proposed pose correction method improves performance, its accuracy is fundamentally
limited by the inherent positional variability of the fingerprint core, which this thesis empirically
quantifies in Section 3.2 to be as high as 12% of the finger height. This finding underscores the
need for future pose correction algorithms to incorporate more stable landmarks or be robust to
this level of core deviation.

3.3.6.1 Effectiveness of Pipeline Components

The effectiveness of the overall pipeline comes from the combination of all of its components.
The initial horizontal rotation correction (yaw correction), based on fitting the finger’s central
axis from the segmentation contour, proved more reliable than simpler bounding box methods,
by being less susceptible to noise or irregularities in the finger shape.

The subsequent lateral rotation correction, which utilizes the detected core point and an
assumed ellipsoid finger model, builds upon the geometric principles established by Tan and
Kumar [247]. However, the results indicate that applying pose correction alone yields mixed
results, highlighting the complexity of the distortions and the potential limitations of relying
solely on the core point. Integrating the findings from the core centrality analysis (Section 3.2.5)
we see that the fingerprint core shows positional variability (6-8% horizontally, 9-12% vertically
relative to the geometric center) and modality-induced bias (especially from rolling). Therefore,
even with a perfect core detector, the reference point for lateral correction is not fixed or centered,
inherently limiting the achievable accuracy of any correction solely based upon it. This variability
likely contributes to why pose correction alone did not uniformly improve EER across all fingers,
as seen in Table 3.10.
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The significant EER improvements observed when applying unwarping (particularly elliptic
unwarping) even without prior pose correction (Table 3.10) demonstrate the impact of finger
curvature on comparison performance. When combined with pose correction, unwarping provides
further gains, effectively addressing both orientation and shape discrepancies.

3.3.6.2 Finger-Specificity and Optimization

No single combination of pose correction and unwarping proved universally best across all
five fingers. For instance, the ring finger performed best with no additional steps beyond
baseline preprocessing, while the thumb benefited most from combining pose correction with
elliptic unwarping, and the index/middle fingers favored elliptic unwarping alone (Table 3.10).
This variability likely comes from differences in the shape, size, typical presentation pose, and
potentially the core location characteristics of individual fingers. The success of the finger-wise
combined approach, yielding the overall best EER (0.99 + 0.07 %), shows the importance
of adapting enhancement strategies to individual finger characteristics for optimal system
performance.

3.3.6.3 Impact on Image Quality

While the primary goal was improving comparison accuracy (in the for of EER scores), the
analysis also considered the impact on image utility using NFIQ 2. The results suggested a modest
improvement in average NFIQ 2 scores and a more notable reduction in score variability after
applying pose correction and bidirectional unwarping. However, as emphasized in Section 3.3.5.1,
using NFIQ 2 (designed for contact-based plain prints) for contactless and rolled images provides
only a rough indication. The observed slight increase in average score and decrease in variability
suggest the geometric corrections might lead to features that are somewhat more consistent
or better align with NFIQ 2’s underlying quality definitions, but definitive conclusions require
contactless-specific quality metrics, such as those explored in Section 3.4.

3.3.6.4 Strengths and Limitations

The proposed pipeline offers several strengths. Correcting the pose of the entire image, rather than
just minutiae coordinates [247], enables the application of subsequent image-based enhancements
like unwarping, leading to greater overall improvement. The improved method for horizontal
rotation (yaw) correction enhances reliability compared to simpler approaches. The study
explicitly demonstrates the significant gains achievable by optimizing the processing chain on a
per-finger basis.

However, limitations must be acknowledged. The pipeline’s performance is dependent on the
accuracy of the upstream segmentation and core localization modules. Errors in these initial steps
will propagate and worsen the effectiveness of the pose correction [217, Section 5.1]. The reliance
on a fixed elliptical model (with k=1.2) for lateral correction and unwarping is a simplification.
Real finger shapes exhibit greater complexity and variation. Furthermore, the computational
cost of the full pipeline, including potentially complex deep learning models for segmentation
and core detection, needs consideration for resource-constrained applications [217, Section 5.1].

3.3.6.5 Impact on Research Questions

The development and evaluation of the pose correction and unwarping pipeline presented in this
section provide direct insights into several of the research questions introduced at the beginning
of this thesis.
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Firstly, this work directly addresses RQ2 (What techniques can effectively correct
pose variations in contactless fingerprints to enhance comparison accuracy?) The
results demonstrate that a hybrid approach, combining deep learning for segmentation and core
localization with geometrically-grounded transformations for rotation correction, is effective.
Moreover, the study shows that addressing both orientation (pose correction) and surface
curvature (unwarping) yields the most substantial improvements in comparison accuracy (given
as EER improvements). Furthermore, the finding that the optimal combination of techniques is
finger-specific shows that effective pose variation correction necessitates tailored approaches. The
significant 36.9% relative EER reduction achieved by the finger-wise optimized pipeline provides
a strong answer regarding the efficacy of these combined techniques.

Secondly, the findings provide context for RQ3 (How can core point detection in
contactless images be improved to enable better alignment with contact-based
databases?) While Section 3.2 detailed the development of an accurate core detector, the
centrality analysis within that section, and its implications discussed here, reveal a fundamental
limitation. The positional variability and modality-induced bias of the fingerprint core itself
mean that even a perfect core detector cannot enable perfect alignment if the core is the only
reference point. This implies that while improving core detection accuracy (RQ3) is valuable,
achieving further enhancements in alignment for pose correction likely requires incorporating
additional reference points or developing methods robust to this inherent core uncertainty.

Thirdly, this section highlights the interdependencies between different processing stages,
linking back to RQ1 ( How can segmentation of fingerprints from contactless hand
images be made more accurate and robust?) The success of the proposed pose correction,
particularly the horizontal rotation component relying on the finger contour, is dependent on the
quality of the input segmentation mask.

Finally, the results touch upon RQ4 (What are the problems of established fingerprints
quality assessment metrics [...] on contactless fingerprint images?) The application
of NFIQ 2 to the enhanced images yielded ambiguous results, with only minor average score
improvements despite significant EER reductions. This reinforces the notion, central to RQ4,
that established metrics designed for contact-based prints (like NFIQ 2) may not capture the
quality improvements relevant to contactless comparison after geometric corrections.

3.4 Contactless Fingerprint Quality Assessment

The performance and reliability of any biometric system are linked to the quality of the acquired
samples. This holds particularly true for contactless fingerprint recognition, where the acquisition
process presents unique challenges compared to traditional contact-based methods [194]. While
contactless capture avoids issues like latent prints and non-linear distortions from pressure [87,
237], it introduces variability due to factors like inconsistent illumination, distance variations
leading to focus or scaling issues, specular reflections, and unconstrained finger pose [116,
194]. These factors can degrade the captured image, making subsequent feature extraction and
comparison less reliable, impacting the overall system accuracy and interoperability, especially
with legacy contact-based databases [133, 217]. Therefore, a method for assessing the quality of
contactless fingerprint samples is important for operational systems to ensure only sufficiently
useful samples are processed or to provide feedback for recapture [194].

3.4.1 Challenges of Quality Assessment for Contactless Fingerprints

The concept of biometric sample quality is formally defined in ISO/IEC 29794-1 and it is based
on three concepts: Character, relating to the inherent properties of the source (e.g., a scarred
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finger possesses poor character); Fidelity, reflecting the degree of similarity between the sample
and its source (e.g., a low-resolution capture results in low fidelity); and Utility, representing
the predicted positive influence of the sample on the biometric system’s performance, combining
both character and fidelity. Quality assessment algorithms aim to map a biometric sample to
a numerical score, ideally reflecting its utility, where higher scores predict better recognition
performance [89, 194].

While contact-based fingerprint quality assessment is well-established and largely standardized
around the NIST Fingerprint Image Quality 2 (NFIQ 2) algorithm [246], which is the reference
implementation for ISO/IEC 29794-4, the field of contactless fingerprint quality assessment is
lacking such a standard. The distinct challenges of contactless acquisition, such as variable
illumination, focus issues, and pose distortions (as discussed in Section 3.3), mean that quality
metrics developed for contact-based prints may not directly translate or perform optimally [192,
194]. For instance, sharpness becomes a much more important factor in contactless scenarios due
to potential motion blur and narrow depth of field, whereas pressure consistency is irrelevant
[116, 194].

3.4.2 Existing Approaches and Limitations

Prior research into contactless fingerprint quality assessment focused on general image quality
metrics or features adapted from contact-based analysis. Parziale and Chen [182] proposed a
ridge coherence-based measure derived from local gradient analysis. Labati et al. [57] investigated
a large set of features including ROI characteristics, Fourier features, and Gabor features, using
machine learning classifiers (Neural Networks, kNN) to aggregate them into a quality score. Li et
al. [132] developed metrics for smartphone-captured images using spatial and frequency domain
features combined with an SVM. Liu et al. [144] evaluated generic image attributes like contrast,
sharpness, and luminance for contactless modalities including fingerprints.

These studies often suffered from similar limitations [194]. Many evaluations were conducted
on private datasets, hindering reproducibility and comparability. Furthermore, the evaluation
methodologies were sometimes limited, often relying on simply dividing data into quality bins and
observing error rates rather than using standardized metrics like EDC curves (discussed below).
A common pattern was the emphasis on sharpness and contrast measures, potentially neglecting
other aspects of fingerprint utility related to character, such as the clarity and continuity of
the ridge pattern itself [194]. Wild et al. [269] and a preliminary study by Priesnitz et al.
[192] evaluated the direct applicability of contact-based metrics like NFIQ 1.0 and NFIQ 2.0 on
contactless data, finding they showed the intended behaviour (assigning lower scores to lower-
utility samples) but performed sub-optimally compared to their performance on contact-based
data, indicating a need for adaptation or a new approach.

3.4.3 The NFIQ 2 Framework as a Basis

Given the limitations of existing contactless-specific metrics and the established nature of NFIQ
2 for contact-based fingerprints, Jannis Priesnitz proposed adapting the NFIQ 2 framework for
mobile contactless fingerprint images, which we explored in [194]. Compared to creating a new
framework, NFIQ 2 offers a big advantage: it uses a set of 74 hand-crafted quality features,
formally standardized in ISO/IEC 29794-4, which cover various aspects like contrast, ridge clarity,
minutiae count, and ROI size. Many of these features, particularly those related to fidelity,
such as sharpness, local clarity, and orientation certainty, are highly relevant to the challenges
encountered in contactless acquisition [194]. Furthermore, NFIQ 2 uses a random forest classifier
to map these features to a final quality score between 0 and 100, where the decision trees inside
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the random forest allows for better interpretability of the model results than deep learning
models. Furthermore, since the random forest classifier is a machine learning component, it can
be re-trained on data specific to a particular capture modality. This re-weights the importance of
the individual features to optimize the quality prediction for that specific use case and modality
[194, 246]. The hypothesis behind our work in [194] was that the NFIQ 2 feature set is suitable
for contactless fingerprints.

3.4.4 The MCLFIQ Algorithm: Adaptation and Training

3.4.4.1 Sample Pre-processing Requirements

A requirement for most quality assessment algorithms is consistent sample presentation and
therefore a pre-processing that unifies the input. Raw images captured by contactless devices
(typically color images from smartphone cameras) are not directly suitable for NFIQ 2 feature
extraction [194]. The framework conditions defined in [194], are also common in many contactless
processing workflows [87, 98, 112, 262] and they include:

« Rotation: The segmented fingerprint image must be rotated to an upright position.

e Cropping: The image should contain only the fingerprint area, typically cropped approxi-
mately at the first finger knuckle.

e Grayscale Conversion: The image must be converted to grayscale.

« Ridge Pattern Emphasis: Techniques like Contrast Limited Adaptive Histogram Equal-
ization (CLAHE) [185] should be applied to enhance the ridge-valley contrast.

o Normalization: The ridge-line frequency should be normalized to a standard range (e.g.,
8-12 pixels, aligning with approximately 500 PPI contact-based scans).

e Background Separation: The fingerprint ROI must be precisely segmented from the
background, with the background typically set to white.

Rotation Cropping Grayscale

Rotate upright Crop at knuckle Convert to grayscale
Background Normalization Ridge Emphasis
Segment ROI, white bg 812 px ridges CLAHE contrast

Fig. 3.17: Fingerprint image preprocessing pipeline with horizontal wrapping.

3.4.4.2 Training with Synthetic Data

Training the random forest classifier for MCLFIQ required a large dataset of contactless fingerprint
images labeled with ground truth quality information (e.g., high utility vs. low utility). However,
large-scale, publicly available, and appropriately labeled datasets of mobile contactless fingerprints
are scarce [194]. Manually labeling existing datasets is time-consuming, requires expertise, and
is impractical for the scale needed for machine learning model training. Furthermore, using
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available real-world datasets for training would reduce the data available for independent testing
and evaluation [191].

To overcome this data scarcity, Priesnitz et al. [194] used synthetically generated contactless
fingerprint data for training the MCLFIQ random forest classifier. Priesnitz et al. utilized the
SynCoLFinGer generator [191], which is capable of creating synthetic contactless fingerprint
images with varying levels of quality. SynCoLFinGer models various aspects of contactless
capture, including ridge patterns (using SFinGe [33]), deformations, distortions, noise, subject
characteristics (like skin color), and environmental influences. This generation process allows for
explicit control over the simulated quality level, enabling the automatic generation of ground
truth quality labels (high/low) alongside the synthetic images [191, 194]. By training on a large
dataset (e.g., 40,000 samples as used in [194]) of diverse synthetic contactless fingerprints with
reliable labels, the MCLFIQ random forest could learn the relationship between the NFIQ 2
features and the expected utility for this specific modality, without using real-world data needed
for evaluation later on. Figure 3.18 shows examples of synthetic data generated for training.
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Fig. 3.18: Example images from the synthetic training database generated by SynCoLFinGer
[191] for training the MCLFIQ model, showing presets for high (3.18a and 3.18b)

and low quality samples (3.18¢, 3.18d, 3.18e and 3.18f) and their appearance after
pre-processing. Adapted from [194, Fig. 3].

3.4.5 Experimental Evaluation and Results

The effectiveness of the proposed MCLFIQ algorithm was evaluated by comparing its predic-
tive performance against several baseline methods on real-world contactless and contact-based
fingerprint datasets.

3.4.5.1 Evaluation Methodology: Performance Metrics

The primary metric for evaluating the predictive power of the quality assessment algorithms is
the Error-vs-Discard Characteristic (EDC) curve, following the methodology outlined in ISO/IEC
DIS 29794-1 and originally proposed by Grother and Tabassi [89]. An EDC curve plots the
biometric system’s error rate (typically the False Non-Match Rate, FNMR) as a function of the
fraction of lowest-quality comparison scores being discarded. A more detailed explanation is
given in the following paragraph.

