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Massively parallel nanosensor arrays fabricated with low-cost CMOS technology represent 
powerful platforms for biosensing in the Internet-of-Things (IoT) and Internet-of-Health 
(IoH) era. They can efficiently acquire “big data” sets of dependable calibrated measure-
ments, representing a solid basis for statistical analysis and parameter estimation.
In this paper we propose Bayesian estimation methods to extract physical parameters and 
interpret the statistical variability in the measured outputs of a dense nanocapacitor array 
biosensor. Firstly, the physical and mathematical models are presented. Then, a simple 1D-
symmetry structure is used as a validation test case where the estimated parameters are 
also known a-priori. Finally, we apply the methodology to the simultaneous extraction of 
multiple physical and geometrical parameters from measurements on a CMOS pixelated 
nanocapacitor biosensor platform.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

One of the tasks in uncertainty quantification (UQ) is to identify which variables are uncertain in a system under study 
and their effect on the observables. UQ is becoming increasingly important in nanoelectronics and all its applications due 
to the many non-negligible sources of fluctuations and variability which affect nanoscale devices [1,2] and in turn constrain 
the design of functional electronics. UQ is even more important for nanoelectronic biosensors, where biological noise adds 
to traditional electrical noise sources and contributes to determine the limit of detection (LoD).

A popular UQ method is Bayesian estimation (BE) [3–5], where prior knowledge is updated after new information of the 
system is obtained, for instance by means of measurements, and included in the posterior knowledge by means of Bayes’ 
theorem from probability theory [6]. BE provides not only a single value, but also an estimate of its expected statistical dis-
tribution. Parameter extraction by means of classical inverse-modeling techniques [7,8], instead, suffers serious limitations, 
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Fig. 1. (a): AC potential distribution over an 11 × 7 electrodes portion of the array simulated with the model of Sect. 2.2. Electrolyte with n∞
0 = 150 mM

NaCl in water. f = 50 MHz [26,27]. The central row is activated by a V DC + V AC potential, therefore acting as a set of working electrodes; all other rows 
are grounded counterelectrodes. (b): Sketch of a simple 1D-symmetry structure capturing the essential physics of the nanoelectrode. Working electrode 
(WE), Stern layer, diffused layer, electrolyte and counter electrode (CE). (c): Lumped elements equivalent circuit to represent the admittance Y of the 1D 
system in (b) according to Gouy-Chapman-Stern theory. The equivalent circuit can also model the admittance of an individual nanoelectrode in the real 
biosensor array provided the parasitic capacitance C P is added.

because the solution comes without any estimate of its uncertainty. Furthermore, ill-posed nonlinear inverse problems may 
not have unique solutions, requiring a separate verification of the correctness of the result.

In the following, we discuss in detail the use of Bayesian estimation techniques to interpret the statistical variability 
in the measured outputs of a nanocapacitor array biosensor for impedance spectroscopy applications [5,9,10], relevant to 
upward scaling (more electrodes, more chips) as well as downward scaling (smaller radii of the electrodes and smaller pitch). 
The platform provides an ideal case-study for a larger category of scalable, massively parallel arrays amenable to fabrication 
with state-of-the-art CMOS nanoelectronic technologies [11–19], and thus of great potential relevance for future biosensing 
applications in the trillion sensor vision of the Internet of Things [20]. The massively-parallel implementation enables to 
collect in a very efficient way large amounts of data concerning individual nanoscale objects in controlled conditions, thus 
providing the large datasets required by BE algorithms.

Although BE techniques have been used for UQ in several applications [21–24], to the best of our knowledge this work 
constitutes the first BE study of massively parallel nanocapacitor array biosensors. The results illustrate the ability of the 
proposed UQ method to support the extraction of relevant geometrical and physical system parameters and to provide 
insight on the sources of variability.

To set the stage and notation, we describe the physical system and its model in Sect. 2 and the extraction technique in 
Sect. 3. Sections 4–5 illustrate the application of the technique to actual measurements.

2. Physical and mathematical modeling of nanoelectrode array biosensors

2.1. The biosensor platform

We refer to the versatile biosensor platform of [11–14] as a realistic reference test case. The platform consists of 
256 ×256 gold nanoelectrodes with rel = 90 nm nominal radius and px × p y = 600 nm×720 nm inter-electrodes pitch along 
the x (row) and y (column) directions, respectively. The array is scanned by exciting one row at a time (see Fig. 1a). Follow-
ing a charge-based capacitance measurement principle, CBCM [11,25], the capacitance of each nanoelectrode is measured 
by alternatively charging and discharging them at frequency f ∈ [1;70] MHz, resulting in an approximately square-wave-
like voltage waveform at the node of the nanoelectrode. By integrating the charging current, the average charge per cycle 
transferred to the nanoelectrode is obtained and converted to digital format, as explained in detail in [11]. In the following, 
we denote the experimentally measured nanoelectrode capacitance by Cexp.

A number of geometrical and physical parameters have an influence on Cexp, each with its own random variability. For 
instance, the radius rel , protrusion and roughness of the electrodes, the concentration of ions in the electrolyte, the polar-
ization of water molecules near to the nanoelectrode surface (which affects the dielectric permittivity ε). In the following 
we will exemplify the analysis of a few of these.

The basic Physics is well captured by the simple 1D-symmetry structure depicted in Fig. 1(b). An electrolyte region is 
defined between one ideally polarizable working electrode, WE (i.e. one electrode that carries no DC current), biased at 
DC voltage V DC = 0 V and the grounded counter electrode (CE). A small-signal AC excitation, V AC is added to the WE 
DC potential. According to established electrolyte physics [28], ions and water molecules create a thin layer of dipoles at 
the interface between the WE and the electrolyte (Stern layer) with reduced dielectric permittivity (εStern) with respect to 
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the bulk electrolyte. The Stern layer extends into a thicker diffusion layer with non-negligible space charge density with 
respect to the neutral bulk electrolyte. Together, they form the so-called Gouy-Chapman-Stern electrical double layer (EDL) 
[29–32]. The EDL plays a fundamental role in screening analytes, reducing the sensitivity; it is thus important to investigate 
accurately its properties.

The response of an individual nanoelectrode in the array of the biosensor platform, thoroughly explored in Section 5, can 
be modeled with the equivalent circuit of Fig. 1(c), where symbols in solid lines represent the individual working electrode 
and the extra capacitance C P represents the parasitic coupling to adjacent counter electrodes [11]. Both the simple 1D 
system (Fig. 1(b)) and the nanoelectrode array (Fig. 1(a)) configurations will be studied in the following.

2.2. The PB-PDD modeling framework

For the sake of a self-contained paper, we report below the essentials of a numerical modeling framework adequate to 
describe the nanocapacitor array and analogous biosensor systems [11–14,33–40]. It is given by the Poisson-Boltzmann (PB) 
equation in the equilibrium DC regime, and the Poisson-drift-diffusion equations (PDD) for the small-signal, linearized AC 
regime [41–50].

