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EXISTENCE AND LOCAL UNIQUENESS FOR THE
STOKES-NERNST-PLANCK-DRIFT-DIFFUSION-POISSON SYSTEM

MODELING NANOPORE AND NANOWIRE SENSORS∗

LEILA TAGHIZADEH† AND CLEMENS HEITZINGER‡

Abstract. This work gives analytical results for a system of transport equations which is the un-
derlying mathematical model for nanopore sensors and for all types of affinity-based nanowire sensors.
This model consists of the Poisson equation for the electrostatic potential ensuring self-consistency and
including interface conditions stemming from a homogenized boundary layer, the drift-diffusion equa-
tions describing the transport of charge carriers in the sensor, the Nernst-Planck equations describing
the transport of ions, and the Stokes equations describing the flow of the background medium water.
We present existence and local uniqueness theorems for this stationary, nonlinear, and fully coupled
system. The existence proof is based on the Schauder fixed-point theorem and local uniqueness around
equilibrium is obtained from the implicit-function theorem. The maximum principle is used to obtain
a-priori estimates for the solution. Due to the multiscale problem inherent in affinity-based field-effect
sensors, a homogenized equation for the potential with interface conditions at a surface is used.

Keywords. Stokes-Nernst-Planck-drift-diffusion-Poisson system; nanowire sensors; nanopore sen-
sors; existence; local uniqueness.

AMS subject classifications. 82D80; 76R50; 35Q20; 82D37; 62P30.

1. Introduction

The objective of this work is to prove existence and local uniqueness of the solution
of a system of partial differential equations that is fundamental for the mathematical
modeling of field-effect sensors and for nanopore sensors in a self-consistent manner. We
start with a short description of the applications covered by the system of equations in
order to describe the physical system and to explain the root of the model equations.

Field-effect biosensors based on silicon nanowires have been realized in experiments
in recent years [39, 40, 48], and field-effect gas sensors based on metal-oxide nanowires
have been demonstrated as well [15, 26, 27]. The common working principle of these
affinity-based sensors is that the target molecules to be detected change the charge
concentration at the sensor surface, which in turn modulates the conductance of the
semiconducting nanowire. The currents through the nanowires are recorded and indicate
the amount of target molecules present.

A schematic diagram of a nanowire field-effect biosensor is shown in Figure 1.1. The
main advantage of this type of affinity-based sensor compared to currently employed
technology is its label-free operation; no fluorescent or radioactive markers are required.
Further advantages are high sensitivity, real-time operation, and high selectivity. The
concept is a very general one, since any DNA oligomers, RNA oligomers, and antigens
with known antibodies can be detected. Therefore there is a wide range of applications
including biomedicine, biotechnology, and the food and drug industries.

In the case of gas sensors, reducing or oxidizing gases react with the surface of the
nanowire in reactions that are not yet fully understood. These reactions result in charge
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transfer from or to the surface of the nanowire. Again, this change in charge concentra-
tion modulates the current through the nanowire. Applications include the detection of
toxic gases such as carbon monoxide and hydrogen sulfide, which are important, e.g., in
environmental monitoring and process technology. Despite the experimental progress in
recent years, the detection mechanisms are not completely understood and quantitative
models are necessary in order to gain insight into the physical processes.
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Fig. 1.1. Schematic diagram of a nanowire field-effect sensor (top) and a z-y cross section
(bottom), displaying the different subdomains as well as the source and drain contacts.

The third application governed by the system of equations investigated here are
nanopore sensors. The main application areas of nanopore sensors are DNA sequencing,
protein sequencing, and single-molecule detection following the principle of a Coulter
counter. Notable experimental progress towards the repeatable fabrication of well-
defined nanopores has been made [7,11–13,17,23,24,28–30,33,38,45]. Overviews of this
field can be found in [8,25,46].

A schematic diagram of a nanopore device is shown in Figure 1.2. The aqueous
solution on both sides of the membrane with the nanopore contains anions and cations.
An electric potential is applied across the membrane and results in ionic currents through
the nanopore. The ionic currents are measured. When a target molecule translocates
the nanopore, the ionic currents are reduced as in the detection mechanism of a Coulter
counter. In order to quantify the on- and off-currents as well as the forces on the target
molecules, it is therefore necessary to understand the transport of the ions and of the
background medium, i.e., water.

Mathematical models relevant to the quantitative understanding of field-effect sen-
sors have already been studied, e.g., in [1, 20, 22, 34, 47]. Mathematical problems stem-
ming from the modeling and simulation of nanowire field-effect sensors have been solved
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Fig. 1.2. Schematic of a nanopore sensor with typical contacts for measuring currents. The ionic
current between two compartments is measured in this manner.

recently. The multiscale problem inherent to this sensor type was solved in [19], and
existence and uniqueness for the stationary homogenized model, excluding the Stokes
equation, was shown in [2]. A stochastic version of the multiscale problem was solved
in [21]. A parallel numerical algorithm was developed in [3]. Based on these results,
realistic nanowire biosensors were simulated and optimized [4, 5, 10, 35]. The surface
reactions at gas sensors were investigated in [41–43], and noise and fluctuations due to
surface processes were modeled and simulated in [44]. In the present work, we extend
the drift-diffusion-Poisson system with interface conditions [2] stemming from homoge-
nization [19] by a model for the liquid, i.e., the Stokes-Nernst-Planck equations.

The predominant model for nanopores is still the drift-diffusion-Poisson system,
which does not take into account the flow of the background medium. The drift-
diffusion-(Navier-)Stokes-Poisson system was theoretically investigated in [37]. The
main difference to the present results is that the present ones are more general, holding
for nanowire sensors and nanopores, and that they include interface conditions at ma-
terial interfaces due to homogenized surface layers. The present results also include a
third subdomain to cover realistic devices, and the uniqueness proofs here are based on
the implicit-function theorem.

The rest of this paper is organized as follows. In Section 2, the model equations
are described in detail. In Section 3, necessary assumptions are presented and weak
solutions of the system are analyzed. In Section 4, our main results are presented and
existence and local uniqueness of the weak solution are proved. Finally, the conclusions
are drawn in Section 5.

2. The model equations
In this section, we present the system of equations which models nanoscale devices

including nanowire and nanopore sensors. First, we describe the geometry of the de-
vices including the subdomains, their equations, and the boundary conditions in each
subdomain. Then the system of equations is summarized in the last subsection of this
section.
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2.1. The subdomains. We begin by describing the geometry of the devices
(see Figures 1.1 and 1.2). The domain is Ω⊂R3 and consists of three subdomains: the
semiconductor (silicon) ΩSi, the dielectric (silicon dioxide) Ωox, and the electrolyte Ωliq.

These subdomains contain different types of charge carriers and have different physi-
cal properties, and hence they are governed by different equations. The Poisson equation
for the electrostatic potential V provides self-consistency and is solved on the whole do-
main Ω. In the first subdomain ΩSi, the drift-diffusion equations are used to model
charge transport. In the second subdomain Ωox, there are no charge carriers, so that
only the Poisson equation holds. In the third domain Ωliq – the aqueous solution con-
taining cations and anions – we consider an isothermal, incompressible, and viscous
Newtonian fluid of uniform and homogeneous composition with cations and anions. In
this subdomain, the Stokes-Nernst-Planck-Poisson system holds. (In the biological lit-
erature, it is customary to call the Fokker-Planck or drift-diffusion equations without
recombination the Nernst-Planck equations.)

The boundary layer at the sensor surface is responsible for recognition of the analyte
molecules and therefore of great importance. In the case of biosensors, solving a homog-
enization problem gives rise to two interface conditions for the Poisson equation [19].
These interface conditions depend on the surface-charge density and the dipole-moment
density of the boundary layer. In the case of gas sensors, the model for the surface
charge is a system of ODE that models surface reactions [14,41]. Both of these surface
models are included in the following and consequently the results hold for both bio- and
gas sensors.

In the case of nanopores, there are charging effects of the surface. They result in
a constant charge concentration at the manifold between Ωox and Ωliq. Some nanopore
sensors contain a recognition element (see Figure 1.2) that is also governed by the drift-
diffusion equations.