For a given quality algorithm, quality scores (¢;) are computed for both samples in a genuine
mated pair (). A combined quality score for the pair is determined (typically) using the minimum
function, ¢; = min(qu), ql-(2)) [89]. Comparisons are then iteratively discarded based on this
combined quality score, starting with the lowest quality pairs. The FNMR is recomputed at each
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discard fraction. If the quality score correlates with comparison performance, we would expect a
decrease of FNMR, since we remove samples with a low utility. And a steeper decrease in the
EDC curve indicates that the quality algorithm is effectively identifying low-utility samples whose
removal leads to a reduction in the error rate [194]. To summarize the EDC curve, the Partial
Area Under the Curve (EDC PAUC) is often calculated, typically up to a discard fraction of 20%
(0.2), providing a single scalar value where lower values indicate better predictive performance
[194].

In addition to EDC curves, system performance is also visualized using Detection Error Tradeoff
(DET) curves. A DET curve plots the FNMR against the False Match Rate (FMR) across a
range of decision thresholds for the biometric comparison scores. DET curves provide a view
of the trade-off between the two types of errors for a given system. Performance is considered
better for curves that lie closer to the origin (lower error rates for both FMR and FNMR). The
Equal Error Rate (EER) is the point on the DET curve where FMR equals FNMR, often used
as a single summary statistic for system performance. The DET provides an estimate of the
inherent dataset utility.

3.4.5.2 Datasets and Setup

The evaluation utilized three distinct mobile contactless fingerprint databases: the AIT database
[116], the HDA database [189], and the ISPFD v1 [223]. These datasets represent captures using
different smartphone models under various environmental conditions (indoor, outdoor, constrained,
unconstrained). Additionally, two contact-based datasets from the FVC2006 competition [35]
(DB2 and DB3) and the contact-based subset of the AIT database were included for a counter-
experiment. All contactless images underwent the standardized pre-processing pipeline described
earlier before quality assessment and recognition [194].

Three different fingerprint recognition workflows were employed to assess the comparison score:
a Commercial-Off-The-Shelf (COTS) system (Innovatrics IDKit [103]), an open-source system
combining FingerNet [250] feature extraction with SourceAFIS [258] minutiae comparison, and
the NIST NBIS framework [265], consisting of MindTCT for minutiae extraction and Bozorth3
for minutiae comparison.

The baseline quality assessment algorithms used for comparison were: the original NFIQ 2.2
[246], a sharpness-based metric developed by AIT specifically for contactless images [116], and
the general-purpose no-reference image quality assessment algorithm BRISQUE [162], which
was also re-trained on the same SynCoLFinGer dataset as MCLFIQ [194]. The corresponding
DET curves for contact-based and contactless evaluations are presented in Figure 3.19a and
Figure 3.19b, showing the overall recognition performance achieved on these datasets using the
different comparison algorithms.
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Fig. 3.19: Detection Error Tradeoff (DET) curves showing FNMR vs. FMR using the different
recognition systems (IDKit, OS, NBIS). Adapted from [194, Fig. 9].

3.4.5.3 Performance Analysis

The EDC curves for the contactless datasets, presented in [194, Fig. 10] and shown Figure 3.20
and the corresponding EDC PAUC values [194, Tables VI-VIII] versus the EDC curves for the
contact based datasets, as presented in the same sections in [194] and shown in Figure 3.21,
demonstrated the superior performance of MCLFIQ on the contactless datasets compared to
the baseline methods. Across all three contactless databases and all three recognition systems,
MCLFIQ consistently yielded lower EDC PAUC values on average, indicating it was more
effective at predicting sample utility [194], which can also be seen when comparing the EDC
PAUC values depicted in Figure 3.22. While the AIT sharpness metric performed well on
some specific database/comparison algorithm combinations, and NFIQ 2.2 showed reasonable
performance, MCLFIQ exhibited greater robustness and overall better predictive power. The
retrained BRISQUE generally performed poorly on the contactless data. Figure 3.22 provides a
visual summary of the average performance.

The counter-experiment on the contact-based datasets, including FVC2006 DB2 and DB3
[194, Fig. 11, Tables IX-XI], results shown in Figure 3.21, confirmed that the original NFIQ 2.2
outperformed MCLFIQ on these datasets. This validates that NFIQ 2.2 is well-tuned for contact-
based data, whereas MCLFIQ is specifically optimized for contactless challenges, demonstrating
the necessity of modality-specific adaptation.
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Fig. 3.20: Error-vs-Discard Characteristic (EDC) curves for various contactless datasets (AIT
Mobile, HDA constrained /unconstrained, ISPFD variations). The FNMR is plotted
against the fraction of discarded lowest-quality genuine comparison scores. Curves
showing a steeper decrease indicate better quality prediction. Adapted from [194,
Fig. 10].
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Fig. 3.21: Error-vs-Discard Characteristic (EDC) curves for various contact-based datasets
(AIT CB, FVC2006 DB2/DB3, HDA CB, ISPFD LS). As expected, the original
NFIQ 2.2 (red lines) generally shows better or comparable performance to MCLFIQ
(blue lines) on these datasets, confirming its optimization for contact-based capture.

Adapted from [194, Fig. 11].
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Fig. 3.22: Average EDC PAUC values (lower is better) across contactless and contact-based
datasets using different recognition workflows (IDKit, OS, NBIS), comparing MCLFIQ
against baseline quality assessment algorithms (NFIQ 2.2, AIT Sharpness, BRISQUE).
MCLFIQ demonstrates lower average PAUC and generally lower standard deviation
on contactless data, indicating superior predictive power and robustness for this
modality. NFIQ 2.2 performs best on contact-based data. Adapted from [194, Fig.
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MCLFIQ NFIQ 2.2
Feature name Feature Feature name Feature
Importance (%) Importance (%)
ROI Relative Orientation Map 38.56 Frequency Domain Analysis 6.72
Coherence Sum ’ Standard Deviation ’
Orientation Certainty Level Mean 21.29 Flngerqet EX OSE COM 4.40
Minutiae Count
Orientation Certainty Level Bin 0 7.6 FingerJet FX OSE.: OCL Minutiae 3.96
Quality
ROT OrlentatlgllllmMap Coherence 7.45 Ridge Valley Uniformity Mean 3.32
FingerJet FX OSE. OCL Minutiae 5.46 Frequency Domain Analysis Mean 2.97
Quality
Orientation Certainty Level Bin 7 5.27 Flngerqet EX OSE Total 2.75
Minutiae Count
Frequency Domain Analysis Bin 0 2.13 Ridge Valley Un.l fo‘rmlty Standard 2.43
Deviation

Orientation Certainty Level Bin 8 1.56 Local Clarity Score Bin 7 2.42
Orientation Certainty Level Bin 6 1.29 Local Clarity Score Bin 8 2.39
Frequency Domain Analysis Mean 1.07 Frequency Domain Analysis Bin 9 2.28
Sum 91.68 | Sum 33.65

Tab. 3.12: Feature importance comparison between MCLFIQ and NFIQ 2.2 for the top 10
features, taken from [194].

3.4.5.4 Feature Importance Analysis

An analysis of the feature importance within the trained random forest models gives an explanation
of the functioning of the quality scores. The result of the 10 most important features are shown
in Table 3.12. For MCLFIQ, the most important features were those related to image sharpness
and local ridge clarity, such as ROI Relative Orientation Map Coherence Sum and Orientation
Certainty Level Mean. These two features alone accounted for over 50% of the feature importance
in the MCLFIQ model. This aligns with the understanding that sharpness and focus are critical
challenges in mobile contactless capture. In contrast, the feature importance in the original NFIQ
2.2 model was more uniformly distributed, with features related to minutiae count and quality
playing a more significant role alongside frequency domain analysis. This difference highlights
how the retraining process adapted the model to prioritize features most indicative of quality
degradation specific to the contactless modality (primarily fidelity issues), whereas NFIQ 2.2
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balances character and fidelity aspects relevant to contact-based capture [194]. This difference in
feature importance distribution also led to a smaller model size for MCLFIQ (approx. 296 KB)
compared to NFIQ 2.2 (approx. 53 MB) due to shallower decision trees in the random forest
[194].

3.4.6 Discussion

The work presented in [194] and summarized here demonstrates the potential and necessity
of adapting quality assessment frameworks for the contactless fingerprint recognition. The
development and evaluation of the Mobile Contactless Fingerprint Image Quality (MCLFIQ)
algorithm confirm that while the feature set of NFIQ 2 [246] captures relevant quality aspects,
modality-specific retraining of the underlying classifier can improve performance in the contactless
domain.

3.4.6.1 Effectiveness of the Adapted Framework

The strength of the MCLFIQ approach is its ability to use the standardized feature set of NFIQ 2
while adapting the predictive model to the specific degradations common in contactless captures.
The experimental results (Figures 3.20, 3.21, and 3.22) show that MCLFIQ outperforms the
original NFIQ 2.2 and other baseline metrics (like sharpness or retrained BRISQUE) in predicting
the utility of contactless samples across various datasets and recognition systems [194].

Furthermore, the successful use of synthetic data generated by SynCoLFinGer [191] validates
synthetic data generation as a data alternative, enabling the development of larger models without
compromising real data needed for testing [194]. The feature importance analysis (Table 3.12)
shows that MCLFIQ prioritizes features related to image sharpness and local ridge clarity (fidelity
aspects), such as ROI Relative Orientation Map Coherence Sum and Orientation Certainty Level
Mean. This contrasts with NFIQ 2.2, where feature importance is more distributed, reflecting the
shift in focus towards the primary quality challenges encountered in mobile contactless acquisition
[194].

3.4.6.2 Impact on Research Questions

This investigation into contactless fingerprint quality assessment directly addresses key research
questions posed earlier in this thesis.

Most centrally, it tackles RQ4 (What are the problems of established fingerprints
quality assessment metrics [...] on contactless fingerprint images? What can be
changed to improve their performance?) The evaluation confirms that established metrics
like NFIQ 2.2, while effective for contact-based prints, show suboptimal performance when directly
applied to contactless data (Figure 3.20 vs. 3.21). The problem identified is the mismatch in the
weighting of quality features relative to their impact on utility in the contactless domain. The
solution demonstrated is the adaptation through retraining the classifier component (MCLFIQ).
By retraining the random forest on modality-specific (synthetic) data, the feature weights are
adjusted (Table 3.12), leading to improved predictive performance for contactless samples.

The work also implicitly relates to other questions. Accurate quality assessment is important
for the overall system pipeline. For instance, quality scores from MCLFIQ can inform decisions
about sample usability before computationally expensive steps like pose correction (RQ2)
are attempted. A low-quality score might indicate severe blur or illumination issues that could
hinder the accurate segmentation (RQ1) or core localization (RQ3) required for pose correction
algorithms, suggesting recapture might be necessary.



90 3 Development of Contactless Fingerprint Algorithms

3.4.6.3 Limitations

Despite the success of MCLFIQ), certain limitations should be noted. Firstly, the performance of
MCLFIQ, like NFIQ 2, is dependent on a standardized pre-processing pipeline (Section 3.4.4.1).
Deviations from this pipeline could negatively impact feature extraction and thus the resulting
quality score. Secondly, while the NFIQ 2 feature set proved largely applicable, it is based on
hand-crafted features. It remains possible that deep learning-based feature extractors could
capture more subtle or complex quality indicators specific to contactless modalities that are
missed by the current set. Thirdly, the evaluation relied on publicly available contactless datasets
which are still limited in size and diversity compared to contact-based benchmarks. Further
validation on larger, more varied datasets would strengthen the conclusions regarding MCLFIQ’s
generalizability [194]. Finally, it’s important to reiterate that the core development and training
of the MCLFIQ algorithm were primarily conducted by Jannis Priesnitz, with the author of this
thesis contributing significantly to the extensive evaluation phase documented in [194].

3.5 Fingerprint Mosaicking Artifact Detection

Fingerprint mosaicking is the process of combining multiple, potentially overlapping, partial
fingerprint images to form a single, larger, and more complete fingerprint representation. This is
particularly relevant for generating images equivalent to traditional rolled fingerprints, which
capture the entire nail-to-nail surface area. Mosaicking techniques are applied in both contact-
based and increasingly in contactless fingerprint acquisition scenarios [49, 109, 142]. While
mosaicking aims to enhance the captured data, the process itself can introduce errors, known
as mosaicking artifacts. These artifacts can manifest as structural inconsistencies or geometric
distortions, degrading the quality and biometric utility of the resulting image [142, 218]. This
section presents the challenges of combining individual fingerprint recordings leading to these
artifacts, reviews related work, details a novel detection algorithm based on self-supervised
learning, presents evaluation results, and discusses the overall findings and implications.

3.5.1 Challenges of Fingerprint Mosaicking

Errors introduced during the fingerprint mosaicking process can compromise the integrity of
the final composite image. These errors generally fall into two categories based on their visual
characteristics and impact on ridge structures, termed soft and hard artifacts in [218].

Soft artifacts primarily involve geometric distortions, such as stretching, compression, or
warping, that might occur during the alignment and blending of partial images. While these
distortions alter the overall fingerprint shape or relative minutiae positions, they typically maintain
the continuity of individual ridge lines across the boundaries where the original images were
joined. Assessing the severity of soft artifacts can be difficult without comparing the mosaicked
image to a ground truth or reference print, as some degree of natural elastic deformation is
inherent in fingerprint capture, especially with contact-based rolling [218].

Hard artifacts on the other hand represent more severe errors characterized by visible structural
discontinuities in the ridge-valley pattern. These typically occur at the seams or overlapping
regions between the stitched partial images. Examples include ridges that terminate instead of
connecting to their corresponding counterparts in the adjacent patch, noticeable misalignments
where ridge patterns do not smoothly transition across seams, or even the duplication or deletion
of ridge segments due to poor registration or blending [218]. Such hard artifacts corrupt the
underlying biometric information encoded in the ridge pattern. They can create spurious minutiae
or displace genuine ones, increasing the likelihood of recognition errors, including false matches
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(incorrect identifications) and false non-matches (failure to identify a true match) [45, 142]. In
some cases, stitching algorithms might attempt to hide these discontinuities using post-processing
techniques like localized blurring or alpha blending along the seams. While this might improve
the visual appearance, it does not correct the underlying structural error and can make artifact
detection more complex [218]. Established fingerprint quality metrics, like NFIQ 2 [246], primarily
evaluate factors such as ridge clarity, contrast, and minutiae count, and are not designed to
detect these kinds of structural flaws arising from the mosaicking process. Therefore, dedicated
approaches are required to identify hard mosaicking artifacts.

3.5.2 Related Work

The creation of composite images from multiple views, known as image stitching or mosaicking,
is a well-established technique in computer vision with applications from panoramic photography
to medical imaging and remote sensing [245]. Research in this area is done for both creating
seamless mosaics as well as techniques for evaluating their quality or detecting errors.

Fingerprint Mosaicking Techniques: In the context of fingerprints, early work by Jain
and Ross demonstrated the feasibility of mosaicking and emphasized the critical role of accurate
alignment (registration) of the partial images [109]. Subsequent research explored various capture
and processing strategies. Choi et al. investigated mosaicking based on sequences captured during
finger rolling and sliding motions to acquire a larger surface area [42]. Ross et al. compared the
merits of aligning images based on overall image information (intensity-based) versus aligning
based on extracted features like minutiae (feature-based) [210]. Liu et al. specifically addressed
the challenges of mosaicking images acquired using contactless sensors, which often have a
greater pose variability [142]. Algorithms based on phase correlation [23] and minutiae-free
approaches [38] were also proposed for specific alignment scenarios. More recently, deep learning
has emerged as a powerful tool, with Cui et al. developing an end-to-end network for dense
registration, achieving highly accurate alignment for fingerprint mosaicking [49]. These techniques
aim to minimize artifacts during creation, but errors can still occur due to factors like non-linear
distortion, acquisition inconsistencies, or algorithmic limitations.