2.2.1. DC formulation
Under the equilibrium conditions that describe the system in Fig. 1 at V DC = 0 V, the model equation for the DC problem 

is the so-called Poisson-Boltzmann (PB) equation [28]

∇ · (ε(�r)∇V 0(�r)) + ρ0 f (�r) + q
Nions∑
m=1

Zmn∞
0,m exp

(
− Zmq

(
V 0(�r) − Vref

)
kB T

)
= 0, (1)

where V 0(�r) ∈ V is the DC potential, q is the elementary charge, kB is the Boltzmann constant, ε is the dielectric permit-
tivity, and T is the absolute temperature. For the simple 1D system, the spatial coordinate �r is the z-coordinate z ∈ [0, Lel]. 
The charge density is given by spatially immobilized charges (ρ0, f ) and mobile ion charges in the electrolyte (ρ0,m); this 
is the summation term in Eq. (1), which depends on the signed valence Zm and the bulk concentration n∞

0,m of the m-th 
ionic species, the number of ions species (Nions), and the reference potential Vref in the bulk of the electrolyte. Dirichlet 
boundary conditions are used on the electrodes, Neumann ones elsewhere.

2.2.2. AC formulation
The AC model is formulated in the time-harmonic small-signal (i.e. linearized) approximation. Under this assumption, 

we obtain the AC Poisson equation

∇ ·
(
ε(�r)∇ Ṽ (�r)

)
+

Nions∑
m=1

q2 Z 2
m

kB T
n0m (�r)

(
φ̃m(�r) − Ṽ (�r)

)
= 0, (2)

where Ṽ (�r) is the electrostatic potential phasor, φ̃m(�r) is the pseudo-potential of the m-th ionic species, n0m (�r) is the DC 
ion concentration of the m-th ionic species and ñm(�r) = n0m (�r) qZm

(
φ̃m(�r) − Ṽ (�r)

)
/(kB T )) is the corresponding AC phasor 

[47].
The currents are described by the drift-diffusion equations

qZmμm∇ ·
(

n0m (�r)∇φ̃m(�r)
)

− jωn0m (�r)qZm

kB T

(
φ̃m(�r) − Ṽ (�r)

)
= 0 (3)

after linearization (again, assuming that the electrolyte is in equilibrium and no DC current is flowing), where μm is the 
mobility of the m-th ionic species, j is the imaginary unit, and ω is the angular frequency. This allows to compute the AC 
current density J̃ as the summation of the displacement J̃ D and ionic current densities J̃m as

J̃ = J̃ D +
∑

m

J̃m = − jωε∇ Ṽ (�r) −
∑

m

q2 Z 2
mμmn0m∇φ̃m(�r). (4)

This completes the PDD formulation. The working (WE) and counter (CE) electrodes are modeled by Dirichlet boundary 
conditions, whereas a Neumann condition is imposed to the other boundaries. More details on the calculation of the elec-
trode currents can be found in [47]. The electrode admittance is given by Ỹ = Ĩ/V AC , where V AC is the WE’s AC potential 
and Ĩ is the total AC current at the electrode ( Ĩ = Area × J̃ for the 1D structure in Fig. 1).

2.3. Analytical and numerical simulations

Numerical simulations of the biosensor systems in Fig. 1 reported below have been carried out with ENBIOS, a custom 
control-volume finite-element method (CVFEM) full-3D numerical simulator which solves the PB and PDD equations (1)–(3) 
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Fig. 2. Simulated Cenbios,AC and Cenbios,F capacitance spectra (including a C P = 0.65 fF) for one nanoelectrode of the array in Fig. 1 (a) for different ambient. 
The responses in dry and IPA (IsoPropyl Alcohol) exhibit a flat frequency spectrum due to the very large R E . Curves in electrolyte show the typical response 
in the presence of ions, i.e. two distinct capacitance values in the low- and high- frequency limit. The Cenbios,F spectra account for the actual shape of the 
nanoelectrode voltage waveforms) and are limited to the frequency range of operation of the experimental biosensor platform.

self-consistently and computes the terminal currents Ĩ and the admittances Ỹ [47,51,52]. Tetrahedral grids are created 
via the netgen mesh generator [53]. Unless otherwise stated, the Stern layer is modeled as a dielectric with thickness 
tStern = 2.5 Å and permittivity εStern = εr,Sternε0 = 7ε0 [54] (where ε0 is the vacuum permittivity and εr,Stern represents the 
relative Stern permittivity) consistently with the standard values of capacitance per unit area of the compact layer in [55]. 
As for the array of Fig. 1(a), the admittance at the central electrode of a 7 ×7 array is considered; this array size is sufficient 
to mitigate the effects of the domain boundaries.

Analytical calculations for the simple 1D system of Fig. 1(b) can be worked out in the PB-PDD formalism for the simple 
case where the DC potential of the WE is zero. The solution can be interpreted with the equivalent circuit drawn with solid 
lines in Fig. 1(c) (neglecting C P ), where the Stern layer capacitance CStern, the EDL capacitance CEDL, and the bulk electrolyte 
conductance and capacitance G E and C E are given by [54]

cStern = CStern

A
= εStern

tStern
, cEDL = CEDL

A
= εel

λD
, cE = C E

A
= εel

Lel
, gE = G E

A
= ξcE , (5)

where A is the cross-section area of the 1D-symmetry structure, tStern is the thickness of the Stern layer, εel � 78ε0 is the 
permittivity of the bulk electrolyte, Lel is the length of the electrolyte region, ξ = σel/εel = 2q2μn0/εel is the electrolyte 
dielectric cut-off angular frequency and λD = √

kB Tεel/2q2n0 is the Debye length (which sets the thickness of the EDL, σel
is the electrolyte conductivity, and μ and n0 are the mobility and concentration of the ions, under the assumption of having 
a 1:1 symmetric electrolyte [54]).

The analytical expression of the capacitive component of the small signal admittance for the circuit model in Fig. 1(b) is 
given by

Ca.m. (ω) = � [Y (ω)]

ω
= 1

ω
�

[(
1

jωCStern
+ 1

jωCEDL
+ 1

G E + jωC E

)−1
]

. (6)

In Sect. 4, we will make use of this analytical model (“a.m.”) of the simple 1D-structure of Fig. 1(b) to validate the BE 
methodology. To this end, we will also perform ENBIOS numerical simulations of the same system to determine Cenbios,AC =
� 

[
Ỹ (ω)/ω

]
, where Ỹ (ω) is the admittance at the WE terminal. Finally, in Sect. 5, we will apply the BE methodology to 

the real nanobiosensor platform and we will compare simulation results to measurements. In this case, the experimental 
capacitance Cexp is obtained from a square wave-like switching setup (CBCM method). Hence, Cexp is not directly comparable 
to the time-harmonic small signal capacitance Cenbios,AC computed with ENBIOS.

