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Highlights

• Optimal multilevel Monte-Carlo method for the coupled stochastic system is developed.
• Computational complexity is reduced significantly for a given error tolerance.
• Existence and local-uniqueness theorems for solutions of the system are presented.
• The method has many applications in nanoscale devices e.g. FinFETs and biosensors.

Abstract

Existence and local-uniqueness theorems for weak solutions of a system consisting of the drift–diffusion-Poisson equations and
the Poisson–Boltzmann equation, all with stochastic coefficients, are presented. For the numerical approximation of the expected
value of the solution of the system, we develop a multi-level Monte-Carlo (MLMC) finite-element method (FEM) and we analyze
its rate of convergence and its computational complexity. This allows to find the optimal choice of discretization parameters.
Finally, numerical results show the efficiency of the method. Applications are, among others, noise and fluctuations in nanoscale
transistors, in field-effect bio- and gas sensors, and in nanopores.
c⃝ 2017 Elsevier B.V. All rights reserved.

Keywords: Stochastic drift–diffusion-Poisson system; Existence and uniqueness; Multi-level Monte-Carlo finite-element method; Optimal method

1. Introduction

In this work, we consider the system consisting of the drift–diffusion-Poisson equations coupled with the
Poisson–Boltzmann equation, all with random coefficients. We show existence and local uniqueness of weak solutions
for the stationary problem. This system is a general model for transport processes, where a stochastic process
determines the coefficients. Furthermore, we develop a multi-level (ML) Monte-Carlo (MC) finite-element method
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Fig. 1. A schematic diagram showing a transversal cross section for leading applications. A longitudinal cross section is indicated by the vertical
line and is used for the finite-element discretization. In a field-effect transistor, the dopant atoms are randomly distributed (there is no electrolyte).
In field-effect sensors, there are randomly distributed dopant atoms as well as randomly distributed charged molecules in the electrolyte.

(FEM) for the system of equations. The different types of errors in the numerical approximation must be balanced and
the optimal approach is found here.

In the system of equations considered here, both the operators and the forcing terms are stochastic, and
therefore this system has numerous applications (see Fig. 1). A deterministic and simplified version, without the
Poisson–Boltzmann equation, is the standard model for semiconductor devices. Nowadays, randomness due to the
location of impurity atoms is the most important effect limiting the design of integrated circuits. This application
area is included in the present model equations. Furthermore, the full system of equations considered here describes
a very general class of field-effect sensors including their most recent incarnation, nanowire bio- and gas sensors.
While previous mathematical modeling has focused on the deterministic problem and stochastic surface reactions
[1–6], the present model describes how various stochastic processes propagate through a PDE model and result in
noise and fluctuations in a transport model. Quantifying noise and fluctuations in sensors is important, since they
determine the detection limit and the signal-to-noise ratio. Noise and fluctuations are of great importance especially
in nanometer-scale devices, as any random effect becomes proportionally more important as devices are shrunk.

Various sources of noise and fluctuations are included in the model equations here. Doping of semiconductor
devices is inherently random and results in a random number of impurity atoms placed at random positions, each one
changing the charge concentration and the mobility at its location. In field-effect sensors, target molecules bind to
randomly placed probe molecules in a stochastic process, so that the detection mechanism is inherently stochastic.
The Brownian motion of the target molecules also results in changes in charge concentration and permittivity. This
randomness at the sensor surface propagates through the self-consistent transport equations and finally results in noise
in the sensor output.

In summary, there are many applications where both the operators and the forcing terms in the drift–diffusion-
Poisson system are random. The probability distributions of permittivities and charge concentrations can be calculated
from physical models [7].

In many realistic situations, the probability space is high-dimensional. For example, each probe molecule, each
target molecule, and each probe-target complex needs to be modeled in sensors. In transistors, the number impurities
and their positions are random. The large number of dimensions favors the use of Monte-Carlo (MC) methods: It
is well-known that the convergence rate of standard MC methods is independent of the number of dimensions. On
the other hand, it is inversely proportional to the square root of the number of evaluations and here each evaluation
requires solving a two- or three-dimensional system of elliptic equations.

These considerations motivate the development of a multi-level Monte-Carlo (MLMC) algorithm. In [8], after
earlier work [9] on numerical quadrature, it was shown that a multi-level approach and a geometric sequence of
timesteps can reduce the order of computational complexity of MC path simulations for estimating the expected value
of the solution of a stochastic ordinary differential equation. This is done by reducing the variance and leaving the bias
unchanged due to the Euler discretization used as the ODE solver. In [10], the Milstein scheme was used as the ODE
solver to improve the convergence rate of the MLMC method for scalar stochastic ordinary differential equations and
the method was made more efficient. The new method has the same weak order of convergence, but an improved
first-order strong convergence, and it is the strong order of convergence which is central to the efficiency of MLMC
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methods. In [11], the MLMC method was combined with quasi-Monte-Carlo (QMC) integration using a randomized
rank-1 lattice rule and the asymptotic order of convergence of MLMC was improved and a lower computational cost
was achieved as well.

In [12], an MLMC finite-element method was presented for elliptic partial differential equations with stochastic
coefficients. In this problem, the source of randomness lies in the coefficients inside the operator and the coefficient
fields are bounded uniformly from above and away from zero. The MLMC error and work estimates were given
for the expected values of the solutions and for higher moments. Also, in [13], the same problem was considered
and numerical results indicate that the MLMC estimator is not limited to smooth problems. In [14], a multi-level
quasi-Monte-Carlo finite-element method for a class of elliptic PDEs with random coefficients was presented. The
error analysis of QMC was generalized to a multi-level scheme with the number of QMC points dependent on the
discretization level and with a level-dependent dimension truncation strategy.

In [15], uniform bounds on the finite-element error were shown in standard Bochner spaces. These new bounds
can be used to perform a rigorous analysis of the MLMC method for elliptic problems, and a rigorous bound on the
MLMC complexity in a more general case was found. In [16], the finite-element error analysis was extended for the
same type of equations posed on non-smooth domains and with discontinuities in the coefficient. In [17], a general
optimization of the parameters in the MLMC discretization hierarchy based on uniform discretization methods with
general approximation orders and computational costs was developed. In current work, we define a global optimization
problem which minimizes the computational complexity such that the error bound is less than or equal to a given
tolerance level.

The rest of this paper is organized as follows. In Section 2, we present the system of model equations with stochastic
coefficients in detail. In Section 3, we define weak solutions of the model equations and prove existence and local-
uniqueness theorems. Section 4.1 collects results about the FEM for later use. In Section 4, we introduce a multi-level
Monte-Carlo finite-element method for the system and analyze its rate of convergence. In Section 5, we discuss the
computational complexity and find the optimal MLMC method. In Section 6, we present numerical results for random
impurity atoms in nanowire field-effect sensors. The MLMC-FEM method is illustrated there and the computational
costs of various numerical techniques are compared as well. Finally, conclusions are drawn in Section 7.

2. The stochastic model equations

Suppose that the domain D ⊂ Rd is bounded and convex, and that d ≤ 3. The whole domain D is partitioned
into three subdomains with different physical properties and hence different model equations in order to include a
large range of applications. The first subdomain DSi consists of the (silicon) nanowire and acts as the transducer
of the sensor; in this subdomain, the drift–diffusion-Poisson system describes charge transport. The transducer is
surrounded by two materials. First, the oxide layer Dox protects the semiconductor. In Dox, there are no charge
carriers and hence simply the Poisson equation holds. Second, Dliq is the aqueous solution containing cations and
anions and the Poisson–Boltzmann equation holds.

Also, the boundary layer at the sensor surface is responsible for the recognition of the target molecules. In the
case of field-effect sensors, solving a homogenization problem gives rise to two interface conditions for the Poisson
equation [1]. In summary, the domain is partitioned into

D = DSi ∪ Dox ∪ Dliq.

