TECHNISCHE
UNIVERSITAT
WIEN

DISSERTATION

Stochastic PDEs for Modeling Transport
in Nanoscale Devices

ausgefiihrt zum Zwecke der Erlangung des akademischen Grades

eines Doktors der technischen wissenschaften unter der Leitung von

Associate Prof. Dipl.-Ing. Dr. techn. Clemens Heitzinger
E101 — Institut fiir Analysis und Scientific Computing, TU Wien

eingereicht an der Technischen Universitat Wien

Fakultat fiir Mathematik und Geoinformation

von

Leila Taghizadeh M.Sc.
Matrikelnummer: 1228218

Diese Dissertation haben begutachtet:

1. Prof. Dr. Clemens Heitzinger
Institut fiir Analysis und Scientific Computing, TU Wien

2. Prof. Dr. Christian Ringhofer

Arizona State University

3. Prof. Dr. Roger Ghanem

University of Southern California

Wien, 2019






Kurzfassung

Das Verstdndnis des Ladungstransports spielt eine wesentliche Rolle bei der Entwicklung
vieler elektronischer Geréte. und nanoskalige Geréte wie Sensoren fiir die Elektroimpedanz-
tomographie (EIT), Nanodrihte, etc. Feldeffekt-(Bio- und Gas-)Sensoren und Nanoporen-
sensoren, z.B. in medizinischen Anwendungen und Nanotechnologie. So ist eine sorgfiltige
und realistische Modellierung und Analyse des Ladungstransports moéglich. in nanoska-
ligen Geréten sind von grofler Bedeutung. In diesem Zusammenhang erweitern wir das
Transportmodell, ndmlich das Drift-Diffusions-Poisson-System in den Frequenzbereich und
analysieren die Existenz von und die lokale Einzigartigkeit ihrer Losung im Wechselstrom
(AC)-Kleinsignalregime, die erst kiirzlich experimentell demonstriert wurden. Um das Modell
weiter zu verbessern, haben wir die Entwicklung des stochastischen Drift-Diffusions-Poisson-
Systems, um die Unsicherheit in der nanoskalige Geréte. Zu diesem Zweck analysieren
wir zunédchst das stochastische PDE-System, indem wir Folgendes vorstellen Existenz und
lokale Einzigartigkeit seiner Losung, und dann entwickeln optimale stochastische numerische
numerische Verfahren wie mehrstufiges Monte-Carlo und mehrstufiges randomisiertes quasi
Monte-Carlo. Finite-Element-Methoden zur Modellierung der Zufilligkeit beim Ladungs-
transport. Tatséichlich ist der Gesamtfehler des vorgestellten stochastischen Methoden, die
verschiedene (statistische und Diskretisierungs-)Quellen beinhalten, haben ausgeglichen
werden, um die rechnerische Effizienz der Verfahren zu verbessern. Dies fiihrt zu optimale
Diskretisierungsparameter und Anzahl der Proben und damit optimale Ergebnisse zu finden.
stochastische Methoden. Auch die realitétsnahe Modellierung von medizinischen und elektro-
nischen Geréiten wie EIT-Sensoren ist unerldsslich. in diesem Bereich. In dieser Dissertation
entwickeln wir ein inverses Modellproblem des EIT in einem unendlichen Bereich. dimen-
sionale Einstellung durch Erweiterung des Standard-Vorwértsmodells auf ein nichtlineares
elliptisches Teilmodell Differentialgleichung. Die Unsicherheit im vorgestellten nichtlinearen
EIT-Modell ist auf die Tatsache zuriickzufiihren, dass die Material- und Einschlusseigenschaf-
ten wie Permittivitdten, Chargen und Gréflen von Einschliissen in die den Hauptkorper, die
in der Medizin, im EIT und in der Bioimpedanztomographie unerlésslich sind, um die den
inneren Koérper abzuschirmen und Tumore zu erkennen oder die Korperzusammensetzung
zu bestimmen. Diese geometrische und physikalische Steuerungsparameter werden gleich-
zeitig extrahiert, indem sie gelost werden. das daraus resultierende inverse Problem des
EIT mittels einer adaptiven Markov-Kette Monte-Carlo Finite-Elemente-Methode (MCMC-
FEM), einschliellich einer MCMC-Probenahmetechnik fiir die Wahrscheinlichkeitsraum
und eine Galerkin-Finite-Elemente-Approximation fiir die Diskretisierung der physischer
Raum. Dariiber hinaus formulieren wir das inverse EIT-Modell in einer messentheoretischen
Form. Geriist und beweisen die Klarheit und Souverénitét der hinteren Mafinahme und der
Bayes’sche Inversion. Die Bayes’sche Inferenz beweist auch ihre Féahigkeit, die statistische
Variabilitdt in der die gemessenen Ergebnisse von Wachstum und Abbau von Biofilmen. Zu
diesem Zweck stellen wir eine System von PDEs als mathematisches Modell fiir Biofilme,
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das die zeitabhingige Entwicklung der Grofle des Biofilms einschlieilich Quorum Sensing
und Kooperation von Bakterien gegen Antibiotika. Die Ergebnisse der Biofilm inversen
Problem beweisen die Fihigkeit der vorgeschlagenen Unsicherheitsquantifizierungsverfahren
zur genauen Schétzung relevanter Systemparameter in der Modell.
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Abstract

The understanding of charge transport plays an essential role in the design of many electronic
and nanoscale devices such as electrical-impedance tomography (EIT) sensors, nanowire
field-effect (bio- and gas) sensors and nanopore sensors for instance in medical applications
and nanotechnology. Thus, carefully and realistic modeling and analysis of charge transport
in nanoscale devices are of great importance. In this regard, we extend the transport model,
namely the drift-diffusion-Poisson system to the frequency domain and analyze the existence
and local uniqueness of its solution in the alternating-current (AC) small-signal regime,
which were only demonstrated experimentally recently. To further improve the model, we
develop the stochastic drift-diffusion-Poisson system in order to model uncertainty in the
nanoscale devices. To this end, we first analyze the stochastic PDE system by presenting
existence and local uniqueness of its solution, and then develop optimal stochastic numerical
methods such as multilevel Monte-Carlo and multilevel randomized quasi Monte-Carlo finite-
element methods to model randomness in charge transport. In fact the total errors of the
presented stochastic methods including different (statistical and discretization) sources have
to be balanced in order to improve the computational efficiency of the methods. This leads
to finding the optimal discretization parameters and number of samples and consequently
optimal stochastic methods. Realistic modeling of medical and electronic devices such
as EIT sensors is also essential in this field. In this dissertation, we develop an EIT
inverse model problem in an infinite-dimensional setting by extending the standard forward
model to a nonlinear elliptic partial differential equation. The uncertainty in the presented
nonlinear EIT model is due to the material and inclusion properties such as permittivities,
charges and sizes of inclusions in the main body, which are essential in medicine, EIT and
bioimpedance tomography to screen the interior body and to detect tumors or to determine
body composition. These geometrical and physical governing parameters are extracted
simultaneously by solving the resulting EIT inverse problem by means of an adaptive
Markov-chain Monte-Carlo finite-element method (MCMC-FEM), including an MCMC
sampling technique for the probability space and a Galerkin finite-element approximation
for the discretization of the physical space. Furthermore, we formulate the EIT inverse
model in a measure-theoretic framework and prove well-definedness and well-posedness of
the posterior measure and the Bayesian inversion. The Bayesian inference also proves its
ability to interpret the statistical variability in the measured outputs of biofilms growth
and degradation. To this end, we present a system of PDEs as a mathematical model for
biofilms, which describes the time dependent evolution of the size of the biofilm including
quorum sensing and cooperation of bacteria against antibiotics. The results of biofilm
inverse problem prove the ability of the proposed uncertainty quantification method to
accurately estimate relevant system parameter in the model.
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1. Introduction

This research is focused on different aspects of nonlinear partial differential equations (PDEs),
which model charge transport in devices such as nanowire, nanopore and tomography sensors
with wide range of applications in industry, medicine and life sciences. These aspects include
analysis, numerical solution to the PDE models as well as PDE inverse problems. The main
PDE models include Poisson-Boltzmann equation and the drift-diffusion-Poisson (DDP)
system in deterministic and stochastic regimes.

The primary interest here in the context of analysis is in studying existence and uniqueness
of the solutions to these elliptic PDE models. Particularly, analysis of the models in the
alternating-current regime which is a more realistic platform for such problems is studied.

A question which then arises is on the numerical analysis and the way that the uncertainty
in the models are numerically dealt with. The stochastic numerical methods such as
multilevel Monte-Carlo and randomized quasi-Monte-Carlo methods are sampling-based
techniques which are successfully used to solve the stochastic elliptic PDE models numerically.
These techniques perform even more efficiently in encountering the uncertainties in the
target models if they are optimized. The optimal Monte-Carlo methods perform similarly
to the vanilla ones but with less computational cost. Reducing the cost of calculations is of
great importance as in such problems the numerical method is iterated for a (large) number
of samples. The applications include for example modeling charge transport in random
environments, such as nanoscale devices.

The third aspect of the elliptic PDE models which this research is focused is PDE inverse
problems. There are unknown parameters in the models, which cannot be determined
neither from the experiments nor from the computational models. Bayesian estimation
techniques are strong uncertainty quantification tools which are capable of dealing with
nonlinear and ill-posed inverse problems in order to recover the quantities of interest. To this
end, Markov-chain Monte-Carlo (MCMC) algorithms are used to find confidence interval
of the unknown parameters by means of estimating their posterior probability density.
These algorithms are combination of Monte Carlo as a sampling method and Markov chains
which search the parameter space efficiently. The applications include electrical-impedance
tomography (EIT) and modeling biofilms in medicine.

The Bayesian analysis in the measure-theoretic framework is also studied for the Poisson-
Boltzmann equation, which models the electrical-impedance tomography (EIT) sensors with
applications in medicine. This analysis focuses on the well-definedness and well-posedness
of the posterior measure and the Bayesian estimation for the EIT inverse problem.

In the following sections, we introduce aforementioned models, methods and applications
of this research in detail.



1. Introduction

1.1. Drift-diffusion-Poisson System in the Alternating-current
Regime

In this work, the mathematical modeling of affinity based field-effect sensors is considered
in the alternating-current (AC) regime. While nanowire field-effect bio- and gas sensors
operating in the direct-current (DC) regime have been established experimentally in the
past decade, their use in the AC regime is more recent and has been shown to yield more
physical insight and additional sensing information. Sensor based on nanopores and the
principle of the Coulter counter are governed by the model equations in this work as well.

The working principle of nanowire field-effect sensors is that the target molecules
to be detected in a liquid change the charge concentration at the sensor surface after
selectively binding to receptor molecules, which in turn modulates the conductance of the
semiconducting nanowire. The currents through the nanowires are recorded and indicate the
number of target molecules present. A schematic diagram is shown in Figure The main
advantage of this type of affinity based sensor compared to currently employed technology
is its label-free operation: No fluorescent or radioactive markers are required. Further
advantages are high sensitivity, real-time operation, and high selectivity. The concept is a
very general one, since DNA and RNA oligomers as well as antigens with known antibodies
can be detected. The functioning of nanowire gas sensors is analogous.

I Boundary Layer

Figure 1.1.: Schematic diagram of a transversal cross section of a nanowire field-effect sensor.

The mathematical modeling of affinity based field-effect sensors and semiconductor devices
in general has been addressed previously only in the DC regime . Furthermore, in ,
a multiscale problem inherent in nanowire sensors was solved and lead to the interface
conditions used below. In , an effective equation for the covariance was derived after
homogenization of a random charge distribution at a sensor surface. In [15], existence and
uniqueness for the drift-diffusion-Poisson system with interface conditions were shown for
the DC regime. A parallel numerical method was developed in [16]. These mathematical
results have then been used to provide quantitative understanding and to optimize sensor

design , .

More recently, such nanowire field-effect sensors have been fabricated for use in the AC
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regime and characterized [19H23]. In the experiments, the electric potentials around the
DC equilibrium are small and the frequencies are low enough to ensure that the free charge
carriers in the liquid are equilibrated, avoiding spurious signals.

Nanopore sensors are also described by the same transport equations. Here the particles
that move in a self-consistent manner are anions, cations, and target molecules. The
principle of a nanopore sensor is similar to the Coulter counter. A schematic diagram is
shown in Figure
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Figure 1.2.: Schematic diagram of a nanopore sensor.

1.2. Multilevel Monte-Carlo Methods for Stochastic
Drift-diffusion-Poisson System

In this work, we consider the system consisting of the drift-diffusion-Poisson equations
coupled with the Poisson-Boltzmann equation, all with random coefficients. We show
existence and local uniqueness of weak solutions for the stationary problem. This system is a
general model for transport processes, where a stochastic process determines the coefficients.
Furthermore, we develop a multi-level (ML) Monte-Carlo (MC) finite-element method (FEM)
for the system of equations. The different types of errors in the numerical approximation
must be balanced and the optimal approach is found here.

In the system of equations considered here, both the operators and the forcing terms are
stochastic, and therefore this system has numerous applications (see Figure . A deter-
ministic and simplified version, without the Poisson-Boltzmann equation, is the standard
model for semiconductor devices. Nowadays, randomness due to the location of impurity
atoms is the most important effect limiting the design of integrated circuits. This application
area is included in the present model equations. Furthermore, the full system of equations
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considered here describes a very general class of field-effect sensors including their most
recent incarnation, nanowire bio- and gas sensors. While previous mathematical modeling
has focused on the deterministic problem and stochastic surface reactions , the
present model describes how various stochastic processes propagate through a PDE model
and result in noise and fluctuations in a transport model. Quantifying noise and fluctuations
in sensors is important, since they determine the detection limit and the signal-to-noise
ratio. Noise and fluctuations are of great importance especially in nanometer-scale devices,
as any random effect becomes proportionally more important as devices are shrunk.

Various sources of noise and fluctuations are included in the model equations here. Doping
of semiconductor devices is inherently random and results in a random number of impurity
atoms placed at random positions, each one changing the charge concentration and the
mobility at its location. In field-effect sensors, target molecules bind to randomly placed
probe molecules in a stochastic process, so that the detection mechanism is inherently
stochastic. The Brownian motion of the target molecules also results in changes in charge
concentration and permittivity. This randomness at the sensor surface propagates through
the self-consistent transport equations and finally results in noise in the sensor output.

In summary, there are many applications where both the operators and the forcing
terms in the drift-diffusion-Poisson system are random. The probability distributions of
permittivities and charge concentrations can be calculated from physical models .