To address this matter, a switching capacitance was introduced in [11] (C SW ), which accounts for the charging/discharging 
process and the rich harmonic content of the square wave signals. Here, we further improve the accuracy of this calculation 
by introducing corrections to the switching model, resulting in a new formulation of the switching capacitance, denoted 
Cenbios,F, that also accounts for non-idealities and glitches of the nanoelectrode voltage waveforms. Cenbios,F can be obtained 
from ENBIOS AC small signal simulations (essentially by means of Fourier series expansion of the AC small signal terminal 
current Ĩ , which enables to obtain the response to an arbitrarily-shaped input voltage waveform [56,57]), but the detailed 
description of its derivation goes beyond the scope of this work. Thus, when making use of experimental data Cexp in 
Sect. 5, we will rely on Cenbios,F calculations for the analyses. Fig. 2 shows typical Cenbios,AC and Cenbios,F spectra. The 
difference reflects the multi-tone content of the electrode voltage and current spectra. Consistently with the circuit model 
of Fig. 1(c), two distinct capacitance levels are visible in the low- and high- frequency limit when we consider electrolytes. 
Both low- and high-frequency operation will be inspected in the following.
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3. Bayesian inversion

3.1. Statistical model and Bayes’ theorem

To set the stage for the description of the method we start by recalling that errors η due to measurement and modeling 
can be represented by means of random variables. For a given random variable M representing the information provided by 
measurements, for which we have a physical model g(Q ) dependent on a random variable Q (with realizations q = Q (w)) 
representing parameters, the statistical model

M − g(Q ) = η, (7)

holds. Here, w is an element of a probability space 
w . For vector quantities M and η, which represent different measure-
ments Mi , we assume that the errors ηi are additive, independent and identically distributed (IID), unbiased and mutually 
independent from Q . Note that q can be a vector of realizations of parameters qi as well, with an associated probability 
density function (PDF) providing information about them.

Assuming the probability measures above have PDFs, Bayes’ theorem can be formulated specifically for the purposes of 
inverse modeling or parameter estimation. We denote the prior probability density function for the realizations q of the 
random parameters Q by π0(q), and a realization of the measurement M by m. Then the posterior density of Q , given the 
measurement m, can be expressed as

π(q|m) = π(m|q)

π(m)
π0(q) = π(m|q)π0(q)∫


q
π(m|q)π0(q)dq

, (8)

where 
q is the space of parameters q.
A prior PDF π0 reflects our knowledge of the parameters prior to observations. Our objective is to obtain a posterior 

PDF that incorporates the new knowledge of the acquired observations. This posterior is the solution of the inverse problem 
of parameter estimation via Bayesian techniques. In [58], Bayesian inversion for the nonlinear Poisson-Boltzmann equation 
in the measure-theoretic framework has been discussed, and well-definedness and well-posedness of the resulting poste-
rior measures obtained from the Bayesian technique have been proved. In other words, the Bayesian approach to inverse 
problems is then to find the posterior probability density function π(q|m) given the measurements M .

3.2. Markov chain Monte Carlo and the Metropolis-Hastings algorithm

At first sight it would seem that—in order to use Eq. (8)—we would have to compute the possibly high-dimensional 
integral 

∫

q

π(m|q)π0(q)dq, which is costly. For a high-dimensional parameter space it would force us to resort to integra-

tion techniques such as Monte Carlo methods. Fortunately, numerical methods such as Markov Chain Monte Carlo (MCMC) 
render the computation of this high-dimensional integral superfluous.

Moreover, more sophisticated MCMC techniques have been developed [59], such as ensemble MCMC [60], multiple-try 
MCMC [61], and Hamiltonian MCMC [62–64] algorithms, where the latter, for example, tries to explore more regions of the 
parameter space via the introduction of an artificial “momentum” variable and then using Hamiltonian dynamics.

In this work, we use an MCMC method known as the random-walk Metropolis-Hastings (MH) algorithm. It is summarized 
here. The choices made to apply it to the problems under study are described in the next section.

The proposal distribution J must be chosen to ensure that the Markov chain is irreducible and aperiodic, because then 
it can be shown that a unique stationary distribution exists. It is also known that if the transition probabilities of a Markov 
chain satisfy the detailed-balance condition, then it converges to the stationary distribution. Therefore, after having chosen 
a proposal distribution, the acceptance ratio α is defined such that the Markov chain satisfies the detailed-balance condition 
for transition probabilities given by the sought posterior distribution. Consequently, the Markov chain constructed by the 
Metropolis-Hastings algorithm converges to the posterior distribution. The posterior distribution can still be seen as the 
products π(m|q∗)π0(q∗) and π(m|qk−1)π0(qk−1) in the acceptance ratio.

It is an important feature of this algorithm that it uses only the ratios of the likelihood π and the prior distribution π0
occur in the calculations so that the (computationally expensive) integral in the denominator of (8) is never calculated.

The beginning of the Markov chain, i.e., the burn-in period, must be discarded. In practice, it is often not obvious how 
long the burn-in period should be. However, there are tests to instill confidence in the convergence of a Markov chain, and 
more on this subject can be found, for example, in [65,66].

The posterior distribution is absolutely continuous with respect to the prior, so a good choice of the latter is important. 
Therefore, if the initial guess is bad, convergence to the true value may be very slow. In this case, iterating the extraction 
procedure allows to reach the correct solution subsequently. Iterations are performed by running a first extraction, fitting 
the resulting posterior distribution, and repeating the extraction using this fitted distribution as a new prior. The number 
of iterations needed to reach a given precision varies depending on the choice of the first prior. This will be discussed in 
Sect. 4.1.3.

All algorithms for Bayesian inversion in this work have been implemented in the Julia programming language [67].
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Algorithm 1: Metropolis-Hastings.

Data: Prior distribution π0(q);
the likelihood π(m|q) of a measurement m given a parameter value q;
initial parameter value q0 such that π0(q0) > 0;
proposal distribution J (q → q′);
the number Nsamples of samples to be generated.
Result: Posterior distribution π(q) of the parameter values (and hence its mean, confidence intervals, etc.).

Initialization;
for k = 1 : Nsamples do

propose the next sample q∗ according to the proposal distribution J (qk−1 → q∗);
compute the acceptance ratio

α := min

(
1,

π(m|q∗)π0(q∗) J (q∗ → qk−1)

π(m|qk−1)π0(qk−1) J (qk−1 → q∗)

)
, (9)

where simplifications can be made depending on the special forms for π , π0, and J ;
cast a uniformly distributed random value χ ∼ U (0, 1);
define the next value qk of the Markov chain as

qk :=
{

q∗ χ ≤ α,

qk−1 χ > α.

end

Postprocessing: remove the burn-in period; calculate any statistics of interest such as the sample mean of the Markov chain. (The posterior π(q) can 
be represented by means of a kernel density estimator (KDE) or the next iteration of the algorithm.)

4. Numerical results for stern layers and electrolyte concentrations

Here the procedure is validated at the example of parameters of a nanoelectrode array biosensor that are precisely 
known. In addition to a validation of the physical model and Bayesian inversion, the numerical results here show how the 
procedure predicts the accuracy of a sensor.