In the subdomain DSi, the stationary drift–diffusion-Poisson system

−∇ · (A(x, ω)∇V (x, ω)) = q(Cdop(x, ω) + p(x, ω) − n(x, ω)), (1a)

∇ · Jn(x, ω) = q R(n(x, ω), p(x, ω)), (1b)

∇ · Jp(x, ω) = −q R(n(x, ω), p(x, ω)), (1c)

Jn(x, ω) = q(Dn∇n(x, ω) − µnn(x, ω)∇V (x, ω)), (1d)

Jp(x, ω) = q(−Dp∇ p(x, ω) − µp p(x, ω)∇V (x, ω)) (1e)

models charge transport, where A(x, ω), the permittivity, is a random field with x ∈ Rd and a random parameter
ω ∈ Ω in a probability space (Ω , A, P). Ω denotes the set of elementary events, i.e., the sample space, A the σ -algebra
of all possible events, and P : A → [0, 1] is a probability measure. V (x, ω) is the electrostatic potential and q > 0 is
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the elementary charge, Cdop(x, ω) is the doping concentration, n(x, ω) and p(x, ω) are the concentrations of electrons
and holes, respectively, Jn(x, ω) and Jp(x, ω) are the current densities, Dn and Dp are the diffusion coefficients,
µn and µp are the mobilities, and R(n(x, ω), p(x, ω)) is the recombination rate. We use the Shockley–Read–Hall
recombination rate

R(n(x, ω), p(x, ω)) :=
n(x, ω)p(x, ω) − n2

i

τp(n(x, ω) + ni ) + τn(p(x, ω) + ni )

here, where the constant ni is the intrinsic charge density and τn and τp are the lifetimes of the free carriers, although
the mathematical results here hold for many expressions for the recombination rate. Eqs. (1) include the convection
terms −n∇V and −p∇V , which prohibit the use of the maximum principle in a simple way.

We assume that the Einstein relations Dn = UT µn and Dp = UT µp hold, where the constant UT is the thermal
voltage. Therefore, it is beneficial to change variables from the concentrations n and p to the Slotboom variables u
and v defined by

n(x, ω) =: ni eV (x,ω)/UT u(x, ω),

p(x, ω) =: ni e−V (x,ω)/UT v(x, ω).

The system (1) then becomes

−∇ · (A∇V (x, ω)) = qni (e
−V (x,ω)/UT v(x, ω) − eV (x,ω)/UT u(x, ω)) + qCdop(x, ω),

UT ∇ · (µneV (x,ω)/UT ∇u(x, ω)) =
u(x, ω)v(x, ω) − 1

τp(eV (x,ω)/UT u(x, ω) + 1) + τn(e−V (x,ω)/UT v(x, ω) + 1)
,

UT ∇ · (µpe−V (x,ω)/UT ∇v(x, ω)) =
u(x, ω)v(x, ω) − 1

τp(eV (x,ω)/UT u(x, ω) + 1) + τn(e−V (x,ω)/UT v(x, ω) + 1)
,

where the continuity equations are self-adjoint.
The boundary ∂ D is partitioned into Dirichlet and Neumann boundaries. For the Ohmic contacts we have

V (x, ω)|∂ DD = VD(x), u(x, ω)|∂ DSi,D = u D(x) and v(x, ω)|∂ DSi,D = vD(x).

At Ohmic contacts the space charge vanishes, i.e., Cdop + pD − nD = 0, and the system is in thermal equilibrium,
i.e., nD pD = n2

i on ∂ DD . Furthermore, at each contact, the quasi Fermi potential levels of silicon are aligned with an
external applied voltage U (x). Therefore, by using the quasi Fermi potential, we determine the boundary condition
on ∂ DSi,D using

V1(x) := U (x) + UT ln


nD(x)

ni


= U (x) − UT ln


pD(x)

ni


.

The boundary values u D(x) and vD(x) are found to be

u D(x) := n−1
i e−V1(x)/UT nD(x),

vD(x) := n−1
i eV1(x)/UT pD(x),

where

nD(x) :=
1
2


Cdop +


C2

dop + 4n2
i


,

pD(x) :=
1
2


−Cdop +


C2

dop + 4n2
i


hold [18, Chapter 3]. Here, Cdop := C+

D − C−

A is the net doping concentration, where C+

D and C−

A are the donor and
acceptor concentrations, respectively.

The zero Neumann boundary conditions

n · ∇V (x, ω) = 0, n · ∇u(x, ω) = 0, n · ∇v(x, ω) = 0

hold on the rest of the boundary ∂ D. Here n denotes the unit outward normal vector on the boundary.
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A jump in the permittivity A always gives rise to two continuity conditions: the continuity of the potential and the
continuity of the electric displacement field. Homogenization of an elliptic problem with a periodic boundary layer at
a manifold Γ yields the two interface conditions [1]

V (0+, y, ω) − V (0−, y, ω) = α(y, ω),

A(0+)∂x V (0+, y, ω) − A(0−)∂x V (0−, y, ω) = γ (y, ω)

between the semiconductor and the liquid. Here we denote the one-dimensional coordinate orthogonal to the
manifold Γ by x and the remaining (d − 1)-dimensional coordinates by y. α and γ are essentially given by the
dipole-moment and the surface-charge densities of the boundary layer; in general, we write them as the functional
Mα(V ) and Mγ (V ) of the potential V . They may correspond to the Metropolis Monte-Carlo method [19], to solving
the nonlinear Poisson–Boltzmann equation [7], or to systems of ordinary differential equations for surface reactions
[20,21].

In the subdomain Dox, there are no charge carriers and the Poisson equation is simply

−∇ · (A∇V (x, ω)) = 0.

In the subdomain Dliq, the nonlinear Poisson–Boltzmann equation

−∇ · (A(x, ω)∇V (x, ω)) + 2η sinh(β(V (x, ω) − Φ(x, ω))) = 0

holds and models screening by free charges. Here η is the ionic concentration, the constant β equals β := q/(kB T ) in
terms of the Boltzmann constant kB and the temperature T , and Φ is the Fermi level.

In summary, for all ω ∈ Ω , the model equations are the boundary-value problem

−∇ · (A(x, ω)∇V (x, ω)) = qCdop(x, ω) − qni (eV (x,ω)/UT u(x, ω) − e−V (x,ω)/UT v(x, ω)) in DSi, (2a)
−∇ · (A(x, ω)∇V (x, ω)) = 0 in Dox, (2b)
−∇ · (A(x, ω)∇V (x, ω)) = −2η sinh(β(V (x, ω) − Φ(x, ω))) in Dliq, (2c)
V (0+, y, ω) − V (0−, y, ω) = α(y, ω) on Γ , (2d)
A(0+)∂x V (0+, y, ω) − A(0−)∂x V (0−, y, ω) = γ (y, ω) on Γ , (2e)

UT ∇ · (µneV (x,ω)/UT ∇u(x, ω)) =
u(x, ω)v(x, ω) − 1

τp(eV (x,ω)/UT u(x, ω) + 1) + τn(e−V (x,ω)/UT v(x, ω) + 1)
in DSi, (2f)

UT ∇ · (µpe−V (x,ω)/UT ∇v(x, ω)) =
u(x, ω)v(x, ω) − 1

τp(eV (x,ω)/UT u(x, ω) + 1) + τn(e−V (x,ω)/UT v(x, ω) + 1)
in DSi, (2g)

α(y, ω) = Mα(V (y, ω)) in Γ , (2h)
γ (y, ω) = Mγ (V (y, ω)) in Γ , (2i)
V (x, ω) = VD(x) on ∂ DD, (2j)
n · ∇V (x, ω) = 0 on ∂ DN , (2k)
u(x, ω) = u D(x), v(x, ω) = vD(x) on ∂ DD,Si, (2l)
n · ∇u(x, ω) = 0, n · ∇v(x, ω) = 0 on ∂ DN ,Si. (2m)

3. Existence and local uniqueness

In order to state the main theoretical results, we first record the assumptions on the data of the system (2). The
assumptions are moderate in the sense that similar ones are necessary for the deterministic system of equations. Then
weak solutions and Bochner spaces are defined. Using the assumptions and definitions, existence and local uniqueness
are shown.

3.1. Assumptions

The following assumptions are required.