Artifact and Error Detection in Image Stitching: Detecting errors in stitched images
is important for quality control. General image stitching literature addresses common artifacts
like ghosting (misalignment causing semi-transparent duplicates), blurring, visible seams, and
geometric inconsistencies [28, 245, 283]. Reference-free quality assessment methods evaluate the
stitched image intrinsically, without comparing it to a ground truth. General-purpose no-reference
image quality metrics, such as BRISQUE [162], assess perceptual quality based on statistical
features but are not able to detect specific structural stitching errors. Fingerprint-specific quality
metrics like NFIQ 2 [246] and the adapted MCLFIQ [194] (discussed in Section 3.4) focus on
features indicative of sample utility, such as ridge clarity and minutiae quality, rather than
explicitly identifying mosaicking-induced structural flaws. Metrics analyzing local sharpness
variations [261] have the potential to detect blurring which was introduced along seams to mask
discontinuities, but they do not address the underlying misalignment [218]. Methods developed
for detecting errors in panoramic video stitching, such as the pairwise inconsistency assessment by
Nabil et al. [166], operate without a final perfect reference but focus on inconsistencies between
adjacent input frames, which is analogous to detecting errors along seams in a live recording, but
this may not capture all types of patch misalignments within a fingerprint context and is also
not suitable for image recordings. The core limitation of these reference-free approaches is often
their lack of specificity for the unique, localized structural discontinuities, misaligned or broken
ridges, that define hard mosaicking artifacts in fingerprint patterns.
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Reference-based methods, on the other hand, assess quality by comparing the stitched image
against a known reference or ground truth. General metrics like the Structural Similarity Index
(SSIM) [174] provide an overall measure of similarity but may lack sensitivity to localized defects.
In fields like 3D view synthesis assessment, metrics evaluate geometric accuracy and visual
realism against the original 3D model or multiple source views [14, 47]. Within fingerprint
biometrics, reference-based evaluation concepts exist, such as NIST’s definition of Geometric
Accuracy for assessing acquisition devices [133] and spectral validation metrics proposed by Libert
et al. [134], which inherently rely on comparing acquired data to known targets or references.
While potentially accurate for detecting both soft geometric distortions and hard structural
errors, the major drawback of reference-based methods in the context of operational mosaicking
is the general unavailability of a pristine, artifact-free ground truth image corresponding to the
mosaicked sample for real-word usescases. One possible solution is to test sensors in a laboratory
environment with known grown truths and repeatable experiments. For this, standardized finger
phantoms are required, see section 3.6 for more. This however brings the risk that the laboratory
setting differs from the real-word environment, resulting in possible missed issues. Consequently,
a reference-free approach specifically designed to detect the characteristic structural flaws of hard
mosaicking artifacts in fingerprints was needed, motivating the work presented in [218]. The
conceptual distinction between soft (geometric/appearance) and hard (structural) artifacts aligns
with discussions of geometric versus photometric inconsistencies in general stitching literature
[245], however, the specific way these manifest in complex fingerprint ridge patterns necessitates
a specialized detection strategy.

3.5.3 Proposed Mosaicking Artifact Detection Algorithm

To overcome the limitations of existing methods and the need for manual labeling, a novel
mosaicking artifact detection algorithm was developed using a self-supervised deep learning
strategy [ruzicka__mosaickingpaper__2025]. The core principle involves training a neural
network to differentiate between authentic fingerprint ridge structures and the structural anomalies
introduced by mosaicking errors, using artificially generated artifacts for supervision. The full
framework, including the artifact insertion code as well as the training and inference code can be
found publicly available under the Mozilla Public License Version 2.0 here: [218].

3.5.3.1 Self-Supervised Training Strategy

The self-supervised training strategy builds on a data generation pipeline that creates labeled
training data from unlabeled, artifact-free fingerprint images [218]. This process begins by
taking a known, artifact free fingerprint image. Then, artificial hard mosaicking artifacts are
programmatically introduced. Two distinct types of structural discontinuities are simulated. The
first type involves simulating patch-based misalignments, where a randomly sized rectangular
region within the image is selected and its pixels are shifted by a small, random offset (constrained
to 2-7% of the image dimension in the study). This replicates localized errors that can occur
when stitching together segments. The second type simulates seam-based errors by shifting
all pixels along a randomly chosen horizontal or vertical line by a small offset. This mimics
discontinuities along the boundary between two stitched parts. As a result, we can recorded the
exact locations and extent of these introduced artifacts during generation. This information is
used to automatically create corresponding pixel-level ground truth segmentation masks, where
artifact regions are labeled positively. The original image areas serve as negative examples. This
automatic labeling process enables training on large datasets without manual work. To ensure
the model learns to detect the structural characteristics of the artifacts rather than superficial
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image features, standard data augmentation techniques (like rotation, perspective shifts, blur,
etc.) are applied to the base images before the artificial artifacts are introduced [218]. Figure 3.23
illustrates this artifact simulation process.
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Fig. 3.23: Illustration of the self-supervised artifact generation. Top row shows synthetic finger-
print images with artificially introduced hard mosaicking artifacts: (a) Horizontal line
shifts, (b) Vertical line shifts, (c) Patch shifts. Bottom row shows the corresponding
automatically generated ground truth segmentation masks (artifact locations in white)
used for training the detector. Figure adapted from [218].

3.5.3.2 Model Architecture and Implementation

The artifact detector uses the UNet++ segmentation architecture idea [289]. This architecture is
implemented using a ResNeSt-50d encoder [281], which is initialized with weights pre-trained
on the ImageNet dataset [55] for feature extraction. The UNet++ design utilizes nested and
dense skip connections, allowing for feature fusion across multiple scales, which is beneficial for
localizing the potentially small and varied artifact regions [218, Fig. 2]. The network takes a
fingerprint image as input. Its output is a binary mask of the same dimensions, where pixels
identified as belonging to a hard mosaicking artifact are predicted. The model training optimizes
a Jaccard loss (also known as Intersection-over-Union loss), commonly used for segmentation
tasks, via the Stochastic Gradient Descent (SGD) optimizer [218]. Figure 3.24 provides an
abstract overview of the architecture.

3.5.3.3 Mosaicking Artifact Score (MAS)

To enable automated analysis and provide a summary of the severity of artifacts in an image,
the Mosaicking Artifact Score (MAS) was defined [218]. This score consolidates the information
from the output segmentation mask into a single value. It calculates a weighted sum of the areas
of all detected artifact regions (both patches and lines). The weights are chosen to highlight the
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Fig. 3.24: Abstract visualization of the UNet++ based model architecture used for artifact
detection, combining a ResNeSt encoder (blue, labeled ResNeSt Backbone) with a
UNet++ decoder (green/red, including intermediate layers like Ia, Ib, Ic, Ila, IIb,
ITTa, and final decoder stages I, II, III, TV leading to the Segmentation Head SH).
Arrows indicate data flow, dotted lines represent skip connections. Adapted from
[218, Fig. 2].

severity and also the nature of each artifact type, with patch artifacts receiving a significantly
higher weight than line artifacts in the study (details in [218, Eq. 1]).
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where n is the number of detected patches where misalignment occurred, b a constant that
weights the importance of multiple patches and is set to 5 in this setting, wpqtcn, Ppaten stand for
the width and the height of the detected patch, ¢ is a constant that balances the importance of
the single line artifact and is set to 0.025 in our case, m is the number of detected purely vertical
line artifacts, speignt stands for the height of the segmentation mask, wy;n is the width of the
detected line artifact, hj;,e is the height of the detected line artifact, o depicts the number of
detected horizontal line artifacts and s.,;q:n stands for the width of the segmentation mask.

A MAS of 0 signifies an artifact-free prediction. Increasing scores indicate progressively more
severe or widespread artifacts. A threshold can be set based on the patch weight (e.g., MAS > 5
in the study) to make a binary decision on whether significant artifacts are present [218].
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3.5.4 Experimental Evaluation and Results

A set of experiments was conducted to evaluate the proposed artifact detection method’s accuracy,
its robustness against various image degradations, and the impact of the artifacts it detects on
fingerprint recognition performance [218].

3.5.4.1 Datasets and Setup

Two main versions of the detection model were trained using the self-supervised strategy. The
contactless (CL) version of the model was trained on a large dataset of artifact-free single-shot
contactless fingerprint images taken from [266]. The pressed (PR) fingerprint version of the
model was trained on a dataset of artifact-free contact-based pressed prints. Model performance
was evaluated using standard image segmentation metrics (Intersection-over-Union (IoU), F1-
score, F2-score, Accuracy, Recall) on held-out test portions of their respective training datasets.
Generalization ability was assessed by testing these models on entirely different datasets and
modalities, including the challenging NIST SD300a dataset containing scanned slap and rolled
ink fingerprints [73], an additional pressed print dataset (PRD-2), and a dataset of rolled prints
(ROD-1) corresponding to the same subjects as in PRD-1 [218]. The Mean Score Difference
between the predicted MAS and the ground truth MAS (based on the known locations of
simulated artifacts during testing) was also calculated as a measure of score accuracy.

The robustness ablation study tested the models’ specificity by evaluating their response
to images containing common quality defects that are not mosaicking artifacts. One hundred
synthetic fingerprint base images (from SFinGe [33]) were altered using methods described in
[191] to simulate three levels of severity (low, medium, high) for various degradations: general skin
defects, ink variations (smudging/lightness), additive sensor noise, scars, and wounds. Examples
are shown in Figure 3.25. The MAS was calculated for each of these altered images to determine
if the detector would produce false positives triggered by these unrelated quality issues [218].

The impact of mosaicking artifacts on fingerprint recognition accuracy was quantified by
introducing controlled artificial artifacts (small offsets of 1-2% image dimension, large offsets of
2-7%) into a set of clean images. The Equal Error Rate (EER) was then computed by matching
these artifact-containing images and comparing the resulting comparison scores with the scores
of the original artifact-free counterparts. This analysis employed three distinct fingerprint
recognition systems: an open-source pipeline (FingerNet [250] for minutiae extraction combined
with SourceAFIS [258] for template comparision), the standard NIST NBIS tools (MindTCT
for minutiae extraction and Bozorth3 for template comparison) [265], and a high-performing
commercial comparison algorithm (Innovatrics IDKit for the whole ABIS pipeline) [103].

3.5.4.2 Detection Accuracy and Generalization

The experimental results showed that both the CL and PR trained models achieved excellent
performance in detecting the simulated artifacts on test data matching their training modality,
with IoU scores around 0.98 [218, Table II]. Table 3.13 summarizes key metrics. Both models
demonstrated substantial generalization ability as well. The CL model, despite being trained only
on contactless images, successfully detected artifacts in scanned slap ink prints (NIST SD300a
slap, ToU 0.959) and in rolled ink prints (NIST SD300a rolled, IoU 0.908). The PR model also
generalized well to other pressed and rolled datasets. Figure 3.26 provides qualitative examples
of the detector output on challenging NIST SD300a slap and rolled images. The Mean Score
Difference between the predicted and ground truth MAS was consistently low (typically < b)
across diverse test sets, indicating that the quantitative score accurately reflected the severity of
the simulated artifacts [218].
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(a) Medium ink variation (b) Little scars (c) Extensive noise

Fig. 3.25: Examples of synthetic fingerprint alterations used in the robustness ablation study,
simulating common image quality issues unrelated to mosaicking. These include (a)
medium ink variations, (b) minor scarring, and (c¢) extensive sensor noise. Images
generated using methods from [191] applied to SFinGe [33] bases. Adapted from [218,

Fig. 4].

Dataset ToU F1 F2  Accuracy Recall Mean Score Dif.

Weissenfeld et al. [266] 0.982 0.991 0.990 1.000 0.989 0.264

5 NIST 300a slap 0.959 0.979 0.975 1.000 0.972 0.483

NIST 300a rolled 0.908 0.952 0.940 1.000 0.932 1.061

PRD-1-Test 0.977 0.988 0.987 1.000 0.986 0.355

ﬁ PRD-2 0.978 0.989 0.988 1.000 0.987 0.351

ROD-1 0.931 0.964 0.957 1.000 0.952 0.815

Tab. 3.13: Summary of model performance metrics (IoU, F1, F2, Accuracy, Recall, Mean
Score Difference) for the Contactless (CL) and Pressed (PR) trained models across
various test datasets. Performance is high on native modalities and shows good
generalization. Adapted from [218, Table II].
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(b) NIST SD300a Rolled Examples

Fig. 3.26: Examples of the artifact detector output (CL model) on challenging images from the
NIST SD300a dataset. Each triplet shows: Input Image (left), Predicted Artifact
Mask (center, white areas indicate detected artifacts), Ground Truth Mask (right,
based on simulated artifacts). The model effectively identifies simulated artifacts
even on these significantly different ink-based modalities. Adapted from [218, Fig. 3].

3.5.4.3 Robustness Ablation Study

The robustness tests shown in Table 3.14 confirmed the models’ high specificity (taken from [218,
Table I1I]). When evaluating images synthetically altered to include common quality defects like
scars, noise, or ink variations, the MAS scores produced by both models remained consistently
near zero across almost all conditions and intensities. This demonstrates that the models are
robust against these factors and do not incorrectly flag general quality degradation as mosaicking
artifacts. Only medium/high levels of additive noise led to a minimal number of false positives
(1-3 images out of 100 slightly exceeding the MAS threshold of 5), but the average scores remained
low, confirming the detectors’ focus on structural discontinuities typical of mosaicking errors.
Table 3.14 shows the mosaicking score for the different alteration types.

3.5.4.4 Impact on EER

The analysis clearly quantified the negative impact of mosaicking artifacts on fingerprint recog-
nition accuracy [218, Table IV], as shown in Figure 3.15. Introducing even small artifacts
(simulating 1-2% positional offsets) resulted in the EER more than doubling for both the open-
source SourceAFIS system and the commercial Innovatrics IDKit system compared to matching
artifact-free images. Larger artifacts (2-7% offsets) caused further substantial increases in EER
for the SourceAFIS and Idkit recognition systems. This experiment provides strong evidence that
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No Skin Ink Noise Scar ‘Wounds
s ~ 0 ~ 0 4 ~ 0 s ~ 0 4 ~ T

max 1.12 | 1.13 081 | 1.19 1.09 1.07 | 0.44 518 056 | 093 1.14 131 | 111 1.08 1.35
median | 0.01 | 0.03 0.01 | 0.02 0.03 0.00 | 0.00 0.00 0.00 | 0.02 0.04 0.02 | 0.02 0.03 0.08
mean 0.15 | 0.15 0.10 | 0.14 0.15 0.11 | 0.03 0.09 0.05 | 0.15 0.15 0.14 | 0.14 0.18 0.23
std 0.26 | 025 0.18 | 0.24 0.25 024 | 008 056 0.12 | 026 0.24 0.26 | 0.24 0.26 0.32

max 0.00 | 0.00 0.00 | 0.00 0.00 0.01 | 0.00 1041 0.13 | 0.00 0.00 0.00 | 0.00 0.00 0.21
median | 0.00 | 0.00 0.00 | 0.00 0.00 0.00 | 0.00 0.00 0.00 [ 0.00 0.00 0.00 | 0.00 0.00 0.00
mean 0.00 | 0.00 0.00 | 0.00 0.00 0.00 | 0.00 0.24 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00
std 0.00 | 0.00 0.00 | 0.00 0.00 0.00 | 0.00 1.27  0.01 | 0.00 0.00 0.00 | 0.00 0.00 0.03

PR Model | CL Model

Tab. 3.14: Robustness ablation results of the model trained on contact-less images (CL Model)
and contact based images (PR Model). Columns indicate no modification (No), skin
damage (Skin), ink problems (Ink), added image noise (Noise), added scars (Scar)
and added wounds (Wounds). The arrows indicate low (), medium (7) and high (1)
intensity of the image modification. The table presents the maximum value (max),
median value, mean value and the standard deviation (std) of the mosaick artifact
score.

the failure to detect and mitigate mosaicking artifacts can severely compromise the reliability of
fingerprint comparison systems in practice.