4.1. Estimation of the permittivity of the stern layer

The first example is Bayesian inversion for the relative permittivity of the Stern layer for the 1D-system of Fig. 1(b–c). 
The electrolyte we consider is 100 mM NaCl in water.

As discussed in Sect. 3, an MCMC algorithm determines parameters Q given measurements M and a physical 
model g . In this case, the unknown parameter is q = εr,Stern, while the physical model function g is g(q) = g(εr,Stern) =
Cenbios,AC(εr,Stern). The measurement is taken from the solution of the analytical model for the 1D-system in Eq. (6) pre-
scribing the specific value εr,Stern = 7 for the Stern layer permittivity, i.e., the measurements are m = Ca.m.(εr,Stern = 7). 
Noise with the known variance σL is also added to this synthetic measurement.

To summarize, the model g(q) = Cenbios,AC(εr,Stern) will be fitted using the measurement m = Ca.m.(εr,Stern = 7) to esti-
mate the parameter q = εr,Stern. Since the true parameter value for the experiment is known a priori in this case (as the 
“experiment” here is an analytical expression computed with a specific value for the parameter), this example serves as a 
validation for the estimation methodology.

Two frequencies f of the AC signal will be considered separately: f = 100 kHz and f = 1 GHz corresponding to two 
distinct values of m = Ca.m. and g = Cenbios,AC, which are both frequency-dependent as seen in Eq. (6) and Fig. 2.

4.1.1. MH algorithm with uniform distribution as prior and proposal
First, we assume that there is no a priori knowledge about where in a reasonably large interval the true parameter values 

(the dielectric permittivity) lies. Therefore, we use a uniform distribution as the prior distribution. The proposal distribution 
used for sampling is also a uniform distribution.1 This leads to the following detailed setup for the numerical calculations.

1. The prior distribution is

π0(q) := 1

qmax − qmin
χ[qmin,qmax](q),

1 Note that a uniform distribution does in principle not satisfy the irreducibility condition mentioned at the end of Sect. 3.2 for the whole space Rd

because it is bounded. However, in these examples, the irreducibility condition is satisfied since we know a priori where the true solution is and we choose 
an interval large enough to include the true solution. The consequences of selecting a bounded distribution that does not include the true solution will also 
be discussed in Fig. 10 (right).
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Table 1
Set of 14 MCMC simulations with the maxima of the 14 posterior 
distributions, obtained by means of a kernel density estimator, and 
the mean value of the Markov chain.

q = εr,Stern

from KDE posterior max
q = εr,Stern

from MCMC mean

7.0 7.108 984
7.1 7.108 339
6.9 7.105 623
6.9 7.103 781
7.1 7.106 933
6.8 7.108 801
7.0 7.107 482
7.1 7.110 569
7.0 7.107 669
7.1 7.106 030
7.1 7.108 881
7.1 7.108 628
6.8 7.108 983
7.0 7.108 230

where χ[qmin,qmax] is the characteristic function of the interval [qmin, qmax]. We set qmin := 2 and qmax := 20.
2. The likelihood function π(m|q) of a measurement m given a parameter value q is a normal distribution centered around 

the model response g(q), i.e.,

π(m|q) := 1√
2πσ 2

L

exp

(
− (m − g(q))2

2σ 2
L

)
, (10)

where m represents the measurement and g(q) is the model. This likelihood function is consistent with the statistical 
model and a mean-zero error.

3. The proposal distribution is defined as the uniform distribution

J (q → q′) := 1

qmax − qmin
χ[qmin,qmax](q) = J (q′ → q),

which is symmetric.
4. Therefore the acceptance ratio simplifies to

α = min

(
1,exp

(
(m − g(qk−1))

2 − (m − g(q∗))2

2σ 2
L

))
.

For the first frequency point f = 100 kHz under test, we sample g(q) via MCMC over the discrete parameter points 

q = [2:0.1:20] of the uniform distribution. For σL := 0.01 F/m2, the data in Table 1 are obtained, where each row repre-
sents one of 14 different MCMC simulations. The first column reports the parameter value (permittivity of the Stern layer) 
for which the posterior distribution obtained by means of a KDE has a maximum. The second column shows the mean val-
ues estimated using Nsamples = 106. We observe the consistency of the mean value ≈ 7.1 obtained for the different 14 MCMC 
simulations, and that both the KDE posterior maxima and the MCMC means are close to q = εr,Stern = 7. The best agree-
ment between the measurement m = Ca.m. and the model g(q) = Cenbios,AC(εr,Stern) is obtained precisely for q = εr,Stern = 7
(corresponding to Cenbios,AC = 0.091921 F/m2). Fig. 3 shows the prior distribution and the posterior distribution with its 
maximum close to 7. To check convergence, Fig. 4 (left) shows the associated normalized autocovariance function (autocor-
relation) and Fig. 4 (right) the respective ergodic mean, which stabilizes around 7. We used a burn-in period of 104, and 
the acceptance ratio corresponding to this run was 0.181 969. The convergence of more complex extraction procedures is 
discussed in Section 5.3.1.

4.1.2. MH algorithm with normal distributions as prior and proposal
In this second case, we use normal distributions as prior and proposal distributions. The details of the algorithm are the 

following.

1. The prior distribution

π0(q) := exp(−(q − q̂)2/2σ 2
prior)/

√
2πσ 2

prior

is centered around a chosen value q̂ that represents initial information.
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Fig. 3. Prior distribution (green) and posterior distribution (orange) drawn together with its normalized histogram (blue) for g(q) = Cenbios,AC(εr,Stern) using 
Nsamples = 106 samples. Electrolyte: 100 mM NaCl in water. (For interpretation of the colors in the figure(s), the reader is referred to the web version of 
this article.)

Fig. 4. Left: autocorrelation function for the Markov chain generated by the MCMC algorithm using a uniform distribution as the prior. Right: corresponding 
ergodic mean.

2. The likelihood function is again (10).
3. The proposal distribution is defined as the normal distribution

J (q → q′) := 1√
2πσ 2

proposal

exp

(
−

(
q − q′)2

2σ 2
proposal

)
= J (q′ → q),

which is symmetric.
4. The acceptance ratio now simplifies to

α = min

(
1,exp

(
(m − g(qk−1))

2 − (m − g(q∗))2

2σ 2
L

+ (qk−1 − q̂)2 − (q∗ − q̂)2

2σ 2
prior

))
.

Since the proposal function is symmetric, i.e., J (q → q′) = J (q′ → q), the related terms in the acceptance ratio α can 
be simplified and only the terms related to the prior and the likelihood distributions remain. Moreover, since we have 
chosen normal distributions for the latter two functions, the argument of the exponential in the acceptance ratio represents 
a least-squares competition between the parameter related terms and the measurement related terms, or more precisely 
between the confidence we have in the parameter value q̂ in the prior and in the measurement.

The variance σ 2
L in the likelihood function is given by the measurement error and can be found from the measurements 

in practice. It will be further discussed in later sections.
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Table 2
Extracted q = εr,Stern computed as the mean of the Markov-chain values for various settings. The pa-
rameters here are q̂ = 7.2, σprior = 0.3, σL = 0.001 F/m2.