Assumptions 1. 1. The bounded domain D ⊂ R3 has a C2 Dirichlet boundary ∂ DD , the Neumann boundary
∂ DN consists of C2 segments, and the Lebesgue measure of the Dirichlet boundary ∂ DD is nonzero. The C2
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manifold Γ ⊂ D splits the domain D into two nonempty domains D+ and D− so that meas(Γ ∩ ∂ D) = 0 and
Γ ∩ ∂ D ⊂ ∂ DN hold.

2. (Ω , A, P) is a probability space, where Ω denotes the set of elementary events (sample space), A the σ -algebra of
all possible events, and P : A → [0, 1] is a probability measure.

3. The diffusion coefficient A(x, ω) is assumed to be a strongly measurable mapping from Ω into L∞(D). It is
uniformly elliptic and bounded function of position x ∈ D and the elementary event ω ∈ Ω , i.e., there exist
constants 0 < A− < A+ < ∞ such that

0 < A−
≤ ess inf

x∈D
A(x, ω) ≤ ∥A(·, ω)∥L∞(D) ≤ A+ < ∞ ∀ω ∈ Ω .

Furthermore, A(x, ω)|D+×Ω ∈ C1(D+
× Ω , R3×3) and A(x, ω)|D−×Ω ∈ C1(D−

× Ω , R3×3).
4. The doping concentration Cdop(x, ω) is bounded above and below with the bounds

C := inf
x∈D

Cdop(x, ω) ≤ Cdop(x, ω) ≤ sup
x∈D

Cdop(x, ω) =: C ∀ω ∈ Ω .

5. There is a constant R ∋ K ≥ 1 satisfying

1
K

≤ u D(x), vD(x) ≤ K ∀x ∈ ∂ DSi,D.

6. The functionals Mα : L2(Ω; H1(D))∩L∞(D×Ω) → L2(Ω; H1/2(Γ ))∩L∞(Γ ×Ω) and Mγ : L2(Ω; H1(D))∩

L∞(D × Ω) → L∞(Γ × Ω) are continuous.
7. The mobilities µn(x, ω) and µp(x, ω) are uniformly bounded functions of x ∈ D and ω ∈ Ω , i.e.,

0 < µ−
n ≤ µn(x, ω) ≤ µ+

n < ∞ ∀x ∈ D, ∀ω ∈ Ω ,

0 < µ−
p ≤ µp(x, ω) ≤ µ+

p < ∞ ∀x ∈ D, ∀ω ∈ Ω ,

where µp(x, ω), µn(x, ω) ∈ C1(DSi × Ω , R3×3).

Furthermore, the inclusions f (x, ω) ∈ L2(Ω; L2(D))∩ L∞(D ×Ω), VD(x) ∈ H1/2(∂ D)∩ L∞(Γ ), u D, vD(x) ∈

H1/2(∂ DSi), α(x, ω) ∈ L2(Ω; H1/2(Γ )), and γ (x, ω) ∈ L2(Ω; L2(Γ )) hold.

Assumptions 3 and 7 guarantee the uniform ellipticity of the Poisson and the continuity equations, respectively.

3.2. Weak solution of the model equations

In order to define the weak formulation of the stochastic boundary-value problem (2), it suffices to consider the
semilinear boundary-value problem

−∇ · (A∗(x, ω)∇w(x, ω)) + h(x, w(x, ω)) = f (x, ω) ∀x ∈ D \ Γ ∀ω ∈ Ω , (3a)

w(x, ω) = wD(x) ∀x ∈ ∂ DD ∀ω ∈ Ω , (3b)

n · ∇w(x, ω) = 0 ∀x ∈ ∂ DN ∀ω ∈ Ω , (3c)

w(0+, y, ω) − w(0−, y, ω) = α(y, ω) ∀x ∈ Γ ∀ω ∈ Ω , (3d)

A∗(0+)∂xw(0+, y, ω) − A∗(0−)∂xw(0−, y, ω) = γ (y, ω) ∀x ∈ Γ ∀ω ∈ Ω , (3e)

which is a semilinear Poisson equation with interface conditions. Here (3a) includes (2a)–(2c) if A∗ is replaced by
the permittivity A, and it includes (2f) and (2g) if A∗ is replaced by µneV/UT and µpe−V/UT , respectively. Uniform
ellipticity holds in each of these cases per Assumption 1.

For the weak formulation, we define the Hilbert space

X := H1
g (D) =


w ∈ H1(D) | T w = g


(4)

as the solution space, where T is the trace operator defined such that T w = g, where g is Dirichlet lift of
wD := w|∂ DD . The operator T is well-defined and continuous from H1(D) onto H1/2(∂ D) for the Lipschitz



L. Taghizadeh et al. / Comput. Methods Appl. Mech. Engrg. 318 (2017) 739–761 745

domain D. For g = 0, we define the test space

X0 := H1
0 (D) =


w ∈ H1(D) | T w = 0


. (5)

Definition 3.1 (Bochner Spaces). Given a Banach space (X, ∥ · ∥X ) and 1 ≤ p ≤ +∞, the Bochner space L p(Ω; X)

is defined to be the space of all measurable functions w : Ω → X such that for every ω ∈ Ω the norm

∥w∥L p(Ω;X) :=




Ω
∥w(·, ω)∥

p
X dP(ω)

1/p
= E


∥w(·, ω)∥

p
X

1/p
< ∞, 1 ≤ p < ∞,

ess sup
ω∈Ω

∥w(·, ω)∥X < ∞, p = ∞

(6)

is finite.

To derive the variational formulation of our model (3), we fix the event ω ∈ Ω at first, multiply (3a) by a test
function φ ∈ L2(Ω; X0), and integrate by parts in D to obtain the relation

D
A∗

∇w · ∇φ +


D

h(w)φ =


D

f φ +


Γ

γφ ∀φ ∈ L2(Ω; X0).

Definition 3.2 (Weak Solution on D×Ω ). Suppose that A∗ satisfies Assumption 1 and that f (x, ω) ∈ L2(Ω; L2(D)),
wD(x) ∈ H1/2(∂ DD), and γ (x, ω) ∈ L2(Ω; L2(Γ )) holds. A function w ∈ L2(Ω; X) is called a weak solution of
the boundary-value problem (3), if it satisfies

a(w, φ) = ℓ(φ) ∀φ ∈ L2(Ω; X0), (7)

where a : L2(Ω; X) × L2(Ω; X0) → R and ℓ : L2(Ω; X0) → R are defined by

a(w, φ) := E


D
A∗

∇w · ∇φdx


+ E


D

h (w) φdx


and

ℓ(φ) := E


D
f φdx


+ E


Γ

γφdx


.

3.3. Existence and local uniqueness of the solution

In the next step, we prove existence and local uniqueness of solutions of system of stochastic elliptic boundary-
value problems with interface conditions (2) using the Schauder fixed-point theorem and the implicit-function theorem
similarly to [2, Theorem 2.2 and 5.2].

Theorem 1 (Existence). Under Assumption 1, for every f (x, ω) ∈ L2(Ω; L2(D)) and VD, u D, vD ∈ H1/2(∂ D),
there exists a weak solution

(V (x, ω), u(x, ω), v(x, ω), α(x, ω), γ (x, ω)) ∈

L2(Ω; H1

VD
(D)) ∩ L∞(D × Ω)


×

L2(Ω; H1

u D
(DSi)) ∩ L∞(DSi × Ω)


×

L2(Ω; H1

vD
(DSi)) ∩ L∞(DSi × Ω)


×

L2(Ω; H1(Γ )) ∩ L∞(Γ × Ω)

2
of the stochastic boundary-value problem (2), and for every ω ∈ Ω it satisfies the L∞-estimate

V ≤ V (x, ω) ≤ V in D,

1
K

≤ u(x, ω) ≤ K in DSi,

1
K

≤ v(x, ω) ≤ K in DSi,
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where

V := min


inf
∂ DD

VD,Φ − sup
D

VL , UT ln


1
2K ni


C +


C2

+ 4n2
i


− sup

D
VL


,

V := max


sup
∂ DD

VD,Φ − inf
D

VL , UT ln


K

2ni


C +


C

2
+ 4n2

i


− inf

D
VL


.