Throughout the rest of the paper, we assume that the domain Ω⊂R3 is bounded
and convex. In summary, the domain Ω⊂Rd is partitioned into three subdomains ΩSi,
Ωox, and Ωliq, and the manifold Γ between Ωox and Ωliq either in nanowire or nanopore
sensors. The subdomains and corresponding equations are shown in Figures 1.1 and
1.2. Furthermore, Dirichlet boundary conditions are applied at the contacts, and no-
flux (Neumann) conditions are used on the other boundaries.

2.2. The domain ΩSi (semiconductor). The first subdomain ΩSi consists of
the nanowire, a semiconductor. Here the drift-diffusion-Poisson equations

−∇·(A∇V ) =Cdop +p−n, (2.1a)

∇·Jn=R(n,p), (2.1b)

∇·Jp=−R(n,p), (2.1c)

Jn=Dn∇n−µnn∇V, (2.1d)

Jp=−Dp∇p−µpp∇V, (2.1e)

are used to model the transport of electrons and holes, where V is the electrostatic
potential, A is the permittivity, and Cdop is the doping concentration. The variables n
and p are the concentrations of electrons and holes, respectively, Jn and Jp are their
current densities, Dn and Dp are the diffusion coefficients, µn and µp are the mobilities
of electrons and holes, and R is the recombination rate. We use the Shockley-Read-Hall
recombination rate

R(n,p) :=
np−n2

i

τp(n+ni)+τn(p+ni)
,
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where ni is the intrinsic charge density and τn and τp are the lifetimes of the free
carriers. Under reasonable assumptions, the results here also hold for other choices of
the recombination model.

Furthermore, we assume that the Einstein relations Dn=UTµn and Dp=UTµp
hold, where UT is the thermal voltage UT :=kBT/q with a value of ≈0.025V for silicon
at room temperature (q>0 is the elementary charge).

In the Slotboom variables u and v, which are defined by

n=:nie
V/UT u, (2.2a)

p=:nie
−V/UT v, (2.2b)

the recombination rate becomes

R :=ni
uv−1

τp(eV/UT u+1)+τn(e−V/UT v+1)
.

Then, using the Einstein relations, the system (2.1) becomes

−∇·(A∇V ) =ni(e
−V/UT v−eV/UT u)+Cdop,

UT∇·(µneV/UT∇u) =
uv−1

τp(eV/UT u+1)+τn(e−V/UT v+1)
,

UT∇·(µpe−V/UT∇v) =
uv−1

τp(eV/UT u+1)+τn(e−V/UT v+1)
.

The boundary ∂Ω is partitioned into Dirichlet and Neumann boundaries. The
Dirichlet boundary conditions

V |∂ΩD
=VD, u|∂ΩSi,D

=uD, and v|∂ΩSi,D
=vD (2.3)

hold on the Dirichlet boundary ∂ΩD and are chosen such that the Ohmic contacts are
charge neutral.

To determine the potential and the concentrations on the boundary ∂ΩSi,D, we
make these assumptions.

(1) The total space charge vanishes on ∂ΩSi,D, i.e.,

pD−nD+Cdop = 0. (2.4)

(2) The densities are in equilibrium on ∂ΩSi,D, i.e.,

pDnD =n2
i . (2.5)

(3) The boundary values for the potential are the combination of the built-in potential
Vbi and the applied potential U , i.e.,

VSi,D =U(x)+Vbi(x).

Clearly, in thermal equilibrium, we have U = 0. Furthermore, using (2.2), we define

uD(x) =n−1
i e−Vbi(x)/UT nD(x), (2.6a)

vD(x) =n−1
i eVbi(x)/UT pD(x), (2.6b)
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where

nD(x) =
1

2

(
Cdop(x)+

√
C2

dop(x)+4n2
i

)
,

pD(x) =
1

2

(
−Cdop(x)+

√
C2

dop(x)+4n2
i

)
.

These expressions can be found by substituting (2.5) into (2.4) so that charge neu-
trality at the contacts is ensured.
Therefore, the built-in potential is given by

Vbi(x) =UT ln

(
nD(x)

niuD(x)

)
=UT ln

 1

uD(x)

(Cdop(x)

2ni
+

√
C2

dop(x)

4n2
i

+1
)

using (2.6).

The zero Neumann conditions

∇V ·n= 0, ∇u ·n= 0, and ∇v ·n= 0 on ∂ΩSi,N , (2.7)

hold on the Neumann part ∂ΩN,Si of the boundary as well.

2.3. The surface (interface conditions). The fast varying spatial structure of
the charge concentration in the boundary layer between the liquid and the surface gives
rise to a multiscale problem, whose deterministic version was solved by homogenization
[19]. For the sake of notational simplicity, we introduce a local coordinate system such
that the normal vector of the manifold Γ, i.e., the interface between Ωliq and Ωox, points
in the positive x-direction and is located at x= 0. The rest of the coordinates are parallel
to the interface and are denoted by y.

The main result in [19] states that the fast varying charge concentration at the
manifold Γ can be replaced by two interface conditions that depend only on the slow
variable. Even in the absence of a homogenization problem, the jump in the permittiv-
ity A gives rise to two continuity conditions because of physical reasons: The continuity
of the potential and the continuity of the electric displacement field must hold. In sum-
mary, we can replace the fast oscillating charge in the boundary layer at the manifold Γ
between Ωliq and Ωox by the two interface conditions

V (0+,y)−V (0−,y) =α(y), (2.8a)

A(0+)∂xV (0+,y)−A(0−)∂xV (0−,y) =γ(y) (2.8b)

after homogenization, where α and γ are given by the dipole-moment and the surface-
charge densities of the boundary layer. The functions α and γ in the interface conditions
are given by the microscopic models Mα(V ) and Mγ(V ) for the dipole-moment density
and the surface-charge density of the boundary layer as functions of the potential V . The
microscopic models Mα and Mγ have been realized, e.g., by Metropolis Monte-Carlo
simulations [10], by Poisson-Boltzmann calculations [18], and by systems of ordinary
differential equations for surface reactions [14,41].

As mentioned above, in [10] a Metropolis Monte-Carlo (MMC) algorithm was devel-
oped for the simulation of biomolecules and free ions in the constant-voltage ensemble.
In this method, a simulation box is considered including an electrolyte and target (bio-
)molecules fixed at the charged bottom of the box as well as free ions. A simulation in
the MMC constant-voltage ensemble starts with a random state of the system, i.e., the
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locations of all ions are random. A new state of the system is generated by randomly
adding or deleting a pair of ions, changing the position of an ion while avoiding overlaps,
and by transferring a random amount of charge between the walls. Then the potential
energy is calculated for each state of the system. The interactions between all pairs of
charge types, i.e., the ion-ion, the ion-biomolecule, the ion-plate, the biomolecule-plate,
and the plate-plate interactions, are included in this calculation and the long-range con-
tributions of the Coulomb forces are taken into account via integration over infinitely
many periodically repeated cells. If the movement of a charge reduces the energy of
the system, the new state is unconditionally accepted, while otherwise the movement
is allowed only with a certain probability that depends exponentially on the energy
difference. Finally, the surface-charge density γ and the dipole-moment density α are
calculated as integrals over the charge concentration in the simulation cell [6].

2.4. The domain Ωox (oxide). In Ωox, there are no charges and the Poisson
equation is simply

−∇·(A∇V ) = 0.

No other equations are solved on Ωox.

2.5. The domain Ωliq (liquid). In the domain Ωliq of the liquid, we consider
two types of charge carriers, namely positively and negatively charged ions, which are
modeled by their number densities c+ and c−. In the remainder of the paper, the
notation c± is used to refer to both of them simultaneously.

Their spatially inhomogeneous concentrations generate an electric field and an elec-
tric force in the liquid. An electroosmotic flow develops which, on the other hand, feeds
back on the particles. This leads to a complicated interplay between electrophoretic
movement and electroosmotic flow in a varying electric field. The drift-diffusion-Stokes-
Poisson system models such phenomena in a self-consistent manner based on these three
conservation laws.