I'_Boundar

z

Figure 1.3.: Schematic diagram of a nanowire field-effect sensor (top) and a longitudinal
cross section (bottom) used for the finite-element discretization, displaying the
different subdomains as well as the source and drain contacts.
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In many realistic situations, the probability space is high-dimensional. For example, each
probe molecule, each target molecule, and each probe-target complex needs to be modeled
in sensors. In transistors, the number impurities and their positions are random. The large
number of dimensions favors the use of Monte-Carlo (MC) methods: It is well-known that
the convergence rate of standard MC methods is independent of the number of dimensions.
On the other hand, it is inversely proportional to the square root of the number of evaluations
and here each evaluation requires solving a two- or three-dimensional system of elliptic
equations.

These considerations motivate the development of a multi-level Monte-Carlo (MLMC)
algorithm. In [25], after earlier work [26] on numerical quadrature, it was shown that
a multi-level approach and a geometric sequence of timesteps can reduce the order of
computational complexity of MC path simulations for estimating the expected value of the
solution of a stochastic ordinary differential equation. This is done by reducing the variance
and leaving the bias unchanged due to the Euler discretization used as the ODE solver.
In [27], the Milstein scheme was used as the ODE solver to improve the convergence rate
of the MLMC method for scalar stochastic ordinary differential equations and the method
was made more efficient. The new method has the same weak order of convergence, but an
improved first-order strong convergence, and it is the strong order of convergence which
is central to the efficiency of MLMC methods. In [28], the MLMC method was combined
with quasi-Monte-Carlo (QMC) integration using a randomized rank-1 lattice rule and the
asymptotic order of convergence of MLMC was improved and a lower computational cost
was achieved as well.

In [29], an MLMC finite-element method was presented for elliptic partial differential
equations with stochastic coefficients. In this problem, the source of randomness lies in the
coefficients inside the operator and the coefficient fields are bounded uniformly from above
and away from zero. The MLMC error and work estimates were given for the expected values
of the solutions and for higher moments. Also, in |30], the same problem was considered
and numerical results indicate that the MLMC estimator is not limited to smooth problems.
In [31], a multi-level quasi-Monte-Carlo finite-element method for a class of elliptic PDEs
with random coefficients was presented. The error analysis of QMC was generalized to a
multi-level scheme with the number of QMC points dependent on the discretization level
and with a level-dependent dimension truncation strategy.

In [32], uniform bounds on the finite-element error were shown in standard Bochner
spaces. These new bounds can be used to perform a rigorous analysis of the MLMC method
for elliptic problems, and a rigorous bound on the MLMC complexity in a more general
case was found. In [33], the finite-element error analysis was extended for the same type of
equations posed on non-smooth domains and with discontinuities in the coefficient. In [34],
a general optimization of the parameters in the MLMC discretization hierarchy based on
uniform discretization methods with general approximation orders and computational costs
was developed. In current work, we define a global optimization problem which minimizes
the computational complexity such that the error bound is less or equal to a given tolerance
level.
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1.3. Multilevel Randomized Quasi Monte-Carlo Methods for
Stochastic Drift-diffusion-Poisson System

Calculating the expected value of the solution of the stochastic drift-diffusion-Poisson
system poses a computational challenge due to the large number of stochastic dimensions
in realistic applications. In order to speed up the convergence of the standard Monte-Carlo
method, variance-reduction methods such as the multilevel Monte-Carlo method have been
developed [25-30,35] and have also been applied to the stochastic drift-diffusion-Poisson
system [36]. In [36], the parameters of the numerical approach were also optimized such
that the total computational work is minimized, while an estimate of the total error is kept
below a prescribed tolerance.

The idea, developed into an optimal numerical method here, is to improve the choice of
samples or evaluation points, meaning that random sequences are replaced by quasi-random
sequences with better uniformity. Quasi-Monte-Carlo methods with low discrepancy lead to
faster convergence than the standard Monte-Carlo method, while — on the other hand — the
disadvantage of quasi-Monte-Carlo methods is that the low-discrepancy sequences used are
deterministic. Hence, a quasi-Monte-Carlo method is a deterministic algorithm with error
bounds that are difficult to estimate.

To overcome this problem, one can randomize the deterministic sequences by using
a random shift, e.g., a uniformly distributed vector. The idea of random shifting was
first introduced in [37] in the context of good lattice rules and later applied to the idea
of general lattice rules in [38]. Later Tuffin [39] considered random shifting of any low-
discrepancy sequence and studied the discrepancy of the shifted sequence. If a randomized
low-discrepancy sequence such as a randomly shifted lattice rule is used, a new method called
a randomized quasi-Monte-Carlo (RQMC) method results. Using the idea of stratification,
we can improve the single-level RQMC method to multilevel randomized quasi-Monte-Carlo
(MLRQMC) method.

The MLRQMC method was first introduced in 28] by combining the multilevel Monte-
Carlo method with quasi-Monte-Carlo integration using a randomized rank-1 lattice rule.
In [40], the variance estimation of the method and its convergence rate were investigated
theoretically and numerically. In [35], the method was applied to elliptic partial differential
equations (PDE) with random coefficients and a finite-element discretization was used.
The main goal of the current work is to develop an optimal MLRQMC method for solving
a system of stochastic PDE, namely the stochastic drift-diffusion-Poisson (DDP) system.
Here, we analyze the convergence of the numerical method considering the discretization and
statistical errors as the main sources of error. The system of PDE has many applications
including all situations where charge transport occurs in a random environment. We
calculate the computational cost of the MLRQMC approach applied to this system of
equations. The function modeling the computational work is minimized such that the
estimated total error of the procedure is less than or equal to a prescribed error tolerance.
By solving this optimization problem, optimal values for parameters such as the mesh
sizes in the spatial discretization and the optimal number of quasi-points are obtained in a
natural manner.
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1.4. Electrical Impedance Tomography

Tomography is one of the most important techniques in imaging and could be used in
medical monitoring such as monitoring for internal bleeding, screening for breast cancer,
detection of pulmonary emboli and blood clots in lungs, provided that the corresponding
inverse problems can be reliably solved. Imaging the internal organs to diagnose diseases
is one of the most important aspects of modern medicine. Many medical problems could
be easily diagnosed by information about the distribution of electrical properties inside
the body. Although tomography has originally been used solely in medical imaging, in its
general sense it has now become much more diverse and is used in a wide range of fields
including industrial and geophysical applications. It is used in industrial-process tomography
to control industrial processes such as curing and cooking. Geophysical surveying is another
application of the technique which is used for determining the location of mineral and oil
deposits, leakage detection in pipes, etc. Furthermore, atmospheric and forensic imaging,
archeology, and land-mine detection are other fields where tomography imaging is used.

Since modern medicine relies on imaging methods, the mathematics of tomography have
become one of the most important applications of mathematics in the areas of healthcare,
medicine, and life sciences in general. In soft-field tomographic techniques, a sensing field
is applied to an object and the responses to this field are measured. Processing of these
responses allows reconstruction of the distributions of physical properties inside the object, if
the nonlinear inverse problem can be solved. For instance, electrical-impedance tomography
(EIT) |41] in medicine, electrical-resistance tomography (ERT) [42] in geophysical applica-
tions, and electrical-capacitance tomography (ECT) [43] in industrial process monitoring
are soft-field tomography techniques. The nature of soft-field tomography techniques is
much more complex than the nature of hard-field ones and requires considerably more
computational analysis and algorithms to reconstruct the image.

In medical applications, computer tomography (CT) and EIT are the two main methods
used in imaging and reconstruction. The CT reconstruction problem is a linear problem
since X-rays propagate in straight lines through the object and their absorption at any
point inside the object is independent of the absorption at any other point. Therefore, the
attenuation is measured along each collimated beam direction, which is a linear problem
and leads to sparse and well-conditioned sensitivity matrices (Radon transforms). In this
method, the device is usually very complicated and provides very good resolution. On the
other hand, EIT reconstruction is a nonlinear and ill-posed inversion problem. It is nonlinear
since as the field is modified inside the body, the potential measured at the boundary of the
domain is a nonlinear function of the the distribution of the electrical properties through
the body. Furthermore, this problem is ill-posed, since large changes in the interior can
correspond to very small changes in the measured data [44]. The resulting resolution of
EIT is lower than the one of CT, but practical advantages such as simple, cheap, portable,
and radiation free devices have put this method into the center of attention in recent years.

Tomography is defined as measuring the propagation of energy or particle motion in order
to reconstruct information about the interior of a system. Usually this information is a
reconstruction of physical and geometrical properties of the system such as permittivity,
charge, and size. Hence parameter reconstruction in soft-field tomography is based on
an inverse problem, where a forward model is fitted to the data. Electrical-impedance
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tomography is an imaging technique for detecting (and imaging) internal properties such as
the permittivity distribution inside an object by means of measuring the electrical properties
at exterior electrodes. A set of contact electrodes is attached on the surface of the body
and prescribed electric potentials are applied to the body through the electrodes. The
corresponding electrical currents needed to maintain these potentials are measured on these
electrodes. This process may be repeated with various potentials. The aim is to estimate
the permittivity and charge distributions in the body from these data .

Figure 1.4.: The EIT device. Photo by Florian Thiirk (TU Vienna).

The idea behind the EIT technology is not new as the idea of electrical-resistive tomography
was proposed in 1978, independently by Henderson and Webster for medical imaging, and
by Lytle and Dines for geophysical imaging . Since that time, computational power has
increased and more efficient inverse algorithms have been proposed. Hence, due to this fact
and as it includes crucial applications, looking at the idea again and applying modern and
powerful inverse algorithms such as Bayesian-estimation methods to analyze the results is
of great importance.

The EIT poses a nonlinear and ill-posed inverse problem, which can be solved by means of
either classical or so-called Bayesian-inversion methods. There are fundamental differences
between classical and Bayesian inverse modeling. The first difference is in the nature
of the solution; the solution of Bayesian estimation is a probability distribution of the
model parameter, which is a random variable. Hence a confidence interval for each of the
quantities of interest can be found, which is crucial in applications such as in medicine.
The other difference is using prior knowledge in the Bayesian approach to update the
current information about the parameters of interest. The connection between the two level
of knowledge is made by means of Bayes’ Theorem. In Bayesian estimation techniques,
Markov-chain Monte-Carlo (MCMC) methods are used to deal with inverse problems in
order to circumvent the need to calculate high-dimensional integrals (appearing in Bayes’
Theorem). Moreover they sample the space efficiently and completely search the space.
Bayesian approaches to the EIT inverse problem have previously been studied, for example
in . Bayesian inference for inverse problems, especially in infinite dimensions is a
new approach, which has been applied to linear (e.g. ) and recently nonlinear problems
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(e.g. [52,53]).

In this work, we focus on electrical-impedance tomography as a soft-field tomography
technique and one of the main imaging techniques applied in medicine. We present and solve
an elliptic partial differential equation, namely a nonlinear Poisson-Boltzmann equation
as the EIT model to find the electrical currents flowing in and out of the electrodes in
a bioimpedance tomography device. This is the first time that the nonlinear model is
used for the EIT problem in order to take the free charges present in the problem into
account and gives the related Bayesian formulation in an infinite-dimensional setting in
order to solve the corresponding inverse problem. We solve the EIT forward problem by
means of the first order Galerkin finite-element (GFE) approximation and a mesh generated
by the GMSH package [54], and the corresponding inverse problem is solved using the
delayed-rejection adaptive-Metropolis (DRAM) algorithm, which we have implemented in
Julia [55]. This algorithm is one of the most efficient MCMC algorithms, as the proposal
scale (covariance matrix) is updated to an optimal one automatically and periodically in
order to achieve better convergence. The simulation results of the forward model are used
as mathematical solutions in the DRAM algorithm for statistical analysis and to estimate
posterior distributions for each of the parameters to be extracted. Numerical results using
the state of the art GFE and the adaptive MCMC illustrate accurate extraction of the
quantities of interest in the EIT inverse problem. In fact, confidence intervals for the
parameters can be calculated, which is essential, for example, in medical applications. We
also discuss Bayesian inversion for the presented nonlinear elliptic PDE model for EIT in the
measure-theoretic framework and prove that the posterior measure is Lipschitz continuous in
the data to conclude well-definedness and well-posedness of the resulting posterior measures
obtained by the Bayesian technique.

1.5. Biofilms

Infection of material and devices implanted into patients’ tissues and bones is associated
with considerable morbidity and costs [56-58]. The use of all kinds of implants, e.g.,
osteosyntheses, joint prosthesis, cardiac valves and devices, percutaneous intravascular
catheters, invasive monitoring to sustain life at intensive care units, and other implants is
increasing. Dependent on the site of implantation, the infection rates range from 0.2% to 5%
in orthopaedic and trauma surgery and up to 40% in artificial hearts [59]. Given the high
incidence of fracture stabilization devices of two million per year, the number of implant
infections amounts to up to 100000 per year [58,60]. The major pathogens of implant
related infections are Staphylococcus aureus and coagulase negative staphylococci, primarily
Staphylococcus epidermidis [61], followed by enterobacteria, Pseudomonas aeruginosa, and
enterococci. These organisms have in common that they are difficult to eradicate by standard
antibiotic therapy due to their intrinsic resistance and exposure to antimicrobials.

In implant surfaces, these organisms grow in biofilms and thus cause persistent or
recurrent infections |62]. The simple definition of a biofilm is microorganisms attached
to a surface. A more comprehensive definition is that a biofilm consists of a structured
community of bacterial cells enclosed in a self-produced polymeric matrix and adherent
to a surface. Biofilms are highly individual based on the characteristics of the microbe,
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environmental conditions, nutrients, implant surfaces, and host immune reaction in case of
implant infections (see Fig[1.5)).

Figure 1.5.: The life cycle of bacteria in biofilms. Phase 1: initial attachment, phase 2:
permanent attachment, phase 3: primary maturation, phase 4: secondary
maturation, and phase 5: dispersion.

Biofilm associated infections are frequently resistant to conventional antimicrobial therapy,
because the bacterial biofilm on the surface serves as a reservoir where bacteria are quasi
inaccessible to antibiotics and the host defenses . In the clinical routine, antibiotic
susceptibility is tested by determining the minimal inhibitory concentration (MIC) of the
antibiotic on free floating bacteria in the growth phase. A low concentration of the MIC
indicates the susceptibility of the microorganism and it is a rough approximation of the
efficacy of the treatment.

There are numerous models of medical biofilms. All models as well as all visualization
methods like staining or preparation for electron microscopy or confocal laser scanning
microscopy (CLSM) have limitations. However, initial steps into modeling include simple
models like static biofilms on microtiter plates or coverslips or dynamic biofilms within
flow-cells. CLSM is a good tool to visualize metabolic and/or structural changes within
biofilms and a reliable starting point for more complex biofilm models .

In previous publications, we demonstrated that clinically achievable antibiotic concentra-
tions do not reduce biofilms and bacterial growth. Increasing the antibiotic concentration
may only reduce the biofilm thickness and reduce bacterial growth [66}/67]. Moreover, we
could demonstrate that changing environmental factors, such as increasing the environmental
temperature or changing the composition of the implant material resulted in the reduction
of biofilm mass and bacterial load [68,/69].