Here VL(x, ω) is the solution of the linear problem (i.e., problem (3) with h ≡ 0), for which the estimate

∥VL∥L2(Ω;H1
VD

(D)) ≤ C

∥ f ∥L2(Ω;L2(D)) + ∥VD∥H1/2(∂ DD) + ∥α∥L2(Ω;H1/2(Γ )) + ∥γ ∥L2(Ω;L2(Γ ))


holds, where C is a positive constant.

Proof. The existence of the solution is proved using the Schauder fixed-point theorem and the estimates are obtained
from a maximum principle. First, we define a suitable space

N :=

(V, u, v, α, γ ) ∈ L2(Ω; H1(D)) × L2(Ω; H1(DSi))

2
× L2(Ω; H1(Γ ))2


V ≤ V (x, ω) ≤ V a.e. in D × Ω ,

1
K

≤ u(x, ω), v(x, ω) ≤ K a.e. in DSi × Ω ,

α, γ bounded a.e. on Γ × Ω

,

which is closed and convex. Then we define a fixed-point map F : N → N by

F(V0, u0, v0, α0, γ0) := (V1, u1, v1, α1, γ1),

where the elements of the vector (V1, u1, v1, α1, γ1) are the solutions of the following equations for given data
(V0, u0, v0, α0, γ0).

1. Solve the elliptic equation

−∇ · (A∇V1) = qni (e
−V1/UT v0 − eV1/UT u0) + qCdop in D,

n · ∇V1 = 0 on ∂ DN ,

V1 = VD on ∂ DD

for V1.
2. Solve the elliptic equation

UT ∇ · (µneV1/UT ∇u1)

−
u1v0 − 1

τp(eV1/UT u0 + 1) + τn(e−V1/UT v0 + 1)
= 0 in DSi,

n · ∇u1 = 0 on ∂ DSi,N ,

u1 = u D on ∂ DSi,D

for u1.
3. Solve the elliptic equation

UT ∇ · (µpe−V1/UT ∇v1)

−
u0v1 − 1

τp(eV1/UT u0 + 1) + τn(e−V1/UT v0 + 1)
= 0 in DSi

n · ∇v1 = 0 on ∂ DSi,N ,

v1 = vD on ∂ DSi,D,

for v1.
4. Update the surface-charge density and dipole-moment density according to the microscopic model

α1(y, ω) := Mα(V0),

γ1(y, ω) := Mγ (V0).
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Using Lemmata on the existence and uniqueness of solutions of elliptic boundary-value problems with interface
conditions [22], every equation present in the model is uniquely solvable. Therefore the map F is well-defined.
Furthermore, continuity and the self-mapping property of F as well as the precompactness of F(N ) can be shown
similarly to [2, Theorem 2.2] and [23, Theorem 1]. Therefore, applying the Schauder fixed-point theorem yields a
fixed-point of F , which is a weak solution of (2). �

In general, the solution in Theorem 1 is not unique; uniqueness of the solution only holds in a neighborhood around
thermal equilibrium. This necessitates sufficiently small Dirichlet boundary conditions. The following theorem yields
local uniqueness of the solution of our system (2) of model equation. The proof is based on the implicit-function
theorem.

Theorem 2 (Local Uniqueness). Under Assumption 1, for every f (x, ω) ∈ L2(Ω; L2(D)), VD, u D, vD ∈ H1/2(∂ D),
α ∈ L2(Ω; H1/2(Γ )), and γ ∈ L2(Ω; L2(Γ )), there exists a sufficiently small σ ∈ R with |U | < σ such that the
stochastic problem in the existence Theorem 1 has a locally unique solution

V ∗(U ), u∗(U ), v∗(U ), α∗(U ), γ ∗(U )


∈ L2(Ω; H2(D \ Γ )) × L2(Ω; H2(DSi))
2

× L2(Ω; H1/2(Γ )) × L2(Ω; L2(Γ )).

The solution satisfies
V ∗(0), u∗(0), v∗(0), α∗(0), γ ∗(0)


= (Ve, 1, 1, αe, γe)

and it depends continuously differentiably on U as a map from {U ∈ Rk, |U | < σ } into L2(Ω; H2(D \ Γ )) ×

L2(Ω; H2(DSi))
2
× L2(Ω; H1/2(Γ )) × L2(Ω; L2(Γ )).

Proof. We call the equilibrium potential Ve(x, ω) and the equilibrium surface densities αe(x, ω) and γe(x, ω).
(Ve, 1, 1, αe, γe) is a solution of the stochastic equilibrium boundary-value problem, which has a unique solution
due to the existence and uniqueness of solutions of stochastic semilinear elliptic boundary-value problems of the form

−∇ · (A(x, ω)∇Ve(x, ω)) = qCdop(x, ω) − qni (e
Ve(x,ω)/UT − e−Ve(x,ω)/UT ) in DSi,

−∇ · (A(x, ω)∇Ve(x, ω)) = 0 in Dox,

−∇ · (A(x, ω)∇Ve(x, ω)) = −2η sinh(β(Ve(x, ω) − Φ(x, ω))) in Dliq,

Ve(0+, y, ω) − Ve(0−, y, ω) = αe(y, ω) on Γ ,

A(0+)∂x Ve(0+, y, ω) − A(0−)∂x Ve(0−, y, ω) = γe(y, ω) on Γ ,

Ve(x, ω) = VD(x) on ∂ DD,

n · ∇Ve(x, ω) = 0 on ∂ DN .

To apply the implicit-function theorem, we define the map

G : B × Sσ1(0) → L2(Ω; L2(D)) × L2(Ω; L2(DSi))
2
× L2(Ω; L2(Γ ))2,

G(V, u, v, α, γ, U ) = 0,

where G is given by the boundary-value problem (2) after substituting V := V − VD(U ), u := u − u D(U ), and
v := v − vD(U ). B is an open subset of L2(Ω; H2

∂ (D)) × L2(Ω; H2
∂ (DSi))

2
× L2(Ω; L2(Γ ))2 with

H2
∂ (D) := {φ ∈ H2(D) | n · ∇φ = 0 on ∂ DN , φ = 0 on ∂ DD},

and the sphere Sσ1 with radius σ1 and center 0 is a subset of Rd . The equilibrium solution (Ve−VD(0), 0, 0, αe, γe, 0) is
a solution of the equation G = 0. One can show that the Fréchet derivative D(V,u,v,α,γ )G(Ve − VD(0), 0, 0, αe, γe, 0)

has a bounded inverse (see, e.g., [2, Theorem 2.2]). Then the implicit-function theorem implies uniqueness of the
solution of (2). �

4. Multi-level Monte-Carlo finite-element method

We start by briefly recapitulating the finite-element approximation of the system of model equations considered
here. Then we review the types of error in the Monte-Carlo approximation of solutions of stochastic partial
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differential equations in Section 4.2. In Section 4.3, a multi-level Monte-Carlo (MLMC) finite-element (FE) method
for the solution of the system of stochastic equations (2) is developed. We give an error bound for MLMC-FEM
approximation and discuss the computational complexity.

4.1. The finite-element method

In this subsection, we briefly recapitulate the Galerkin finite-element approximation and fix some notation. It
provides the foundation for the following section.

We suppose that the domain D can be partitioned into quasi-uniform triangles or tetrahedra such that sequences
{τhℓ

}
∞

ℓ=0 of regular meshes are obtained. For any ℓ ≥ 0, we denote the mesh size of τhℓ
by

hℓ := max
K∈τhℓ

{diam K }.

To ensure that the mesh quality does not deteriorate as refinements are made, shape-regular meshes can be used.

Definition 4.1 (Shape Regular Mesh). A sequence {τhℓ
}
∞

l=0 of meshes is shape regular if there exists a constant
κ < ∞ independent of ℓ such that

hK

ρK
≤ κ ∀K ∈ τhℓ

.

Here ρK is the radius of the largest ball that can be inscribed into any K ∈ τhℓ
.