• The electric field E satisfies Gauss’s law with the moving particles as the free
charge density. This couples the electric field to the number densities c± yielding
the Poisson equation.

• The velocity field u of the fluid conserves mass and momentum (Stokes equa-
tions), which relates the liquid flux to the gradient of the pressure P . In the
momentum balance, an electric body force enters, which couples the fluid flow
to the electrostatic field and the number densities c±.

• The evolution of the number densities c± of the charged particles are governed
by transport equations such as the drift-diffusion or Nernst-Planck equations,
which can be viewed as the mass-balance equations for the respective particle
species. In the mass flux, a convective and an electric drift term are present.
This couples the number densities c± to the fluid flow and the electric field.

The Poisson-Nernst-Planck part for our model equations are the system

−∇·(A∇V ) = c+−c−, (2.9a)

−∇·J−= 0, (2.9b)

∇·J+ = 0, (2.9c)

J−=D−∇c−−µ−c−∇V −c−u, (2.9d)

J+ =−D+∇c+−µ+c+∇V +c+u, (2.9e)
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where A is the permittivity, V is the electrostatic potential, c− and c+ are the concen-
trations of anions and cations, respectively, D− and D+ are their diffusion coefficients,
µ− and µ+ are their mobilities, and u is the velocity field of the liquid. The two terms
c−u and c+u in (2.9d) and (2.9e) are nonstandard and provide the link to the Stokes
equation.

The boundary conditions

c±= c±D on ∂ΩD,liq and J± ·n= 0 on ∂ΩN,liq (2.10)

hold, where n is the normal vector and

J± :=∓D±∇c±−µ±c±∇V ±uc± (2.11)

are the current densities.
The Stokes equations in the present model are

−ρ∆u+∇P =−q(c+−c−)∇V, (2.12a)

∇·u= 0, (2.12b)

where ρ is the viscosity and P is the pressure of the liquid. The Stokes equations treat
the liquid as an incompressible flow of a Newtonian fluid which flows slowly. Equation
(2.12b) is the mass-continuity equation.

The Dirichlet boundary condition is the no-slip condition

u= 0 on ∂ΩD,liq (2.13)

on fluid-solid interfaces. This implies that the flow vanishes at the boundary. No
boundary condition is given for P . Since both pairs (u,P ) and (u,P +const.) satisfy
the Stokes Equations (2.12)–(2.13), P is determined only up to a constant by the Stokes
Equations (2.12) and the boundary condition (2.13) [16].

2.6. The system of equations. In summary, the system of equations consid-
ered here are what we call the drift-diffusion-Nernst-Planck-Stokes-Poisson system with
interface conditions, i.e., the drift-diffusion system (2.1) with the interface conditions
(2.8), the Nernst-Planck system (2.9), and the Stokes Equations (2.12), all of which
are coupled self-consistently by the Poisson equation. This system describes general
nanowire sensors (see Figure 1.1) as well as general nanopore sensors (see Figure 1.2)
even including transducers around the nanopore.

The model equations hence are the system

−∇·(A∇V ) =Cdop−ni(eV/UT u−e−V/UT v) ∀x∈ΩSi, (2.14a)

−∇·(A∇V ) = 0 ∀x∈Ωox, (2.14b)

−∇·(A∇V ) = c+−c− ∀x∈Ωliq, (2.14c)

−ρ∆u+∇P =−(c+−c−)∇V ∀x∈Ωliq, (2.14d)

∇·u= 0 ∀x∈Ωliq, (2.14e)

−∇·(D±∇c±)∓µ±∇·(c±∇V )+(u ·∇)c±= 0 ∀x∈Ωliq, (2.14f)

UTni∇·(µneV/UT∇u) =ni
uv−1

τp(eV/UT u+1)+τn(e−V/UT v+1)
∀x∈ΩSi, (2.14g)

UTni∇·(µpe−V/UT∇v) =ni
uv−1

τp(eV/UT u+1)+τn(e−V/UT v+1)
∀x∈ΩSi, (2.14h)
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V (0+,y)−V (0−,y) =α(y) ∀x∈Γ, (2.14i)

A(0+)∂xV (0+,y)−A(0−)∂xV (0−,y) =γ(y) ∀x∈Γ, (2.14j)

α=Mα(V ) ∀x∈Γ, (2.14k)

γ=Mγ(V ) ∀x∈Γ, (2.14l)

V =VD ∀x∈∂ΩD, (2.14m)

n ·∇V = 0 ∀x∈∂ΩN , (2.14n)

u=uD, v=vD ∀x∈∂ΩD,Si, (2.14o)

n ·∇u= 0 =n ·∇v ∀x∈∂ΩN,Si, (2.14p)

u= 0 ∀x∈∂Ωliq, (2.14q)

c±= c±D ∀x∈∂ΩD,liq, (2.14r)

J± ·n= 0 ∀x∈∂ΩN,liq. (2.14s)

3. Assumptions and weak solutions
The coefficients and boundary conditions in (2.14) must satisfy the following as-

sumptions.

Assumptions 3.1.
(1) The bounded domain Ω⊂R3 has a C2 Dirichlet boundary ∂ΩD, where |∂ΩD|>

0. The Neumann boundary ∂ΩN , where |∂ΩN |>0, consists of C2 segments. The
Lebesgue measure of the Dirichlet boundary ∂ΩD is nonzero. The C2-manifold Γ⊂Ω
splits the domain Ω into two nonempty domains Ω+ = Ωox∪ΩSi and Ω−= Ωliq so
that meas(Γ∩∂Ω) = 0 and Γ∩∂Ω⊂∂ΩN hold.

(2) The coefficient functions A(x), µn(x), and µp(x) are uniformly elliptic and bounded
functions of position x with the properties that

0<A−≤ essinfx∈ΩA(x)≤‖A(x)‖L∞(Ω)≤A+<∞ a.e. in Ω

and

0<µ−n ≤µn(x)≤µ+
n <∞,

0<µ−p ≤µp(x)≤µ+
p <∞

a.e. in ΩSi. Furthermore, A(x)|Ω+ ∈C1(Ω+,R3×3), A(x)|Ω− ∈C1(Ω−,R3×3), and
µp(x),µn(x)∈C1(ΩSi,R3×3) hold. For the data, the inclusions f(x)∈L∞(Ω),
VD(x)∈H1/2(∂Ω)∩L∞(Γ), c±D(x)∈H1/2(∂Ωliq) and uD,vD(x)∈H1/2(∂ΩSi) hold.
Similar assumptions hold for coefficients in Ωliq: the coefficients ρ, µ+ and µ− are
uniformly elliptic and bounded.

(3) The doping concentration Cdop(x) is bounded above and below and we define

C := inf
x∈Ω

Cdop(x)≤C(x)≤ sup
x∈Ω

Cdop(x) =:C.

(4) There are constants K≥1, C+, and C− in R+ satisfying

1

K
≤uD(x)≤K ∀x∈∂ΩSi,D,

1

K
≤vD(x)≤K ∀x∈∂ΩSi,D,

C−≤ c+D(x)≤C+ ∀x∈∂Ωliq,D,

C−≤ c−D(x)≤C+ ∀x∈∂Ωliq,D.
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(5) The microscopic models Mα and Mγ depend continuously in H1(Ω) on the po-
tential V (x). For every potential V (x) in H1(Ω)∩L∞(Ω), the inclusions α(y) =
Mα(V (y))∈H1/2(Γ)∩L∞(Γ) and γ(y) =Mγ(V (y))∈L∞(Γ) hold.
To write the weak formulation of the boundary-value problem (2.14), we consider

the more general form

−∇·(A∗(x)∇w)+g(x,w) =f ∀x∈Ω\Γ, (3.1a)

w=wD ∀x∈∂ΩD, (3.1b)

n ·∇w= 0 ∀x∈∂ΩN , (3.1c)

w(0+,y)−w(0−,y) =α(y) ∀x∈Γ, (3.1d)

A∗(0+)∂xw(0+,y)−A∗(0−)∂xw(0−,y) =γ(y) ∀x∈Γ. (3.1e)

The system (3.1) is a generalization of the Poisson equation with interface conditions.
Here (3.1a) includes (2.14a)–(2.14c) if A∗ and w are replaced by the permittivity A and
potential V , respectively, and it includes (2.14g) and (2.14h) if A∗ and w are replaced
by µne

V/UT and u, or µpe
−V/UT and v, respectively. Uniform ellipticity holds in each

of these cases per Assumptions 3.1. In both cases, g and f denote the nonlinear and
linear zero-order terms in these equations.