Antibiotic therapy of these chronic biofilm associated infections is generally effective
only when the infection is acute and the implanted material is removed. When it is
necessary to keep the implanted material, the success of therapy is mediocre. Even the
exchange of the infected implant material and the necessity to implant a new prosthesis is
associated with higher recurrence rates. International recommendations for the treatment
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of implant infections propose the use of quinolones, high-dose beta-lactams, or daptomycin
in combination with rifampicin [70]. However, antimicrobial resistance and intolerability is
common in chronic infection. Thus, antibiotic therapy of these very complicated infections
has to be tailored to the individual patient and the characteristics of the pathogen.

1.6. Remarks

This research focuses on different aspects of nonlinear partial differential equations (PDEs),
which model charge transport in devices such as nanowire, nanopore and tomography sensors
with wide range of applications in industry, medicine and life sciences. These aspects include
analysis, numerical solution to the PDE models as well as PDE inverse problems. The
common goal is uncertainty quantification via two different directions, namely, stochastic
numerical methods for PDEs and PDE inverse problems.

The dissertation has two parts: the first part is devoted to PDE models and methods in
nanotechnology, which includes modeling and analyzing the nanoscale devices and stochastic
numerical methods. In the second part, the focus is on the PDE inverse modeling and the
Bayesian analysis techniques in order to uncertainty quantification. More specifically, the
dissertation after giving introductions in Chapter [1} is organized as follows.

e Chapter In this chapter, the drift-diffusion-Poisson-Boltzmann system in the
alternating-current (AC) regime is analyzed. The new modification is based on
extending the transport model to the frequency domain and writing the variables
as periodic functions of the frequency in a small-signal approximation. In this work,
first the AC model equations are derived and then existence and local uniqueness
of the solution of the model equations are shown. Real-world applications include
nanowire field-effect bio- and gas sensors operating in the AC regime, which were only
demonstrated experimentally recently. Furthermore, nanopore sensors are governed
by the system of model equations and the analysis as well.

e Chapter |3} In this chapter, an optimal multi-level Monte-Carlo finite-element (MLMC-
FE) method for the numerical approximation of the expected value of the solution of
the stochastic DDP system is developed. The rate of convergence and computational
complexity of the presented method is analyzed and an optimal choice of discretization
and sampling parameters are found. These optimal choices allow to reduce the
computation cost, which is so important in sampling-based methods. The presented
optimal methods are successfully used to solve the stochastic DDP system and in the
study of the effect of random dopants in nanoscale semiconductor devices, namely
nanowire field-effect sensors. Furthermore efficiency of the optimal vanilla Monte-Carlo
and multilevel Monte-Carlo in this application are compared. Moreover in this chapter,
another optimal sampling method namely multilevel randomized quasi-Monte-Carlo
finite-element (MLRQMC-FE) method is presented. In this method, quasi points,
i.e., randomly shifted low-discrepancy sequences are used to estimate the expected
value of the solution of the stochastic DDP system and to calculate random-dopant
effects in nanoscale field-effect transistors. Using these points improves the efficiency
of the method; computational cost of the optimal MLRQMC method is one order
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12

of magnitude smaller than that of the optimal MLMC method and five orders of
magnitude smaller than that of the standard Monte-Carlo method.

Chapter 4t In this chapter, the Bayesian inversion is used for a tomography prob-
lem namely electrical impedance tomography (EIT), which is modeled by Poisson-
Boltzmann equation (PBE). In this work, the Metropolis-Hastings (MH), a Markov-
chain Monte-Carlo (MCMC) algorithm in the context of Bayesian estimation methods
is used, which is a strong statistical tool for uncertainty quantification (UQ). In this
technique, the posterior distribution of the parameters of interest is estimated and
confidence intervals for each of the quantities of interest in the EIT inverse problem
is found. The Bayesian analysis in the measure-theoretic framework is also studied
for the PBE. In this analysis, the focus is on the well-definedness and well-posedness
of the posterior measure and the Bayesian estimation for the EIT inverse problem
by showing that the solution of the given model is bounded by a function of the
parameters and that it is Lipschitz continuous with respect to the parameters.

Chapter [5f The Bayesian inference also proves its ability in solving the inverse PDE
problem in which growth and degradation of biofilms are modeled. In Chapter
a system of PDEs as a mathematical model for biofilms in order to study their
growth and their response to antibiotic therapy in vivo is presented. This model
describes the time dependent evolution of the size of the biofilm, which depends on
environmental factors such as temperature or surface composition of the implant
material. Quorum sensing is also included in the mathematical model and cooperation
of bacteria against antibiotics is a quantity of interest. The results of our experiments
for biofilm formation over 24 hours are also presented in this work in order to compare
with the results of the computational model. In this work, the Bayesian inversion
is used to solve the biofilm inverse problem and extract the quantities of interest in
the model, which cannot be determined from the experiments and the computational
model.

e Chapter [6} Finally, the conclusions are drawn in Chapter [6]
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2. Analysis of the
drift-diffusion-Poisson-Boltzmann System
in the Alternating-current Regime

In this chapter, we derive the basic model equations for the alternating-current (AC) small-
signal regime for affinity-based field-effect sensors from the drift-diffusion-Poisson system.
Whenever the frequency w of the applied current is sufficiently small, the solution of the
system of model equations can be written in terms of the real part of exp(iwt). This makes
it possible to derive the AC model equations, which are the drift-diffusion-Poisson system
governing charge transport coupled to the Poisson-Boltzmann equation for the liquid. The
unknowns are the electric potential and the concentrations of the positive and negative
charge carriers. After the derivation of the system of model equations, the main results are
existence and local uniqueness of solutions to the presented AC model equations.

This chapter is organized as follows. The starting point, namely the DC model equations,
is presented in Section Based on this discussion, the AC model equations are derived
in Section and then the main mathematical results, primarily existence and local
uniqueness for the AC system, are shown in this section. Finally, we summarize the chapter
in Section

This chapter is based on the author’s publication [71].

2.1. The DC Model Equations

In this section, we start with a summary of the DC model equations, i.e., the drift-diffusion-
Poisson system. In the next section, the AC model equations will be derived from these
equations.

The domain Q € R? (d < 3) is assumed to be bounded and convex with smooth boundary
09). In order to model an affinity based sensor, the domain is divided into three subdomains:
the semiconductor Qg; (usually silicon), the dielectric 2y (usually silicon oxide), and the
electrolyte Qjiq (a liquid containing free ions).

The Poisson equation for the electrostatic potential V' is solved on the whole domain 2 and
provides self-consistency. More precisely, in the subdomain €2g;, the drift-diffusion-Poisson
system models charge transport. In the second subdomain 2.y, the Poisson equation holds
with a vanishing right side, and in the third domain )4, the nonlinear Poisson-Boltzmann
equation holds (see Figure [L.1)).

The biofunctionalized layer at the manifold I" between the subdomains 254 and o is
responsible for the recognition of the target molecules. The charges there can be included
as immobile charges in p; and free charges in py, or — since they are many and small —
they can be viewed as giving rise to a multiscale problem. Homogenization of a layer at a
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manifold in elliptic problems yields two interface conditions [13]. The rapidly oscillating
charge concentration near I' is replaced, as ¢ — 0+, by the two interface conditions

V(0+,y) = V(0—,y) = a(y), (2.1a)
A(0+)0,V(0+,y) — A(0—)0;V (0—,y) = v(y), (2.1b)

where o and ~ are essentially given by the dipole-moment and the surface-charge densities
of the boundary layer. The local (macroscopic) coordinates are chosen so that z = 0
corresponds to I' and the y-coordinate is normal to I'. The values of « and ~y in the interface
conditions result from microscopic models M, and M, for the dipole-moment density and
surface charge density of the boundary layer. They generally depend on the electrostatic
potential and can be modeled by various means [13,|72].

In summary, the model equations for the DC case (see for example |15]) are the transient
boundary-value problem

—V - (AVV) = q(Cqop + Zpp + Znn) in Qg;, (2.2a)
V- (AVV) =0 in oy, (2.2)
—V - (AVV) = —2sinh(B(V — ®)) in Qg (2.2¢)
glt)—i-R: Zplqv'Jp in Qg;, (2.2d)

%Z +R= Z_nlqv I in Qg;, (2.2e)

Jp = q(=DpVp — pppVV) (2.2f)

In = q(DpVn — pynVV) (2.2g)

V(0+,y) = V(0—,y) = a(y) onT, (2.2h)
A(04+)0.V (0+,y) — A(0—)0,V(0—,y) = v(y) onT, (2.2i)
a = My(V) onT, (2.2§)

v =M,V) on T, (2.2k)
p(t=0)=pr, n(t=0)=ns in Qg; (2.21)
V=Vp on 0Qp, (2.2m)

VV -n=0 on 09y, (2.2n)
p=pp, M=np on J€)p s, (2.20)

Jpn=0, J, -n=0 on 0y si, (2.2p)

for almost all ¢ € [0, Tp], where V is the electrostatic potential, A is the electric permittivity,
g > 0 is the elementary charge, and Cy,p, is the doping concentration. D, and D,, are the
diffusion coefficients, and p, and p, are the mobilities of the charge carriers. In the case of
a nanowire sensor, p = p(t,z) and n = n(t,z) are the concentrations of holes and electrons,
respectively: Z, := 1 for holes and Z, := —1 for electrons. In the case of a nanopore
sensor, the charge carriers are cations and anions and the constants Z,, and Z,, correspond
to their valences. Furthermore, ® is the Fermi potential, n is the bulk concentration and
B :=q/(kT), where kp is the Boltzmann constant and 7" is temperature. Finally, J, and
J,, are the current densities, and R is the recombination rate.
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2.1.1. Existence and Local Uniqueness for the Transient DC Model Equations.

Existence and local uniqueness for the transient system is an extension of the theory
of the stationary drift-diffusion-Poisson system [73,[74], while extending to the additional
subdomain );4, where the nonlinear Poisson-Boltzmann equation holds, and including
the interface conditions 7. The interface conditions necessitate an estimate for
the electrostatic potential V' so that the Schauder fixed-point theory can eventually be
applied. The details of the stationary case can be found in [15]. Based on this result, the
following result for the transient case, i.e., a system of parabolic and elliptic equations,
can be shown. Note that in transient problems, the existence of a solution can only be
established for a sufficiently small time interval by a fixed-point argument.
We consider the general form of the elliptic part of the problem

-V - (Ax)VV)+g(z, V)= f Ve e Q\T, (2.3a)

V=Vp Yz € 0Qp, (2.3b)

VV-n=0 Vo € 00y, (2.3c)

V(0+,y) — V(0—,y) = a(y) Vo e, (2.3d)
A(0+)0,V(0+,y) — A(0—)0,V(0—,y) = v(y) Vo e, (2.3e)

and the coefficients and boundary conditions in system (2.2) must satisfy the following
assumptions.

Assumptions 1.

1. The bounded domain 2 C R3 has a C? Dirichlet boundary 0Qp, where |0Qp| > 0.
The Neumann boundary 0Qn with |0Qy| > 0 consists of C? segments.

The C? manifold T C Q splits the domain Q into two nonempty domains QT = Qo UQg;
and Q7 = Qg; so that meas(I' N1 9NQ) =0 and ' NOQ C NN hold.

2. The coefficient function A(x) is uniformly elliptic, bounded function with
0 <A™ <essinfreq A(z) < [JA(2)|| o) < AT < o0 a.e. in S, (2.4)

where A(z)|gr € CHQT,R33) and A(z)|o- € CH(Q~,R3*3).

Furthermore, the inclusions Vp(x) € HY2(OQ)NL>®(T), pp(x,t), np(z,t) € L*((0,Ty); H/?(0Qs;)),
and f(x) € L*(Q) hold.

3. The doping concentration Cyop(x) is bounded above and below, and we define

C := inf Cdop(x) < C(QS‘) < sup CYdop(x) =:C.
z€) zeQ

4. The quasi Fermi-level ®(x) is bounded above and below, and we define

@ := inf ®(z) < ®(x) < sup ®(x) =: .
zef €
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5. There are constants 0 < Ry < oo and Ty > 0 such that
I(pp,mp)llx < Ro  V(z,t) € 9Qsi x [0, To),

where
X = {(pp,np) | pp,np € L*((0,Tp); H/?*(0Qs:)) }

with the norm
[(po, no)llx = PD L2010 )11 2(004)) T 170D || La(0,10): 11 2(604:)) -

6. The microscopic models M, and M., depend continuously in H'(Q) on the poten-
tial V(x), and for every potential V(x) in H(2) N L>®(Q), the inclusions a(y) =
Mo (V(y)) € HY2(T) N L¥(T) and y(y) = My(V(y)) € L=(T) hold.

Using the assumptions, we can formulate the existence of weak solutions of the system
(2.2). Proof of this theorem is straightforward using the Schauder fixed-point theorem.

Proposition 1 (Existence of weak solutions to the DC model). Under Assumptions
there exist a time Ty € (0,00) and a weak solution

(V,p,n,a,7) € (Hl(Q) N LOO(Q)) X
(L2((0,To); H (1)) N L= (Q:x[0, To)))” x
(L>(T) N HY*(T)) x LA(T)
of the system . The function V' satisfies the L™ -estimate
V<V <V  inQ, (2.5)
where

V := min ( inf Vp,® — sup Vz,, Upsinh ™! (—Q ) + @ — sup VL), (2.6a)
191955) Q 2n; Q

— — . ..,/ C

V= max(sup VD,Q—lngL,UTsmh (2

p n;

)+6—igva>, (2.6b)

P < B(x) < holds. Ur = 1/ is the thermal voltage and Vi, is the solution of the linear
elliptic equation (equation (2.3|) with g =0), for which the estimate

Villai@) < CUIf ey + VDl girzan) + el mizey + 17ll2r)

holds.
Furthermore, the estimate
[(p,n)llx < Ro

holds for every x € Qg; and for almost all t € [0,Ty], where the constant Ry is radius of the
ball
Br, :={(p,n) € X [ [[(p,n)llx < Ro} € X

and X := {(p,n) ‘ p,n € L*((0,To); L*(Qsi)) } with the norm

(P 7)1l x == [Pl L2 (0,10):2(060)) T 17l L4 (0,10 )52 (0261)) -
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Proposition (1| shows the existence of weak solutions of the DC model system .
Then the question arises whether the solutions are unique. Based on numerical evidence,
the solution starts to oscillate between two functions when large voltages are applied as
Dirichlet boundary conditions. Furthermore, it is well-known that in the derivation of the
drift-diffusion equations one assumes that particle velocities or momenta are distributed
according to a Maxwellian distribution, i.e., that they are in thermal equilibrium. However,
large applied voltages result in fast particles which are modeled badly by a Maxwellian
distribution.