Uniform refinement of the mesh can be achieved by regular subdivision. This results in the mesh size

hℓ = r−ℓh0, (8)

where h0 denotes the mesh size of the coarsest triangulation and r > 1 is independent of ℓ. The nested family {τhℓ
}
∞

ℓ=0
of regular triangulations obtained in this way is shape regular.

The Galerkin approximation is the discrete version of the weak formulation in (7) of the stochastic elliptic
boundary-value problem (2). We consider finite-element discretizations with approximations uh ∈ Xhℓ

of u ∈ X .
Given a mesh τhℓ

, X is the solution space (4) and Xhℓ
⊂ X is the discretized space. For all k ≥ 1, it is defined as

Xhℓ
:= Pk(τhℓ

) := {u ∈ X | u|K ∈ Pk(K ) ∀K ∈ τhℓ
}, (9)

where Pk(K ) := span{xα
| |α| ≤ k} is the space of polynomials of total degree less than or equal to k. The space X0

is the space (5) of test functions. The discretized test space X0hℓ
⊂ X0 is defined analogously to (9).

After introducing the finite-element spaces, everything is ready to define the Galerkin approximation.

Definition 4.2 (Galerkin Approximation). Suppose Xhℓ
⊂ X and X0hℓ

⊂ X0. The Galerkin approximation of (3) is
the function

whℓ
∈ L2(Ω; Xhℓ

)

that satisfies

B(whℓ
, φhℓ

) = F(φhℓ
) ∀φhℓ

∈ L2(Ω; X0hℓ
), (10)

where B and F are defined in (7).

4.2. Monte-Carlo finite-element approximation

The straightforward Monte-Carlo method for a stochastic PDE approximates the expectation E[u] of the solution u
by the sample mean of a (large) number of evaluations. Since we use the same finite-element mesh τ with the mesh
size h for all samples, we drop the index ℓ in this subsection for the MC-FEM. We approximate E[u] by E[uh], where
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uh is again the FE approximation of u using a mesh of size h. The standard MC estimator EMC for E[uh] is the sample
mean

EMC[uh] := ûh :=
1
M

M
i=1

u(i)
h (11)

where u(i)
h = uh(x, ω(i)) is the i th sample of the solution.

The following lemma shows the error of the MC estimator for a random variable u which is not discretized in space
is of order O(M−1/2).

Lemma 3. For any number of samples M ∈ N and for a random variable u ∈ L2(Ω; X), the inequality

∥E[u] − EMC[u]∥L2(Ω;X) = M−1/2σ [u] (12)

holds for the MC error, where σ [u] := ∥E[u] − u∥L2(Ω;X).

Proof. The result follows from the calculation

∥E[u] − EMC[u]∥
2
L2(Ω;X)

= E
E[u] −

1
M

M
i=1

u(i)
2

X


=

1

M2

M
i=1

E

∥E[u] − u(i)

∥
2
X


=

1
M

E

∥E[u] − u∥

2
X


= M−1σ 2

[u]. �

Therefore, the variance of the MC estimator is

σ 2
[EMC[u]] = ∥E[EMC[u]] − EMC[u]∥

2
L2(Ω;X)

= M−1σ 2
[u]. (13)

Next we generalize the result to the finite-element solution by using the MC estimator to approximate the expectation
E[u] of a solution u of an SPDE, which is discretized in space by the finite-element method. In other words, if uh and
ûh are the finite-element and MC solutions of the SPDE, respectively, then we have

E[u] ≈ E[uh] ≈ ûh .

Therefore, the MC-FEM method involves two approximations and hence there are two sources of error.

Discretization error The approximation of E[u] by E[uh] gives to the discretization error, which stems from the
spatial discretization.

Statistical error The approximation of the expected value E[uh] by the sample mean ûh gives rise to the statistical
error, which is caused by the MC estimator.

Lemma 3 takes care of the statistical error. The order of the discretization error depends on the order of the finite-
element method.

Recalling that ûh = EMC, we first obtain the mean square error of the Monte-Carlo FEM in the L2-norm in the
following proposition. Later we also show a theorem for the error in the H1-norm.

Proposition 1. Let ûh be the Monte-Carlo estimator with M samples to approximate the expectation E[u] of a
solution u(·, ω) ∈ L2(D) of an SPDE by using a FE solution uh(·, ω) with mesh size h. Then the mean square error
of the Monte-Carlo estimator satisfies

∥ûh − E[u]∥
2
L2(Ω;L2(D))

= M−1σ 2
[uh] + ∥E[uh] − E[u]∥

2
L2(Ω;L2(D))

. (14)
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Proof. Starting from the mean square error, we calculate

MSE := ∥ûh − E[u]∥
2
L2(Ω;L2(D))

= E

∥ûh − E[u]∥

2
L2(D)


= E


D
(ûh − E[u])2dx


=


D

E[(ûh − E[u])2
]dx, (15)

where the last equation holds due to Fubini’s Theorem. Add and subtracting the term E[ûh], we find

MSE =


D

E[(ûh − E[ûh] + E[ûh] − E[u])2
]dx

=


D

E[(ûh − E[ûh])]dx +


D

E[(E[ûh] − E[u])2
]dx

= ∥ûh − E[ûh]∥
2
L2(Ω;L2(D))

+ ∥E[uh] − E[u]∥
2
L2(Ω;L2(D))

= σ 2
[ûh] + ∥E[uh] − E[u]∥

2
L2(Ω;L2(D))

= M−1σ 2
[uh] + ∥E[uh] − E[u]∥

2
L2(Ω;L2(D))

, (16)

where we used E[ûh] = E[uh], because the Monte-Carlo estimator is unbiased, and σ 2
[ûh] = M−1σ 2

[uh] due to
Eq. (13). �

Next we extend this result to H1. In the following theorems, the finite-element space X is H1 (see (4)).

Theorem 4. Suppose α, C0, C1 ∈ R+. Let ûh be the Monte-Carlo estimator with M samples to approximate the
expectation E[u] of a solution u(·, ω) ∈ X of an SPDE by using a FE solution uh(·, ω) ∈ Xh with mesh size h.
Suppose that the discretization error converges with order α, i.e.,

∥E[uh − u]∥L2(Ω;X) ≤ C1hα, (17)

and that the estimate

σ 2
[uh] ≤ C0 (18)

holds. Then the mean square error of the MC estimator satisfies

∥ûh − E[u]∥
2
L2(Ω;X)

= O(h2α) + O(M−1). (19)

Proof. We use the mean square error and calculate

MSE := ∥ûh − E[u]∥
2
L2(Ω;X)

= ∥ûh − E[u]∥
2
L2(Ω;L2(D))

+ ∥∇ûh − E[∇u]∥
2
L2(Ω;L2(D))

= ∥ûh − E[ûh]∥
2
L2(Ω;L2(D))

+ ∥E[ûh] − E[u]∥
2
L2(Ω;L2(D))

+ ∥∇ûh − E[∇ûh]∥
2
L2(Ω;L2(D))

+ ∥E[∇ûh] − E[∇u]∥
2
L2(Ω;L2(D))

= ∥ûh − E[ûh]∥
2
L2(Ω;X)

+ ∥E[ûh] − E[u]∥
2
L2(Ω;X)

= σ 2
[ûh] + ∥E[ûh] − E[u]∥

2
L2(Ω;X)

= M−1σ 2
[uh] + ∥E[uh] − E[u]∥

2
L2(Ω;X)

. (20)

In the last expression, E[ûh] = E[uh] holds again because the Monte-Carlo estimator is unbiased, and σ 2
[ûh] =

M−1σ 2
[uh] holds due to (13). Therefore, using the assumptions (17) and (18), we have

MSE ≤ C0 M−1
+ (C1hα)2

= O(M−1) + O(h2α), (21)

which concludes the proof. �
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4.3. Multi-level Monte-Carlo finite-element approximation

In this section, we first present the MLMC FE method and its error. In this method, several levels of meshes are used
and the MC estimator is employed to approximate the solution on each level independently. We start by discretizing
the variational formulation (7) on the sequence