In order to give the weak formulations and to define weak solutions, we intro-
duce the underlying function spaces. We suppose 1≤p≤∞ and denote the standard
Lebesgue spaces for Rd-valued functions by Lp(Ω;Rd), in particular Lp(Ω) :=Lp(Ω;R)
and the standard Sobolev space by W 1,p(Ω;Rd), in particular H1(Ω;Rd) :=W 1,2(Ω;Rd).
Moreover W 1,p(Ω) :=W 1,p(Ω;R), in particular H1(Ω) :=W 1,2(Ω;R). We use the Hilbert
space H1

0 (Ω) :=W 1,2
0 (Ω), where the subscript 0 denotes functions with vanishing traces.

We define the Hilbert space

H1
g (Ω) :=

{
w∈H1(Ω) |Tw=g

}
(3.2)

as the solution space of admissible V , u, v, c+, and c−. The trace operator T is well-
defined and continuous from H1(Ω) onto H1/2(∂Ω) for the Lipschitz domain Ω. It
is defined such that Tw=g, where g is Dirichlet lift of wD :=w|∂ΩD

. If g vanishes
everywhere, we obtain the test space

H1
0 (Ω) =

{
w∈H1(Ω) |Tw= 0

}
. (3.3)

We additionally define

H1
div,0(Ω;R3) :=

{
w∈L2(Ω;R3) |∇·w∈L2(Ω) ∧ u ·n= 0 on ∂Ω

}
as the solution space of admissible velocity, and

L2
0(Ω) :=

{
w∈L2(Ω) |

∫
Ω
w= 0

}
as the test spaces of admissible pressures. Vanishing averages are enforced in order to
make the solution unique. Multiplying the Equations (3.1) by a test function φ1∈H1

0 (Ω)
and integrating by parts, we obtain the weak formulation

a1(w,φ1) = `1(φ1) ∀φ1∈H1
0 (Ω), (3.4)

where the bilinear form a1(·,·) : H1
g (Ω)×H1

0 (Ω)→R and the functional `1(·) : H1
0 (Ω)→

R are defined by

a1(w,φ1) :=

∫
Ω

A∗∇w ·∇φ1 +

∫
Ω

g(w)φ1
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and

`1(φ1) :=

∫
Ω

fφ1 +

∫
Γ

γφ1.

For w :=V ∈H1
VD

(Ω) we recover the Poisson equation and for w :=u∈H1
uD

(ΩSi) or w :=
v∈H1

vD (ΩSi) with γ= 0, we recover the transport equations.
To find the weak formulation of the Stokes equations

−ρ∆u+∇P =−q(c+−c−)∇V ∀x∈Ωliq, (3.5a)

∇·u= 0 ∀x∈Ωliq, (3.5b)

u= 0 ∀x∈∂ΩD,liq (3.5c)

and the Nernst-Planck equations

−∇·(D±∇c±)∓µ±∇·(c±∇V )+(u ·∇)c±= 0 ∀x∈Ωliq, (3.6a)

c±= c±D ∀x∈∂ΩD,liq, (3.6b)

J± ·n= 0 ∀x∈∂ΩN,liq, (3.6c)

we multiply the Equations (3.5a) and (3.5b) by test functions v∈H1
div,0(Ω;R3) =:X and

Q∈L2
0(Ω) =:Z, respectively to obtain

a(u,v)+b(P,v) = `(v) ∀v∈X, (3.7a)

b(Q,u) = 0 ∀Q∈Z, (3.7b)

which is a mixed problem. The two bilinear forms a : X×X→R and b : Z×X→R and
the functional `(·) : X→R are defined by

a(u,v) :=

∫
Ω

ρ∇u :∇v,

b(z,w) :=−
∫

Ω

divwz,

and

`(v) :=

∫
Ω

fsv

with fs :=−q(c+−c−)∇V for u∈X and P ∈Z.
Furthermore, multiplying (3.6a) by a test function φ2∈H1

0 (Ω), we introduce the
bilinear form a2 : H1

c±D
(Ω)×H1

0 (Ω)→R and the functional `2 : H1
0 (Ω)→R and to find

the weak formulation

a2(c±,φ2) = `2(φ2) ∀φ2∈H1
0 (Ω), (3.8)

where

a2(c±,φ2) :=

∫
Ω

D±∇c± ·∇φ2±
∫

Ω

µ±c±∇V ·∇φ2,

`2(φ2) := 0

for c±∈H1
c±D

(Ω).
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We can now define the notion of a weak solution of system (2.14).

Definition 3.1 (Weak solution of system (2.14)). The vector (V,u,v,u,P,c+,c−,α,γ)
is a weak solution of the drift-diffusion-Nernst-Planck-Stokes-Poisson system (2.14) if
it satisfies the following conditions.

(i) V (x)∈L∞(Ω)∩H1
VD

(Ω) and u(x),v(x)∈L∞(Ω)∩H1
uD,vD (Ω) solve (3.4) for all

φ1∈H1
0 (Ω).

u(x)∈H1
div,0(Ω;Rd)∩L∞(Ω;Rd) and P ∈L2

0(Ω) solve (3.7a) and (3.7b) for all

v∈H1
div,0(Ω;Rd) and Q∈L2

0(Ω), respectively.

c±(x)∈L∞(Ω)∩H1
c±D

(Ω) solves (3.8) for all φ2∈H1
0 (Ω).

Moreover, α(x)∈L∞(Γ)∩H1/2(Γ) and γ(x)∈L2(Γ) satisfy (3.4).

(ii) The boundary conditions

V =VD ∀x∈∂ΩD,

u=uD ∀x∈∂ΩD,Si,

v=vD ∀x∈∂ΩD,Si,

u= 0 ∀x∈∂ΩD,liq,

c±= c±D ∀x∈∂ΩD,liq,

J± ·n= 0 ∀x∈∂ΩN,liq,

n ·∇V = 0 ∀x∈∂ΩN ,

n ·∇u= 0 =n ·∇v ∀x∈∂ΩN,Si

hold, where n is the unit outward facing normal vector of the boundary ∂Ω. The
interface conditions

V (0+,y)−V (0−,y) =α(y) ∀x∈Γ,

A(0+)∂xV (0+,y)−A(0−)∂xV (0−,y) =γ(y) ∀x∈Γ

hold as well.

4. Main results
In this section, we state the main results and prove the existence and local unique-

ness of a solution by applying the Schauder fixed-point theorem and the implicit-function
theorem, respectively. The main issue of the model equations is how to treat the differ-
ent equations on a single domain and how the interface conditions (2.8) influence the
estimates of the solution. The interface conditions result in jumps in the potential V
and in the field −∂xV . The size of the jumps depends on the values of α and γ so that
large values of α or γ yield large absolute values of the potential.

Using the assumptions above, we state and prove the main results in the following
subsections.

4.1. Existence of weak solutions. The main result which states the existence
of a solution of system (2.14) is the following theorem.