Artifacts | SourceAFIS [%] Bozorth3 [%] Idkit [%]

None 0.43 3.97 0.38
Small Offset 0.91 5.41 0.88
Large Offset 0.99 4.82 0.88

Tab. 3.15: Equal Error Rates (EERs) showing the significant increase in comparison errors
when small or large mosaicking artifacts are present, compared to artifact-free
images (None). Results are shown for three different fingerprint recognition systems
(SourceAFIS, Bozorth3/MindTCT, IDKit). Adapted from [218, Table IV].

3.5.5 Discussion
3.5.5.1 Effectiveness of the Self-Supervised Approach

Firstly, we showed that self-supervised learning can train a model to detect complex, structurally
defined artifacts like hard fingerprint mosaicking errors. The automatic generation of artifacts
and corresponding ground truth labels from unlabeled data makes the method highly scalable and
avoids the intensive manual labor required for annotating such defects manually. The resulting
models showed high accuracy and strong generalization capabilities across different fingerprint
capture modalities (contactless, pressed, rolled, slap) and data sources (live scans, ink prints).
This suggests the models learned to identify the fundamental structural discontinuities associated
with hard mosaicking, rather than overfitting to the characteristics of a specific dataset [218].
The proposed Mosaicking Artifact Score (MAS) provides an interpretable quantitative measure
of artifact severity, suitable for automated quality assessment pipelines. Its low false-positive rate
and robustness against common non-mosaicking image degradations further shows its potential
for real-world use [218].
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3.5.5.2 Impact on Research Questions

This research directly addresses several questions posed within this thesis. Primarily, it offers
a concrete solution to RQ5 (How can we detect errors in the mosaicking process of
contactless fingerprint sensor systems?). The validated self-supervised method and the
MAS metric provide an automated tool for this purpose.

It also significantly informs RQ4 (What are the problems of established fingerprints
quality assessment metrics and what can be change to improve their performance
on contactless fingerprint images?). This work identifies mosaicking artifacts as a distinct
quality issue concerning structural integrity, which is not explicitly targeted by general metrics
like NFIQ 2 or the fidelity-oriented MCLFIQ. The proposed detector and score represent an
addition to fingerprint quality assessment, enabling evaluation of the mosaicking process outcome
itself. This is especially important for systems using mosaicking to create rolled print equivalents
from contactless captures.

Furthermore, the detection of these artifacts impacts other processing stages. For RQ2
(What techniques can effectively correct pose variations in contactless fingerprints to
enhance comparison accuracy?) and RQ3 (How can core point detection in contactless
images be improved to enable better alignment with contact-based databases?),
preventing images with severe mosaicking artifacts from being processed is important, as the
corrupted ridge structure could lead to errors in segmentation, landmark localization, and
subsequent geometric transformations. For RQ7 (How can we create a privacy preserving
comparison approach that circumvents the risk of exposing biometric data to other
parties?), ensuring the structural soundness of fingerprint templates before they enter secure
computation protocols enhances the overall reliability and trustworthiness of the comparison
result.

3.5.5.3 Limitations

Certain limitations should be acknowledged regarding the current work [ruzicka__toward__2025].
The training relies on simulated artifacts. While designed based on observed errors, these simula-
tions might not encompass the full diversity of artifacts produced by every possible real-world
mosaicking algorithm. The detection mechanism is specifically focused on hard structural dis-
continuities. Reliably detecting softer geometric distortions (soft artifacts) without access to a
reference image remains an open research problem. While good generalization was observed,
performance might potentially degrade when encountering images from vastly different sensor
technologies or mosaicking software than those represented in the datasets used for training
the base models. Lastly, the computational demands of the deep learning model might require
further optimization techniques (like model pruning or quantization) for efficient deployment in
highly resource-constrained environments, such as directly within fingerprint sensors for real-time
analysis.

3.5.5.4 Future Research Directions

A next step would be to collect and annotate a dataset containing real-world mosaicking
artifacts generated by various operational systems. Fine-tuning the self-supervised models on real
data could enhance detection performance, especially for abnormal artifact types. Integrating
the artifact detection model directly into fingerprint capture devices or acquisition software
could enable immediate feedback to the operator, facilitating re-acquisition of faulty captures.
Developing techniques to detect soft geometric distortions without a reference, perhaps using
anomaly detection, would be a valuable extension. Combining the specialized Mosaicking
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Artifact Score with general-purpose quality metrics like NFIQ 2 or MCLFIQ could lead to a more
comprehensive, multi-dimensional quality assessment framework, providing a richer understanding
of sample utility. Adapting and evaluating the artifact detection methodology for emerging 3D
fingerprint capture and mosaicking techniques is another important area. Finally, given the
demonstrated impact of these artifacts, advocating for the inclusion of specific mosaicking artifact
checks within future fingerprint image quality standards (e.g., future versions of ISO/TEC 29794)
should be considered to promote better practices across the biometrics community.

3.6 Synthetic Finger Phantoms

Ensuring the reliability and performance of fingerprint recognition systems requires sensor
evaluation and calibration methodologies. Traditionally, this involves human sampling, where
real users interact with sensors [179]. However, this approach has limitations: participant selection
bias, lack of repeatability, and the absence of a definitive ground truth for comparison [219].
Furthermore, increasing data privacy regulations! [90, 235, 243] restrict the collection and usage
of real biometric data. While digitally synthesized fingerprint images [33, 63, 155, 191, 203, 259]
address privacy concerns and offer control over generated patterns, they cannot fully replicate
the interaction between a physical finger and a sensor, including factors like skin deformation,
moisture, and pressure application for contact-based sensors and perspective distortions, changes
in lighting and motion blur in contactless sensors.

To provide a standardized, repeatable, and privacy-compliant evaluation method, we developed
physical synthetic fingerprint targets, also called phantoms. These phantoms aim to simulate the
relevant physical and geometric properties of human fingers, allowing for controlled testing against
a known ground truth. However, creating realistic phantoms presents its own set of challenges
[6, 62]. This section explores these challenges, details various manufacturing methodologies for
phantom creation based on [219], presents the evaluation of their properties and performance,
and discusses the implications for fingerprint sensor standardization and evaluation.

3.6.1 Related Work

The creation of synthetic fingerprints, both digital and physical, became more and more important
to overcome limitations associated with real fingerprint data. Research spans generating realistic
2D images to fabricating physical 3D targets for sensor evaluation.

3.6.1.1 Synthetic Fingerprint Image Generation

The scarcity of large, diverse, and publicly available fingerprint datasets motivated the biometric
community to start generating synthetic fingerprint images algorithmically. Early work by [33]
introduced SFinGe, a method that models fingerprint ridge patterns based on mathematical
principles, and additionally considers various factors that transform a raw ridge pattern into a
realistic fingerprint. This tool enables the creation of large databases for algorithm training and
evaluation.

More recently, deep learning techniques, particularly Generative Adversarial Networks (GANs),
have entered the field. PrintsGAN by [63] demonstrated the ability to generate realistic fingerprint
patches and full images with associated multiple impressions, validated through crowd-sourced
realism evaluation. SynFi, proposed by [203], utilized a combination of GANs and Super-
Resolution to achieve high-fidelity synthetic prints, resulting in samples which are computational
indistinguishable from real fingerprints. The Clarkson Fingerprint Generator also employs
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GANs with a multi-resolution progressive growth approach [10]. Other approaches leverage
variations like pix2pix networks trained on minutiae patterns [155] or focus on specific aspects
like generating Level 3 features [259]. Addressing the specific need for contactless fingerprint data,
Jannis et al. developed SynCoLFinGer [191], which extends SFinGe by modeling contactless
acquisition characteristics, including environmental influences and subject properties. However,
these methods focus on generating 2D image data, lacking the possibility of physical sensor
interaction testing.

3.6.1.2 Physical Fingerprint Phantom Generation

The creation of physical fingerprint phantoms is important for standardized sensor calibration
and evaluation [6]. This area is related with the field of Presentation Attack Detection (PAD),
where researchers create physical replicas (Presentation Attack Instruments - PAIs) to test system
vulnerabilities [79, 160]. Materials commonly used for PAls, such as gelatin, silicone, latex,
and glues [79, 240], are also candidates for phantom creation due to their ability to mimic skin
properties. However, the goal differs: phantoms require high fidelity to a known ground truth
and long-term stability for repeatable measurements, whereas PAls aim primarily to deceive the
Sensor.

Several manufacturing techniques have been explored for creating structures with fingerprint-
like details. 3D printing offers high design flexibility. Early work by [6] involved projecting
2D patterns onto generic 3D finger shapes printed using materials mimicking skin hardness
and elasticity. [62] further developed universal wearable 3D targets suitable for optical and
capacitive sensors. While flexible, achieving high resolution for fine ridge details and avoiding
printing artifacts remain challenging depending on the printer technology (e.g., SLA, MSLA,
PolylJet) [6, 219]. Laser engraving enables precise ablation of patterns onto various materials.
It has been effectively used in PAD research to create textured surfaces [122] and, as explored
in [219], can be applied directly to silicone or elastomer plates or used to create high-fidelity
molds (e.g., in aluminum). The precision allows for fine detail replication, but direct engraving
on flat plates doesn’t inherently produce a 3D finger shape, and mold creation adds complexity.
Molding and casting are often used in conjunction with other techniques. Masters created via
CNC machining or 3D printing can be used to create negative molds, which are then cast with
materials like silicone or gelatin [219, 226]. Schultz et al. [226] demonstrated a method using
solvent-softened polycarbonate to capture real fingerprint details, followed by casting with PDMS,
offering high fidelity but limited scalability and lack of a controllable synthetic ground truth.
The choice of casting material significantly impacts elasticity, durability, and shrinkage [219].
CNC machining provides high precision for creating master targets, typically from metals like
aluminum, as detailed in [219]. While capable of producing very accurate and durable masters
for subsequent molding [225], it is generally the most expensive and time-consuming method,
potentially limited by tool size for extremely fine fingerprint features. Despite these advancements,
creating standardized, durable, and realistic physical phantoms that accurately replicate both
the 3D geometry and material properties of diverse human fingers across different manufacturing
methods remains an active area of research, motivating the comprehensive comparison presented
in [219] and detailed in this section.

3.6.2 Challenges of Synthetic Fingerprints and Fingers

One major challenge is replicating the three-dimensional ridge structure of a fingerprint and
assuring the characteristic material properties match those of human skin at the same time [177,
256]. Human skin has a unique elasticity, hardness, and surface texture [2, 51, 229, 279], properties
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that critically influence how a finger interacts with different types of sensors, particularly during
dynamic processes like rolling or slap acquisitions. Identifying materials that not only mimic
these biomechanical properties accurately but are also compatible with high-resolution fabrication
processes remains difficult [46].

Beyond material science, the manufacturing process needs to be precise and repeatable to
ensure that multiple phantoms are consistent and reliable evaluation tools [39]. Each fabrication
technique, whether it be laser engraving, 3D printing, or CNC machining, presents a unique
profile of advantages and disadvantages concerning accuracy, cost, scalability, and the potential
introduction of process-specific artifacts [111, 219]. For example, certain 3D printing methods
might compromise fine ridge detail or surface finish, while molding techniques could potentially
introduce defects like shrinkage or air bubbles, affecting the phantom’s fidelity.

The design of the phantom must also account for its intended use across various sensor
modalities, including optical, capacitive, ultrasonic, and thermal sensors, as well as different
acquisition types like rolled prints, slap prints, or contactless captures. A phantom optimized for
rolled acquisition on an optical scanner might prove unsuitable for slap capture on a capacitive
sensor due to differing requirements in material conductivity, or surface characteristics [219].

Finally, the long-term stability and durability of the phantom materials is important for
practical application as standards. The chosen materials must withstand repeated use and resist
degradation processes such as hardening, shrinkage, or surface wear over time to ensure consistent
and reliable evaluation results [219]. Materials like gelatin, while initially offering appealing
skin-like properties, are known to be susceptible to dehydration and deformation, limiting their
lifespan as reliable phantoms [46].

3.6.3 Manufacturing Methodologies

To systematically investigate potential solutions for phantom creation, several distinct manu-
facturing methodologies were implemented and evaluated [219]. These methods can be broadly
categorized into direct engraving techniques and processes involving the fabrication of intermediate
molds.

3.6.3.1 Laser Engraving

Laser engraving technology, known for its ability to precisely ablate materials and create fine
patterns [30, 183], was explored in multiple configurations. One approach involved the direct
engraving of synthetic fingerprint patterns onto flat substrates composed of specialized materials.
Specifically, plates of Laserline EPDM elastomer, a material typically used in security printing,
were engraved at a resolution of 5080 dpi with a target penetration depth of 100 pm [219, Fig.
2]. Two variants (CSX 5K, 0.95 mm thick, 78 Shore A; CSC, 1.42 mm thick, 76.5 Shore A) were
tested. For testing, these flat plates were wrapped around cylindrical wooden holders (20 mm
diameter), though their inherent stiffness, especially the thicker variant, posed challenges for
achieving good contact during simulated rolling. Additionally, flat plates of silicone, including
commercially available tattoo training skin (Gospire, 1.8 mm thick) and an in-house formulation
based on Dragon Skin 10 Fast (1.8 mm thick), were directly engraved [219, Fig. 3]. These silicone
plates provided more flexibility than the elastomer but remained fundamentally flat targets.
Examples of these directly engraved phantoms are shown in Figure 3.27. The cost for direct laser
engraving was estimated at approximately 200€ per phantom [219].