Measurement m Physical model g(q) Nsamples Parameter q (MH mean)

Ca.m. Cenbios,AC 104 7.037 510
Ca.m. Cenbios,AC 105 7.015 863
Cenbios,AC Ca.m. 104 7.026 537
Cenbios,AC Ca.m. 105 7.022 535
Cenbios,AC Ca.m. 106 7.018 337

Fig. 5. Prior (normal distribution) and posterior distributions corresponding to a frequency of f = 100 kHz. Left: comparison between the two approaches 
(model g = Cenbios,AC and model g = Ca.m.) for different values of Nsamples. The parameters in the algorithm are q̂ = 7.2, σprior = 0.3, σL = 0.001 F/m2. 
Right: analyses for the model g = Ca.m. also showing posterior histograms. The parameters in the algorithm are q̂ = 7.1, σprior = 0.1, σproposal = 0.1, 
σL = 10−4 F/m2.

In order to further check the properties of reconstructions, we now consider the parameter estimation for the system of 
Fig. 1(b–c) using information from two different frequencies (100 kHz and 1 GHz) and focus on: (1) how the shape of the 
posterior density is improved compared to the first example, (2) how the convergence of the mean of the density to the 
true value is achieved using more samples, and (3) the effects of the choice of the prior distribution.

To obtain more samples, here we also consider the opposite approach compared to the numerical results reported above. 
Now we use ENBIOS to provide the experimental values and use the analytical model of Eq. (6) as the physical model for 
sampling. With this approach, a much larger number of samples, namely up to Nsamples = 106, can be easily achieved in a 
short time. In the following, we will show results for both of the approaches, i.e.,

• measurement m = Cenbios,AC (slow) and physical model g(q) = Ca.m.(εr,Stern) (fast) and
• measurement m = Ca.m. (fast) and physical model g(q) = Cenbios,AC(εr,Stern) (slow)

with the true parameter value q = εr,Stern = 7.

Frequency 100 kHz. In this case we observed that the Bayesian MCMC code correctly identifies the true value of q = εr,Stern =
7 using σL = 0.001 F/m2 for Nsamples ∈ {104, 105, 106}. Larger values of the measurement variance σL , e.g. σL = 0.01 F/m2

yield instead q = 7.2 for Nsamples ∈ {104, 105, 106} samples (not shown). This was consistently found for both kinds of runs, 
using measurements m = Ca.m. and the model g = Cenbios,AC or using measurements m = Cenbios,AC and the model g = Ca.m. . 
This behavior is of course expected, since a smaller measurement variance or error enables better reconstructions.

Table 2 lists the information obtained from both runs. In all results in this table, the standard deviation of the error in 
the likelihood function is σL = 0.001 F/m2. The estimated parameter values are close to the true value and the dependence 
on the number of samples is small.

Fig. 5 (left) shows the corresponding posterior and prior distributions. For the case where the model is g = Ca.m. , the 
posterior PDF becomes smoother with increasing Nsamples. Furthermore, Nsamples has to be large enough (105 or greater) 
to pass the burn-in period [3] and provide give a good estimate of the mean. For the sake of comparison, Fig. 5 (left) also 
shows curves for the other case where the model is g = Cenbios,AC(εr,Stern).
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Fig. 6. Prior (normal distribution) and posterior distributions using the model g(q) = Cenbios,AC (two dashed lines) and using the model g(q) = Ca.m. (four 
solid lines). The frequency is f = 1 GHz. The parameters in the algorithm are q̂ = 7.2, σprior = 0.3, and σL = 10−5 F/m2.

Frequency 1 GHz. We consider now a signal frequency in the GHz range, which is a relevant limit case of high frequency de-
tection not yet achieved in current technology. The measured capacitances are different, but the same extraction procedure 
should deliver the same parameter value.

We start with a prior equal to a normal distribution centered around 7.2 and with standard deviation of 0.3. Again, 
the Bayesian inversion was performed both using the output of ENBIOS as the experiment m = Cenbios,AC and the analytical 
model of Eq. (6) as the physical model g = Ca.m. and vice versa.

Fig. 6 shows superposed plots of the posterior and prior distributions for different values of Nsamples = 10n .
It is possible to identify the true permittivity value corresponding to a given capacitance measurement m =

Cenbios,AC(εr,Stern = 7) = 6.4070 × 10−3F/m2 using the model g = Ca.m. with the standard deviation σL = 10−5 F/m2 of 
the measurements. A ten times larger value of σL yields a parameter value of about 7.2, increasing the error in the estima-
tion (not shown). An increase in the number of samples, e.g., from Nsamples = 104 to Nsamples = 105 smooths the shape of 
the posterior distribution, which becomes more and more similar to a normal distribution centered around the true value 
of εr,Stern = 7.0 as σL decreases.

4.1.3. MH study with normals using priors distant from the solution
To further demonstrate the capability of the algorithm to converge to the expected value, we run the extractions with 

prior (normal) distributions located far away from the exact solution. This has been done for the f = 100 kHz case, keeping 
all other extraction parameters equal to the extractions of Fig. 5. This analysis demonstrates the influence of the initial guess 
for the parameter value (via the mean of the prior) on the subsequent posterior distribution attained.

Since the true value of the permittivity parameter is q = 7, we used two different prior means: q̂ = 20 (which is within 
the limits of the possibly expected values for the permittivity of the Stern layer) and q̂ = 40 (a permittivity far outside the 
range of reasonably expected values, essentially a bad guess). Fig. 7 shows the resulting posterior distributions obtained 
(orange curves, centered around 8.56 for the prior around q̂ = 20, and centered around 12.7 for the prior around q̂ = 40) 
with Nsamples = 106. After the first iteration, a Gaussian fit is performed on these posterior distributions to generate a new 
prior, and the extraction is repeated 4 subsequent times. Fig. 7 shows the convergence of these posterior distributions 
towards the actual value of 7 for the parameter, arriving to a neighborhood close to the solution (for the q̂ = 20 case, 
obtaining a posterior around 7.27, and for the q̂ = 40 case obtaining a posterior around 7.51). These results illustrate the 
ability of the iterative algorithm to converge to the expected value in spite of significant offsets with respect to the initial 
guess.

4.2. Simultaneous estimation of the permittivity of the stern layer and the ionic strength for the 1D system

Having validated the method and its implementation on single-parameter problems, we now use the MCMC technique 
to carry out simultaneous Bayesian inversion of two parameters, namely the relative permittivity εr,Stern of the Stern layer 
(nominally still equal to 7) and the ionic strength of the NaCl electrolyte (Na+ and Cl− molarity n∞

0,Na+ = n∞
0,Cl− = n∞

0 , 
nominally equal to 0.1 M). In other words, the parameter vector to be identified is q = [q1, q2] = [εr,Stern, n∞

0 ].
As before, we will perform analyses considering the two frequencies f low := 100 kHz and fhigh = 1 GHz. Compared to the 

previous cases, here we rely on existing data, demonstrating that a previously generated look-up table of model data can 
also be used. Furthermore, we will use more than a single measurement, thus mimicking more realistic conditions.