Theorem 4.1 (Existence of a weak solution of system (2.14)). Under Assumptions 3.1,
there exists a weak solution

(V,u,v,u,P,c+,c−,α,γ)∈
(
H1(Ω)∩L∞(Ω)

)
×
(
H1(ΩSi)∩L∞(ΩSi)

)2
×
(
H1

div,0(Ωliq;Rd)∩L∞
(
Ωliq;Rd

))
×
(
L2

0(Ωliq)∩L∞
(
Ωliq

))
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×
(
H1(Ωliq)∩L∞

(
Ωliq

))2

×
(
L∞(Γ)∩H1/2(Γ)

)
×L2(Γ)

of system (2.14). The solution furthermore satisfies the L∞-estimates

V −≤V (x)≤V + in Ω,

1

K
≤u(x)≤K in ΩSi,

1

K
≤v(x)≤K in ΩSi,

C±≤ c±(x)≤C± in Ωliq,

where C+∈R+, C−∈R+, K ∈R+, and

V − := min

(
inf
∂ΩD

VD,UT ln

(
1

2Kni
(C+

√
C2 +4n2

i )

)
−sup

Ω
VL

)
, (4.1a)

V + := max

(
sup
∂ΩD

VD,UT ln

(
K

2ni
(C+

√
C

2
+4n2

i )

)
− inf

Ω
VL

)
. (4.1b)

Here C≤C(x)≤C holds and VL is the solution of the linear equation [2, Lemma 3.1],
for which the estimate

‖VL‖H1(Ω)≤C
(
‖f‖L2(Ω) +‖VD‖H1/2(∂Ω) +‖α‖H1/2(Γ) +‖γ‖L2(Γ)

)
holds for a positive constant C.

Proof. The proof is based on the Schauder fixed-point theorem and the estimates
are obtained from a maximum principle. The main idea of the proof follows [2, 31, 37],
while the emphasis is on the different fixed-point map and the different estimates.

(1) We start by defining the fixed-point function. First we choose a suitable space N
to define the function F : N→N , which will be shown to satisfy the assumptions
of the Schauder fixed-point theorem. We define

N :=
{

(u,v,c+,c−,α,γ) | 1

K
≤u(x),v(x)≤K a.e. in ΩSi,C

±≤ c±(x)≤C± a.e. in Ωliq,

α,γ bounded a.e. on Γ, K,C
±
, C±∈R+}.

The function F is defined as

F (u1,v1,c
+
1 ,c
−
1 ,α1,γ1) := (u0,v0,c

+
0 ,c
−
0 ,α0,γ0),

where (u0,v0,c
+
0 ,c
−
0 ,α0,γ0) is given (from the previous iteration) and

(u1,v1,c
+
1 ,c
−
1 ,α1,γ1) is computed from the given solution as follows.

1) Solve the elliptic boundary-value problem with interface conditions

−∇·(A∇V1) =Cdop−ni(eV1/UT u0−e−V1/UT v0) ∀x∈ΩSi, (4.2a)

−∇·(A∇V1) = 0 ∀x∈Ωox, (4.2b)

−∇·(A∇V1) = c+0 −c
−
0 ∀x∈Ωliq, (4.2c)

V1(0+,y)−V1(0−,y) =α0(y) ∀x∈Γ, (4.2d)

A(0+)∂xV1(0+,y)−A(0−)∂xV1(0−,y) =γ0(y) ∀x∈Γ, (4.2e)

V1 =VD ∀x∈∂ΩD, (4.2f)

n ·∇V1 = 0 ∀x∈∂ΩN (4.2g)

for V1.
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2) Solve the elliptic problem

UT∇·(µneV1/UT∇u1) =
u1v0−1

τp(eV1/UT u0 +1)+τn(e−V1/UT v0 +1)
∀x∈ΩSi, (4.3a)

u1 =uD ∀x∈∂ΩD,Si, (4.3b)

n ·∇u1 = 0 ∀x∈∂ΩN,Si, (4.3c)

for u1.

3) Solve the elliptic problem

UT∇·(µpe−V1/UT∇v1) =
u0v1−1

τp(eV1/UT u0 +1)+τn(e−V1/UT v0 +1)
∀x∈ΩSi, (4.4a)

v1 =vD ∀x∈∂ΩD,Si, (4.4b)

n ·∇v1 = 0 ∀x∈∂ΩN,Si, (4.4c)

for v1.

4) Solve the elliptic problem

−ρ∆u1 +∇P1 =−(c+0 −c
−
0 )∇V1 ∀x∈Ωliq, (4.5a)

∇·u1 = 0 ∀x∈Ωliq, (4.5b)

u1 = 0 ∀x∈∂Ωliq, (4.5c)

for u1 and P1.
5) Solve the elliptic problem

−∇·(D±∇c±1 )∓µ±∇·(c±1 ∇V1)+(u1 ·∇)c±0 = 0 ∀x∈Ωliq, (4.6a)

c±1 = c±D ∀x∈∂ΩD,liq, (4.6b)

J± ·n= 0 ∀x∈∂ΩN,liq. (4.6c)

for c±1 .
6) Update the surface-charge density and dipole-moment density according to the

microscopic models by

α1(y) :=Mα(V1) x∈Γ, (4.7a)

γ1(y) :=Mγ(V1) x∈Γ. (4.7b)

For simplicity, from now on we will denote the solution of iterations by
(V,u,v,u,P,c+,c−,α,γ) instead of using the index 1.

(2) All boundary-value and initial-boundary-value problems are understood in the weak
sense. Hence, a fixed point of the nonlinear operator F is a weak solution of our
coupled problem (2.14). We show the existence of a fixed point for the function F
by showing that it is well-defined and completely continuous. Finally, we apply the
Schauder fixed-point theorem after verifying its assumptions in (i)–(v).

(i) First, we check that F is well-defined. One can apply standard elliptic exis-
tence results to the aforementioned problems, see e.g. [32, 36], in general. Poisson
and drift-diffusion Equations (4.2)–(4.4) have unique weak solutions (V,u,v,α,γ)∈(
H1(Ω)∩L∞(Ω)

)
×
(
H1(ΩSi)∩L∞(ΩSi)

)2×(L∞(Γ)∩H1/2(Γ)
)

due to [2, Theo-
rem 2.2]. The Stokes problem (4.5) is also uniquely solvable (see e.g. [9, The-
orem 2.1] and [36, Theorem 7.4.1]), i.e., there exists a unique weak solution
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(u,P )∈H1
div,0(Ωliq;R3)×L2

0(Ωliq), while the pressure P is only determined up to a

constant. Imposing a zero mean value, i.e., imposing
∫

Ω
P = 0, leads to uniqueness

of P in L2
0(Ωliq). Furthermore, a unique weak solution (c+,c−)∈H1(Ωliq)∩L∞(Ω)

of the Nernst-Planck Equations (4.6) exists due to [32, Theorem 3.3.16]. We
note that the fixed-point operator F is solely a function of concentrations the
(c+,c−,u,v). Therefore a fixed-point (c+,c+,u,v) of F only solves the respective
transport equations for c±, u, and v. However, two suboperators which solve the
Poisson and Stokes equations contain the necessary information about the electro-
static potential V , the velocity field u, and the pressure P .
Therefore, all boundary-value problems involved in the definition of fixed-point
map F are uniquely solvable. Hence, F is well-defined.

(ii) N is closed and convex due to its definition.

(iii) We show that F maps N into itself. To obtain the estimates, we apply
Lemma 3.3.14 in [32] to the first problem (4.2) to find a unique solution V . To
this end, we define

g
∼

(V ) := qni
( 1

K
eV/UT −Ke−V/UT

)
−qC,

∼
g(V ) := qni

(
KeV/UT − 1

K
e−V/UT

)
−qC,

where g
∼

and
∼
g are monotonically increasing for all x∈Ω.

Solving the algebraic equations

g
∼

(
∼
V +inf

Ω
VL) = 0,

∼
g(V
∼

+sup
Ω
VL) = 0,

where VL is the solution of the linear elliptic boundary-value problem in the exis-
tence lemma [2, Lemma 3.1] yields

∼
V +inf

Ω
VL=UT ln

( K
2ni

(C+

√
C

2
+4n2

i )
)
,

V
∼

+sup
Ω
VL=UT ln

( 1

2Kni
(C+

√
C2 +4n2

i )
)
.