A novel alternative involved using laser engraving to create an intermediate mold with a
3D shape. The negative (inverse) of a fingerprint pattern was engraved into the inner concave
surface of an aluminum half-pipe (EN-AW 6063 alloy, 23 mm outer diameter, 20 mm inner
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diameter) [219, Fig. 4a]. This mold could subsequently be filled with a casting material, such as
silicone, to produce a phantom with a more realistic cylindrical finger geometry. To complete the
finger shape, a 3D-printed plug was designed to form the rounded fingertip during the casting
process [219, Fig. 4b]. This indirect method, while enabling the creation of 3D shapes with
high-resolution patterns, adds process steps (mold creation, casting, curing) and risks introducing
artifacts if the underlying aluminum half-pipe geometry is inconsistent or errors in any of the
processing steps are made. The cost was significantly higher, estimated at 8000€ for initial setup
and 1000€ per subsequent mold/phantom [219].

: .| | —_— (d) Aluminum Mold
(a) Elastomer (b) Gospire Silicone (¢) In-house Silicone

Fig. 3.27: Examples of Laser-Engraved Phantoms. (a) Direct engraving on elastomer. (b)
Direct engraving on in-house silicone. (c¢) Direct engraving on Gospire silicone. (d)
Aluminum half-pipe mold. Images taken from [219, Fig. 10].

3.6.3.2 3D Printing of Resin Molds

For the 3D printing methodology, negative molds of fingerprints were fabricated using stere-
olithography (SLA and MSLA) techniques [239]. This approach offers significant design flexibility
[49]. The first step of this approach was the development of a process to project 2D synthetic
fingerprint patterns onto a generic 3D finger model. For our use-case, we chose a cylinder shape
capped with a spherical tip. For this, we utilized the ABF++ algorithm [228] within the Blender
modeling software. This enabled the creation of molds that would produce phantoms with both
realistic overall shape and arbitrarily defined, ground-truth fingerprint patterns. The molds were
designed as two-part structures to facilitate easier removal of the cast phantom and potentially
allow for different fingerprint patterns on opposing sides of the same phantom [219, Fig. 5]. To
ensure smooth demolding and capture fine details, the fingerprint texture was upscaled and the
depth projection of the fingerprint texture was smoothed via blurring before projection onto the
3D model. This rounds the fingerprint ridges, leading to easier removal of the phantom from the
mold [219].

Two stereolithography-based printing techniques were compared: an in-house, consumer-grade
Masked Stereolithography (MSLA) printer (Elegoo Saturn 2-8K, costing approximately 400€ for
setup and under 5€ for materials per mold) and a professional SLA printing service (Alpine3D
GmbH, costing approximately 3000€ for setup and 50€ per mold). Initial trials with the MSLA
printer revealed minor artifacts in the molds, such as small holes and inconsistencies in ridge depth
near the edges (Figure 3.28a). Design refinements, including improved mold half connections
and ensuring uniform ridge depth, were implemented for the professionally printed SLA molds
(Figure 3.28b), which were largely artifact-free and additionally transparent [219], to avoid
reactions of the color pigments in the mold with the casting material.

The resulting molds were then filled with casting materials. Kryolan Gelafix, a gelatinous
substance used for special effects, was tested for its skin-like appearance (Figure 3.29b). It
required heating to liquefy before casting and cured relatively quickly. Silicone, using Dragon Skin
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(a) Elegoo Saturn 2-8K (b) Alpine3D GmbH

Fig. 3.28: Examples of 3D printed mold. (a) In-house printer, (b) printing service.

variants (10 Fast or 20), required mixing two components, degassing in a vacuum chamber, and a
longer curing time (4-24 hours), but offered much greater stability and durability (Figure 3.29a).
Table 3.16 provides a comparison of relevant Dragon Skin properties against those of human skin,
showing Dragon Skin 20 closely matches the lower end of human skin hardness (Shore A 20).
Material costs for filling were low (under 10€ for Gelafix, under 5€ for Silicone per phantom)
[219].

Tab. 3.16: Dragon Skin vs. Human Skin Properties. Adapted from [219, Table 1].

Dragon Skin 10 Fast [58] Dragon Skin 20 [58] Human Skin

Density [kg/m?] 1070 1080 1250 [130]
Pot Life [min.] 8 25 -

Cure Time 75 min 4h -
Hardness [Shore A] 10 20 2041 [60, 67]
Shrinkage [m/m)] <0.001 <0.001 -

3.6.3.3 CNC Machining

Computer Numerical Control (CNC) machining was used to produce highly precise master
targets directly from aluminum round bars (6061 alloy) [225]. A 5-axis milling machine created
master cylinders featuring various surface patterns, including checkerboards, vertical /horizontal
Ronchi lines, concentric rings, and a synthetic fingerprint pattern, to test machining precision
and consistency [219, Fig. 7]. Micro-tools were selected based on the smallest feature size (e.g.,
0.2 mm for the fingerprint). Surface roughness could be controlled, with options for sandblasting
(achieving Rq of 2.5 pum) versus leaving the milled finish (Rq 1.2 pm) (Figure 3.30a and Figure
3.30c). These high-precision metal masters then served as the basis for a two-stage silicone
molding process: first, a flexible negative mold was cast from the master using Dragon Skin 10
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(a) Fingerprint target (b) Backside

(c) Sandblasted
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(d) Silicone phantom

Fig. 3.30: Examples of CNC-Machined masters with the fingerprint pattern 3.30a, the backside
showing the slit for inserting the target holder 3.30b, the sandblasted target with
increased surface roughness 3.30c and measurements of the phantom with Ronchi
lines after the two-stage silicone molding.

Fast (after applying a release agent), and second, this negative mold was used to cast the final
positive phantom using the same silicone (Figure 3.30d). While capable of yielding extremely
accurate master forms, CNC machining is inherently costly (approximately 1000€ per subsequent
master after initial setup) and labor-intensive, particularly for the initial setup, programming,
and the two-stage casting process. It also encountered limitations, as the intended checkerboard
pattern could not be fully realized due to the challenges of milling such fine features (0.1 mm)

without tool breakage [219].
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3.6.4 Experimental Evaluation and Results

The manufactured phantoms were evaluated to assess their quality, fidelity, consistency, and
suitability for different sensor types and recording modalities [219]. Measurements involved
profilometry (Keyence VR-5200) to determine ridge/valley dimensions and surface characteristics,
microscopy (Vision Engineering Lynx) for visual inspection, and fingerprint acquisition using a
Greenbit DactyScan 84c optical scanner. Subsequent analysis included NFIQ 2 quality assessment
and template comparison using commercial (Idkit) and open-source (NBIS, FinSource) ABIS to
quantify utility, fidelity and variability.

3.6.4.1 Generation Results and Material Properties

Profilometry analysis confirmed the successful transfer of microstructures but revealed important
differences between the methods [219]. Direct laser engraving on elastomer showed significant
deviation from the target depth (mean 115.6 ym =+ 1.2 pum measured vs. 100 pm target) and
exhibited unnaturally large valley width variations (mean 304.0 pum 4+ 19.1 pm) along with
pixelated edges due to the initial 500 dpi ground truth resolution. Direct engraving on silicone
resulted in more consistent ridge shapes but produced shallower valley depths (Gospire: 86.8
pm £ 2.7 pm; In-house: 63.8 pm + 2.0 um) compared to the target, the Gospire silicone also
showed surface burning effects from the laser. Phantoms cast from the laser-engraved aluminum
half-pipe mold achieved accurate ridge depths (89.9 pm + 7.0 pm) but inherited visible line
artifacts caused by offsets during the mold engraving process.

Phantoms produced using 3D-printed molds showed characteristics dependent on the printer
and filling material. Gelafix fillings initially provided good ridge definition (mean depth 146.0
pm £ 7.6 um for ES2 mold) but suffered severe degradation: diameter shrinkage exceeded 17%
after 6 months, accompanied by significant hardening and a reduction in ridge depth to 118.1
pm £ 5.9 pm. Silicone fillings proved highly stable (<1% shrinkage after 6 months). Phantoms
from the professionally printed mold exhibited minimal artifacts and were designed with a more
realistic, shallower ridge depths (mean 38 pm + 5 pm) compared to those from the in-house
ES2 mold (mean 128 ym + 9 pm). The in-house ES2 mold suffered from small holes and edge
inconsistencies as a result of the printing process. Both molds showed the pointed ridge profiles
typical of the printing/casting process. Phantoms derived from CNC-machined aluminum masters
accurately reproduced the target ridge depth (75.2 um 4+ 2.0 um) and demonstrated consistent
ridge and valley widths (valley width 320.8 pym + 10.6 pum). Table 3.17 provides a consolidated
comparison of the measured dimensions and observed artifacts for each method.

Methodology Price Manual Labor Artifacts Valley Width [um] Ridge Depth [pm]
CNC Alum + Silicone setup + ~1000€ High Minimal 530 + 13 86 + 4
Laser Alum HP + Silicone  ~8000€ + 1000€ Medium Offset of ridge lines 364 £+ 20 90 + 7
Laser Elastomer ~200€ Low Varying ridge thickness 304 £+ 19 115 £ 1
Laser Silicone Gospire ~200€ Low Minimal 340 £+ 13 87+ 3
Laser Silicone In-house ~200€ Medium Small offset of ridge lines 303 + 8 64 £ 2
Print ES2 + Gelafix ~400€ + <10€ Medium Air bubbles + small holes in mold 330 £ 18 146 + 8
Print ES2 + Silicone ~400€ + <5€ Medium Small holes in mold 370 £37 128 +9
Print ALP + Silicone ~3000€ + 50€ Medium Minimal 265 + 18 38+5

Tab. 3.17: Overview of Manufacturing Methodologies. Adapted from [219, Table 3].
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3.6.4.2 End-to-End Fidelity and Intra-Class Variability

The utility of the phantoms was investigated by assessing the quality and consistency of the
fingerprints recorded from them. NFIQ 2 scores [246] were calculated for both the initial 2D
synthetic fingerprints and the rolled impressions acquired from the corresponding phantoms using
the Greenbit scanner [219, Table 4]. It is important to note that the usage of NFIQ 2 for rolled
impressions is not in its intended scope, since it was developed for flat recordings, however, it is
still the best freely available tool to estimate the utilility of the rolled fingerprint samples. Most
2D synthetic images scored in the 44-59 range, considered medium to good quality [44]. The
rolled recordings generally maintained similar scores (40-61 range), indicating that the basic
ridge structure quality was preserved during manufacturing and recording for most methods.
However, a notable drop in score was observed for phantoms made using the in-house ES2 3D
printer (average scores of 36 for Gelafix, 37 for Silicone), suggesting artifacts introduced by this
specific printing process negatively impacted sample utility.

End-to-end fidelity, important for understanding how accurately a phantom represents its
intended digital counterpart in a recognition scenario, was assessed by comparing templates
generated from the 2D synthetic images against templates from their corresponding rolled phantom
recordings. In order to archive a fair comparison and eliminate scale variations introduced in the
design process or with the age related shrinking, a preprocessing ablation study was conducted.
Here, we investigated the scaling values of the recorded images, since scaling issues can drastically
impact ABIS comparison performance.

For this ablation study, we scaled the rolled phantom recording in the x-direction and also
in the y-direction and calculated template comparison scores with the corresponding synthetic
fingerprint image for each scaling value.

We selected the current scaling values using a grid search algorithm. For this, we sampled 50
points for scaling along the x-direction and 50 points for scaling along the y-direction, resulting
in 2500 possible scaling combinations per image.

The starting points of the grid and the end points of the grid were chosen such that the
template comparison score maxima sat roughly in the middle of the grid, ensuring we found the
right optima. We then conducted this search over all samples recorded from this phantom.

Next, we selected the 10 best scaling values per phantom and used their weighted average
over all recordings of all phantoms for a given synthetic fingerprint and manufacturing method.
There, the template comparison scores served as weights in the averaging process. The result
of this process were the final scaling values used in the downstream tasks, shown in Table 3.18.
Also, the quality of the identified scaling value could be measured by the variability of this score,
given by the standard deviation.

To calculate the template comparison scores, we used the state-of-the-art commercially available
ABIS IDkit from Innovatrics [103].

We applied the found scaling values to the recordings to ensure optimal performance in
the following end-to-end fidelity study. For this study, we utlized three distinct fingerprint
identification systems: the commercial Innovatrics Idkit, the NIST Biometric Image Software
(NBIS) suite (Mindtct for minutiae extraction and Bozorth3 for minutiae comparison), and a
combined open-source approach using FingerNet [250] for minutiae extraction and SourceAFIS
[258] for minutiae comparison (referred to as FinSource) [219, Table 6]. High template comparison
scores indicate high end-to-end fidelity.

The results depicted in Table 3.19 show significant performance differences. Phantoms created
via direct laser engraving on silicone substrates (both Gospire and in-house produced) demon-
strated high fidelity, with average scores across the three systems being 771 and 689, respectively.
They achieved perfect scores (1000) with the Idkit comparison algorithm. Similarly, phantoms
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Methodology X y Oscore
CNC Alum 0.57 0.58 0.0
Laser Alum HP Silicone 0.91 1.03 0.0
Laser Elastomer 0.99 1.02 8.3

Laser Silicone Gospire  0.93 1.04 0.0
Laser Silicone Inouse 0.86 1.00 0.0
Print ES2 Gelafix 0.79 0.83 13.9
Print ES2 Silicone 0.68 0.80 13.7
Print Alpine Silicone 0.64 0.88 20.7

Tab. 3.18: Optimal scaling values for the recorded rolled fingerprint samples in the horizontal
direction (x) and the vertical direction (y). Adapted from [219].

cast from the laser-engraved aluminum half-pipe mold (Laser Alum HP + Silicone, average 593)
and those derived from CNC-machined aluminum masters (CNC Alum + Silicone, average 481)
also showed high fidelity, again reaching maximum scores with Idkit. These methods, involving
precise master creation, effectively transferred the fingerprint pattern.

In contrast, phantoms originating from 3D-printed resin molds generally yielded lower fidelity
scores. However, it should be noted that the phantoms originating from the 3D-printed resin
models are the only phantoms where parts of the fingerprint pattern was projected onto the
rounded fingertip area. This introduces additional challenges in the template comparison stages.
First, there is a reduced exposure of the fingerprint surface area to the sensor, since the front-most
part of the tip cannot be rolled simultaneously with the flatter parts of the fingertip. Also, those
parts require a more complicated mosaicking process, potentially introducing artifacts, leading
to misplacement of the minutiae. Finally, those rounded areas introduce geometric distortions
that have to be accounted for.

The professionally printed Alpine3D (ALP) molds (average 388 for silicone fillings across
different fingerprint types) outperformed those from the in-house ES2 molds (average 275 for
Gelafix, 295 for Silicone). This highlights the impact of printer precision and mold quality on
the final phantom fidelity. Gelafix as a filling material consistently underperformed compared
to silicone. The laser-engraved elastomer phantom exhibited very poor fidelity (average score
93), primarily due to its stiffness, which made it difficult to capture a complete and undeformed
impression.

It is also noteworthy that comparison algorithm choice influenced the perceived fidelity for
certain phantoms. For example, the Laser Alum HP + Silicone phantom achieved a perfect
score with Idkit but a significantly lower score of 104 with NBIS, likely because the line artifacts
present in this phantom type were handled differently by the feature extraction and comparison
algorithms of the NBIS system. Table 3.19 summarizes these average fidelity scores.

Intra-class variability evaluates the consistency of recordings obtained from the same phantom
type across multiple acquisitions. High comparison scores between different recordings of the
same phantom indicate good repeatability and low variability. The same three comparison
systems were used for this assessment [219, Table 7, §].