These two reasons, namely the numerical evidence and the shortcomings of the drift-
diffusion equations as transport models, suggest that the solutions are not unique in the
case of large applied voltages. Indeed, the next theorem states that the solution is unique
in a neighborhood around thermal equilibrium and hence the uniqueness is only a local one
for sufficiently small Dirichlet boundary conditions.

Since the uniqueness is only local, the maximum principle is not helpful for proving
uniqueness. The local uniqueness of solutions of the problem is straightforward
and can be shown using the implicit-function theorem around the equilibrium solution
(Ve, Pes Meey e, Ye). To apply the implicit-function theorem, one should show that the Fréchet
derivative of the problem has a bounded inverse at the equilibrium solution. To this end, the
norm estimation of the inverse of the linearization of the equations at the equilibrium
solution is needed. As mentioned before, the main assumption that we should make is
that the applied voltages, i.e., the Dirichlet boundary conditions for the potential, are
sufficiently small. We assume that the Dirichlet boundary conditions for the potential V'
are constants on each of r segments or contacts of the the Dirichlet boundary 9€2p and
denote the potentials there by the vector (U, Us,---,U,).

In order to state local uniqueness for small applied voltages, we need the following
assumptions:

Assumptions 2.

1. The domain Q C R3 is open and bounded and the boundary O is as smooth as
necessary (see Assumptions [1]).

2. The Dirichlet data (Vp,pp,np) are a Lipschitz-continuously differentiable map of
U:=(Uy,Us,---,U.), R" — H?(Q) x L*((0,Tp); H*(Qs1))?.

3. The Fréchet deriwatives M/, and M; of the interface models M, and M., with respect
to V exist, they are in HY/?(T') and L*(T"), respectively, and they satisfy the inequality

IMe (V) /oy + IME(V) 2oy < ClV 20 (2.7)
in a neighborhood of the equilibrium potential V. with a sufficiently small constant C'.

4. The Shockley-Read-Hall recombination rate R has the form R = (np — n?)k(t,z,n,p),

where k(t,z,-,-) € C*(R%) holds for x € Q and for almost all t € [0,Ty], and where
the derivatives 8E/n’p)lﬁ7(', -,m,p) are bounded uniformly for all (n,p) in bounded subsets
of R% and for all multiindices v with |v| < 2. Furthermore, there are constants k and
R such that either 0 < k < k(t,z,ne,pe) < F or k(t,x,ne,pe) = 0 for all z € Qg; and

for almost all t € [0, Tp).
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Proposition 2 (Local uniqueness of weak solutions to the DC model). Under Assumptions
and@, there exists a sufficiently small o € R with |U| < o such that the problem (2.2),
has a locally unique solution

(V¥ @), p* ()0 (V). 0" )y (U)) € HHQ) x L2((0, To); H(2s:))
x H'2(I) x L3(T).

The solution satisfies

(V0. 57(0).7*(0),07(0).7(0)) = (Ve pes e, s %)

and it depends continuously differentiable on the Dirichlet boundary data U as a map from
{UeR" | |U| < o} into H*(Q) x L*((0,Tp); H*(Qs;))? x HY2(I') x L*(T).

2.2. Main results: the AC Model Equations

The system also models the specific physical situation when an alternating current is
applied at the contacts, i.e., when the Dirichlet boundary conditions are transient linear
combinations of sine and cosine functions. For these boundary conditions, we derive model
equations in this section. These model equations will be stationary, albeit with double the
number of unknowns. This means that in the case when the frequency is low enough to
justify this model, no computationally expensive solutions of the full transient system
are necessary, but the stationary system derived here can be used instead.

To find the model equations in the frequency domain, we start by writing the AC solution
(V,n,p) as what could be called a periodic perturbation of the DC solution (Vi,n,ps) of

system ((2.2)) as

V =V, + Vexp(iwt), (2.8a)
n = ny + nexp(iwt), (2.8b)
p = p« + pexp(ivt), (2.8¢)

where V, 71, and p are the complex amplitudes of the AC potential V, the AC electron
concentration n, and the AC hole concentration p, respectively. The variables Vi, n., and
ps« are the DC potential and charge concentrations.

The form of the AC unknowns V', n, and p already contains physical assumptions.
The main assumption is that the relaxation time of the charge carriers is small compared to
the frequency of the sinusoidal applied potentials. The relaxation time here is in the order
of the momentum relaxation time. If this were not the case, the solution (V,n,p) could not
be written in this form and transport models more complicated than the drift-diffusion-
Poisson system would have to be used. The small-frequency assumption is the first part of
Assumptions [3| and it is satisfied in the experiments performed so far (e.g., [19-21]).

Assumptions 3.

1. The frequency w in (2.8) of the applied AC potentials (i.e., the Dirichlet boundary
conditions) is sufficiently small such that the free charge carriers are essentially in
equiltbrium at each point in time.
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2.2. Main results: the AC Model Equations

2. The amplitudes of the applied AC" potentials are sufficiently small, and hence the
amplitudes V', i, and p in (2.8)) are also small. More precisely, it is assumed that they
are small compared to the thermal voltage kgT/q, i.e.,

5 kT 5 knT - kT
7|00 < %, 7] o0 < %, and ||Vl < %. (2.9)

3. |Vl is sufficiently small.

The second part of the assumptions means that the applied AC potentials are not too
large. If they were too large, the validity of the drift-diffusion-Poisson model would be
questionable to begin with, since only local uniqueness holds (see Subsection [2.1.1)).

The third part of the assumptions is satisfied because of the regularity of solutions of
elliptic problems. It is noted here since it plays an important role in the derivation of the
model equations.

In order to find the model equations for the AC case, the next step is of course to
substitute V', n, and p in into the transient model equations .

2.2.1. The Poisson Equation.
We start with the Poisson equation ([2.2a]). Substituting (2.8]), we get

V- (AVV.) + V - (AV(V exp(iwt))) + ¢Clop

2.10
+ q(Zpps + Zpny + Zppexp(iwt) + Zpnexp(iwt)) = 0. (2:10)

Then, we subtract the DC Poisson equation for V, and can cancel the exponential terms to
obtain the AC Poisson equation
V- (AVV) + q(Zpp + Znit) = 0 (2.11)
that holds in in Qj;q and Qg;. In €, the AC Poisson equation is simply
V- (AVV) =0. (2.12)

2.2.2. The Current Equations.

Regarding the transport part of the model, we consider the DC transport model (2.2d)—(2.2g))
and substitute solutions of the form (2.8]). The time derivative becomes

o _ op.
ot ot

+ iwp exp(iwt) (2.13)

and the current is
Jp=—q (DPVP + ZpuppVV), (2.14)

where Z, = 1. Then using ({2.8)), we have
Jp = —q(Dpr* + Dy exp(iwt)VD + ppp« VVi + pipps exp(iwt)VV

i (2.15)
+ ppp exp(iwt)VVi + ppp exp(Ziwt)VV).
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2. Analysis of the drift-diffusion-Poisson-Boltzmann System in the Alternating-current Regime

The last term is of second order in exp(iwt). We will neglect it, because it is sufficiently
small due to Assumptions [3] Therefore, the transport equation becomes

ope . . . . -
9P | iwpexp(iwt) + R=V - (Dpr* + Dpexp(iwt)Vp + ppp VVi

ot (2.16)

+ fpPs exp(iwt)VV + ppD exp(iwt)VV*).

After subtracting the DC transport model (2.2d]) and (2.14)) and canceling the exponential
terms, the first equation of the AC transport model is obtained as

V - (DpVD) + V- (upVVid) + V- (p1pps VV) — iwp = 0. (2.17)

Following the analogous calculation starting from the DC equations (2.2¢]) and (2.2g]), we
obtain the second equation of the AC transport model as

V- (DpVi) + V- (1, VVidt) + V- (nVV) — iwit = 0. (2.18)

2.2.3. Existence and Local Uniqueness for the AC Model Equations

In this section, existence and uniqueness of the solution of the AC model equations ,
, and , which were derived in the previous section, will be shown. As the AC
model is a system of complex valued equations, we consider the real and imaginary parts of
the equations separately. To this end, we write the complex amplitudes as

i = R(7) +iS(R),
V =R(V)+iX(V),

where R and & denote the real and imaginary parts. Then the complex valued equations
become the real valued equations

—V - (AVR(V)) = {Q(%(ﬁ )R E gsxu Hiia (2.19)
iy ) A(S(0) = S(R))  in Qg U Qg
-V - (AVS(V)) = {0 o O K (2.19b)
—V - (D, VR(D)) = V - (1, VViR(B)) = V - (1pp: VR(V)) + wS(p) in Qg;, (2.19¢)
—V - (DpVS(H) = V- (1, VViS(B)) = V- (1ppVS(V)) — wR(p) in Qs;,
(2.19d)

~V - (DpVR(#)) + V- (un VVR(R)) = =V - (nn VR(V)) + wS(R) in Qgi, (2.19)
~V - (DpVS(#) + V- (un VViS(1)) = =V - (nnVS(V)) — wR(R) in Qg;. (2.19f)
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2.2. Main results: the AC Model Equations

The interface between the liquid and the semiconductor in the AC model is described by
the equations

R(V)(0+,y) — R(V)(0—,y)
A(0+)0:R(V)(0+,y) — A0—)R(V)(0—,y >=’Y y> (2.20)
S(V)(0+,y) — S(V)(0—,y) =0,

A(04+)0, (V) (04, y) — A(0-):S(V)(0—,) = 0

on I'. Moreover, the Dirichlet boundary conditions on 9Q2p in the AC model read as

R(V)=R(Vp),  S(V)=3(Vp),
R(p) =R(pp),  S(p) = 3(Pp), (2.21)
R(n) =R(np), (1) = 3(p),

and the Neumann boundary conditions on 0y as
VR(V) n=0, VSV)-n=0,
VR({D) - n=0 VS(p) -n=0, (2.22)
VR(R) - n=0 V() -n=0

To discuss the system ([2.19)—(2.22)), we note that all the equations are special cases of
the general form

—V - (AVu) FV - (bu) = f Ve e Q\T, (2.23a)

u=up Vo € 0Qp, (2.23D)

Vu-n=0 Vo € 00y, (2.23c)

u(0+,y) — u(0—,y) = a(y) Ve eT, (2.23d)
A(0+)0,u(04,y) — A(0—)0,u(0—,y) = v(y) Ve eT, (2.23e)

where u represents either R(V) and (V). Because of Assumptions |1, A is uniformly
bounded.

The second term on the left-hand side in is additional to fixed-point arguments
for the usual drift-diffusion-Poisson system |74], |15, Lemma 3.1]. The complications arising
from this term are dealt with in the following lemma and the existence and uniqueness
results below. The following lemma shows that under a certain condition, the above problem
has a unique solution.

Lemma 1 (Existence and uniqueness of solutions of (2.23))). Under Assumptions |1, if
BCp < A™

holds, where A~ < ||A]|~ < AT, ||b|lr~ < B, and Cp is a Poincaré constant, then the
boundary-value problem with interface conditions (2.23|) has a unique solution u € H&D(Q).
Furthermore, the estimate

lullgr ) < CUIfllz2@) + lunllgzepg ) + ol gz + 1722 @) (2.24)
holds true.
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2. Analysis of the drift-diffusion-Poisson-Boltzmann System in the Alternating-current Regime

Proof. Multiplying the equations (2.23)) by a test function v € HJ(£2) and integrating by
parts, we obtain the weak formulation

/AVw-Vv:I:/bw-Vv:/fv/AV(UD+a)-Vv
Q Q Q Q
:F/b(up +a)‘Vv+/’yv Yo € HY(Q), (2.25)
Q r

where w := u — p — @ and Tp is the Dirichlet lift of up in Q. Also, @ € L?*(Q) is an
extension of & € H'/2(I'). Therefore, the weak solution of the boundary-value problem
(2.23) is u € H, () which satisfies

a(u,v) = £(v) Yo € Hi(Q), (2.26)

where

a(u,v) ::/AVu'Vvi/bu‘Vv (2.27)
Q Q

and

L(v) :—Af@—i—A’yU. (2.28)

Equivalently, the weak solution of (2.23)) is the w € H{ () which satisfies
a(w,v) = (v) Yo e H} (), (2.29)

where

a(w,v) = / AVw - Vv :l:/ bw - Vv (2.30)
Q Q

and

l(v) = / fo— / AV (up +@)- Vv F / b(up + @) - Vo + / Y. (2.31)
Q Q Q r
In order to apply the Lax-Milgram Lemma, we first show that the bilinear form a is
coercive. In other words, we show there exists a constant C4 € RT such that for every
w € H'(Q) the bilinear form a satisfies |a(w,w)| > CA||1UH12LI1(Q)-
Based on the Assumptions (1, we have
A_||Vw|\%2(m < / AVw - Vw
Q
= a(w,w) :F/ bw - Vw
Q
< law,w)| + bl | ful|Vul,

which is equivalent to

A7 [Vwll2ag) — bl /Q ol Vel < Ja(w,w)|  Yw € H'(Q).
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2.2. Main results: the AC Model Equations

Thus, for coercivity, it is sufficient to show that there exists a positive constant C'4 such
that

Callwltpgy < A™IVw|Zaiq) — Ibllze /Q w||Vw|  Yw e H'(Q).
Using the inequality
2, 1 o +
xy < 0x” + s Vo e R™ VzxeR VzeR, (2.32)

it is sufficient to find a positive constant C'4 such that

Callwl|Fz gy + Vwlizq) + IbllLe /Q |w][Vwl

1
< Calllwlzago) + IVwliz) + 8Bl [VwlZz () + £5 bl lwliz o)
< A7 Vwl i) (2:33)
We have to discern two cases. If [|[Vwl|p2q) = 0, then [Jw|[;2(q) = 0 by the Poincaré

inequality and the bilinear form a is coercive. If on the other hand |[Vw||12(q) # 0, then
dividing inequality (2.33)) by HVwH%Q(Q) and using the Poincaré inequality, we find

B
Ca(14C%) + Bé + 4—501% < AT, (2.34)
where B := ||b||z., and Cp is the Poincaré constant. This inequality always holds for A~

large enough and C'p and B small enough. Maximizing the range of values when it holds
leads to the minimization problem

B
§ := argmin B§ + —C% (2.35)
dERT 40

with the solution § := Cp/2. Substituting 0 in (2.34)) results in the inequality

A- — BCp
Op < ——— 2.36
A=T1502 (2.36)
Since C'4 must be a positive constant, the nominator must be positive, i.e.,
BCp <A™, (2.37)

which is satisfied by assumption.
Next, the continuity of the bilinear form a is shown. Using the Cauchy-Schwarz inequality
we have

|a(w, v)| < Al IVl 2@) Vol 2@) + bl Lo [wllL2() VOl L2(0) (2.38)
< Collwllg @ lvllH1(0),
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where Cy := AT + B. The continuity of the functional ¢ is proved similarly by calculating