Hence, using Lemma 3.3.14 in [32], we find the estimates

V (x)≥min
(

inf
∂ΩD

VD,UT ln
( 1

2Kni
(C+

√
C2 +4n2

i )
)
−sup

Ω
VL

)
=:V −,

V (x)≤max
(

sup
∂ΩD

VD,UT ln
( K

2ni
(C+

√
C

2
+4n2

i )
)
− inf

Ω
VL

)
=:V +

for all x∈Ω. Therefore, we obtain a unique solution V1, and it satisfies the estimate

V −≤V (x)≤V + in Ω.

Additionally, we define

g
∼

(u) :=
1
Ku−1

τp
(
KeV +/UT +1

)
+τn

(
Ke−V +/UT +1

) ,
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∼
g(u) :=

Ku−1

τp
(

1
K e

V −/UT +1
)

+τn
(

1
K e
−V −/UT +1

) .
Then the equation g

∼
(
∼
u) = 0 yields

∼
u=K and the equation

∼
g(u
∼

) = 0 yields u
∼

= 1/K.

Similarly, we find
∼
v=K and v

∼
= 1/K. Thus, we have 1/K≤u(x),v(x)≤K in ΩSi.

Regarding c±(x), we use the same lemma as for u and v and consider

g
∼

(c±) :=∓µ±∇·(c±∇V ±),

∼
g(c±) :=∓µ±∇·(c±∇V ∓).

Solving the equations g
∼

(
∼
c±) = 0 and

∼
g(c±
∼

) = 0 yields

∼
c± :=

c1
∇V ±

,

c±
∼

:=
c2
∇V ∓

,

where c1 and c2 are constants. Then using Lemma 3.3.14 in [32], we obtain the
estimates

C± := max
(

sup
∂ΩD,liq

c±D,
c1
∇V ±

)
,

C
±

:= min
(

inf
∂ΩD,liq

c±D,
c2
∇V ∓

)
for all x∈Ωliq. Therefore, we obtain unique solutions c± which satisfy the estimate

C±≤ c±(x)≤C± in Ωliq.

Therefore, F maps N into itself.

(iv) We now show that F is continuous. The continuity of F is a consequence of
its well-posedness, meaning that a unique solution exists for each problem and it
depends continuously on the data. The continuous dependence of the H1-norm of
the solution on the data follows from the estimate in [2, Lemma 3.2] for the semi-
linear elliptic problems and continuity of the right-hand sides of the corresponding
problems. Also, α and γ depend continuously on α0 and γ0 due to the continu-
ous dependence of V and the continuity of the microscopic models Mα and Mγ .
Therefore, F is continuous.
The continuous dependence of (V,u,v,u,P,c+,c−,α,γ) on the data of the problems
in (4.2)–(4.7) implies that there is a positive and continuous function H such that

‖V ‖H1(Ω) +‖u‖H1(Ωliq;Rd) +‖c±‖H1(Ωliq) +‖P‖H1(Ωliq) +‖u‖H1(ΩSi) +‖v‖H1(ΩSi)

≤H
(
‖Cdop‖L2(Ω),‖c±D‖L2(Ωliq),‖VD‖H1/2(∂Ω),‖uD‖H1/2(∂ΩSi),

‖vD‖H1/2(∂ΩSi),‖α0‖H1/2(Γ),‖γ0‖L2(Γ)

)
holds. Hence the inequality

‖V ‖H1(Ω) +‖u‖H1(Ωliq;Rd) +‖P‖H1(Ωliq) +‖c+‖H1(Ωliq) +‖c−‖H1(Ωliq)
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+‖u‖H1(ΩSi) +‖v‖H1(ΩSi)≤C

holds for a positive constant C. Furthermore, ‖α‖H1(Γ) and ‖γ‖H1(Γ) are bounded
due to the assumptions on Mα and Mγ .

(v) We show that the image F (N) is precompact, i.e., the closure of F (N) is com-
pact. The image F (N) is bounded as a subset of H1(Ω)×H1(Ωliq;Rd)×H1(Ωliq)2×
H1(ΩSi)

2×H1(Γ)2 which – based on the Rellich-Kondrachov theorem – is compactly
embedded in L2(Ω)×L2(Ωliq;Rd)×L2(Ωliq)2×L2(ΩSi)

2×L2(Γ)2. This means that
the closure of F (N) is compact, which implies that F (N) is precompact.

(3) According to (i)–(v), the Schauder fixed-point theorem can be applied to the func-
tion F , which proves existence of a fixed-point of this function, and thus the exis-
tence of a weak solution of the original problem is shown.

4.2. Uniqueness of weak solutions. Theorem 4.1 shows the existence of
weak solutions of the system (2.14). Then the question arises whether the solutions
are unique. Based on numerical evidence, the solution starts to oscillate between two
functions when large voltages are applied as Dirichlet boundary conditions.

Furthermore, it is well-known that in the derivation of the drift-diffusion equations
from the Boltzmann equation one essentially assumes that the particle momenta are
distributed according to a Boltzmann-Maxwell distribution. However, large applied
voltages result in fast particles which are not taken into account by this distribution.

These two reasons, namely the shortcomings of the drift-diffusion equations as a
transport model as well as the numerical evidence, suggest that the solutions are not
unique in the case of large applied voltages. Indeed, we will show next that the solution
is unique in a neighborhood around thermal equilibrium and hence uniqueness is only
a local property for sufficiently small Dirichlet boundary conditions.

Since uniqueness is only local, the maximum principle is not helpful for proving
uniqueness. To prove local uniqueness, we will use the implicit-function theorem.

Before we can state and prove local uniqueness, we must specify thermal equilibrium
more precisely. The situation where the current densities of ions and molecules, i.e.,
J±, Jn, and Jp vanish is called thermal equilibrium. Then the applied potentials at all
r contacts that constitute the Dirichlet boundary ∂ΩD are equal to the Fermi level. If
the equilibrium dipole-moment and surface-charge densities are called αe and γe, respec-
tively, and the equilibrium potential Ve, the liquid velocity ue, and liquid pressure Pe,
then Ve, ue, and Pe are solutions of the equilibrium boundary-value problems

−∇·(A∇Ve) = qCdop−qni(eVe/UT −e−Ve/UT ) ∀x∈ΩSi,

−∇·(A∇Ve) = 0 ∀x∈Ωox,

−∇·(A∇Ve) = q(c+e −c−e ) ∀x∈Ωliq,

Ve(0+,y)−Ve(0−,y) =αe(y) ∀x∈Γ,

A(0+)∂xVe(0+,y)−A(0−)∂xVe(0−,y) =γe(y) ∀x∈Γ,

Ve=VD(0) ∀x∈∂ΩD,

∇Ve ·n= 0 ∀x∈∂ΩN ,

whose solution Ve exists uniquely due to [2, Lemma 3.2], and the solution (ue,Pe) of

−ρ∆ue+∇Pe=−q(c+e −c−e )∇Ve ∀x∈Ωliq,

∇·ue= 0 ∀x∈Ωliq,



2106 STOKES-NERNST-PLANCK-DRIFT-DIFFUSION-POISSON SYSTEM

ue= 0 ∀x∈∂ΩD,liq,

exists because of [9, Theorem 2.1]. In the first equation above, αe and γe are the
equilibrium values and at the second problem, Ve is obtained from the first problem.

The above system is solved by introducing an initial equilibrium solution and a
fixed-point map which is defined by the above BVPs similar to what we did in (4.2)–
(4.7).

We will be able to show local uniqueness of solutions of the problem (2.14) around
the equilibrium solution (Ve,ue,ve,c

±
e ,ue,Pe). To apply the implicit-function theorem,

we have to show that the Fréchet derivative of the problem has a bounded inverse
at the equilibrium solution. To this end, we estimate the norm of the inverse of the
linearization of the system (2.14) at the equilibrium solution. As mentioned before,
the main assumption is that the Dirichlet boundary conditions for the potential are
sufficiently small. More precisely, we assume that the Dirichlet boundary conditions for
the potential V are constants on each of the r segments of the the Dirichlet boundary
∂ΩD,Si and denote the potentials there by the vector U := (U1,U2,·· · ,Ur).

In order to prove local uniqueness for small applied voltages, the following assump-
tions are used.

Assumptions 4.1.
(1) The domain Ω⊂R3 is open and bounded, and the boundary ∂Ω is as smooth as

necessary (see Assumptions 3.1).