The results largely mirrored the fidelity findings. Phantoms created using laser-engraved
aluminum molds (Laser Alum HP + Silicone, average variability score 624) and CNC-machined
masters (CNC Alum + Silicone, average 569) exhibited high consistency, indicating that these
methods produce phantoms that yield repeatable recordings. 3D-printed phantoms demonstrated
more varied consistency. Those from the refined Alpine3D (ALP) process with silicone filling
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Methodology Avg 1Idkit Nbis FinSource
CNC Alum 481 1000 158 285
Laser Alum HP Silicone 593 1000 104 674
Laser Elastomer ! 93 112 44 123
Laser Silicone Gospire 771 1000 186 1126
Laser Silicone In-house 689 1000 158 908
Print ES2 Gelafix 2 275 570 54 201
Print ES2 Silicone 2 295 615 70 200
Print ALP Silicone 2 388 829 92 243
-Arch 421 904 53 304
-Tented Arch 373 803 71 245
-Left Loop 465 977 130 289
-Right Loop 430 906 137 246
-Whorl 252 553 72 132

! The elastomer phantom was not rolled but placed on the acquisition area, and the wooden cylindrical finger
model was rolled with pressure over the elastomer phantom to simulate the rolling motion.

2 The phantoms created from the 3D-printed molds are the only phantoms with a fingerprint pattern that is
partially placed on the rounded fingertip area.

Tab. 3.19: End-to-end fidelity for phantoms measured via template comparison scores of Idkit
(Idkit), Mindtct + Bozorth3 (Nbis), and FingerNet + SourceAFIS (FinSource)
comparison algorithms and their average (Avg). The finger types (-Arch, -Tented
Arch, ...) are sub-categories for the phantoms printed using the SLA printer of
Alpine3D GmbH.

showed reasonable consistency (average 538 across fingerprint types). However, phantoms from
the in-house ES2 printer, particularly with Gelafix filling (average 363), had considerably lower
consistency, suggesting that recordings from these phantoms were less reliable. The laser-engraved
elastomer phantom also showed poor repeatability (average 537), aligning with the difficulties in
its handling.

Table 3.20 (derived from Table 7 of [219]) summarizes the average intra-class variability for
several key methodologies. It is important to note that the direct laser-engraved silicone phantoms
(Gospire and In-house) are not shown because they are of a simpler 2D form factor.

When comparing different high-performing fabrication methods that produced the same
underlying fingerprint pattern [219, Table 8], the laser-based methods (direct silicone, aluminum
mold) and the CNC-based method grouped together, exhibiting high interoperability in terms of
consistency. The 3D-printed methods formed a distinct cluster with generally lower, though still
useful for some types, consistency scores. This highlights that while different precise methods
can create consistent phantoms, the nuances of 3D printing can lead to greater variability in the
final recorded impressions.

3.6.5 Discussion

The evaluation presented above and in more detail in [219] shows that selecting an optimal
approach requires consideration of manufacturing methodology, material properties, cost, labor,
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Tab. 3.20: Intra-Class Variability Scores. Adapted from [219, Table 7].

Methodology Average Variability Score
CNC Alum + Silicone 569
Laser Alum HP + Silicone 624
Laser Elastomer 237
Print ES2 + Gelafix 363
Print ES2 + Silicone 514
Print ALP + Silicone (Avg over types) 538

and the resulting phantom’s characteristics and performance in the context of the intended
application — be it rolled, slap, or contactless sensor evaluation — and the desired level of fidelity
versus resource constraints.

3.6.5.1 Methodology Comparison

Direct laser engraving onto flat silicone plates stands out for its balance of cost-effectiveness
(approx. €200 per phantom), low labor requirement, minimal artifact generation (especially with
Gospire silicone), and high end-to-end fidelity and recording consistency. Its main drawback
is the inherent flatness, requiring mounting for realistic rolled print simulation. In contrast,
creating a 3D phantom via casting silicone into a laser-engraved aluminum half-pipe mold achieves
comparable high fidelity and consistency while providing the desired 3D geometry. However, this
comes at a significantly higher cost (setup >€8k, unit >€1k), involves more labor (two casting
steps), and is susceptible to line artifacts originating from the mold engraving process.

CNC machining of aluminum masters, followed by a two-stage silicone casting process, offers
the best precision for the master target, translating to good fidelity and consistency in the final
phantom. This method allows for fine control over surface properties like roughness. Yet, it
represents the most expensive (approx. €1k per subsequent master) and labor-intensive approach,
and faced limitations with highly detailed patterns like the checkerboard, where tool breakage
occurred.

3D printing of resin molds provides the greatest design flexibility and is the most economical
option, particularly when using in-house MSLA printers (setup €400, material <€5 per mold).
Professional SLA printing offers higher precision and artifact-free molds but at a higher cost
(setup €3k, unit €50). While offering versatility in shape and pattern integration, the resulting
phantoms generally exhibited lower fidelity and consistency compared to the top laser-engraved
or CNC-derived methods. The quality is highly contingent on careful mold design (e.g., avoiding
liquid traps, ensuring smooth edges), printer resolution, and the choice of printing service (ALP
outperformed ES2).

3.6.5.2 Material Suitability

Silicone, specifically the Dragon Skin platinum-cure variants tested, proved to be the superior
material for creating durable and realistic phantoms. Its advantages include extremely low
shrinkage (<0.1%), long-term stability (minimal hardening over months), and elasticity (Shore
A 10-20) that reasonably approximates the lower range of human skin hardness, facilitating
realistic deformation during rolling. Kryolan Gelafix, while visually similar to skin initially and
potentially useful for specific PAD tests, is unsuitable for standardized, reusable phantoms due
to its rapid and severe shrinkage (>17% in 6 months) and hardening. The Laserline EPDM
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elastomer, designed for printing plates, was found to be too stiff for effective interaction with
contact-based fingerprint sensors, especially for simulating rolled acquisition.

3.6.5.3 Application-Specific Recommendations

For simulating rolled fingerprint recordings, where capturing the deformation of a 3D shape is
critical, methods yielding elastic 3D phantoms are necessary. CNC machining or laser engraving
of aluminum molds, followed by silicone casting, provide the highest fidelity and consistency
but are resource-intensive. 3D printing of high-quality (e.g., professional SLA) molds filled
with silicone offers a more accessible and flexible alternative, potentially sacrificing some fidelity
for cost savings and design freedom. They also have the benefit of allowing arbitrary finger
geometries that deviate from a cylindrical approximation, while CNC machining or lase engraving
are constrained to cylindrical shapes.

For simulating slap fingerprint recordings, the requirements are different. They primarily need
a flat, detailed surface. Direct laser engraving onto flat silicone plates (like Gospire or a stable
in-house formulation) is highly recommended due to its simplicity, high fidelity, low artifact rate,
and appropriate geometry.

For evaluating contactless fingerprint sensors, where 3D shape and visual appearance (including
color) are often important, 3D-printed molds filled with appropriately pigmented silicone are the
most advantageous. This approach allows the creation of phantoms with realistic finger geometry
and controlled surface characteristics.

3.6.5.4 Impact on Research Questions

This investigation into phantom manufacturing directly addresses RQ6 (Can we produce
synthetic 3D fingers and how do they perform compared to real fingers? What
manufacturing techniques can be used?). The results definitively show that yes, synthetic
3D fingers can be produced using laser engraving of molds, 3D printing of molds, or CNC
machining of masters, followed by casting, primarily with silicone. Direct engraving is suitable
for flat (slap) simulations. Performance, measured by fidelity and consistency, can be very high,
approaching the limits of current comparison systems for the best methods (CNC/Laser molds).
While material properties like elasticity approximate human skin, perfect replication remains a
challenge. The phantoms successfully replicate known ridge patterns, providing a ground truth
missing in human testing. Laser engraving, 3D printing, and CNC machining (all with casting)
are confirmed as viable techniques, with specific trade-offs detailed above.

This work also establishes the necessary tools and understanding to advance other research
questions. The created phantoms serve as standardized targets. They provide a fixed geometry
and pattern ground truth essential for rigorously evaluating pose correction algorithms (RQ2)
and core/landmark detectors (RQ3) without facing human variability. They enable controlled
studies on the influence of physical characteristics and acquisition conditions on quality metrics
(RQ4). Furthermore, these physical phantoms can generate realistic image sequences (e.g.,
through controlled rolling or sweeping) necessary for testing and validating fingerprint mosaicking
algorithms and artifact detectors (RQ5). The ability to reliably create physical instances of
digitally defined fingerprints provides a powerful methodology for validating algorithms and
sensors against known references.

3.6.5.5 Limitations

While this study provides a broad comparison, some limitations persist. The exploration of
materials, while including representative examples, could be expanded, particularly investigating
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multi-layer composites to better mimic skin structure. The long-term stability assessment, though
demonstrating silicone’s superiority over Gelafix, was limited in duration to under a year. Fully
replicating the complex, non-homogeneous biomechanics of human skin remains a challenge.
The performance evaluation relied predominantly on a single high-quality optical contact-based
sensor. This means that results might differ for capacitive, ultrasonic, or various contactless
sensor technologies. Cost estimations provided are indicative and depend heavily on specific
vendors and production volumes. Lastly, while phantoms reduce variability compared to human
subjects, manual handling during recording still introduces minor inconsistencies. Therefore,
robotic acquisition protocols would be required to ensure full repeatability.

3.7 Privacy Preserving Fingerprint Comparison

The increasing reliance on biometric data, such as fingerprints, for identification and authentication
presents a privacy paradox. While offering unique, permanent, and difficult-to-forge characteristics
that are advantageous over traditional methods like passwords or tokens, biometric data, once
compromised, cannot be revoked or changed [152]. This immutability, coupled with the inherent
personal nature of biometric identifiers, raises concerns regarding data collection, storage,
potential misuse, and the risk of mass surveillance [233]. Standard practice often involves local
processing and storage of fingerprint data on dedicated secure hardware (e.g., secure elements
in smartphones) to mitigate these risks. However, this localized approach inherently limits the
application of fingerprint biometrics to primarily local authentication scenarios. This stops more
advanced use cases that require remote comparison or data pooling [152].

One use-case requiring remote comparison is for example privacy preserving border security
at international checkpoints, such as airports. The envisioned scenario involves comparing a
traveler’s scanned fingerprint not only against their passport data but also against national
and international No-Fly Lists or watchlists collaboratively pooled by multiple law enforcement
agencies. Such a multi-national system requires privacy guarantees: fingerprints of regular
travelers must remain confidential and should never be disclosed or stored centrally, while
the contents of the sensitive watchlists, potentially from different jurisdictions, also need to
be protected during the comparison process. Only in the event of a confirmed match should
relevant, limited information be revealed to initiate further action. Traditional approaches, where
raw biometric data is transmitted or compared in the clear, are inadequate for such sensitive,
multi-party applications.

Multiparty Computation (MPC) offers a cryptographic solution to these challenges [66]. MPC
enables a set of parties to jointly compute a function over their private inputs without revealing
these inputs to each other or any other party involved in the computation. In the context of
fingerprint comparison, MPC allows for the comparison of an encrypted (e.g., secret-shared)
fingerprint template against a database of similarly encrypted templates, with only the match
result (e.g., a match/no-match decision or a similarity score) being revealed. This approach
can preserve the privacy of both the individual providing the fingerprint and the sensitive data
within the reference database. However, MPC introduces a significant computational overhead,
which has historically been a major hindrance to its practical application for complex algorithms
like minutiae-based fingerprint comparison [147]. While simpler feature vector comparisons (e.g.,
Euclidean distance) are relatively efficient in MPC [12], state-of-the-art fingerprint recognition
predominantly relies on more intricate minutiae-based comparison algorithm due to their superior
accuracy and explainability [151]. Recent advancements in MPC protocols and frameworks
have, however, started to make real-world deployment feasible even for these more demanding
tasks. This section details research focused on implementing and optimizing a minutiae-based
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fingerprint comparison algorithm using MPC, demonstrating its practical feasibility for real-time
applications while preserving privacy [152].

3.7.1 Related Works

The challenge of performing fingerprint comparison while preserving the privacy of the biometric
data has been an active area of research for several years. The inherent sensitivity of biometric
templates, which are irreplaceable if compromised, requires solutions that go beyond traditional
data encryption, especially when the comparison is performed by untrusted parties or on untrusted
platforms [108]. Early efforts in biometric template protection focused on creating cancelable
templates [197] or biometric cryptosystems [199, 257].

Cancelable biometrics aim to transform the original biometric template into a new, intentionally
distorted version in a non-invertible way [196]. If a transformed template is compromised,
it can be cancelled and a new one re-issued by applying a different transformation. While
offering revocability, challenges remain in ensuring that the transformed templates maintain
high discriminability and are robust against various attacks [198]. Several approaches have been
proposed for fingerprint minutiae, often involving transformations in the minutiae space, such as
random projections or permutations.

Biometric cryptosystems, including fuzzy extractors and secure sketches, aim to bind a
cryptographic key with the biometric data or derive a key from it [27, 56]. For fingerprints, these
methods often struggle with the intra-user variability (distortions between different acquisitions
of the same finger) and the lack of a fixed-length representation for minutiae sets. Successfully
extracting a stable key from noisy biometric data without leaking significant information about
the template itself is a primary challenge [199].

More directly related to the MPC approach discussed in this thesis are methods that perform
comparison in the encrypted domain. Homomorphic Encryption (HE) schemes allow computations
to be performed directly on encrypted data without decrypting it first. Several works have explored
applying HE to biometric comparison, including fingerprints [12, 274]. However, minutiae-based
fingerprint comparison involves complex operations (e.g., geometric comparisons, alignment,
scoring functions) that are often inefficient or difficult to implement with current HE schemes,
particularly fully homomorphic encryption (FHE), which supports arbitrary computations but
comes with significant performance overhead [25]. Partial HE schemes (e.g., Paillier) have been
used for simpler distance calculations or components of the comparison process, but a full,
efficient minutiae comparison algorithm remains a challenge.

Secure Multiparty Computation (MPC) has emerged as a more flexible alternative for complex
biometric comparison. Unlike HE where one party typically encrypts data for another to compute
on, MPC allows multiple parties to jointly compute a function on their private inputs. Early work
by [123] demonstrated secure two-party computation for edit distance, relevant to string-based
biometric representations. For fingerprints, research has focused on securely implementing
various components of the minutiae comparison pipeline. For instance, [24] explored secure
computation of fingerprint alignment and comparison scores. [102] proposed a privacy-preserving
identification system using secure sum and comparison protocols for minutiae data. More recent
works, like those by [145] and [187], have proposed protocols for secure minutiae-based fingerprint
comparison, often breaking down the comparison algorithm into MPC-friendly sub-protocols.
These approaches typically involve secure comparisons of minutiae coordinates and orientations,
and aggregation of comparison scores. The work by [147] benchmarked different MPC frameworks
for cryptographic building blocks relevant to biometric comparison, highlighting the trade-offs
between security models and performance. The challenges in adapting complex algorithms like
SourceAFIS, with its specific edge-based representation and tree-crawling mechanism, for MPC,
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as detailed in [152], involve careful algorithmic re-engineering to balance privacy, accuracy, and
computational efficiency. These efforts often involve hybrid approaches where some non-sensitive
pre-processing or data structuring is done in plaintext, while the core comparison logic involving
sensitive template data is performed within the MPC framework.