)| < 1F 1l 2@ llollz2 () + Il 2y vl 2oy
+ | Al L[V (@D + @)l p2(0) [Vl 2(0)
+ Bl [[ZD + @ L2() [Vl L2(0)
< | fllze@llvllzr @) + IVl 2@ 1ol g )
+ AT |[up + @l g1 oy loll 12 @) + Bllap + @l g 1ol 12 o)
< Cilvl gy,

where

C1 = || flz2(0) + IMllz2ey + Cr(A™ + B)(lunllgzan) + lallgaseqry)-

Here, we used trace inequality (there exists a constant Cr > 0 such that [[upl|g1(q) <
Crllupllg1/2(90)) to obtain the constant Cf.
Hence all the assumptions of the Lax-Milgram Lemma are satisfied. Therefore it proves
the existence and uniqueness of the solution of equation ([2.23)).
Finally, we prove the estimate (2.24). We can write H&D (Q) 3 u=w+7up + a with
w € HYHQ), and all w € H} () satisfy
a(w,w) = alu —up —a,w) = alu,w) — a(tp + @, w)

. 2.39
=l(w) —a(up +a,w) = l(w). (2:39)

Here up € H'(Q) is the Dirichlet lift of up in Q and thus satisfies Ttp = up, where T is
the trace operator. Due to coercivity and (2.39)), we have

1 1 .
[wll gy < CTA@(U%U’) = FAE(W) (2.40)

Using the bound for ?, we can write

1. c
lwllmio) < & 1Hw)] < C—; (2.41)

Using the triangle and trace inequalities as well as , we have

lullar ) < llwlla@) + 1@pll g o) + 1@l g o)
< ClA(HfHLz(Q) 22y + Cr(AT + B)(lunll gir200) + lallgirzr))
+ Cr([lunllgi/2o0) + Il mr2p0))

1 A*+B
< & (WMo + oy + €

T 1) (lunlli/zon + ||a||H1/2<am>>

< O(lfllzey + IVll2@y + lupll girzon) + lallmirzoa),
(2.42)

where C' := max{c%l,CT(l + 1427:]3)}' -
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Next, we prove the existence and local uniqueness of solutions of the AC model system
f. For the existence proof, we apply the Schauder fixed-point theorem to show
the existence of a fixed point for a fixed-point map defined by the system of equations.
Since a fixed point of this map is a solution of the equations, we thus prove the existence of
a solution. To show local uniqueness, we apply the implicit-function theorem.

Proposition 3 (Existence of weak solutions of the AC model). Under Assumptions |1, the
system of boundary-value problems (2.19)—(2.22) has a weak solution

(R(V), S(V), R(D), S(5), R(R), S(7), a, )
e (L) N H'(2))? x (L®(Qsi) N H'(Qs1))* x (L) N HY(T))?,

Proof. We show the existence of solutions using the Schauder fixed-point theorem. To this
end, we define a fixed-point map G: M — M, where

M = { (R(V), S(V), R(5), S(5), R(7), $(7), @, 7)
€ (LX(Q)" x (LA(Qs))" x (LA(1))* |

a,7 bounded a.e. on I',  R(V), (V) bounded a.e. on €,
R(5), S(5), R(7), S(7) bounded a.e. on Qgi}

is a closed and convex subset of (LZ(Q))2 X (LQ(QSi))4 X (LZ(I‘))Q. For a given solution

(%(‘70)7 %(‘70)? %(]50)7 %(ﬁO)? §R(ﬁO)a %(ﬁ0)7 ap, /70)7 (243)
the map G is defined by

G ((R(Vo), S(Vo), R(Po), S(Po), R(70), 3(7n), @0, 70))
= (RO, S(V), R(B1), S(B1), R(7n), S(7n), a1, 1))

The functions on the right-hand side are the solutions of the following boundary-value
problems, which taken together are the given system of equations.

1. Solve the boundary-value problem

- {4%@»—mm0 in Qs U Qg

— V- (AVR(V)) = (2.44)
0 in Qox

with the boundary conditions
RV)=R(Vp) indQp and VR(V)-n=0 indQy
and the interface conditions

R(V)(0+,1) — R(V)(0—, y) = ao(y) onT,
A(04)0:R(V) (04, ) — A(0—)0R(V)(0—,y) = v0(y) on I

to obtain the solution R(V) = R(V}).
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2. Solve the boundary-value problem

(7 _ (B 3 . .
~ Q<\9(po) J(”o)) in Qg; U Qg (2.45)
0 in Qox

with the boundary conditions
IV)=S(Vp) indQp and VI(V)-n=0 indQy
and the interface conditions
I(V)(04, ) — S(V)(0—,y) =0 on T,
A(0+)0 (V) (04, y) — A(0-)0,S(V)(0—,y) = 0 onT
to obtain the solution (V) = (V7).
3. Solve the boundary-value problem
= V- (DyVR() = V- (1 VViRE) = V- (1pp VR(A)) +wS(F0)  (246)
in Qg; with the boundary conditions
R(p) = R(pp) in I0psi and VR({P) - n=0 in 0Qngs;
to obtain the solution R(p) = R(p1).
4. Solve the boundary-value problem
~V-(D,VS() - V- (1, VViS() = V- (1p V() —wR(po)  (247)
in Qg; with the boundary conditions
S(p) = S(pp) in ONpsi and V3(P) - n=0 in 0Qng;
to obtain the solution ¥ (p) = I(p1).
5. Solve the boundary-value problem
—V - (DpVR(7)) + V- (1 VVAR(7)) = =V - (unn VR(V)) + wS(7g)  (2.48)
in Qg; with the boundary conditions
R(n) =R(np) in 0Npgsi and VR(R)-n=0 in 0Qygi
to obtain the solution (1) = R(n1).
6. Solve the boundary-value problem
— V- (DVS(#)) + V- (un VVAS(7)) = =V - (tnnVS(V1)) — wR(7g)  (2-49)
in Qg; with the boundary conditions
3(n) =S(np) in 0Npgi and V() - n=0 in 0Qng;

to obtain the solution ¥(n) = (7).
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7. Update the surface-charge density and dipole-moment density by the microscopic
model

i '0 i (2.50)

Note that variables indexed with stars are the real valued DC model solutions which are
known from Subsection 2111

All of these boundary-value problems are of the general form . Therefore existence
and uniqueness of the solutions of all problems immediately follow from Lemmall] Therefore,
if we show that

(%(‘71)7 %(‘71)7 %(ﬁl)a %(ﬁl)’ §R(ﬁl)a %(ﬁl)valyryl) €M,

then the fixed-point map G is well-defined. By Lemmal|I] there exists a unique and bounded
solution

(%(Vl)v %(f/l)a %(ﬁl)a %(ﬁ1)> §]Ee(ﬁl)v %(ﬁ1)7 g, '71)

e (L) N H'(2))? x (L®(Qs1) N H'(Qg))" x (L2(T) n HY(T))?

for a given (R(Vo), S(Vo), R(Bo), S(po), R(70), (7o), @, Y0) in M. This implies
(%(‘71)’ %(‘71)7 %(ﬁl)v %(ﬁl)’ §R(’Fll)a %(ﬁ’l)7 041»’71) € Mv

which shows the self-mapping property of G.
According to Lemma [T}, continuous dependence of the solution

(R(V1), S(V1), R(51), S(B1), R(7n), S(1), ar, m1)
on the data of the problems ([2.44)—(2.50)) leads us to the estimate

IRV ) + ISV ) + 1RG5 s + ISGD) 0
IR e g + 1SR 104 + lleallzr @y + 71l 2y
< C>IR(VD)lr/2(00) + 1SVD) | 11172 (a0) + 1R(Bo)ll 1.0s) + I13B0) [l 11 05
+ [1R(720) | 12 gy + [S(R0) | 11021y + IRBD) | 11172 000) + ISBD) | 11172 500
H IR0 172005 + 11S(2D) 117200
+ [Villai) + <l og) + 10l g + ool gz + H’YOHL?(F))v
using (2.42), where C' is a constant. Furthermore, |1 ||g1(ry and [|y1]/z2(r) are bounded
due to the assumptions on M, and M,. Thus, the image G(M) is bounded as a subset of
HY(Q)% x HY(Qg;)* x HY(T)?, which is compactly embedded in L?(Q)? x L?(Qg;)* x L?(T)?
according to the Rellich-Kondrachov theorem. This implies that the closure of G(M)
is compact and thus G(M) is precompact. Therefore, G is compact. Compactness and
continuity of G lead to the complete continuity of G. Finally, the Schauder fixed-point

theorem implies the existence of a weak solution of the AC system of equations (2.19))—
(12.22)). O

29



2. Analysis of the drift-diffusion-Poisson-Boltzmann System in the Alternating-current Regime

Proposition [3| means that the AC model system f always has at least one
weak solution. As mentioned before, the applied AC potentials are not too large. Otherwise,
the validity of the drift-diffusion-Poisson model would be questionable to begin with, since
only local uniqueness holds as discussed in Subsection [2.1.1] Therefore, similarly to the DC
case, to show the local uniqueness, we use the implicit-function theorem. We denote the
equilibrium solution using an index e.

The equilibrium solution is given by the solution

(%(Ve)a %(Ve), §R(ﬁe)a %(ﬁe)a §R(ﬁe)v %(ﬁe)a Qe, 'Ve)a (2'51)

of the equilibrium boundary-value problem

—V - (AVR(V.)) = —2gn;sinh(B(R(Ve) — @)) in Qg;,
—V - (AVR(V,)) = 0 in Qox,
—V - (AVR(V,)) = —2qnsinh(B(R(Ve) — @) in Quiq,
—V - (AVS(Ve)) = —2gn;sinh(B(S(Ve) — @)) in Qg;,
—V - (AVS(Ve)) =0 in Qox,
—V - (AVS(Ve)) = —2gnsinh(B(3(Ve) — @)) in Quiq,
R(Ve) (0+,y) — R(Ve)(0—, 1) = ac(y) on T,
A(0H) 2 R(Ve) (0+, ) — A(0=)0uR(Ve) (0=, ) = e(y) onT,
S(Ve) (04, ) — S(Ve)(0—,y) =0 on T,
A0+)0:S(Ve) (0+,9) — A(0-):S(Ve) (0—,y) = 0 onI',
R(Ve) = R(Vp)(0) on Ip,
$(Ve) = S(Vp)(0) on 0Q2p,
VR(V,) - n=0 on 0§y,
VS(V,) -n=0 on 0Qy.

This solution exists uniquely due to [15, Lemma 3.2]. Furthermore, if all Fermi po-
tentials are equal to ®, the equilibrium concentrations of charge carriers in €lg;, i.e.,
(R(De), S(Pe), R(71e), I(72e)) are obtained by

Pe =niexp (— B(Ve — ®)), (2.53a)
fie = njexp (B(Ve — @)). (2.53Db)

As mentioned, we apply the implicit-function theorem to show the local uniqueness of
the solutions of the problem f around the equilibrium solution . To this
end, similarly to the DC case we show that the Fréchet derivative of the problem has a
bounded inverse at the equilibrium solution. Again we assume that the Dirichlet boundary
conditions for the potential, are sufficiently small and constant on each of r contacts that
partition the whole Dirichlet boundary 9€2p and denote the potentials there by the vector

U= (Th,...,0,) == (R(O), S(T1)), - .., (R(T,), 3(T,))) € C".

30



2.2. Main results: the AC Model Equations

In summary, the following assumptions are made to show local uniqueness for small
applied voltages.

Assumptions 4.

1. The Dirichlet data (R(Vp), 3( D),éR(ﬁD) S(pp), R(np), S(np)) are a Lipschitz-continuously
2

differentiable map of U := (Uy,--- ,U,) from C" into (H2(Q))? x (H?(Qg;))*.

2. The Fréchet derivatives M|, and Mé of the interface models M, and M., with respect
to V exist, they are in HY/?(T') and L*(T'), respectively, and they satisfy the inequality

1M (V)| 1720y + 1M (V) 220y < CIV |20 (2.54)
in a neighborhood of the equilibrium potential V. with a sufficiently small constant C.

Proposition 4 (Local uniqueness of weak solutions of the AC model). Under Assumptions
and there exists a sufficiently small § € R with |U| < 0 such that the AC system of

equations (2.19)—(2.22) has a locally unique solution

(ROV)(D), S(V)O), R(F*)(O), S(B)0), R(A*)(O), R(7*)(0), o (U),7*(0))
€ (H*(Q))* x (H*(Qs1)" x H'A(L) x L*(T).

Furthermore, this solution satisfies

(RV)(0), S(V)(0), R(E")(0), S(5)(0), R(7)(0), R(77) (0), 07(0), 7(0))
= (é}%(‘?e)a %( ~€ {

and it depends continuously differentiably on U as a map from {U eCr } |m <6, r< 3}
into (H?(Q))? x (H?(Qs:))* x HY2(I') x L*(T).

Proof. We rewrite the system of equations (2.19)—(2.22)) using the substitutions

!

R(V) :=R(V) = R(VD)T),  S(V):=S(V)—S(Vp)(D),
R(p) = RB) — RGp)(U),  S(B) = S3(p) — S(pp)(0),
R(7) == R(A) — R(Ap)(T), (i) = () — S(ip) (D)
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Then, the system becomes

~ V- (AVR(V + Vp)) = a(R(5 + Bp) — R(A + 7ip) ) in O, (2.55)
— V- (AVR(V + VD)) =0 in Qo (2.55b)
— V- (AVR(V + Vp)) = —2nsinh(BR(V + Vp) — ®)) in Qg (2.55¢)
— V- (AVS(V + VD)) = q(%(ﬁ +5p) — S(A + ﬁp)) in Qgi, (2.55d)
— V- (AVS(V +Vp)) =0 in Qox, (2.55¢)
— V- (AVS(V + Vp)) = —2nsinh(B(S(V + Vp) — ®)) in Quiq, (2.55¢)
—V - (D,VR(p +pp)) =V (,upVV*§R(]§ =+ ﬁD))
=V (pp VR(V + Vp)) + wS(H + pp) in Qgi, (2.55g)
— V- (DpVS(p+ D)) = V- (1pVViS(h + bp))
=V. (,upp*V\S(V + VD)) —wR(p+pp) in Qg;i, (2.55h)
— V- (DpVR(A+7p)) + V- (un VViR(A + 7ip))
= V- (e VR(V + Vp)) + wS (7 + fip) in Qg, (2.551)
— V- (DpoVS(+0p)) + V- (un VViS(R + ip))
=~V (tnnVI(V + Vp)) — wR(i + fip) in Qg;, (2.55§)
R(V)(0+,y) — R(V)(0—,y) = a(y) on T, (2.55Kk)
A0+)0R(V)(0+,y) — A(0-)0:R(V)(0—,3) = ¥(v) onT, (2.551)
S(V)(0+, ) — S(V)(0—,y) =0 onT, (2.55m)
A(04+)2, (V) (0+,y) — A(0-)0,S(V)(0—,y) =0 onT, (2.55n)
a = My(R(V +Vp) +3(V + Vp)) onT, (2.550)
v =M, (R(V 4+ Vp) +S(V + Vp)) on T, (2.55p)
RV)=S(V)=0 on dNp, (2.55q)
R(p) =S(p) =0 on JQp s, (2.55r)
R(n) =) =0 on 0Qp s, (2.558)
VR(V) n=VS3(V) - n=0 on Oy, (2.55t)
VR(P) n=VI{pP) -n=0 on 00N si, (2.55u)
VR(A) - n=VIn) - n=0 on I si. (2.55v)

where the operator

Q: D x S5,(0) = (L2(Q))? x (L*(Q1))* x HY2(T') x L*(I)
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is given by solving the above system. D is an open subset of H2(Q\ I') x H3(fg;)? x
H'?(T') x L*(T), where H3 is defined by

HE(Q):={pc H*(Q) | Vé-n=00nd, ¢ =0o0ndNp}, (2.56)

and S;, (0) € C", r < 3, is a sphere with radius d; and center 0.
Since

QUR(V), (V), R(p), I(B), R(1), I(n), v, 7), U)
€ (L2(0)? x (L*(Qgi))* x HY*(T) x L*(I)

results in (R(V), S(V), R(p), 3(p), R(), 3(A),a,~) € D and U € S5, (U) and since any prod-
uct of functions in D is in L?(2) because of the inequality HUUHLQ(U) < CHUHHI(U) H’UHHl(U)
for all uw and v € H'(U), the operator Q is well-defined.