Xh0 ⊂ Xh1 ⊂ · · · ⊂ XhL ⊂ X

of finite-dimensional sub-spaces, where Xhℓ
:= P1(τhℓ

) for all ℓ ∈ {0, 1, 2, . . . , L} (see Section 4.1). The finite-
element approximation at level L can be written as the telescopic sum

uhL = uh0 +

L
ℓ=1

(uhℓ
− uhℓ−1),

where each uhℓ
is the solution on the mesh τhℓ

at level ℓ. Therefore, the expected value of uhL is given by

E[uhL ] = E[uh0 ] + E


L

ℓ=1

(uhℓ
− uhℓ−1)


= E[uh0 ] +

L
ℓ=1

E[uhℓ
− uhℓ−1 ]. (22)

In the MLMC FEM, we estimate E[uhℓ
− uhℓ−1 ] by a level dependent number Mℓ of samples. The MLMC estimator

E[u] is defined as

EMLMC[u] := ûhL := EMC[uh0 ] +

L
ℓ=1

EMC[uhℓ
− uhℓ−1 ], (23)

where EMC is the Monte-Carlo estimator defined in (11). Therefore, we find

ûhL =
1

M0

M0
i=1

u(i)
h0

+

L
ℓ=1

1
Mℓ

Mℓ
i=1

(u(i)
hℓ

− u(i)
hℓ−1

). (24)

It is important to note that the approximate solutions u(i)
hℓ

and u(i)
hℓ−1

correspond to the same sample i , but are
computed on different levels of the mesh, i.e., on the meshes Mℓ and Mℓ−1, respectively.

Recalling the two sources of error constituting the MC-FE error, the following result holds for the MLMC-FEM
error.

Theorem 5. Suppose α, β, C00, C0, C1 ∈ R+. Let ûhL be the multi-level Monte-Carlo estimator to approximate the
expectation E[u] of a solution u(·, ω) ∈ X of an SPDE by using a FE solution uhℓ

(·, ω) ∈ Xhℓ
with Mℓ samples in

level ℓ, ℓ ∈ {0, 1, 2, . . . , L} and with mesh size hℓ. Suppose that the convergence order α for the discretization error,
i.e.,

∥E[uhℓ
] − E[u]∥L2(Ω;X) ≤ C1hα

ℓ , (25)

the convergence order β for

σ 2
[uhℓ

− uhℓ−1 ] ≤ C0hβ

ℓ−1, (26)

and assume that the estimate

σ 2
[uh0 ] ≤ C00 (27)

holds. Then the mean-square error of the MLMC estimator satisfies

∥E[u] − ûhL ∥
2
L2(Ω;X)

= O(h2α
L ) + O(M−1

0 ) +

L
ℓ=1

O(M−1
ℓ )O(hβ

ℓ−1). (28)
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Proof. Analogously to the MC case, the MSE is used to assess the accuracy of the MLMC FE estimator. We calculate

MSE := ∥ûhL − E[u]∥
2
L2(Ω;X)

= ∥ûhL − E[u]∥
2
L2(Ω;L2(D))

+ ∥∇ûhL − E[∇u]∥
2
L2(Ω;L2(D))

= ∥ûhL − E[ûhL ]∥
2
L2(Ω;L2(D))

+ ∥E[ûhL ] − E[u]∥
2
L2(Ω;L2(D))

+ ∥∇ûhL − E[∇ûhL ]∥
2
L2(Ω;L2(D))

+ ∥E[∇ûhL ] − E[∇u]∥
2
L2(Ω;L2(D))

= ∥ûhL − E[ûhL ]∥
2
L2(Ω;X)

+ ∥E[ûhL ] − E[u]∥
2
L2(Ω;X)

= σ 2
[ûhL ] + ∥E[ûhL ] − E[u]∥

2
L2(Ω;X)

. (29)

Expanding as in (20), using the relation σ 2
[ûhL ] =

L
ℓ=0 M−1

ℓ σ 2
[uhℓ

− uhℓ−1 ] [13], and finally applying the
assumptions (25)–(27), we obtain the asserted estimate by observing that

MSE = M−1
0 σ 2

[uh0 ] +

L
ℓ=1

M−1
ℓ σ 2

[uhℓ
− uhℓ−1 ] + ∥E[uhL ] − E[u]∥

2
L2(Ω;X)

≤ C00 M−1
0 + C0

L
ℓ=1

M−1
ℓ hβ

ℓ−1 + (C1hα
L)2

= O(M−1
0 ) +

L
ℓ=1

O(M−1
ℓ )O(hβ

ℓ−1) + O(h2α
L ), (30)

which concludes the proof. �

5. Optimal Monte-Carlo and multi-level Monte-Carlo methods

In this section, we first estimate the computational cost of the MLMC FE method to achieve a given accuracy and
compare it with the MC FE method. Based on these considerations, the computational work is then minimized for a
given accuracy to be achieved in order to find the optimal number of samples and the optimal mesh size.

As the model equations (2) are a system of PDEs, the work estimate consists of the sum of the work for all
equations, i.e., the Poisson equation for V and the two drift–diffusion equations for u and v. Therefore, the total
computational work is given by

W := WP + 2WD = WP,a + WP,s + 2WD,a + 2WD,s, (31)

where the index P indicates the Poisson equation, the index D indicates the two drift–diffusion equations, the index a
denotes assembly of the system matrix, and the index s denotes solving the system matrix. We assume that the
necessary number of fixed-point or Newton iterations to achieve numerical convergence is constant; this is supported
by the numerical results. For each of these four parts the work per sample in level ℓ is given by

Wℓ,P,a = µ1h−γ1
ℓ , (32a)

Wℓ,P,s = µ2h−γ2
ℓ , (32b)

Wℓ,D,a = µ3h−γ3
ℓ , (32c)

Wℓ,D,s = µ4h−γ4
ℓ (32d)

with all µk > 0 and γk > 0. Here Mℓ is the number of samples used at level ℓ, and hℓ is the corresponding mesh size.
Therefore the work per sample is given by

Wℓ = Wℓ,P,a + Wℓ,P,s + 2(Wℓ,D,a + Wℓ,D,s). (33)

Analogously, in the case of the vanilla Monte-Carlo method, the computational work is obtained without stratification,
i.e., there is only one level. In this case, we will drop the index ℓ.
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The exponents (and constants) in Eqs. (32) are determined by the algorithm used for assembling the FE matrix in
the case of WP,a and WD,a (see, e.g., [24] for an efficient algorithm) and by the order of the FE discretization in the
case of WP,s and WD,s (see Section 4.2). The constants µi > 0 depend on the implementation.

5.1. The optimal Monte-Carlo finite-element method

In the case of the Monte-Carlo method, there is only one level so that the index ℓ will be dropped. We will choose the
optimal M and h such that the total computational cost W is minimized given an error bound ϵ to be achieved. This
optimization problem with inequality constraints can be solved using the Karush–Kuhn–Tucker (KKT) conditions,
which are generalization of Lagrange multipliers in the presence of inequality constraints.

In view of (32) and (20), the most general problem is the following. We minimize the computational work subject
to the accuracy constraint MSE ≤ ε2 so that the root-mean-square error RMSE ≤ ε. To this end, we solve the
optimization problem

minimize
M,h

f (M, h) := MW

subject to g(M, h) :=
C0

M
+ (C1hα)2

− ε2
≤ 0,

(34)

where the optimization is over M > 1 and h > 0. To simplify the problem, we introduce the new variable θ with
0 < θ < 1 such that

C0

M
= θε2 and


C1hα

2
= (1 − θ)ε2. (35)

By viewing h and M as functions of θ , (34) becomes a one-dimensional convex optimization problem. Due to the
exponents of h and M , it is a nonlinear constraint optimization problem. Our goal is to formulate the inequality
constrained problem as an equality constrained problem to which Newton’s method can be applied. In order to solve
the optimization problem, we use the interior-point method [25,26].