3.7.2 Fingerprint Comparison

At the core of this work is a minutiae-based fingerprint comparison algorithm. Minutiae, which
are specific points in a fingerprint such as ridge endings or bifurcations, form the primary features
used for comparison. The specific algorithm adapted for MPC implementation is SourceAFIS,
an open-source, commercially-used comparison algorithm developed by Robert Vazan [258]. The
SourceAFIS comparison process can be divided into two stages: feature extraction and template
comparison.

Feature Extraction in SourceAFIS: During feature extraction, SourceAFIS processes
an input fingerprint image to identify and characterize minutiae. Each minutia is stored in a
template with its type (ending or bifurcation), its (x, y) position, and its direction (angle). Since
these raw minutiae features are not inherently rotation- or translation-invariant, the template
generation process also involves computing and storing edges. An edge represents a connection
between a reference minutia and one of its neighboring minutiae. For each reference minutia, a
fixed number of edges are calculated and described by their length and two angles relative to
the reference minutia and the neighbor. These edge parameters are designed to be invariant
to rotation and translation of the overall fingerprint, which is needed for stable comparison
[152]. This feature extraction phase is typically performed locally (e.g., on the sensor side or
a trusted local device) and does not require MPC, as it operates on a single fingerprint image
before any comparison is made with other potentially sensitive data. The result of this operation
is a fingerprint template.

Template Comparison in SourceAFIS: The template comparison stage aims to determine
if two fingerprint templates, referred to as the probe (the newly acquired fingerprint) and the
candidate (a template from the database), originate from the same finger. The SourceAFIS
algorithm accomplishes this through a three-phase process for each probe-candidate pair: (i)
enumerate, (ii) crawl, and (iii) score [152, Algorithm 1].

In the enumerate phase, the algorithm seeks potential root pairs of matching edges between
the probe and candidate templates. It iterates through the minutiae of the candidate, forming
edges to other minutiae. For each candidate edge, its hash value is computed and looked up
in a pre-computed edge hash table of the probe template. If a probe edge with a similar hash
exists, it is considered a potential match, forming a root pair. This hash-based lookup is an
optimization in the original plaintext algorithm to speed up the search for similar edges.

Starting with a root pair, the crawl phase attempts to build a spanning tree of mated minutiae.
The algorithm iteratively compares the surrounding edges of the current minutiae pair in the
probe and candidate templates. If a pair of surrounding edges is deemed sufficiently similar, the
minutiae at the ends of these edges are added to the spanning tree, and the process continues
from these newly added minutiae. This step considers the spatial arrangement of minutiae by
evaluating edge neighborhoods, ensuring that not only individual edges match but also their
local context (Figure 3.31, adapted from [152, Fig. 1]).

Finally, in the score phase, a match probability score is computed for the generated spanning
tree. This score quantifies the similarity between the probe and candidate based on factors like
the number of mated minutiae in the tree, the number of supporting edges, and the similarity of
these features. The entire process of enumerate, crawl, and score is repeated for multiple potential
root pairs, and the highest probability score obtained is returned as the overall similarity score
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Fig. 3.31: Illustration of a Spanning Tree for a Matching Fingerprint Pair. Minutiae are marked
in red, the initial root pair in blue, the pairing tree in green, and supporting edges in
yellow. Adapted from [152, Fig. 1].

for the probe-candidate pair. This score is then typically compared against a threshold to make
a match or no-match decision.

3.7.3 Privacy Preserving Comparison with MPC

The primary objective of this research was to adapt the SourceAFIS minutiae comparison
algorithm for execution within an MPC framework, specifically MP-SPDZ [119], to enable
privacy-preserving fingerprint comparisons. As the feature extraction step operates on a single
fingerprint locally, it remains unchanged and is performed outside the MPC environment. The
core challenge lies in re-engineering the comparison stages (enumerate, crawl, score) for efficient
and secure computation on encrypted data.

3.7.3.1 Minutiae Extractors and Template Compatibility

An important aspect of the research was to ensure the MPC-adapted comparison algorithm
could work with minutiae extracted by different algorithms, not just the native SourceAFIS
extractor. This enhances interoperability and allows leveraging potentially more accurate or
specialized extractors. The study evaluated four distinct minutiae extraction methods: the
original SourceAFIS extractor [258], Mindtct from the NBIS suite [265], FingerNet, a hybrid
deep learning approach [250], and the commercial Idkit from Innovatrics [103].

Minutiae found by these extractors were fed into the SourceAFIS template generation logic
(which computes the invariant edges) before being input to the MPC comparison protocol. The
performance was evaluated based on the Equal Error Rate (EER) and the number of minutiae
extracted, using the FVC2000 databases [154]. The results showed that FingerNet, when paired
with the SourceAFIS comparison logic, significantly outperformed the other combinations in
terms of EER (FingerNet: 0.03 &+ 0.02 EER vs. SourceAFIS: 0.12 £ 0.05 EER), while extracting
a comparable number of minutiae (Table 3.21, adapted from [152, Table 1]). Mindtct extracted
significantly more minutiae but yielded a higher EER, suggesting a higher incidence of false
positives or less discriminative features. Idkit also provided competitive results. This confirmed
that the comparison algorithm is adaptable and can benefit from advancements in minutiae
extraction. Note however that the sample size of the dataset is small in comparison to other studies
that compare comparison performance of different algorithms, indicating that the performance
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ranking between the various extractors has to be taken cautiously, which is also reflected in the
high standard deviations of the EER. Also note that Idkit has its own comparison logic, which
when coupled with their template creation process beats the tested open source solutions.

Further analysis involving minutiae quality scores (Figure 3.32, adapted from [152, Fig. 2, 3])
showed that filtering minutiae based on quality can improve EER, especially for extractors like
Mindtct that produce many low-quality minutiae. This implies that a pre-filtering step based
on locally computed quality scores could reduce template size and potentially speed up MPC
computations without sacrificing accuracy.

Tab. 3.21: Comparison of Minutiae Extractors in terms of Equal Error Rate (EER) when
used with the SourceAFIS comparison logic (plaintext) and the average number of
extracted minutiae per fingerprint. Adapted from [152, Table 1].

Extractor EER (& std) Avg. Num. Minutiae (£ std)

SourceAFIS  0.12 + 0.05 35.96 £+ 20.2
Mindtct 0.14 £ 0.14 72.34 + 50.34
FingerNet 0.03 £ 0.02 36.21 + 9.75
Idkit 0.11 £ 0.09 36.91 + 11.81
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Fig. 3.32: (a) Distribution of minutiae quality scores (normalized) estimated by Idkit (blue)
and Mindtct (orange/red) across FVC2000 datasets. (b) EER and average minutiae
count after applying a quality threshold for Idkit (blue) and Mindtct (orange/red).
Adapted from [152, Fig. 2, 3].

3.7.3.2 MPC Algorithm Optimizations

A naive translation of the SourceAFIS comparison algorithm into MPC would be computationally
prohibitive due to its reliance on MPC-unfriendly operations like data-dependent loops, extensive
hash table lookups, and re-computations. Therefore, significant algorithmic refactoring was
necessary [152].

For the enumerate step, the original hash-based lookup for candidate edges cannot be efficiently
replicated in MPC as it reveals information. Instead, the MPC version must compare every
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candidate edge with every probe edge. This NV x M comparison, where N and M are the number
of edges in the probe and candidate respectively, is computationally intensive. Algorithm 2 in
[152] outlines this MPC-friendly enumeration. The output is a mated array indicating which
edge pairs match based on length and angle differences within defined tolerances. This mated
array, containing only permuted edge indices, can then be revealed and used in plaintext for
subsequent steps, forming an important optimization.

The crawl step (Algorithm 3 in [152]) was also significantly modified. In the original algorithm,
edges are sorted by length and processed sequentially. This data-dependent sorting is inefficient in
MPC. The optimized MPC approach omits this re-sorting. While this leads to different spanning
trees being generated compared to the original (Figure 3.33, adapted from [152, Fig. 4]), tests
showed that average error rates were not significantly impacted, though individual comparison
outcomes could differ. The core crawl logic, which builds the tree using the pre-computed (now
revealed) root pair array, can largely be performed in plaintext, significantly reducing MPC
overhead.

Fig. 3.33: Visual comparison of comparison decisions for fingerprint pairs from FV(C2000
DB3 using the original SourceAFIS (evaluating at its EER threshold) versus the
MPC-adapted version (evaluating at its EER threshold). White indicates identical
match/non-match decisions. Green indicates the MPC version correctly matches
where the original did not. Red indicates the MPC version fails to match where the
original did. Adapted from [152, Fig. 4].

For the scoring step, operations that do not involve sensitive data (e.g., counting minutiae in
the tree, number of supporting edges) are performed in plaintext. Only comparisons involving
sensitive features like minutia type or precise edge geometry remain within the MPC protocol
(Listing 2 in [152]). The study also explored replacing floating-point arithmetic with fixed-point
arithmetic for MPC, as true floating-point operations are costly. It was found that even with only
one decimal place of precision for fixed-point numbers, the EER did not significantly degrade
compared to using floating-point numbers, due to the algorithm’s reliance on comparisons with
integer constants (e.g., degrees for angles) [152, Table 4].
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3.7.3.3 Performance Evaluation with MP-SPDZ

The optimized algorithm was implemented and benchmarked using the MP-SPDZ framework,
employing a 16-core Intel Xeon CPU. Initial tests with MPyC, another Python-based MPC
framework, yielded execution times of around 7 minutes for the enumerate step, which was too
slow for the target real-time application. MP-SPDZ, particularly with its support for eda-bits
(efficient data-agnostic bits for comparisons), offered significant speed-ups [64].

For the enumerate step in MP-SPDZ, with 3 parties and no network latency simulated, finding
roots for templates with an average of 39 minutiae (and 9 edges per minutia, capped at 100
minutiae) took approximately 12.25 seconds using the Shamir protocol (Table 3.22a, adapted from
[152, Table 8]). The scoring step for a single tree of average size (6 nodes, see Table 3.22¢, adapted
from [152, Table 7]) took approximately 0.02 seconds (Table 3.22b, adapted from [152, Table
9]). Given that an average fingerprint comparison involves around 250 root pairs (Table 3.22d,
adapted from [152, Table 10]) requiring a crawl and score iteration each, the total sequential
execution time was estimated at 12.25s 4+ (250 * 0.02s) = 17.25 seconds. However, as the scoring
of different root pairs is independent, these operations can be parallelized. If parallelized, the
dominant factor remains the 12.25-second enumeration step, bringing the real-time goal within
reach, especially with further optimizations like minutiae pre-filtering.

(b) Time for scoring trees (s) [152, Table 9]

(a) Time for root finding (s) [152, Table 8§]
Size ‘ rep-field (s)  shamir (s)

Minutiae ‘ rep-field (s)  shamir (s) 1 0.01 0.02
10 1.04 3.32 2 0.02 0.02
20 3.25 11.78 5 0.02 0.04
30 7.03 26.17 10 0.03 0.06
40 12.25 46.57 20 0.05 0.10
50 18.94 72.09 50 0.03 0.08

100 0.04 0.14

(c) Tree size per fingerprint [152, Table 7]

(d) Root pairs per fingerprint [152, Table 10]

Matches Non-Matches Matches Non-Matches

Min. Max. Avg. | Min. Max. Avg. Min. Max. Avg. | Min. Max. Avg.
DB1 5 45 7.4 1 7 2.3 DB1 8 899 194 0 428 65
DB2 4 7 6.3 2 7 2.8 DB2 29 1887 367 2 803 153
DB3 5 100 5.5 2 9 2.9 DB3 | 112 4007 1176 | 25 2484 590
DB4 4 33 6.2 1 7 3.0 DB4 16 619 178 3 321 58
Total | 4 100 6.4 | 1 9 28 Total | 8 4007 479 | 0 2484 217

Tab. 3.22: MP-SPDZ performance benchmarks for key components of the Source AFIS algorithm,

using the Shamir or Replicated Field (rep-field) protocol with 3 parties and no network
latency. (a) Time for root finding (enumerate step). (b) Time for scoring trees of
different sizes. (c) Average tree size per fingerprint comparison. (d) Number of root
pairs found per fingerprint comparison. Adapted from [152, Tables 7-10].

The accuracy of the MPC-adapted plaintext implementation (using fixed-point arithmetic and
the modified crawl) was comparable to the original SourceAFIS, with EERs of 0.04 on FVC2000
DB1 using the respective native minutiae extractors [152, Table 2]. Combining the MPC-adapted
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logic with the FingerNet extractor yielded an EER of 0.01 on DB1, demonstrating high accuracy
(Table 3.21 using MPC logic would show this). Further optimizations, such as filtering root pairs
based on tree size (e.g., discarding trees with <4 mated minutiae or >9, which rarely occur
in genuine or impostor matches respectively, Table 11 in [152]) and more aggressive minutiae
quality filtering, could further reduce computation time for the scoring phase.

3.7.4 Discussion

The research presented in [152] successfully demonstrates the feasibility of implementing a
state-of-the-art, minutiae-based fingerprint comparison algorithm (SourceAFIS) using Multiparty
Computation, achieving comparison times that approach real-world applicability for scenarios
like airport security checks.

3.7.4.1 Effectiveness of Privacy-Preserving Fingerprint Comparison

The study shows that a fully-fledged privacy-preserving minutiae-based comparison algorithm can
be realized with practical efficiency. The achieved EERs, especially when combined with advanced
minutiae extractors like FingerNet (resulting in EERs as low as 0.01-0.03 on FVC2000 datasets),
are competitive with plaintext state-of-the-art systems. This indicates that the transition to
MPC does not necessitate a significant compromise on comparison accuracy, a critical factor
for deployment in security-sensitive applications. The estimated execution time of around 17
seconds for a full comparison (reducible to 12 seconds with parallel scoring, dominated by the
enumerate step) using MP-SPDZ is a substantial improvement over previous MPC attempts for
complex comparison algorithms and is within a range that could be acceptable for certain less
time-critical identity verification scenarios, or further improved for time-critical ones.

3.7.4.2 Impact on Research Questions

This work directly addresses RQ7 (How can we create a privacy preserving comparison
approach that circumvents the risk of exposing biometric data to other parties?).
The research provides a concrete answer by:

1. Demonstrating a successful implementation of a complex minutiae-based fingerprint com-
parision algorithm (SourceAFIS) using MPC (MP-SPDZ framework).

2. Identifying and implementing algorithmic optimizations (e.g., modified enumerate and
crawl steps, selective encryption of sensitive features, fixed-point arithmetic) that make
MPC performance practical.

3. Showing that this privacy-preserving approach maintains high comparison accuracy, compa-
rable to its plaintext counterpart, especially when paired with modern minutiae extractors.

The findings suggest that MPC is a viable technology for secure remote fingerprint comparison,
enabling new use cases like confidential watchlist checking without compromising the privacy of
individuals or the sensitive data held by participating organizations.