To this end, we run ENBIOS simulations to generate a non-regular grid of measurements Cenbios,AC in the (q1, q2) =
(εr,Stern, n∞

0 ) plane. A total of 105 grid points were generated, each one with its associated low and high frequency ca-

pacitance values, namely C low = Cenbios,AC( f = 100 kHz) and Chigh = Cenbios,AC( f = 1 GHz). The sample points are 
enbios,AC enbios,AC
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Fig. 7. Left: prior (normal around 20 in solid line) and subsequent iterated posterior (dashed lines) distributions using the model g(q) = Ca.m. . The frequency 
is f = 100 kHz. The parameters in the algorithm are σprior = 0.3, σL = 0.001 F/m2, and q̂ = 20 for the initial prior distribution. Right: same as left, for an 
initial prior centered around q̂ = 40.

Fig. 8. Polynomial approximation (green) of a randomly selected subset of the simulated points (red).

generated randomly, centered around (εr,Stern, n∞
0 ) = (7.2, 0.1 M) and the analysis considers each frequency value sepa-

rately. To be able to evaluate the model function on the whole domain, a polynomial of degree 10 is used to approximate 
the dataset globally, whereby the coefficients are calculated by minimizing the sum of the squared errors between the sim-
ulated capacitances at the grid points and the evaluated polynomial. With a polynomial of degree 10, sufficient precision in 
the global approximation is achieved (about 1%). The polynomial chosen as an approximation of a randomly selected subset 
of the simulated points is illustrated in Fig. 8.

As a result, two models g(q) = C low
enbios,AC(εr,Stern, n∞

0 ) : R2 �→R and g(q) = Chigh
enbios,AC(εr,Stern, n∞

0 ) : R2 �→R are obtained 
for the low and high frequency data, respectively.

For each frequency of analysis, we rely again on the analytical model of Eq. (6) for artificial measurements, namely 
m = C low

a.m. = Ca.m.( f = 100 kHz) or m = Chigh
a.m. = Ca.m.( f = 1 GHz). Differently from the previous sections, here we do not 

consider only a single measurement. Instead, Nm = 10 distinct artificial measurements are generated for both the low and 
the high frequency case by taking 10 samples from a normal distribution centered around the nominal values of the pa-
rameters, namely m ∼ N(μm, σm), where the mean values are μm = C low

a.m. (7.2,0.1) = 0.0938 F/m2 or μm = Chigh
a.m. (7.2,0.1) =

0.0064 F/m2 and the standard deviations are σlow = 0.0007 F/m2 and σhigh = 4.735 · 10−5 F/m2 for the low and high fre-
quency case, respectively. As a consequence, we can write m : RNm �→R.
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Fig. 9. Two-dimensional histograms of posterior distributions based on Nsamples = 106 and histograms of the marginal posterior distributions for f = 100 kHz
(left) and f = 1 GHz (right). The mean value and the mode of the estimated posterior as well as the “exact” value q = (εr,Stern, n∞

0 ) = (7.2, 0.1 M) are shown. 
The range of the colored map coincides with the support of the prior distribution. Cenbios,AC is used for the model, and Ca.m. as artificial measurement.

The likelihood function is

π(m|q) = (2πσ 2
L )−Nm/2 exp

(
Nm∑
i=1

(mi − g(q))2

2σ 2
L

)
, (11)

where the corresponding standard deviation is set to σL = σlow or σL = σhigh for the low and high frequency case, re-
spectively. We used a uniform distribution in the domain q1 × q2 = εr,Stern × n∞

0 = [6, 8.5] × [0.02 M, 0.4 M] as the prior 
distribution. Again, the proposal distribution is a normal distribution.

Fig. 9 shows the two-dimensional histograms of the posterior distributions based on Nsamples = 106. ENBIOS simulations 
were used for this analysis, with artificial measurements based on the analytical model. The shapes of the distributions 
suggest remarkably different behaviors at the two different frequencies g = C low

enbios,AC and g = Chigh
enbios,AC. This is consistent 

with expectations from the physical behavior of the system. In fact, at high frequency the Stern and the diffusion layer 
capacitances are close to short circuits for the AC signal and the relative permittivity εr,Stern has a modest influence on the 
observable regardless of the electrolyte ionic strength. To extract single values, alternative possibilities are to select the mean 
value or the mode from on two-dimensional histogram of the posterior distribution. Both of these values are highlighted in 
Fig. 9.

Fig. 9 demonstrates that a correct determination of the parameters is more difficult at a low frequency, where the co-
variance matrix is anisotropic. In addition, various parameters yield the same model response which makes it more difficult 
to reconstruct the parameters. This underlines the advantage of being able to perform parameter extractions at different fre-
quencies: each parameter is easier to estimate at a different frequency, thus a multi-frequency multi-parameter extraction 
reduces the estimation uncertainty. Thus, multi-frequency operation is an important feature of this sensor platform.

The MCMC run for one frequency with 106 samples took only about 33 seconds due to the approximation of the obser-
vation function with a polynomial. Most of the computational work is due to the evaluations of the physical model.

5. Estimation of nanoelectrode radii in a sensor array (3D system)

In the previous Sect. 4, we have validated the MCMC methodology to determine the values of physical parameters 
in nanoelectrode sensors. By means of numerical simulations and analytical expressions, we have demonstrated that the 
extracted parameters are consistent with the a priori known true values.

Here we set the goal of using MCMC estimation procedures to determine the radii of the nanoelectrodes of the real-world 
sensor. To this end, we use experiments at controlled temperature T = 295 K in IPA (Cexp,IPA) and air (Cexp,air), which both 
show a smooth dependency between the experimental capacitance and the nanoelectrode radius. Air and IPA environments 
can be described by frequency independent capacitance values, because in the absence of ions the spreading resistance 
1/G E is very large.

Since in the real biosensor array an unknown parasitic capacitance C P , essentially independent of nanoelectrode size, 
adds in parallel to the system (see Fig. 1, c), we use the difference between the response of the sensor to IPA and air, 
namely m = �Cexp = C IPA

exp − Cair
exp as experimental measurements in the following. By doing so, we remove the dependency 
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on the parasitic C P from our observable. The variance σL of the measurement is estimated from the noisy data and will be 
used in the estimation procedures. In the following, we restrict the analyses to a small sub-array of 71 × 31 nanoelectrodes 
within the full 256 × 256 nanoelectrodes array in order to prune evident outliers.

Regarding the physical model for the MCMC estimation, the complex three-dimensional distribution of electric field 
flowlines in the array cannot be easily described in purely analytical forms; thus, using data from full-3D ENBIOS numerical 
simulations is mandatory. Hence, we will use our new switching capacitance model Cenbios,F as the physical model (see 
Sect. 2.3). By analogy with the measurement quantity, the observable quantity for the model is the capacitance difference 
between IPA and air, namely g = �Cenbios,F = C IPA

enbios,F − Cair
enbios,F.