For each µ > 0, we replace the non-negativity constraints with logarithmic barrier terms in the objective
function

minimize
χ,s

fµ(χ, s) := f (χ) − µ


i

ln(si )

subject to g(χ) − s = 0.
(36)

Here χ , a vector, denotes (M, h) and the vectors g and s represent the gi (x) and si , respectively. The si are restricted
to be positive away from zero to ensure that the ln(si ) are bounded. As µ decreases to zero, the minimum of fµ
approaches the minimum of f . After denoting the Lagrange multiplier for the system (36) by y, the system

∇ f (χ) − ∇g(χ)T y = 0,

SY e = µe,

g(χ) − s = 0

is obtained, where S is a diagonal matrix with elements si , e is a vector of all ones, and ∇g denotes the Jacobian of
the constraint g. Now we apply Newton’s method to compute the search directions ∆χ , ∆s, ∆h viaH(χ, y) 0 −A(χ)T

0 Y S
A(x) −I 0

∆χ

∆s
∆h

 =

−∇ f (χ) + A(χ)T y
µe − SY e
−g(χ) + s

 . (37)

The Hessian matrix is given by

H(χ, y) = ∇
2 f (χ) −


i

yi∇
2gi (χ)
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and A(χ) is the Jacobian matrix of the constraint (34). The second equation is used to calculate ∆s. By substituting
into the third equation, we obtain the reduced KKT system

−H(χ, y) A(χ)T

A(χ) SY −1


∆χ

∆s


=


∇ f (χ) − A(χ)T y
−h(χ) + µY −1e


. (38)

Now we use iteration to update the solutions by

χ (k+1)
:= χ (k)

+ α(k)∆χ (k),

s(k+1)
:= s(k)

+ α(k)∆s(k),

y(k+1)
:= y(k)

+ α(k)∆y(k),

where (χ (0), s(0), y(0)) is the initial guess and α(k) is chosen to ensure both that s(k+1) > 0 and the objective function

Ψυ,µ(χ, s) = fµ(χ, s) +
υ

2
∥g(χ) − s∥,

is sufficiently reduced [27]. The parameter υ may increase with the iteration number to force the solution toward
feasibility.

5.2. The optimal multi-level Monte-Carlo finite-element method

For an optimal multi-level Monte-Carlo finite-element method, our goal is to determine the optimal hierarchies
(L , {Mℓ}

L
ℓ=0 , h0, r) which minimize the computational work subject to the given accuracy constraint MSE ≤ ε2. The

optimal number L of levels is also unknown a priori. To this end, we solve the optimization problem

minimize
Mℓ,h0,r

f (Mℓ, h0, r, L) :=

L
ℓ=0

MℓWℓ

subject to g(Mℓ, h0, r, L) :=
C00

M0
+ C0

L
ℓ=1

hβ

ℓ−1

Mℓ

+ (C1hα
L)2

≤ ε2.

(39)

Again, the problem is over Mℓ > 1, h0 > 0, and r > 1. To obtain the optimal number Mℓ of samples for
ℓ ∈ {0, . . . , L}, we calculate

∂

∂ Mℓ

( f + ξ2g) = 0, (40)

where ξ2 is the Lagrange multiplier. This leads to

Mℓ = ξ


Vℓ/Wℓ, (41)

where V0 = C00 and Vℓ = C0hβ

ℓ−1. Similarly to (35), the equations

C00

M0
+ C0

L
ℓ=1

hβ

ℓ−1

Mℓ

= θε2 and (C1hα
L)2

= (1 − θ)ε2 (42)

hold. Hence, the Lagrange multiplier is given by

ξ =


θϵ2

−1 L
ℓ=0


VℓWℓ. (43)

Additionally, according to (42), h0 is calculated by

h0 =

√
1 − θ ε

C1

1/α

r L . (44)
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Thus we arrive at a two-dimensional optimization problem for the unknowns θ and r . Similarly to the vanilla Monte-
Carlo case, we use the interior-point method to solve this nonlinear problem and optimize the hierarchies. In problems
with two or three physical/spatial dimensions, the optimal determination of the mesh sizes hℓ is a crucial factor in the
optimization problem specifically if the exponents γk are greater than 1.

There are two options: one is to choose the hℓ as a geometric progression according to (8). In this case, we solve
the minimization problem (39). The other is to choose the mesh sizes hℓ freely such that they only satisfy the natural
condition

h0 ≥ h1 ≥ h2 ≥ · · · ≥ hL .

We will explore both options in Section 6.
In the second case, when the mesh sizes are freely chosen, we write them as

hℓ :=
h0

rℓ

, ℓ = 1, . . . , L ,

where

rℓ :=

ℓ
i=1

ri and ri ≥ 1. (45)

It is clear that rL ≥ rL−1 . . . ≥ r1 ≥ 1. Here the optimization problem is an (L + 1)-dimensional problem for the
unknowns θ and r1, . . . , rL . The same procedure can be applied to solve the problem.

In the next section, we apply these two approaches to a MLMC FE method and discuss their efficiency.

6. Numerical results

In this section, we present numerical results for the Monte-Carlo and multi-level Monte-Carlo methods for the
drift–diffusion-Poisson system. We also investigate the choices of the FE mesh sizes on each level, namely as
geometric progressions or freely chosen. The random coefficients in the drift–diffusion-Poisson system considered
here stem from a real-world application, namely the effect of random dopants in nanoscale semiconductor devices,
which is of great importance in its own right.

6.1. The leading example

Random-dopant effects are called discrete-dopant fluctuation effects [28–30]. In nanoscale semiconductor devices,
the charge profile of the dopant atoms cannot be validly modeled as a continuum anymore, but the random location
of each dopant needs to be taken into account. This means that each device is a realization of a random process and
corresponds to an event ω. In this manner, the potential and carrier-density fluctuations due to the discreteness and
randomness of the dopants are clearly captured.

Here the silicon lattice is doped with boron as the impurity atoms (red circles in Fig. 1). The domain D ⊂ R2

is depicted in Fig. 2. The thickness of the oxide layer is 8 nm, the thickness of the nanowire is 40 nm, its width
is 60 nm and the nanowire length is 60 nm. Regarding the geometry, Dirichlet boundary conditions are used at the
contacts with a back-gate voltage of −1 V (at the bottom of the device) and an electrode voltage of 0 V (at the
top of the device). Zero Neumann boundary conditions are used everywhere else. The relative permittivities in the
subdomains are ASi = 11.7, Aox = 3.9, Aliq = 78, and Adop = 4.2. The number of dopants placed randomly in the
device corresponds to a doping concentration of 4 · 1016 cm−3. According to its volume, the silicon subdomain hence
contains 6 negative impurity atoms when Cdop = 5 · 1015 cm−3 and 600 dopants when Cdop = 5 · 1017 cm−3.

Regarding the doping concentration Cdop, the discrete dopants are approximated by Gaussian distributions

Cdop(x) :=


j

C j
2πσ 2

3/2 exp


−

(x − x j )
2

2σ 2


,

where σ is the influence parameter, C j is the charge of the j th dopant atom, and x j its position [31].
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Fig. 2. Meshes for the random distribution of impurity atoms (red circles) in a nanowire field-effect sensor for levels ℓ = 0 (left) and ℓ = 1 (right),
where h0 = 4.02, r = 2, and Cdop = 4 × 1016 cm−3. Additionally, oxide subdomain (Dox), transducer (DSi) and the electrolyte (Dliq) are
depicted with blue, black and green meshes respectively. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 2 shows a cross section of the domain in the longitudinal direction. The longitudinal direction accounts for
the transport of charge carriers through the nanowire (black meshes) connecting the source and drain contacts. At
least two spatial dimensions are required for this type of problem: the potentials applied at the top and bottom require
one dimension and the transport between the source and drain contacts requires another one. The drawback of 3D
simulations is the large computational cost. In order to reduce the overall computational cost, a two-dimensional
implementation was chosen for the numerical results presented here. A three-dimensional implementation would of
course be a more faithful idealization of the three-dimensional reality, not leading to a constant, infinite extension of
the two dimensions into three.