The research also implicitly touches upon other questions by highlighting the importance of
the preceding steps. For instance, the accuracy of segmentation (RQ1) and landmark detection
(RQ3) directly impacts the quality of minutiae extracted, which in turn affects the performance
of any comparison algorithm, including an MPC-based one. Similarly, if mosaicking (RQ5)
is used to generate templates for an MPC system, ensuring the structural integrity of those
templates via artifact detection becomes important for reliable privacy-preserving fingerprint
comparison.
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3.7.4.3 Limitations

Several limitations should be acknowledged. The current performance benchmarks were conducted
with simulated no-network-latency between the MPC parties. Real-world network latency will
increase execution times. The formal security model and proof for the implemented MPC
protocol, quantifying exact leakage from revealed intermediate values (like the edge match
array), are yet to be fully developed, though efforts were made to minimize such leakage. The
current optimizations focused on a 3-party computation scenario using Shamir secret sharing,
performance and suitability might differ for other MPC protocols or numbers of parties. While
the comparison algorithm is compatible with various minutiae extractors, the feature extraction
itself is still performed in plaintext locally, meaning the privacy of the raw fingerprint image
relies on the security of the capture device and local processing environment.

3.7.4.4 Future Research Directions

Future work should focus on several key areas. Further optimization of the MPC protocols,
especially the enumerate step (e.g., exploring MPC-friendly near-neighbor search algorithms or
locality-sensitive hashing), is essential to reduce execution times closer to traditional plaintext
comparison algorithms. A comprehensive formal security analysis of the complete MPC-adapted
comparison protocol is needed to quantify any information leakage. Extending the implementation
and benchmarking to real-world distributed environments with network latency will provide more
realistic performance figures. Investigating the integration of minutiae quality information more
directly into the MPC comparison logic could offer further speed-ups by allowing secure pruning
of less reliable features during the encrypted comparison. Finally, exploring end-to-end MPC
solutions that also encompass parts of the feature extraction process, if feasible, would enhance
overall system privacy.



Chapter 4

Conclusion

4.1 Conclusion

This thesis has presented a series of contributions to the field of contactless fingerprint recognition,
addressing the complex challenges that arise from its unconstrained acquisition process. Unlike
contact-based methods, contactless capture introduces variations in pose, illumination, and
scale, which require specialized algorithms to correct for and ensure interoperability with legacy
systems. To systematically address these issues, this research was guided by a set of core questions
spanning the entire recognition pipeline. These questions can be grouped into three main areas:

e Image Normalization and Interoperability: RQ1: How can segmentation of fingerprints from
contactless hand images be made more accurate and robust across different environments?
RQ2: What techniques can effectively correct pose variations in contactless fingerprints
to enhance comparison accuracy? and RQ3: How can core point detection in contactless
images be improved to enable better alignment with contact-based databases?

e Data Assurance and Quality: RQ4: What are the problems of established fingerprints
quality assessment metrics and what can be changed to improve their performance on
contactless fingerprint images? and RQ5: How can we detect errors in the mosaicking
process of contactless fingerprint sensor systems?

e Validation and Secure Deployment: RQ6: Can we produce realistic, synthetic 3D fingers
and how do they perform compared to real fingers? What manufacturing techniques can
be used? and RQ7: How can we create a privacy preserving comparison approach that
circumvents the risk of exposing biometric data to other parties?

This chapter summarizes the key findings and contributions of this thesis in response to these
questions, demonstrates their integration into a holistic pipeline, and discusses the limitations of
the proposed methods.

4.1.1 Image Normalization and Interoperability

This research directly addresses the challenges of image normalization (RQ1, RQ2, RQ3) by
developing a series of algorithms that transform raw contactless captures into standardized,
interoperable fingerprints. To address the foundational challenge of isolating fingertips from
varied backgrounds (RQ1), this work developed progressively capable deep learning models. The
initial work on single-finger segmentation led to a custom U-Net architecture [217] and later
progressed to FingerUNeSt++, a model combining a ResNeSt encoder with a UNet++-like
decoder, which achieved a near-perfect mean Intersection-over-Union (mlIoU) of 0.99 on its test
set, significantly outperforming traditional methods and baseline deep learning architectures [215].
Building on this, TipSegNet was developed to perform multi-class segmentation directly from a
whole-hand image, eliminating the need for a preceding finger detection step. By leveraging a
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ResNeXt-101 backbone with a Feature Pyramid Network (FPN), TipSegNet achieved state-of-
the-art performance with an mIoU of 0.99 and an accuracy of 1.00, setting a new benchmark for
labeled, multi-finger segmentation from a single capture [216]. The significance of these models
lies in providing the masks that are a prerequisite for all subsequent normalization steps. An
inaccurate segmentation mask would introduce cascading errors, rendering any pose correction
or unwarping ineffective.

To improve interoperability with contact-based systems (RQ2, RQ3), a novel pipeline was
developed to correct geometric distortions. It combines segmentation-driven horizontal rotation
correction with an ellipsoid-based model for lateral rotation correction, using the fingerprint core
as a reference point [217]. When combined with parametric unwarping techniques [237], this
pipeline demonstrated a substantial enhancement in comparison performance. On a challenging
operational dataset, a finger-wise optimized application of the pipeline reduced the Equal Error
Rate (EER) for contactless-to-contact-based comparison by a relative 36.9%, from a baseline
of 1.57% to 0.99% [217]. Additional work also empirically quantified the inherent positional
variability of the fingerprint core, revealing systematic modality-induced biases and a fundamental
limit on the accuracy of any alignment method relying solely on this landmark [220], suggesting
that future interoperability efforts must either accept this variability or incorporate additional
reference features. Moreover, the core’s position was found to be best modeled by a finger
dependent distribution. The one distribution however that fit best for most finger was the Non-
Central Fischer (NCF) distribution. This provides insights into synthetic fingerprint generation,
which could lead to more realistic core distribution in non-machine learning generators.

4.1.2 Data Assurance and Quality

This thesis introduces two novel contributions to data assurance and quality, addressing RQ4
and RQ5. In response to the lack of dedicated quality assessment metrics for mobile contactless
fingerprints (RQ4), this work contributed to the evaluation of MCLFI(), an adaptation of the
established NFIQ 2 framework [246]. By retraining the framework’s random forest classifier on
modality-specific synthetic data, MCLFI() demonstrated superior predictive power for contactless
image utility compared to the original NFIQ 2.2 and other baseline metrics across multiple
datasets and recognition systems. Feature importance analysis confirmed that the retrained
model correctly prioritized fidelity-related aspects like sharpness and local ridge clarity, which
are critical for the contactless modality [194]. As a result, we saw that the feature set of NFIQ 2
is still largely relevant, also for other modalities.

To address a gap in standard quality assessment, this work also developed a novel, self-
supervised framework to detect structural errors introduced during fingerprint mosaicking (RQ5)
[218]. By programmatically introducing realistic structural discontinuities into artifact-free
images, a deep learning model (UNet++ with a ResNeSt encoder) was trained to detect these
hard artifacts without requiring any manual annotation. The resulting detector demonstrated
high accuracy (IoU > 0.9) and strong generalization across diverse modalities (contactless, rolled,
slap) and was robust against non-mosaicking quality defects like scars or noise. Its performance
was tested by the Bundesamt fiir Sicherheit in der Informationstechnik (Germany) by retraining
a model on their data and evaluating it on both publicly available data, as well as on institutional
data. Both the AIT and the BSI models had excellent false-positive rates and very high accuracy
rates, implying that they can be rolled out to operate on large datasets without excessive flagging
of intact data. Additionally, a mosaicking artifact score was developed to infer artifact severity
for a given image, enabling the usability of the framework in an automated way on large datasets.
This mosaicking artifact framework provides the first dedicated, reference-free tool for verifying
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the structural integrity of mosaicked fingerprints and its code is available under the Mozilla
Public License Version 2.0 [218].

4.1.3 Validation and Secure Deployment

To enable robust validation and secure deployment (RQ6, RQ7), this thesis provides both a
physical methodology and a cryptographic framework. To create standardized and repeatable
validation methods (RQ6), this research provides a comprehensive investigation into the manufac-
turing of synthetic physical fingerprint targets. A comprehensive investigation of manufacturing
methodologies, including direct laser engraving, CNC machining, and 3D printing of molds, and
materials was conducted [219]. This work established that high-fidelity, physically realistic, and
stable 3D phantoms can be produced, particularly using silicone cast in precisely machined,
laser-engraved or 3D printed molds. These phantoms successfully replicate a known ground-truth
pattern and provide the necessary physical properties for realistic sensor interaction, serving as
essential tools for the objective evaluation of sensor performance and processing algorithms like
pose correction and mosaicking.

Finally, to enable the deployment of fingerprint recognition in privacy-sensitive, multi-party ap-
plications (RQT), this research demonstrated the feasibility of a privacy-preserving minutiae-based
comparison algorithm. A state-of-the-art open-source algorithm, Source AFIS, was successfully
adapted for execution within a Multiparty Computation (MPC) framework. Through significant
algorithmic refactoring to optimize MPC-unfriendly operations, the implementation achieved
a comparison time of approximately 17 seconds while maintaining high recognition accuracy,
comparable in accuracy to its plaintext counterpart. This work makes complex, secure remote
fingerprint comparison practical for real-world scenarios, representing a significant advancement
over previous attempts [152]. The implication is that sensitive operations, such as checking a
traveler’s fingerprint against a confidential multi-agency watchlist, can be performed without
either party revealing their private data. This removes the data-privacy barrier to the adoption
of biometrics in distributed, trust-less environments.

4.1.4 The Complete Pipeline: A Holistic View

The individual contributions of this thesis, while distinct, are designed to function as intercon-
nected components of a contactless fingerprint recognition pipeline. To illustrate their workings,
consider a plausible and challenging real-world use-case: a mobile, high-security identity verifi-
cation system at a border control checkpoint. In this scenario, a border agent uses a standard
smartphone to capture a traveler’s fingerprints and verify them against both the traveler’s digital
identity document and a confidential, multi-agency watchlist.

The process begins with the acquisition phase, where the traveler presents their hand to the
smartphone’s camera, perhaps performing a guided nail-to-nail rolling motion for one or more
fingers to generate a rolled-equivalent impression. Immediately, the algorithms developed in this
thesis begin processing the incoming video stream. The TipSegNet model (RQ1) operates directly
on the whole-hand images, segmenting and labeling each fingertip [216]. For each segmented
fingertip image, the MCLFIQ algorithm (RQ4) calculates a quality score, providing immediate
feedback on factors like focus and illumination and rejecting frames that are not of sufficient
utility for further processing [194].

Once a sufficient number of frames are acquired, they are passed to the mosaicking stage to
create a complete, rolled-equivalent fingerprint image. At this point, the self-supervised artifact
detector (RQ5) is employed to assess the structural integrity of the composite image [218]. If
significant hard artifacts, such as misaligned or broken ridges resulting from an imperfect roll, are



124 4 Conclusion

detected, the mosaicked image is flagged as corrupt, and a re-capture is requested. This integrity
check is important to prevent a erroneous template from causing a downstream comparison
failure.

Assuming the resulting fingerprint image passes all quality and integrity checks, it is then
normalized for interoperability. The deep learning-based core detector (RQ3) localizes the
fingerprint core, which, along with the segmentation mask, serves as input to the pose correction
and unwarping pipeline (RQ2) [217]. This step computationally corrects for finger orientation
(roll, yaw) and flattens the curved surface texture, transforming the contactless image into a
standardized format that is geometrically comparable to legacy contact-based templates stored
in government databases. The empirical analysis of core centrality and modality-specific biases
[220] informs this process, providing a quantitative understanding of the inherent geometric
transformations required.

Finally, the normalized template enters the secure comparison phase. To verify the traveler
against the sensitive, pooled watchlist without compromising the privacy of either the traveler
or the watchlist data, the privacy-preserving MPC protocol is initiated (RQ7). The traveler’s
template and the agencies’ watchlist templates are secret-shared, and the optimized MPC
comparison algorithm compares them in the encrypted domain [152]. Ounly the final binary result
(a match or no-match) is revealed to the border agent. Throughout this entire interaction, the
traveler’s raw biometric data is never exposed to the central databases, and the contents of the
confidential watchlists remain protected.

The development, validation, and certification of this entire complex pipeline would be under-
pinned by the synthetic physical phantoms (RQ6). These phantoms provide the standardized,
repeatable targets necessary to test each algorithmic component, from segmentation accuracy
under different poses to the EER of the complete pipeline, against a known ground truth, ensuring
the system’s reliability and performance before deployment in such a critical security environment
[219].

4.1.5 Limitations of the Proposed Methods

Despite the advancements presented, the proposed methods have inherent limitations that
require discussion and guide future research. These limitations primarily stem from the inter-
dependencies within the processing pipeline, the simplifications made in modeling complex
real-world phenomena, and the practical boundaries of the developed security protocols.

A critical limitation is the effect of cascading errors throughout the multi-stage pipeline.
The performance of downstream modules like the pose correction and unwarping pipeline is
fundamentally bound by the accuracy of the initial segmentation and landmark detection steps
[217]. A minor, seemingly insignificant error in delineating the finger’s contour can propagate
into an incorrect axis estimation, leading to a flawed rotation correction. This, in turn, can shift
the apparent location of the core, compromising the lateral rotation estimate and ultimately
degrading, rather than improving, the final template. This sensitivity shows that the pipeline’s
overall reliability is not the sum of its parts but is constrained by its weakest link.

Furthermore, several algorithms rely on simplified models of reality, which creates a poten-
tial reality gap. The self-supervised artifact detector, while robust, is trained exclusively on
programmatically simulated hard artifacts. It may not generalize to the full, diverse range of
structural errors produced by every proprietary mosaicking algorithm, particularly those that
may produce novel or unforeseen discontinuity patterns [218]. Similarly, the pose correction
algorithm’s assumption of an elliptical finger cross-section is a simplification. It does not account
for more complex and irregular 3D topology of real human fingers. This simplification places a
ceiling on the achievable geometric accuracy of the unwarping process.
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The approach to quality assessment, MCLFI(Q), is also constrained by its foundational archi-
tecture. While retraining the classifier on modality-specific data proved effective, the algorithm
is still limited to the expressive power of the 74 hand-crafted features defined in the NFIQ 2
standard [194, 246]. It is plausible that unique contactless quality degradations exist, for example,
subtle optical distortions or complex motion blur patterns, that are not fully captured by this
predefined feature set, limiting the predictive power of the metric.

Finally, the privacy-preserving comparison framework has important architectural boundaries.
The security of the protocol begins with the minutiae template. The initial feature extraction
from the raw fingerprint image is performed in plaintext on a local device. Thus, the privacy of the
raw biometric data still depends entirely on the trustworthiness of the acquisition environment,
which is outside the scope of the MPC protocol itself. Additionally, the optimized protocol reveals
a minimal amount of intermediate information (the permuted edge match array) to achieve its
near real-time performance. While this data is structured to minimize leakage, it is not formally
proven to be zero-knowledge, presenting a trade-off between computational efficiency and perfect,
provable privacy [152].
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