The estimation process is split into multiple consecutive steps.

5.1. Measurement protocol

Measurements have been performed with the CMOS biosensor platform described in [11] in our Nanoelectronics Lab 
in Udine (Italy). Calibration measurements in dry are run first to estimate the electrical parameters of the transistors of 
the readout circuit needed in frequency calibration procedures (more details about calibration measurements can be found 
in [11]). The temperature controller is configured to maintain a stable chip temperature of 295 K during calibrations and 
experiments, and liquids (IPA) are pumped in the fluidic chamber at a controlled rate of 50 μL/min. The first 10 minutes of 
each experiment are discarded to guarantee a stable temperature of the control electronics as well.

Each nanoelectrode is alternatively charged and discharged at a controlled switching frequency f s; the average charging 
current is integrated to obtain the capacitance information. To improve the signal-to-noise ratio, data-accumulations are 
performed on-chip.

The measurements reported in this work have been performed either at fixed f s = 50 MHz or by sweeping f s in 27 
log-spaced points between 1 MHz and 70 MHz. The number of charging/discharging cycles for each electrode is 1088, and 
9 data accumulations have been applied. The post-measurement calibration of [11] is applied on each measurement frame 
to correct for capacitance-dependent voltage shifts.

The average capacitance of each electrode and the standard deviation (in air and in IPA) are extracted off-chip from 
time-averages over 2 minutes long time series.

5.2. One parameter estimation of the average nanoelectrode radius

The first step aims at estimating the ensemble average of the nanoelectrodes radii in the array, i.e., the mean radius rav. 
Experiments in air and IPA at 50 MHz give a mean experimental �Cav

exp = 32 aF with an uncertainty of 1 aF (one standard 
deviation). The ENBIOS simulations have been run on a 7 × 7 array of electrodes at 50 MHz extracting the capacitance of 
the central electrode. The chosen size of the array is large enough that the central electrode capacitance is only modestly 
affected by the domain boundaries. We indicate by ri

enbios,el the radius of the i-th electrode of the simulated array (i ∈
[1, 49]). To sample the model function, all the electrodes of every simulation had the same common size ri

enbios,el = rav for 
all i, and we swept this common value between 70 nm and 110 nm.

Based on the average experimental response m = �Cav
exp of the array and on the ENBIOS model q = rav, g(q) =

�Cenbios,F(rav)) in which we vary the size of all the electrodes at the same time, we then apply our MCMC analysis to 
determine the posterior PDF of rav.

Starting with a uniform distribution on the interval [70 nm, 110 nm] (which is large enough to include the true average 
radius, which we expect to be close to 90 nm [11]), we run Nsamples = 10 000 iterations in the Metropolis-Hastings algorithm. 
The proposal distribution, here and in the rest of the paper, is again a normal distribution. Fig. 10 (left) shows the prior 
and posterior PDFs. An estimation of rav = 86.5 nm is obtained. The impact of a possibly wrong choice of this interval swept 
([70 nm, 80 nm] that does not contain the true value is shown in Fig. 10 (right): the posterior PDF is squeezed against the 
upper boundary, since convergence to the true value is blocked by the domain limits.

In the following, we take the estimated value rav = 86.5 nm as our initial radius for all of the following MCMC estima-
tions. The simulated value corresponding to rav is �Cenbios,F(rav) = 32.42 aF, which confirms our confidence in the estimation 
since the value is very close to �Cav

exp = (32 ± 1) aF.

5.3. One parameter estimation of individual radii

In the previous section, we have estimated the mean radius of the electrodes based on one measurement �Cav
exp at 

50 MHz. The goal now is to estimate the size of individual nanoelectrodes and hence to generate maps of electrode radii. 
The purpose of the analysis is to verify whether the assumption that radii fluctuations are the dominant source of variability 
in individual �Cexp measurements is realistic. Now we estimate one single parameter at a time, namely ri, j

el , the radius of 
an individual nanoelectrode in the 71 × 31 matrix, where i and j identify the row and column in the array while using 
�Cexp data recorded at 27 different frequencies logarithmically spaced from 1 MHz to 70 MHz. Using multi-frequency data 
is an interesting application of MCMC estimation to real experiments using multi-dimensional measurements.

We run multi-frequency ENBIOS simulations setting all the nanoelectrodes radii at rav = 86.5 nm except for the central 
electrode of the 7 × 7 array, whose radius rcentral is swept from 70 nm to 110 nm. The model response is then the IPA-air 
enbios,el
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Fig. 10. Histograms of the uniform prior and posterior distributions after Nsamples = 10 000 iterations of the Metropolis-Hastings algorithm. Left: the domain 
[70 nm, 110 nm] of the parameter and the extracted rav = 86.5 nm is marked. Right: the domain [70 nm, 80 nm] is too small and therefore the samples 
accumulate at the right boundary emphasizing the unsuitable choice of the domain.

Fig. 11. Left: estimated radii ri, j
el for all the electrodes using data collected at 27 frequencies. In the ENBIOS simulations, we swept the size of the central 

electrode only keeping all the others at the rav value estimated in Sect. 5.2. Right: distribution of the extracted ri, j
el values.

capacitance variation at this central electrode of the simulated array, i.e., g = �Cenbios,F(r
central
enbios,el). As for the experiments, 

we performed the individual extraction of the radii for all the 71 × 31 electrodes, in each independent iteration using 
m = �C i, j

exp, where �C i, j
exp is the experimental value recorded at the electrode in row i and column j of the 71 ×31 subarray.

Running the MCMC analysis with Nsamples = 5000 for each electrode and extracting the mean values of the resulting 
posterior distributions, we obtained a 71 × 31 array of estimated ri, j

el values as reported in colormap form in Fig. 11. 
Surprisingly, the results show column-wise patterns and a large spread of the individual values (i.e., a broad posterior 
distribution), which will be explained in more detail in the following.

5.3.1. Convergence and autocorrelation function
To test the statistical convergence of the generated Markov chains, we studied the correlation between the samples and 

calculated the autocorrelation function (ACF) defined by

ACF (N, t) :=
∑N−t

k=1 (qk − q)(qk+t − q)∑N
k=1(qk − q)2

, (12)

where qk and q are the k-th state of the Markov chain and the sample mean, respectively. This formula reflects the idea 
of computing the correlation between the subchains of length N with lag t . The numerator of Eq. (12) is an estimate of 
the autocovariance and the denominator is an estimate of the variance of the chain in order to normalize the output. Low 
autocorrelation means that samples are independent and mixing in the chain is good. Fig. 12 shows the autocorrelation 
functions for the Markov chains of the parameter of interest, which have been generated by the MCMC algorithm and 
illustrates their convergence.

5.4. Nine parameter estimation of individual radii

The estimation in Sect. 5.3 assumes that all nanoelectrodes except the central one have radius renbios,el = rav. Thus, it 
neglects the influence that differently sized neighbor electrodes may have on the capacitance of the central electrode. This 
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Fig. 12. Autocorrelation function for the generated Markov chains in the global, local 1D, and local 9D estimations.