To apply the implicit-function theorem, the Fréchet derivative

D5, 3(0) 2(5) () R(7) 3().c0) @

must have a bounded inverse at the equilibrium solution

(R(Ve) — R(Vp)(0), S(Ve) — S(Vp)(0), R(Be) — R(5p)(0), S(Be) — S(5p)(0),
R(7e) — R(p)(0), S(7ie) — S(7p)(0), e, 7e, 0),

which is by definition also a solution of the equation @ = 0.
Suppose (g1, 2. 93+ 94, 5, 96, 97, 9s) € L*() x L*(Qs;)* x H'*(T) x L*(T). To find the
inverse of the Fréchet derivative, we have to solve the equation

(R(V),S(7) (5,35 R (7). 3(3) o) P01 02, 83, 04, 05, 06, 47, 05
= (gla9279379439579&97798) (257)

for Qg (NS {17 RN 8}7 where (917927 93, 94, 95, 96, 97, gS) € L2(Q) X LQ(QSi)4 X H1/2(F) X LQ(F)
and @ are calculated at the equilibrium solution. To write this equation as a boundary-value
problem, we have to linearize the original equation (2.55) around the equilibrium solution

first. The derivative D(%(f/)f&(f/),?R(ﬁ),%(ﬁ),éR(ﬁ),S(ﬁ),a,y)Q at the equilibrium solution is

-V - (AV) 0 —-q 0 ¢ 0 00
0 -V-(AV) 0 —¢q 0 g 00
0 0 Li —w 0 0 0 O
0 0 w Ly 0 0 0 O
0 0 0 0 Ly —w 0 O
0 0 0 0 w Ly 00
~ML(R(Ve) —ML(S(Ve)) 0 0 0 0 10
“MUR(V) -MS() 0 0 0 0 01

33



2. Analysis of the drift-diffusion-Poisson-Boltzmann System in the Alternating-current Regime

in Qg;, where

Ly ==V (DpV) =V (1pVVi),
Ly ==V - (DyV) =V (1 VVi),
Lz := -V -(D,V)+ V- (u,VVi),
Ly:= -V -(D,V)+ V- (unVVi).

In the matrix above, the first and second rows pertain to the linearizations of the Poisson
equation with respect to §R(f/) and %(f/), respectively, and hence they depend on the
subdomain. In the three subdomains g;, {2, and €24, the linearizations with respect to
R(V) are given by the rows of the matrix

( V) 0 —¢g 0 ¢g 00O
AV) 0 0 00 O0O0O
—V - (AV) + 217[3 cosh(ﬁ( (V.)—®)) 0 0 0 0 0 0 0
and the linearizations with respect to (V) are given by
0 V- (AV) 0 —¢g 0 ¢g 00
0 V- (AV) 0 0 0000
0 -V (AV)+ 2175 cosh(B(S(V.)—®)) 0 0 0 0 0 0
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2.2. Main results: the AC Model Equations

Therefore, equation (2.57)) is equivalent to the boundary-value problem

-V (AVa) = ( as —as) + g1 in Qg;, (2.584a)
-V -(AVa) = in Qox, (2.58b)
— V- (AVa) = —217 cosh(B(R(V,) — ®))a1 + g1 in g, (2.58¢)
— V- (AVag) = (a4 —ag) + g2 in Qg;, (2.58d)
— V- (AVag) = in Qox, (2.58¢)
— V- (AVay) = —217 cosh(B(S(V.) — ®))ag + g2 in Qg (2.58f)
— V- (DpVas) = V- (1pVViaz) = was + g3 in Qg;, (2.58g)
— V- (DpVay) = V- (1pVViay) = —was + g in Qg;, (2.58h)
-V - (D,Vas) + (,unVV*ag,) wag + gs in Qg;, (2.581)
— V- (DnVag) + V- (1nVViag) = —was + ge in Qg;, (2.58j)
a1(0+,y) —a1(0—,y) = ar onT, (2.58Kk)
A(0+)0za1(0+,y) — A(0—)0za1(0—,y) = asg onT, (2.581)
az(0+,y) —a2(0—,y) =0 onT, (2.58m)
A(0+)0za2(04,y) — A(0—)0zaz(0—,y) =0 onT, (2.58n)
ar = MLR(V.))ar + MA(3(Vo))az + g1 onT, (2.580)
ag = M§(§R(Ve))a1 + M'( ( e))ag + s on T, (2.58p)
ap=az=0 on 0Qp, (2.58q)
az=a4=a5=ag =0 on 09Qp si, (2.58r)
Va;-n=Vay - n=0 on 0y, (2.58s)
Va3 -n=Vay-n=Vas;-n=Vag-n=0 on 09 si. (2.58t)

There exist unique solutions as, a4, as, and ag of the semilinear elliptic equations (2.58g))—
(2.58j) due to |15, Lemma 3.2], and the estimates

lasllr2(0g) + laall m2og) + lasllrzig) + lasllm2(og)
< C(llgsll2(0s) + ll9allz2(0sr) + 195122008y + 1961l 2 (0261 )

holds in Qg;. Substituting as, a4, as, and ag in (2.58a)—(2.58f) and then summing the
estimates, we find

a1l g2 + a2l m2) < Crlllgillizz) + ll92llz2@) + 931l L2 s
+ 9allz2(0g) + 195l z202s) + 96l 22 02s5) + 971172

+ gl z2y + llazll grro ey + llasllzzy)-

Using equations ([2.580)—(2.58p|) and Assumption 4jon M, and M., there exists a sufficiently
small constant C5 such that the estimate

lazllgrr2ry + llasllzzay < Colllarll w2y + a2l az@) + 97l gz ey + lgsllczry
)

35



2. Analysis of the drift-diffusion-Poisson-Boltzmann System in the Alternating-current Regime

holds. For sufficiently small Cs, i.e., if C1Cy < 1, we obtain from the last two inequalities
(1= C1Ca) (larll w2y + a2l nz)) < Ci(lgillz) + lg2llz) + lgsllL2q)
+ lgall L2y + 95l L2 gy + 1961122 s) + 2197 )l 12y + 2l g8l L2 (ry) -

Therefore, the Fréchet derivative of () at the equilibrium solution has a bounded inverse,
i.e., there is a constant C' such that

—1
1P 00,507 26). 368 30 am @) | = € (2.59)
where the norm is the operator norm of
H%(Q) x H*(Qg;)* x HY2(T') x L*(T') — L*(Q) x L*(Qg;)* x HY*(I) x LA(I').  (2.60)

Finally, the implicit-function theorem proves the local uniqueness of the solution. O

2.3. Summary

Many devices, especially sensors, can be used in the AC regime. Still, these model equations
have barely been analyzed mathematically. We started from a general model for affinity
based field-effect sensors, namely the transient drift-diffusion-Poisson system coupled with
the Poisson-Boltzmann equation. Assuming sufficiently low frequencies and sufficiently
small signals, the model equations for the AC regime were derived based on the DC regime.
The main results are existence and uniqueness for the AC model equations.
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3. Optimal Methods for the Stochastic
Drift-diffusion-Poisson System

This chapter has two parts, where two optimal methods for a coupled stochastic system,
namely the stochastic drift-diffusion-Poisson system are developed. The source of randomness
is due to the stochastic coeflicients in the mathematical model and the goal is to find an
optimal methods to approximate the expected value of the solution of the system. To this
end, we develop a multilevel Monte-Carlo and a multilevel randomized quasi Monte-Carlo
finite-element method with analyzing their convergence rate and computational complexity.
The presented optimal methods are achieved by means of solving optimization problems,
which lead to find the optimal discretization parameters and optimal number of samples.
Furthermore, computational cost of the two optimal methods is compared in order to find
the most efficient stochastic method. The applications include many areas such as transport
problems in nanoscale devices.

The chapter is organized as follows. In Section we present the system of model
equations with stochastic coefficients in detail. In Section |3.2] we define weak solutions of
the model equations and prove existence and local-uniqueness theorems. In Section we
introduce a multi-level Monte-Carlo finite-element method for the system and analyze its
rate of convergence. In Section we discuss the computational complexity and find the
optimal MLMC method. In Section we present numerical results for random impurity
atoms in nanowire field-effect sensors. The MLMC-FEM method is illustrated there and the
computational costs of various numerical techniques are compared as well. Finally, summary
of the chapter on MLMC-FEM is presented in Section to close the first part of the
chapter. The rest of this chapter is organized as follows. A randomized quasi-Monte-Carlo
method including an error estimate is developed in Section Based on this step, the
multilevel version including again an error estimate is developed in Section [3.8 Then
Section [3.9]is devoted to finding the optimal method. Finally, the numerical example is
discussed in Section and a summary is presented in Section

This chapter is based on the author’s publications [36,/75].

3.1. The Stochastic Model Equations

Suppose that the domain D C R? is bounded and convex, and that d < 3. The whole
domain D is partitioned into three subdomains with different physical properties and
hence different model equations in order to include a large range of applications. The
first subdomain Dg; consists of the (silicon) nanowire and acts as the transducer of the
sensor; in this subdomain, the drift-diffusion-Poisson system describes charge transport.
The transducer is surrounded by two materials. First, the oxide layer Dy protects the
semiconductor. In Dy, there are no charge carriers and hence simply the Poisson equation
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3. Optimal Methods for the Stochastic Drift-diffusion-Poisson System

holds. Second, D4 is the aqueous solution containing cations and anions and the Poisson-
Boltzmann equation holds.

Also, the boundary layer at the sensor surface is responsible for the recognition of the
target molecules. In the case of field-effect sensors, solving a homogenization problem gives
rise to two interface conditions for the Poisson equation [13]. In summary, the domain is
partitioned into

D = Dg;U Dy U Dliq-

In the subdomain Dg;, the stationary drift-diffusion-Poisson system

-V (A(z,w)VV(z,w)) = ¢(Caop(z,w) + p(z,w) — n(z,w)), (3.1a)
V- Jp(z,w) = qR(n(z,w), p(x,w)), (3.1b)

V- Jy(z,w) = —qR(n(z,w), p(z,w)), (3.1¢)

In(z,w) = q¢(DpVn(z,w) — ppn(z,w)VV(z,w)) (3.1d)

(z,w) )

= q(—DpVp(z,w) — ppp(z,w)VV (z,w)) (3.1e

models charge transport, where A(x,w), the permittivity, is a random field with = € R? and
a random parameter w € ) in a probability space (22, A,P). Q denotes the set of elementary
events, i.e., the sample space, A the o-algebra of all possible events, and P: A — [0,1] is
a probability measure. V(z,w) is the electrostatic potential and ¢ > 0 is the elementary
charge, Cqop(x,w) is the doping concentration, n(x,w) and p(z,w) are the concentrations
of electrons and holes, respectively, J,(x,w) and Jp(z,w) are the current densities, D,, and
D,, are the diffusion coefficients, p,, and p, are the mobilities, and R(n(x,w),p(z,w)) is the
recombination rate. We use the Shockley-Read-Hall recombination rate

n(z,w)p(z,w) — nf

Rln(e,w)ple @) = o ) + (@) o)

here, where the constant n; is the intrinsic charge density and 7,, and 7, are the lifetimes
of the free carriers, although the mathematical results here hold for many expressions for
the recombination rate. Equations include the convection terms —nVV and —pVV,
which prohibit the use of the maximum principle in a simple way.

We assume that the Einstein relations D,, = Urp, and D, = Urpu, hold, where the
constant Urp is the thermal voltage. Therefore, it is beneficial to change variables from the
concentrations n and p to the Slotboom variables u and v defined by

n(z,w) =: nie” @y (2 W),

p(z,w) =: nie_v(x’“)/UTv(x,w).
The system (3.1) then becomes

—V - (AVV (z,w)) = gni(e”V @/ Ury(z,w) — V@)U (2 w)) + ¢Cqop (2, w),

-1
UpV - (i eV @)/ Ur _ u(w, w)v(z,w)
™V (,u € VU($,W)) Tp(ev(xﬁw)/UTu(x,w) +1) + 7, e*V(sz)/UTU(x’w) + 1)>
(1= V(@w)/Ur _ u(z, w)v(z,w) — 1
Urv (,U’pe VU(CU,W)) Tp(ev(x’w)/UTU(x,W)—*—].)+Tn B*V(W)/UTv(x,w)le)’
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where the continuity equations are self-adjoint.
The boundary 0D is partitioned into Dirichlet and Neumann boundaries. For the Ohmic
contacts we have

V(z,w)lopp, = Vp(z), w(z,w)lops , = up(r) and v(z,w)laps, , = vp(T).

At Ohmic contacts the space charge vanishes, i.e., Cgqop + pp —np = 0, and the system
is in thermal equilibrium, i.e., nppp = n? on dDp. Furthermore, at each contact, the
quasi Fermi potential levels of silicon are aligned with an external applied voltage U(x).
Therefore, by using the quasi Fermi potential, we determine the boundary condition on
8DSi7 D using

Vi(z) == U(x) + Urln (W) _ U(e)— Urln <pD<> > |

i U
The boundary values up(x) and vp(z) are found to be

up(x) = nfle_vl(m)/UTnD(x),

1,Vi()/Ur

vp(x) :=n; pp(),

where

np(z) := % (Cdop + \/W) 5
pote) = L (a7

hold [74, Chapter 3]. Here, Cyqp := C}, — C is the net doping concentration, where C})
and C'; are the donor and acceptor concentrations, respectively.
The zero Neumann boundary conditions

n-VV(z,w)=0, n-Vu(r,w)=0, n-Vu(r,w)=0

hold on the rest of the boundary 0D. Here n denotes the unit outward normal vector on
the boundary.