(2) The Dirichlet data (VD,uD,vD,uD,c
+
D,c
−
D) are a Lipschitz-continuously differen-

tiable function of U := (U1,U2,·· · ,Ur), Rr→H2(Ω)×H2(ΩSi)
2×H2(Ωliq)3.

(3) The Fréchet derivatives M ′α and M ′γ of the interface models Mα and Mγ with re-

spect to V exist, they are in H1/2(Γ) and L2(Γ), respectively, and they satisfy the
inequality

‖M ′α(V )‖H1/2(Γ) +‖M ′γ(V )‖L2(Γ)≤C‖V ‖H2(Ω) (4.8)

in a neighborhood of the equilibrium potential Ve with a sufficiently small constant
C.

(4) The recombination rate R has the form R= (uv−1)K(x,V,u,v), where K(x,·,·,·)∈
C2(R×R2

+) holds for x∈Ω where the derivatives ∂ν(V,u,v)K(·,V,u,v) are bounded

uniformly for all (V,u,v) in bounded subsets of R×R2
+ and for all multiindices ν

with |ν|≤2. Furthermore, there are constants κ and κ such that either 0<κ≤
K(x,Ve(x),1,1)≤κ or K(x,Ve(x),1,1) = 0 for all x∈Ω.

Theorem 4.2 (Local uniqueness of weak solutions of (2.14)). Under Assumptions 3.1
and 4.1, there exists a sufficiently small σ∈R with |U |<σ such that the system (2.14)
has a locally unique solution(

V ∗(U),u∗(U),v∗(U),u∗(U),P ∗(U),c±∗(U),α∗(U),γ∗(U)
)

∈H2(Ω)×H2(ΩSi)
2H2

div,0(Ωliq;R3)×H2(Ωliq)3×H1/2(Γ)×L2(Γ).

It depends continuously differentiably on the Dirichlet boundary data U as a function

{U ∈Rr | |U |<σ}→H2(Ω)×H2(ΩSi)
2×H2

div,0(Ωliq;R3)×H2(Ωliq)3

×H1/2(Γ)×L2(Γ).
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Proof. Uniqueness is proved using the implicit-function theorem. We define the
function

G : B×Sσ1(0)→χ,

G
(
(V̂ ,û, v̂,u,P,ĉ+, ĉ−,α,γ),U

)
= 0,

where

χ :=L2(Ω)×L2(ΩSi)
2×H1

div,0

(
Ωliq;R3)×L2(Ωliq)3×H1/2(Γ)×L2(Γ),

and G is defined by the left-hand sides of the boundary-value problems

−∇·
(
A∇(V̂ +VD)

)
−qCdop

+qni
(
e(V̂+VD)/UT (û+uD)−e−(V̂+VD)/UT (v̂+vD)

)
= 0 ∀x∈ΩSi, (4.9a)

−∇·
(
A∇(V̂ +VD)

)
= 0 ∀x∈Ωox, (4.9b)

−∇·
(
A∇(V̂ +VD)

)
−q
(
(ĉ+ +c+D)−(ĉ−+c−D)

)
= 0 ∀x∈Ωliq, (4.9c)

−ρ∆u+q
(
(ĉ+ +c+D)−(ĉ−+c−D)

)
∇(V̂ +VD)+∇P = 0 ∀x∈Ωliq, (4.9d)

∇·u= 0 ∀x∈Ωliq, (4.9e)

−D±∆(ĉ±+c±D)∓µ±∇·
(
(ĉ±+c±D)∇(V̂ +VD)

)
+(u ·∇)(ĉ±+c±D) = 0 ∀x∈Ωliq, (4.9f)

UTni∇·(µne(V̂+VD)/UT∇(û+uD))

−((û+uD)(v̂+vD)−1)K(x,V̂ +VD,û+uD, v̂+vD) = 0 ∀x∈ΩSi, (4.9g)

UTni∇·(µpe−(V̂+VD)/UT∇(v̂+vD))

−((û+uD)(v̂+vD)−1)K(x,V̂ +VD,û+uD, v̂+vD) = 0 ∀x∈ΩSi, (4.9h)

V̂ (0+,y)− V̂ (0−,y) =α(y) ∀x∈Γ, (4.9i)

A(0+)∂xV̂ (0+,y)−A(0−)∂xV̂ (0−,y) =γ(y) ∀x∈Γ, (4.9j)

α=Mα(V̂ +VD) ∀x∈Γ, (4.9k)

γ=Mγ(V̂ +VD) ∀x∈Γ, (4.9l)

V̂ = 0 ∀x∈∂ΩD, (4.9m)

û= 0 = v̂ ∀x∈∂ΩD,Si, (4.9n)

n ·∇V̂ = 0 ∀x∈∂ΩN , (4.9o)

n ·∇û= 0 =n ·∇v̂ ∀x∈∂ΩN,Si, (4.9p)

u= 0 ∀x∈∂ΩD,liq, (4.9q)

ĉ±= 0 ∀x∈∂ΩD,liq, (4.9r)

J± ·n= 0 ∀x∈∂ΩN,liq, (4.9s)

which are obtained by substituting V̂ :=V −VD(U), û :=u−uD(U), v̂ :=v−vD(U), and

ĉ± := c±−c±D(U) into the system (2.14). B is an open subset of H2
∂(Ω\Γ)×H2

∂(ΩSi)
2×

H2
∂,div(Ωliq;R3)×H2

∂(Ωliq)3×H1/2(Γ)×L2(Γ) with

H2
∂(Ω) :={φ∈H2(Ω) |∇φ ·n= 0 on∂ΩN, φ= 0 on∂ΩD}, (4.10a)

H2
∂,div(Ω) :={φ∈H2(Ω) |∇·φ= 0 in Ωliq, φ= 0 on∂ΩD}. (4.10b)
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The sphere Sσ1 with radius σ1 and center 0 is a subset of Rr.
We claim that the set B and the radius σ1 can be chosen such that

u= û+uD(U)>0, v= v̂+vD(U)>0, and c±= ĉ±+c±D(U)>0.

holds for all U ∈Sσ1
(0) and for all (V̂ ,û, v̂,u,P,ĉ+, ĉ−,α,γ)∈B. Since the recombination

rate R is only defined for positive concentrations u and v and the concentrations c±

are nonnegative [37], the above conditions are satisfied. To this end, it is sufficient to
choose B bounded and small enough, i.e., ‖û‖H2(ΩSi) is sufficiently small. This results
in a small ‖û‖L∞(ΩSi), since ‖û‖L∞(U)≤C‖û‖H2(U) holds for all u∈H2(U). Therefore,
we can conclude that u>0. The same argument ensures that v and c± are positive if
B is bounded and small enough.

On the other hand, since G
(
(V̂ ,û, v̂,u,P,ĉ+, ĉ−,α,γ),U

)
∈χ implies that

(V̂ ,û, v̂,u,P,ĉ+, ĉ−,α,γ)∈B and U ∈Sσ1(U), and products of functions in B (a subset of
H2) are in L2, it follows that the function G is well-defined.