Fig. 13. Left: response of simulated capacitance of four neighboring electrodes at different frequencies. The radius of electrode number 1 varies between 
70 nm and 110 nm, while the other radii remain fixed. Right: sketch of the configuration of current-flux lines comparing a group of electrodes at nominal 
dimension (left) to a bigger electrode number 1 (right). Due to the row-wise excitation, we measure the electrodes on the row 4–2, electrode 1 is a counter 
electrode; when we measure the electrodes on the row 3–1, electrode 1 is a working electrode.

relation may be important in view of the difference in x- and y-pitch of the electrodes and the large spread of extracted 
values in Fig. 11.

Fig. 13 (left) explores this relation by showing the simulated ENBIOS capacitance of four neighboring electrodes in a 
2 × 2 subarray of the 7 × 7 matrix as a function of the size of one of them (electrode #1). The top plots (which measure 
electrodes 2–4) correspond to electrode #1 being a counter electrode, the bottom plots (measuring electrodes 1–3) when 
it is a working electrode. The response of electrode #1 increases with the electrode radius, as expected based on simple 
analytical calculations on an isolated circular disk in a uniform dielectric medium. The response increase of the first neighbor 
on the same column (electrode #2) is barely visible. In fact, an increase of the size of CE #1 increases the current at WE 
#2 (a bigger electrode #1 corresponds to shorter path for the current lines, see Fig. 13, top right), but only minimally since 
other electrodes contribute to sink the current from electrode #1. Similar arguments apply to electrode #4 (top row).

Differently, the response of the first neighbor WE on the same row (electrode #3) decreases. This behavior can be 
understood looking at Fig. 13 (bottom right) and again recalling that nanoelectrodes are excited row by row (Sect. 2.1). 
When electrode #1 is active, electrode #3 is active as well. The increased size of electrode #1 partially obstructs the current 
flowlines originating from the neighbor electrode #3, thus reducing its AC current and capacitance. On top of that, the pitch 
of the nanoelectrodes array along the x- and y-directions is asymmetrical (600 × 720 nm); hence, electrodes on the same 
row affect each other more than neighbor electrodes on the same column do.

This analysis of the model function obtained by ENBIOS simulations elucidates that a relation exists between the size 
of one nanoelectrode and the capacitance reading at neighbor electrodes especially those along the same row. Hence, a 
simultaneous estimation of one electrode dimensions considering neighbors as well is desirable for more accurate results.

Consequently, we perform a nine-dimensional Bayesian extraction of the individual electrode radii simultaneously ex-
tracting the size of electrodes in small 3 ×3 subarrays. All other electrodes are kept at the nominal dimension renbios,el = rav. 
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Fig. 14. Left: paths of all nine Markov chains for a 3 × 3 electrode estimation. The distributions are seen to be stationary after the first 200 samples (thick 
lines). Right: array color map of the difference ri, j

el,9D − ri, j
el between the nine-dimensional and one-dimensional radius estimates.

Fig. 15. Left: scatter plot of the change ri, j
el,9D − ri, j

el in estimated electrode radius when moving from 1D to 9D extraction versus nanoelectrode capacitance 
�C i, j

el . Each point corresponds to one electrode. Note that the 9D extraction method yields an even larger radius than the 1D method for large electrodes 
(ri, j

el,9D − ri, j
el > 0) and a smaller one for small electrodes (ri, j

el,9D − ri, j
el < 0). Right: corresponding histogram of ri, j

el,9D − ri, j
el .

As done previously, the procedure is iterated to generate a map of 69 × 29 values. By doing so, we take into account the 
correlation between the size of one electrode and the response at first neighbor ones.

Using the measurements for the 69 × 29 subarray and implementing a uniform prior distribution on [70 nm, 110 nm]9

equivalent to the 1D uniform prior used above, we can compare the results of the nine-parameter approach with those 
obtained with the 1D approach.

We perform simulations of partially overlapping 3 × 3 arrays, whereby we extract rcentral
enbios,9D for the center electrode. This 

results in 69 · 29 = 2001 nine-dimensional simulations. To reduce the computational cost, a sample size of 1000 samples 
for each estimation process has been chosen. We assume that the distributions are stationary after a burn-in period of 200 
samples so that we calculate the mean values of these 800 samples as our estimates ri, j

el,9D as shown in Fig. 14 (left).

Fig. 14 (right) shows the array color map of the differences ri, j
el,9D − ri, j

el between the nine-dimensional and the one-
dimensional estimations.

The nine-dimensional approach should give more accurate results due to the consideration of the neighboring electrodes. 
We note that the difference is as large as 2 nm (Fig. 14), which is not negligible in absolute terms for the sake of an accurate 
extraction, but nevertheless relatively small compared to the large spread of the data in Fig. 11. The 9D extraction method 
yields an even larger radius than the 1D method for large electrodes (ri, j

el,9D − ri, j
el > 0) and a smaller one for small electrodes 

(ri, j
el,9D − ri, j

el < 0), thus effectively increasing the spread of the extracted radii values (Fig. 15). It is also interesting to note 
that the difference between values extracted by the nine-dimensional and the one-dimensional procedure depends on the 
mean capacitance of the neighboring working electrodes, consistently with Fig. 13. In fact, if we fix the center electrode but 
sweep neighbor working electrodes on the same row, we observe a change in the capacitance of the center electrode.

These results suggest that the inter-electrode capacitance relation, while being important for the accuracy of the results, 
cannot entirely account for the observed spread. In fact, the latter is still large for the production-class technology used in 
chip fabrication [11], and it is even amplified when moving from the 1D to the simultaneous 9D multi-electrode extraction.
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We thus conclude that fluctuations of rel cannot fully explain the variability of our capacitance measures. The residual 
column-wise pattern suggests that the column readout circuitry could be an important source of variability in this sensor 
implementation.

6. Discussion and conclusions

In this paper we demonstrated the application of multi-frequency and multi-parameter Bayesian inference to the extrac-
tion of electrical and geometrical parameters of nanoscale biosensor platforms. The MCMC methodology was first assessed 
and validated by means of simulations and analytical models, proving that the extracted parameter values are consistent 
with the a-priori known values. Then, the technique has been applied on a relevant technological test case, namely the 
estimation of the size of nanoelectrodes of a real nanobiosensor platform. The impact of neighboring electrodes on the size 
estimation has been evaluated quantitatively.

The extracted radii correctly reproduce experiments by ENBIOS simulations; the column-striped pattern visible in Fig. 11, 
however, was not corrected by more sophisticated extractions accounting for inter-electrode coupling and the large observed 
spread of the extracted data is actually increased in the 9D estimation. This suggests that additional (column-sensitive) 
sources of variability affect the capacitance reading, possibly due to the column-wise architecture of the readout circuits. 
The detailed investigation of the root cause of this result lies beyond the scope of this contribution.
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