A jump in the permittivity A always gives rise to two continuity conditions: the continuity
of the potential and the continuity of the electric displacement field. Homogenization of an
elliptic problem with a periodic boundary layer at a manifold I' yields the two interface
conditions [13]

V(O+7 Y, W) - V(O_v Y, w) = O‘(ya w),
A(0+)8IV(O—|—, Y, w) - A(O—)@xV(O—, Y, w) = 7(:’/7 OJ)

between the semiconductor and the liquid. Here we denote the one-dimensional coordinate
orthogonal to the manifold I by = and the remaining (d — 1)-dimensional coordinates by y.
« and v are essentially given by the dipole-moment and the surface-charge densities of
the boundary layer; in general, we write them as the functional M, (V) and M, (V) of
the potential V. They may correspond to the Metropolis Monte-Carlo method [72], to
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solving the nonlinear Poisson-Boltzmann equation [24], or to systems of ordinary differential

equations for surface reactions [7.|76].

In the subdomain Dy, there are no charge carriers and the Poisson equation is simply

-V - (AVV(z,w)) = 0.
In the subdomain Dj;q, the nonlinear Poisson-Boltzmann equation

-V - (A(z,w)VV(z,w)) + 2nsinh(B(V(z,w) — ®(z,w))) =

holds and models screening by free charges. Here n is the ionic concentration, the constant
B equals 5 := q/(kpT) in terms of the Boltzmann constant kp and the temperature 7', and

® is the Fermi level.

In summary, for all w € 2, the model equations are the boundary-value problem

V- (A(z, w)VV (z, ))
= ) e a0 = i D
V- (Alr,@)VV(r, >> 0 in Dy,
V- (A(r,0) YV (2,)) = ~2nsinh(B(V (2, ) — B(z,))) in Dyq.
V{04, y,w) = V(0—,y,w) = a(y,w) onT,
A(04+)0,V (0+,y,w) — A(0—)0,V (0—, y,w) = v(y,w) on T,

UrY - (neV @9/ Tz, )
u(z,w)v(r,w) — 1

in D i
Tp(eV @) Ury(z,w) + 1) + 7, (V@) Ury(z, w) + 1) s
UrV - (ppe” UV o (2, w))
_ u(z,w)v(z,w) —1 in D,

p(eV @)/ Uru(z, w) + 1) 4 7 (e7V @) /Ut o(z,w) +1)
a(y,w) = Ma(V(y,w)) in T,
)

Y(y,w) = My (V(y,w) inT,
V(z,w) = Vp(x) on 0Dp,
n-VV(z,w)=0 on 0Dy,
u(z,w) =up(x), v(r,w)=vp(r) on dDp si,
n-Vu(z,w)=0, n-Vu(z,w)=0 on 9Dy ;.

3.2. Existence and Local Uniqueness

In order to state the main theoretical results, we first record the assumptions on the data of
the system . The assumptions are moderate in the sense that similar ones are necessary
for the deterministic system of equations. Then weak solutions and Bochner spaces are
defined. Using the assumptions and definitions, existence and local uniqueness are shown.

40



3.2. Existence and Local Uniqueness

3.2.1. Assumptions

The following assumptions are required.

Assumptions 5. 1. The bounded domain D C R? has a C? Dirichlet boundary 0Dp,
the Neumann boundary 0Dy consists of C? segments, and the Lebesque measure of the
Dirichlet boundary ODp is nonzero. The C? manifold T' C D splits the domain D into
two nonempty domains DT and D~ so that meas(I' NdD) =0 and T NOD C 8Dy
hold.

2. (2,A,P) is a probability space, where Q0 denotes the set of elementary events (sample
space), A the o-algebra of all possible events, and P: A — [0, 1] is a probability measure.

3. The diffusion coefficient A(x,w) is assumed to be a strongly measurable mapping from
Q into L*>°(D). It is uniformly elliptic and bounded function of position x € D and
the elementary event w € Q, i.e., there exist constants 0 < A~ < AT < oo such that

0 <A™ <essinfyep A(w,w) < A, w) |l o) < At <0 Vwe.

Furthermore, A(z,w)|ptxq € CHDT x Q,R¥3) and A(x,w)|p-xq € CH(D™ x
Q,R3X3).

4. The doping concentration Cqop(,w) is bounded above and below with the bounds

C = inf Cyop(r,w) < Caop(z,w) < sup Cyep(z,w) =: C Vw € Q.
€D xzeD

5. There is a constant R 3 K > 1 satisfying

1

174 <up(x),vp(z) < K Vo € 0dDsip.

6. The functionals My, : L*>(Q; HY(D))NL®(D x Q) — L*(; HY/*(T)) N L®(T x Q) and
M, : L2(Q; HY(D)) N L>®(D x Q) — L®(T x ) are continuous.

7. The mobilities pi,(x,w) and py(z,w) are uniformly bounded functions of x € D and

w € D, ie.,

0 < py, < pn(z,w) < pf < oo Ve e D, YweQ,
O<u;§,up(x,w)§u;<oo Vre D, YweQ,

where (T, w), pn(z,w) € C(Dg; x Q, R3%3),

Furthermore, the inclusions f(z,w) € L?(Q; L*(D))NL>®(DxQ), Vp(z) € HY2(dD)N
L=(D), up, vp(w) € HY2(0Ds:), alw,w) € LA HYA(T)), and(z,w) € L2( LA(T))
hold.

Assumptions [3] and [7] guarantee the uniform ellipticity of the Poisson and the continuity
equations, respectively.
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3.2.2. Weak Solution of the Model Equations

In order to define the weak formulation of the stochastic boundary-value problem (3.2), it
suffices to consider the semilinear boundary-value problem

—V - (A (z,w)Vw(z,w)) + h(z,w(z,w)) = f(r,w) Yre D\ VweQ, (3.3a)
w(z,w) =wp(z) VredDp Ywe, (3.3b)

n-Vw(z,w)=0 Ve € 0Dy Yw €, (3.3¢)

w0+, y,w) —w(0—,y,w) = a(y,w) Vrel Ywe Q, (3.3d)
A*(0+)0,w(0+,y,w) — A*(0—)0,w(0—, y,w) =v(y,w) Vzxel Ywe Q, (3.3e)

which is a semilinear Poisson equation with interface conditions. Here (3.3h) includes
(13-2)—(3.2c) if A* is replaced by the permittivity A, and it includes ) and ) if
A* is replaced by pne"/UT and ,upe_v/ Ut respectively. Uniform ellipticity holds in each of
these cases per Assumption

For the weak formulation, we define the Hilbert space

X :=H)(D)={weH'(D)|Tw=g} (3.4)

as the solution space, where T is the trace operator defined such that Tw = g, where g is
Dirichlet lift of wp := w|sp,. The operator T is well-defined and continuous from H!(D)
onto H'/2(9D) for the Lipschitz domain D. For g = 0, we define the test space

Xo:=H{(D)={we H'(D) | Tw=0}. (3.5)

Definition 1 (Bochner spaces). Given a Banach space (X, || - ||x) and 1 < p < 400, the
Bochner space LP(Q2; X)) is defined to be the space of all measurable functions w: Q@ — X
such that for every w € Q) the norm

1/p 1/p
. p — . p
”wHLP(Q;X) = (IQ o ,w)||Xd]P’(w)> IE[Hw( ’w)HX} <00, lsp<oo (3.6)

ess sup,eq ||Jw(-,w)|x < oo, p =00
is finite.

To derive the variational formulation of our model (3.3), we fix the event w € € at first,
multiply (3.3a)) by a test function ¢ € L?(; Xp), and integrate by parts in D to obtain the
relation

[ avuevos [ nwo= [ jo+ [16 voeriaix)

Definition 2 (Weak solution on D x ). Suppose that A* satisfies Assumptions @ and
that f(z,w) € L*(; L*(D)), wp(z) € H/?(dDp), and v(z,w) € L*(Q; L*(T")) holds. A
function w € L*(Q; X) is called a weak solution of the boundary-value problem , if it
satisfies

a(w,¢) = L(¢) V¢ € L*(; Xo), (3.7)
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where a: L*(£; X) x L*(€; Xo) — R and ¢: L?(2; Xo) — R are defined by

a(w, ) ::E[/DA*Vw-ngdx] +E[/Dh(w)¢dx]

(¢) :=E [/D fd)d:v] +E [/F'ygbdx} .

3.2.3. Existence and Local Uniqueness of the Solution

and

In the next step, we prove existence and local uniqueness of solutions of system of stochastic
elliptic boundary-value problems with interface conditions (3.2)) using the Schauder fixed-
point theorem and the implicit-function theorem similarly to |15, Theorem 2.2 and 5.2].

Theorem 1 (Existence). Under Assumptions[5, for every f(z,w) € L?(%; L*(D)) and
Vp,up,vp € Hl/g(aD), there exists a weak solution

(V(z,w),u(z,w),v(z,w), a(z,w),y(z,w)) € (L2(Q; H‘l/vD (D) N L>(D x Q))
x (L*(Q Hy (Dsi)) N L®(Dgi x Q) x (L2(; HY (Dsi)) N L=(Dg; x Q)
x (L*(9; HY(T)) N L2(T x )

of the stochastic boundary-value problem , and for every w € § it satisfies the L*°-
estimate

V<V(r,w) <V in D,
1

i Sulz,w) <K i Dsi,
1

? SU(I’,CL)) <K in Ds;,

where

o in( 1 [ ~2 2
V= mln(algiVD,CI)—s%pVL,UTln(T(Q+ C —|—4ni))—51[1)pVL),

2?11'

— . K — —2 9 .
V= max(;g;; Vp, ® 1%f Vi, Up ln(2ni (C+1/C" +4n7)) 11[1)f V).

Here Vi(xz,w) is the solution of the linear problem (i.e., problem (3.3) with h = 0), for
which the estimate

||VLHL2(Q;H‘1/D(D)) <C (Hme(Q;m(D)) +Vpllmr20p,) + el 22y + ”'YHLQ(Q;P(F)))

holds, where C' is a positive constant.
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3. Optimal Methods for the Stochastic Drift-diffusion-Poisson System

Proof. The existence of the solution is proved using the Schauder fixed-point theorem and
the estimates are obtained from a maximum principle. First, we define a suitable space

N :={(V,u,v,a,7) € L*(Q H'(D)) x L*(Q; H'(Dg;))* x L*(Q; HY(T))? |
V<Vw) <V aeinDxQ & <ulnw) (e <K aeinDsx,
a,~ bounded a.e. on I" x Q},
which is closed and convex. Then we define a fixed-point map F': N — N by

F(Vo, uo, vo, a0, v0) = (Va,u1,v1,01,m),
where the elements of the vector (V1, u1, v1, a1,71) are the solutions of the following equations
for given data (Vp, uo, vo, o, 70)-
1. Solve the elliptic equation
-V (AVW;) = qni(e_vl/UTvg — evl/UTuo) +¢Cqop in D,
n-V3 =0 on 0Dy,
Vi=Vp on 0Dp
for V1.

2. Solve the elliptic equation

UrV - (unevl/UTVul)

Uivy — 1
_Tp(eVI/UTuo +1) + (e V1/Uryy + 1)
n-Vu; =0 on dDsin,

u; = up on dDg; p

=0 in Dy,

for uq.
3. Solve the elliptic equation

Urv - (,upefvl/UTVvl)

ugv1 — 1
(€Y1 Urug + 1) 4 7 (e Y1/ Ut + 1)
n- Vvl =0 on 8DSi,N,

vy = vp on 0Ds; p,

=0 in DSi

for v1.

4. Update the surface-charge density and dipole-moment density according to the micro-
scopic model
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3.2. Existence and Local Uniqueness

Using Lemmata on the existence and uniqueness of solutions of elliptic boundary-value
problems with interface conditions [77], every equation present in the model is uniquely
solvable. Therefore the map F' is well-defined. Furthermore, continuity and the self-mapping
property of F' as well as the precompactness of F'(IN) can be shown similarly to [15, Theorem
2.2] and |78, Theorem 1]. Therefore, applying the Schauder fixed-point theorem yields a
fixed-point of F', which is a weak solution of . O

In general, the solution in Theorem (1| is not unique; uniqueness of the solution only
holds in a neighbourhood around thermal equilibrium. This necessitates sufficiently small
Dirichlet boundary conditions. The following theorem yields local uniqueness of the solution
of our system of model equation. The proof is based on the implicit-function theorem.

Theorem 2 (Local uniqueness). Under Assumption@ for every f(x,w) € L*(Q; L*(D)),
Vp,up,vp € HY2(OD), a € L*(Q; HY/?(T)), and v € L*(Q; L*(I)), there exists a suffi-
ciently small o € R with |U| < o such that the stochastic problem in the existence theorem
has a locally unique solution

(V*(U),u*(U),v*(U),a*(U),v*(U)) € L*(Q; H*(D\T)) x L*(; H*(Ds;))*
x L2(Q H'Y?(I)) x L2(Q; LA(I)).

The solution satisfies
(V*(0),7(0), 6(0), 0 (0),7*(0)) = (Vs 1,1, 0, 7e)

and it depends continuously differentiably on U as a map from {U € R*, |U| < o} into
L2(0; HA(D\ T)) x L3(; H*(Ds;))? x L3(Q; HV/2(1) x L¥($; L(D)).

Proof. We call the equilibrium potential V,(z,w) and the equilibrium surface densities
ae(r,w) and ve(z,w). (Ve, 1,1, ae,7e) is a solution of the stochastic equilibrium boundary-
value problem, which has a unique solution due to the existence and uniqueness of solutions
of stochastic semilinear elliptic boundary-value problems of the form

ATV (5,) = () it Vilew)/Ur _ Ve@w)/Un) iy D,
-V - (A(z,w)VVe(z,w)) = in Do,
-V - (A(z,w)VVe(z,w)) = —277 sinh(B(Ve(z,w) — ®(z,w))) in Dy,
Ve(0+, 9, w) = Ve(0—, 9, 0) = e(y, w) on T,
A(0H) 0 Ve (04, y, w) — A(0-) 0 Ve (0—, 3, w) = 7e(y, w) on I,
Ve(z,w) = Vp(z) on 0Dp,
n-VVe(z,w)=0 on 0Dy.