The equilibrium solution
(
(Ve−VD(0),0,0,ue,Pe,0,0,αe,γe),0

)
is a solution of the

equation G
(
(V̂ ,û, v̂,u,P,ĉ+, ĉ−,α,γ),U

)
= 0. To apply the implicit-function theorem, the

Fréchet derivative

DG :=D
(V̂ ,û,v̂,u,P,ĉ+,ĉ−,α,γ)

G
(
(Ve−VD(0),0,0,ue,Pe,0,0,αe,γe),0

)
must have a bounded inverse. Suppose (g1,g2,g3,g4,g5,g6,g7,g8,g9)∈χ. To find the
inverse of the Fréchet derivative, we have to solve the equation

DG(a1,a2,a3,a4,a5,a6,a7,a8,a9) = (g1,g2,g3,g4,g5,g6,g7,g8,g9) (4.11)

for ai, i∈{1,2,. ..,9}. To write this equation as a boundary-value problem, we have to
linearize the original equation (4.9) first. Thus, DG takes the form

−∇·(A∇)+L1 qnie
Ve/UT −qnie−Ve/UT 0 0 0 0 0 0

0 L2 −K 0 0 0 0 0 0
0 −K L3 0 0 0 0 0 0
0 0 0 −ρ∆ ∇ q∇Ve −q∇Ve 0 0
0 0 0 ∇· 0 0 0 0 0
0 0 0 ∇c+e 0 L4 0 0 0
0 0 0 ∇c−e 0 0 L5 0 0

−M ′α(Ve) 0 0 0 0 0 0 1 0
−M ′γ(Ve) 0 0 0 0 0 0 0 1


,

where

L1 := qni

(eVe/UT +e−Ve/UT

UT

)
,

L2 :=UTni∇·
(
µne

Ve/UT∇
)
−K,

L3 :=UTni∇·
(
µpe
−Ve/UT∇

)
−K,

L4 :=−D+∆+ue ·∇,
L5 :=−D−∆+ue ·∇.

The first row corresponds to the linearized Poisson equation in ΩSi. The three rows in−∇·(A∇)+L1 qnie
Ve/UT −qnie−Ve/UT 0 0 0 0 0 0

−∇·(A∇) 0 0 0 0 0 0 0 0
−∇·(A∇) 0 0 0 0 −q q 0 0

.
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correspond to the linearized Poisson equation in ΩSi, Ωox, and Ωliq, respectively.
Therefore, Equation (4.11) is equivalent to the boundary-value problem

−∇·(A∇a1) =−qni
((eVe/UT +e−Ve/UT

UT

)
a1 (4.12a)

+eVe/UT a2−e−Ve/UT a3

)
+g1 ∀x∈ΩSi, (4.12b)

−∇·(A∇a1) =g1 ∀x∈Ωox, (4.12c)

−∇·(A∇a1) = q(a6−a7)+g1 ∀x∈Ωliq, (4.12d)

UTni∇·
(
µne

Ve/UT∇a2

)
=Ka2 +Ka3 +g2 ∀x∈ΩSi, (4.12e)

UTni∇·
(
µpe
−Ve/UT∇a3

)
=Ka3 +Ka2 +g3 ∀x∈ΩSi, (4.12f)

−ρ∆a4 +∇a5 =−q∇Ve(a6−a7)+g4 ∀x∈Ωliq, (4.12g)

∇·a4 =g5 ∀x∈Ωliq, (4.12h)

−D+∆a6 +ue ·∇a6 =−∇c+e a4 +g6 ∀x∈Ωliq, (4.12i)

−D−∆a7−ue ·∇a7 =−∇c−e a4 +g7 ∀x∈Ωliq, (4.12j)

a1(0+,y)−a1(0−,y) =a8 ∀x∈Γ, (4.12k)

A(0+)∂xa1(0+,y)−A(0+)∂xa1(0−,y) =a9 ∀x∈Γ, (4.12l)

a8 =M ′α(Ve)a1 +g8 ∀x∈Γ, (4.12m)

a9 =M ′γ(Ve)a1 +g9 ∀x∈Γ, (4.12n)

a1 = 0 ∀x∈∂ΩD, (4.12o)

a2 = 0 =a3 ∀x∈∂ΩD,Si, (4.12p)

n ·∇a1 = 0 ∀x∈∂ΩN , (4.12q)

n ·∇a2 = 0 =n ·∇a3 ∀x∈∂ΩN,Si, (4.12r)

a4 = 0 ∀x∈∂ΩD,liq, (4.12s)

n ·∇a6 = 0 =n ·∇a7 ∀x∈∂ΩN,liq. (4.12t)

As stated in Assumptions 4.1, either 0<κ≤K≤κ or K= 0 holds in ΩSi. In both
cases, there exist unique solutions a2 and a3 of the Equations (4.12e)–(4.12f) due to [2,
Lemma 3.2]. Therefore, there exists a positive constant C such that the estimate

‖a2‖H2(ΩSi) +‖a3‖H2(ΩSi)≤C(‖g2‖L2(ΩSi) +‖g3‖L2(ΩSi)) (4.13)

in ΩSi holds. Furthermore, there exist solutions a6 and a7 for equations (4.12i)–(4.12j)
and a sufficiently small constant C2 such that the estimate

‖a6‖H2(Ωliq) +‖a7‖H2(Ωliq)≤‖g6‖L2(Ωliq) +‖g7‖L2(Ωliq) +C1‖a4‖H2(Ωliq) (4.14)

holds. The Stokes Equations (4.12g)–(4.12h) also have unique solutions a4 and a5 with
the estimate

‖a4‖H2(Ωliq) +‖a5‖H2(Ωliq)

≤C2(‖g4‖L2(Ωliq) +‖g5‖L2(Ωliq) +‖a6‖H2(Ωliq) +‖a7‖H2(Ωliq))

≤C2(‖g4‖L2(Ωliq) +‖g5‖L2(Ωliq) +‖g6‖L2(Ωliq) +‖g7‖L2(Ωliq) +C1‖a4‖H2(Ωliq)).

Hence, we have

(1−C1C2)‖a4‖H2(Ωliq)≤C2(‖g4‖L2(Ωliq) +‖g5‖L2(Ωliq) +‖g6‖L2(Ωliq) +‖g7‖L2(Ωliq))



2110 STOKES-NERNST-PLANCK-DRIFT-DIFFUSION-POISSON SYSTEM

for sufficiently small C2, i.e., if C1C2<1. We conclude that

‖a6‖H2(Ωliq) +‖a7‖H2(Ωliq)≤2‖g6‖L2(Ωliq) +2‖g7‖L2(Ωliq) +‖g4‖L2(Ωliq) +‖g5‖L2(Ωliq).
(4.15)

After substituting a2, a3, a5 and a6 into (4.12a), the estimate

‖a1‖H2(Ω)≤C3(‖g1‖L2(Ω) +‖g2‖L2(ΩSi) +‖g3‖L2(ΩSi) +2‖g6‖L2(Ωliq)

+2‖g7‖L2(Ωliq) +‖g4‖H2(Ωliq) +‖g5‖H2(Ωliq) +‖a8‖H1/2(Γ) +‖a9‖L2(Γ))

follows. By Equations (4.12m)–(4.12n) and Assumption 4.1, there exists a sufficiently
small constant C4 such that the inequality

‖a8‖H1/2(Γ) +‖a9‖L2(Γ)≤C4‖a1‖H2(Ω) +‖g7‖H1/2(Γ) +‖g8‖L2(Γ)

holds. For sufficiently small C4, i.e., if C3C4<1, we find

(1−C3C4)‖a1‖H2(Ω)≤C3(‖g1‖L2(Ω) +‖g2‖L2(Ωliq) +‖g3‖L2(Ωliq) +‖g4‖L2(Ωliq)

+‖g5‖L2(Ωliq) +2‖g6‖L2(Ωliq) +2‖g7‖L2(Ωliq) +2‖g8‖H1/2(Γ) +2‖g9‖L2(Γ)).

Therefore, the Fréchet derivative of G at the equilibrium solution has a bounded inverse,
i.e., there is a constant C such that

‖D
(V̂ ,û,v̂,u,P,ĉ+,ĉ−,α,γ)

G
(
(Ve−VD(0),0,0,ue,Pe,0,0,αe,γe),0

)−1‖≤C,

where the norm is the operator norm of

χ→H2(Ω)×H2(ΩSi)
2×H2

div,0(Ωliq;R3)×H2(Ωliq)3×H1/2(Γ)×L2(Γ).

Finally, the implicit-function theorem yields the assertion.

5. Conclusions
This work presents a fully coupled stationary system of partial differential equations

as the basic mathematical model for nanowire sensors as well as for nanopore sensors.
It also presents existence and uniqueness results for this system of equations. The new
model considers all three subdomains with different transport properties in nanoscale
devices of these kinds and includes the Stokes equations for describing the background
medium. This model completes the predominant model which does not take into account
the flow of the background medium and only uses the drift-diffusion-Poisson system.
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