In order to solve the system of equations, we use Scharfetter–Gummel iteration. In spite of the quadratic
convergence of Newton’s method for the system, Scharfetter–Gummel iteration has advantages for the problem
at hand. First of all, Scharfetter–Gummel iteration is much less sensitive to the choice of the initial guess than
Newton’s method. Another important feature is the reduced computational effort and memory requirement, since
in each iteration it requires the successive solution of three much smaller elliptic problems.

The calculations are performed using MATLAB version 2015a on an Intel Core i5-4430 3.00 GHz 4-core processor
with 8 GB of main memory.

6.2. The computational work

As the first step, we calculate the coefficients in the expressions (32) for the computational work. To that end, we
solve the system for various mesh sizes and measure elapsed wall-clock time spent on matrix assembly and solving
the resulting system, both for the Poisson equation and the drift–diffusion equations. Fig. 3 shows the results for the
coefficients in the expressions for the computational work.

The coefficients α and C1 in the FE discretization error

∥E[V − V̂h]∥X + ∥E[u − ûh]∥X + ∥E[v − v̂h]∥X ≤ C1hα

of the system are given in Fig. 4. The exponent α = 1.926 found here agrees very well with the order of the
discretization used here, i.e., P1 finite elements.

For the statistical error, we determine the coefficients in the inequality

(σ [∆Vh0 ] + σ [∆Vhℓ
]) + (σ [∆uh0 ] + σ [∆uhℓ

]) + (σ [∆vh0 ] + σ [∆vhℓ
]) ≤ C00 + C0hβ

ℓ−1.

Here C00 = 0.07 and the rest of the coefficients are shown in Fig. 4.

6.3. Optimization

Having determined the coefficients in the expressions for the computational work, it is now possible to numerically
solve the optimization problems. As described in Section 5, we apply an iterative interior-point method to optimize
both the number of samples and mesh sizes.
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Fig. 3. Computational work for matrix assembly (top) and solving the system (bottom), both for the Poisson equation (left) and the drift–diffusion-
equations (right).

Fig. 4. Discretization error (left) and statistical (right) error as a function of h.

Table 1
Optimal MC FE method parameters for various given error tolerances.

ε 0.1 0.05 0.02 0.01 0.005 0.002 0.001
h 0.348 0.243 0.151 0.105 0.074 0.046 0.032
M 12 46 282 1 130 4 519 28 268 113 130

6.3.1. Monte Carlo

First of all, we solve the optimization problem (34) for the MC-FE method. Because there is only one level, it is
straightforward to solve. The optimal values for the MC FE method are summarized in Table 1 for given ε.
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Fig. 5. The minimized computational work for the MLMC-FE method as a function of the number of levels and as a function of the given error
tolerance. The results for a geometric progression for h (left) and general h (right) are shown. The number of levels yielding the minimal overall
computational work is indicated by red circles. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 6. Comparison between the two different approaches to MLMC FE method for ε = 0.015.

6.3.2. Multi-level Monte Carlo
In the MLMC-FE method, determining the optimal number of levels is an important part of the calculation. This

is achieved here by solving the optimization problem for several levels starting with a single level and noting that the
computational work increases above a certain number of levels. More precisely, we solve the optimization problem
(39) for 0 ≤ L ≤ 7 levels as well as for various given error bounds.

Since the number of samples in each level is a continuous variable in the optimization problem, the optimal number
of samples is – in general – not an integer and hence we choose ⌈Mℓ⌉, ℓ = 0, . . . , L , as the final numbers of levels.

The results of the optimization problems provide insight into the MLMC procedure. Fig. 5 shows the minimized
computational work as a function of the number of levels and as a function of the given tolerance. It shows that for
smaller tolerances ε, a larger L is required.

In Fig. 6, the two approaches to multi-level Monte Carlo are compared, namely choosing the hℓ as a geometric
progressions or freely. Due to generality of the second option, the total work when choosing the hℓ freely is lower
compared to the first option. However, only a small reduction in computational cost is achieved by the choosing
meshes freely. The results for both approaches to MLMC-FEM are summarized in Tables 2 and 3 for various given
error tolerances. Both figures show additionally that more than two levels (i.e., L > 2) only yield a relatively small
reduction in computational cost even for small tolerance levels. In practice, it should hence be considered that the
interior-point method requires more time as the number of levels increases.

6.3.3. Comparison
Finally, as Fig. 7 shows, the computational work for the multi-level Monte-Carlo method is approximately two

times lower than the one for the Monte-Carlo method for larger tolerance levels such as ε = 0.1. The effectiveness of
the MLMC-FE method is more pronounced for smaller error bounds; for ε = 0.001, the computational work is about
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Table 2
Optimal levels for the MLMC-FE method with hℓ chosen as a geometric progression for given error tolerances ε.

ε h0 r M0 M1 M2 M3 M4

0.1 0.5171 1.7381 16 4 – – –
0.05 0.4433 2.1319 63 9 – – –
0.02 0.4620 2.0079 471 70 11 – –
0.01 0.4222 2.2940 1 882 207 22 – –
0.005 0.4515 2.0765 8 534 1 167 161 23 –
0.002 0.4549 2.0033 58 203 8 536 1296 197 30
0.001 0.4407 2.1669 232 299 29 141 3575 438 54

Table 3
Optimal levels for the MLMC-FE method with general hℓ for given error tolerances ε.

ε h0 r1 r2 r3 r4

0.1 0.5171 1.738 – – –
0.05 0.4433 2.131 – – –
0.02 0.4618 2.020 1.990 – –
0.01 0.4201 2.270 2.320 – –
0.005 0.4507 2.080 2.070 2.060 –
0.002 0.4587 2.038 2.017 1.990 1.950
0.001 0.4412 2.140 2.157 2.170 2.196

ε M0 M1 M2 M3 M4

0.1 16 4 – – –
0.05 63 9 – – –
0.02 471 69 11 – –
0.01 1 884 210 22 – –
0.005 8 531 1 162 160 22 –
0.002 58 100 8 327 1221 185 29
0.001 232 539 29 564 3701 455 55

Fig. 7. Comparison of total computational work for MC-FEM and the two approaches to MLMC-FEM for various given tolerances.

a factor 102 lower than the Monte-Carlo work. The results agree with Giles’ standard complexity theorem [13] in the
sense that the estimated exponents α, β, and γ satisfy the assumption of the theorem, i.e., α ≥

1
2 min(β, γ ). Therefore,

according to the theorem, the computational cost of the MLMC-FEM is O(ε−2). Additionally, according to Fig. 7,
the total cost of the MC-FEM is O(ε−2−γ /α), which agrees with [15]. The optimal distribution of the samples among
the levels in the multi-level method leads to more evaluations in the first levels (which are cheaper) and to fewer
evaluations in the higher levels. On the other hand, to satisfy the first constraint of (34), the Monte-Carlo method
needs a smaller mesh size compared to the multi-level method, which greatly increases the total computational work
although the total number of samples is lower.
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7. Conclusions

In this work, we considered the stochastic drift–diffusion-Poisson equations as the main model equation for
describing transport in random environments with many applications. We presented existence and local uniqueness
theorems for the weak solution of the system. We also developed MC- and MLMC-FE methods for this system of
stochastic PDEs.

Additionally, we balanced the various parameters in the numerical methods by viewing this problem as a global
optimization problem. The goal is to determine the numerical parameters such that the computational work to achieve
a total error, i.e., discretization error plus statistical error, less than or equal to a given error tolerance is minimized.

Although the exponential terms in the constraints make the optimization problems nonlinear, the optimization
problems can be solved by an interior-point method with sufficient iterations. The solution of the constrained
optimization problem leads to optimal (M , h) in the case of the vanilla MC method and to hierarchies consisting
of (L , {Mℓ}

L
ℓ=0 , h0, r) in the case of the MLMC method.

Moreover, we investigated two different options to the mesh refinement in the multi-level method. Although less
computational effort is needed by choosing the mesh sizes freely, the difference is negligible. In the comparison of the
MC with the MLMC method, the MLMC method was found to decrease the total computational effort by four orders
of magnitude for small error tolerances. The speed-up becomes better as the error tolerance decreases.
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