To apply the implicit-function theorem, we define the map

G: B x Sy,(0) = LA L2(D)) x L*(; L*(Dsi))? x L*(; LA(T))?,
G(‘/a u, v, ®,7, U) =0,
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3. Optimal Methods for the Stochastic Drift-diffusion-Poisson System

where G is given by the boundary-value problem (3.2)) after substituting V := V
Vp(U), u := u —up(U), and ¥ := v — vp(U). B is an open subset of L*(Q; H3(D)
L*(Q; H3(Ds;))? x L*(€Q; L*(T'))? with

X

~—

H3(D):={¢ € H*(D) |n-V¢=0o0ndDy, ¢ =0on dDp},

and the sphere S, with radius o; and center 0 is a subset of R%. The equilibrium
solution (Ve — Vp(0),0,0, ae, e, 0) is a solution of the equation G = 0. One can show that
the Fréchet derivative Dy, 4.0,y)G(Ve — VD(0),0,0, ae, e, 0) has a bounded inverse (see,
e.g., |15, Theorem 2.2]). Then the implicit-function theorem implies uniqueness of the

solution of (3.2)). O

3.3. Multi-Level Monte-Carlo Finite-Element Method

We start by briefly recapitulating the finite-element approximation of the system of model
equations considered here. Then we review the types of error in the Monte-Carlo approxima-
tion of solutions of stochastic partial differential equations in Section In Section [3.3.3]
a multi-level Monte-Carlo (MLMC) finite-element (FE) method for the solution of the
system of stochastic equations is developed. We give an error bound for MLMC-FEM
approximation and discuss the computational complexity.

3.3.1. The Finite-Element Method

In this subsection, we briefly recapitulate the Galerkin finite-element approximation and fix
some notation. It provides the foundation for the following section.

We suppose that the domain D can be partitioned into quasi-uniform triangles or
tetrahedra such that sequences {73, }72,, of regular meshes are obtained. For any ¢ > 0, we
denote the mesh size of 73, by

hy := max {diam K }.
¢ KGT}LZ{ }
To ensure that the mesh quality does not deteriorate as refinements are made, shape-regular
meshes can be used.

Definition 3 (Shape regular mesh). A sequence {7,}7°, of meshes is shape regular if
there exists a constant k < oo independent of £ such that

h
—Kg k VK €,
PK

Here pr is the radius of the largest ball that can be inscribed into any K € 1p,.

Uniform refinement of the mesh can be achieved by regular subdivision. This results in
the mesh size
he = r~*hy, (3.8)

where hg denotes the mesh size of the coarsest triangulation and r > 1 is independent of /.
The nested family {r,,}7°, of regular triangulations obtained in this way is shape regular.
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3.3. Multi-Level Monte-Carlo Finite-Element Method

The Galerkin approximation is the discrete version of the weak formulation in of the
stochastic elliptic boundary-value problem . We consider finite-element discretizations
with approximations uj, € Xj, of u € X. Given a mesh 75,,, X is the solution space (/3.4
and X, C X is the discretized space. For all & > 1, it is defined as

Xy, :=Pi(m,) = {ue X | ulx €P*(K) VK € 1,,}, (3.9)

where PF(K) := span{z® | |a| < k} is the space of polynomials of total degree less equal k.
The space Xy is the space (3.5) of test functions. The discretized test space Xo;, C X is

defined analogously to (3.9).
After introducing the finite-element spaces, everything is ready to define the Galerkin

approximation.

Definition 4 (Galerkin approximation). Suppose X, C X and Xop, C Xo. The Galerkin
approximation of (3.3)) is the function

wy, € L*(; Xp,)

that satisfies
B(why, $n,) = Fdn,)  Vén, € L*(4 Xop,), (3.10)

where B and F' are defined in .

3.3.2. Monte-Carlo Finite-Element Approximation

The straightforward Monte-Carlo method for a stochastic PDE approximates the expectation
E[u] of the solution u by the sample mean of a (large) number of evaluations. Since we use
the same finite-element mesh 7 with the mesh size h for all samples, we drop the index £ in
this subsection for the MC-FEM. We approximate E[u] by E[up], where uy, is again the FE
approximation of u using a mesh of size h. The standard MC estimator Eyjc for Efuy] is
the sample mean

M
N 1 Z i
EMc[uh] = Up = ug) (311)
i=1

where u&j) = up(z,w) is the ith sample of the solution.
The following lemma shows the error of the MC estimator for a random variable « which

is not discretized in space is of order O(M~1/2).

Lemma 2. For any number of samples M € N and for a random variable u € L*(2; X),
the inequality

IE[u] — Emclu]||z2(0.x) = M 20 ] (3.12)

holds for the MC error, where o[u] := ||E[u] — ul|2(q;x)-
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3. Optimal Methods for the Stochastic Drift-diffusion-Poisson System

Proof. The result follows from the calculation

| E[u] — EMC[U]H%Q(Q;X) = E[HE[U] - % ﬁu(i) j(}
= LS BJjE - O3]

=1

= B[]~ ul}] = Mo[u]

Therefore, the variance of the MC estimator is
o?[Enc[u]] = [E[Emclul] — Emc[ull|72ig.0) = Mo’ [u]. (3.13)

Next we generalize the result to the finite-element solution by using the MC estimator to
approximate the expectation E[u] of a solution u of an SPDE, which is discretized in space
by the finite-element method. In other words, if uj and 4y are the finite-element and MC
solutions of the SPDE, respectively, then we have

Elu] = Elup] = ay,.

Therefore, the MC-FEM method involves two approximations and hence there are two
sources of error.

Discretization error The approximation of E[u| by E[uy] gives to the discretization error,
which stems from the spatial discretization.

Statistical error The approximation of the expected value E[uy] by the sample mean 4y,
gives rise to the statistical error, which is caused by the MC estimator.

Lemma [2] takes care of the statistical error. The order of the discretization error depends
on the order of the finite-element method.

Recalling that 4 = Eng, we first obtain the mean square error of the Monte-Carlo FEM
in the L?-norm in the following proposition. Later we also show a theorem for the error in
the H'-norm.

Proposition 5. Let uy, be the Monte-Carlo estimator with M samples to approrimate the
expectation Elu] of a solution u(-,w) € L?(D) of an SPDE by using a FE solution uy(-,w)
with mesh size h. Then the mean square error of the Monte-Carlo estimator satisfies

an — Elu]72(0.12(py) = M~ 0?[un] + [[Elun] — E[u]l[ 720, r2(p))- (3.14)
Proof. Starting from the mean square error, we calculate

MSE := Hﬁh — E[U]H%Q(Q;L2(D))

— E[Hah - E[u]|yi2(m] = E[/D(ﬂh — Elu])?dz (3.15)

~ [ Bl ~ Blu)?la.
D
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3.3. Multi-Level Monte-Carlo Finite-Element Method

where the last equation holds due to Fubini’s Theorem. Add and subtracting the term
E[ay], we find

MSE = /D E[(ay — Elay] + Elan] — Elu])?]d

— [ El(an ~ ElanDldo + [ Bl(S{in] - Elul)da

P - D ) (3.16)
= Huh — E[uh”|L2(Q;L2(D)) + HE[uh] - E[U]HLQ(Q;LQ(D))
= o[y + | Efup] — E[U]”%%Q;L?(D))

= M 'o?[up) + |Eus] — E[U]H%z(g;L?(D))v

where we used E[iy,] = E[uy], because the Monte-Carlo estimator is unbiased, and o[y,
M~152[uy,] due to equation (3.13)).

O
Next we extend this result to H'. In the following theorems, the finite-element space X
is H (see (3.4))).

Theorem 3. Suppose o, Cy, C1 € RT. Let iy, be the Monte-Carlo estimator with M samples
to approzimate the expectation E[u] of a solution u(-,w) € X of an SPDE by using a FE
solution up(-,w) € X, with mesh size h. Suppose that the discretization error converges
with order «, i.e.,

[Efun — ulllr2(0;x) < C1h%, (3.17)
and that the estimate
o?[up) < Cy (3.18)
holds. Then the mean square error of the MC' estimator satisfies
l[an — E[U]HQL%Q;X) =0(h*) +0(M™). (3.19)

Proof. We use the mean square error and calculate
MSE := ||an — E[u][|72(0.x)
= llin = ElullZ2(.r2(py) + Vi = EIVUl|720.22(py)
= |lin — E[an]l|720.2(py) + IElan] — ElullZ2(q.02(0))
+ IV — B[Van] 2.2 (py) + IE[Vn] = E[VUlll720.2(py) (3.20)
= llin — Elan]l|22 ux) + 1Elan] — ElulllZ20,x,)
= o’[an] + |[Efan] — Efu]l|F2(q,x,
= M~'o*[un] + ||E[un] — Elu]l|72(q,x)-

In the last expression, E[ts] = E[up] holds again because the Monte-Carlo estimator is unbi-
ased, and o2[iy,] = M ~'0?[uy] holds due to (3.13). Therefore, using the assumptions (3.17))

and (3.18)), we have
MSE < CoM ™' + (C1h%)? = O(M™) + O(h*®), (3.21)

which concludes the proof. O
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3. Optimal Methods for the Stochastic Drift-diffusion-Poisson System

3.3.3. Multi-Level Monte-Carlo Finite-Element Approximation

In this section, we first present the MLMC FE method and an its error. In this method,
several levels of meshes are used and the MC estimator is employed to approximate the
solution on each level independently. We start by discretizing the variational formulation

(3.7) on the sequence

XhOCXth'”CXhLCX

of finite-dimensional sub-spaces, where X, := P!(7,,) for all £ € {0,1,2,...,L} (see
Section [3.3.1). The finite-element approximation at level L can be written as the telescopic
sum

~

Uhy = Uhg + Z(th - “h£71)’
=1
where each uy, is the solution on the mesh 73, at level £. Therefore, the expected value of
is given by

Up,,

L

= Efuny) + Y Elup, — up,_,]- (3.22)
/=1

E[uhL] = E[uho] +E

L
Z(uhe — Un,_,)
(=1

In the MLMC FEM, we estimate E[up, — up,_,] by a level dependent number M, of samples.
The MLMC estimator E[u] is defined as

L

EMLMC[U] = ﬁhL = EMc[uhO] + Z Enc [uhé — uhéil], (3.23)
/=1

where Ehc is the Monte-Carlo estimator defined in (3.11]). Therefore, we find

R N R
i, = 3 ;uho + ; 7 ;(uhg —uy ). (3.24)

It is important to note that the approximate solutions ugfz) and ugfé)_l correspond to the
same sample i, but are computed on different levels of the mesh, i.e., on the meshes M, and
My_+, respectively.

Recalling the two sources of error constituting the MC-FE error, the following result
holds for the MLMC-FEM error.

Theorem 4. Suppose a, 3,Coo,Co,C1 € RY. Let 4y, be the multi-level Monte-Carlo
estimator to approzimate the expectation E[u] of a solution u(-,w) € X of an SPDE by using
a FE solution up,(-,w) € Xp, with My samples in level ¢, £ € {0,1,2,...,L} and with mesh
size hy. Suppose that the convergence order a for the discretization error, i.e.,

[Elun,] — Elull|r20:x) < C1hy, (3.25)

the convergence order 3 for
o?lup, — un, ,] < Cohll |, (3.26)
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3.4. Optimal Monte-Carlo and Multi-Level Monte-Carlo Methods

and assume that the estimate
o?[uny) < Coo (3.27)

holds. Then the mean-square error of the MLMC' estimator satisfies

L
IEfu] — din, 320y = O3) + Oy ) + SO HOM] ). (3.28)
/=1

Proof. Analogously to the MC case, the MSE is used to assess the accuracy of the MLMC
FE estimator. We calculate

MSE := ||iin, — E[u][|72(0.x)
= llan, —ElulllZ20.2(py) + Vin, = EVUllZ2 020
= llin, — Elan, 172,020y + IElin,] — Elu]ll72 (0.2 (py) (3.20)
+ Vi, = B[Vl 320020y + EIVn,] = B[Vl Z20,12(0)) |
= |lin, — E[ﬁhL]H%?(Q;X) + |Elan, ] — E[U]H%?(Q;X)
= o’[an, ] + |Eln, ] — Elu]|720,x)-
Expanding as in (3.20)), using the relation o?[dy,] = Zszo M[laQ[uhe — up,_,] [30], and

finally applying the assumptions (3.25)—(3.27]), we obtain the asserted estimate by observing
that

L
MSE = Malg2[uh0] + ZM[10'2[U}M — th_l] + ||]E[UhL] - E[U]H%Q(Q,X)
/=1
L
< CooMy ' +Co > My '), + (C1hg)? (3.30)
/=1
L
=O0(My™) + > 0(M;MHO(R]_,) + O(hF™),
/=1
which concludes the proof. ]

3.4. Optimal Monte-Carlo and Multi-Level Monte-Carlo Methods

In this section, we first estimate the computational cost of the MLMC FE method to achieve
a given accuracy and compare it with the MC FE method. Based on these considerations,
the computational work is then minimized for a given accuracy to be achieved in order to
find the optimal number of samples and the optimal mesh size.

As the model equations are a system of PDEs, the work estimate consists of the
sum of the work for all equations, i.e., the Poisson equation for V' and the two drift-diffusion
equations for u and v. Therefore, the total computational work is given by

W .=Wp+2Wp = Wp@ + WP,s + QWD,a + 2WD75, (3.31)

51



3. Optimal Methods for the Stochastic Drift-diffusion-Poisson System

where the index P indicates the Poisson equation, the index D indicates the two drift-
diffusion equations, the index a denotes assembly of the system matrix, and the index s
denotes solving the system matrix. We assume that the necessary number of fixed-point or
Newton iterations to achieve numerical convergence is constant; this is supported by the
numerical results. For each of these four parts the work per sample in level £ is given by

Wi pa = pih, ", (

Wips= ughzw, (3.32b
Wip.a = push, ", (3.32c
Wop.s = puahy ™ (3.32d

with all pg > 0 and 5 > 0. Here My is the number of samples used at level ¢, and hy is the
corresponding mesh size. Therefore the work per sample is given by

We=Wepa+Weps+2(Wepa+Wip,s). (3.33)

Analogously, in the case of the vanilla Monte-Carlo method, the computational work is
obtained without stratification, i.e., there is only one level. In this case, we will drop the
index /.

The exponents (and constants) in equations are determined by the algorithm used
for assembling the FE matrix in the case of Wp, and Wp , (see, e.g., |[79] for an efficient
algorithm) and by the order of the FE discretization in the case of Wp, and Wp s (see
Section . The constants p; > 0 depend on the implementation.

3.4.1. The Optimal Monte-Carlo Finite-Element Method

In the case of the Monte-Carlo method, there is only one level so that the index ¢ will be
dropped. We will choose the optimal M and h such that the total computational cost W is
minimized given an error bound € to be achieved. This optimization problem with inequality
constraints can be solved using the Karush-Kuhn-Tucker (KKT) conditions, which are
generalization of Lagrange multipliers in the presence of inequality constraints.

In view of (3.32) and ([3.20]), the most general problem is the following. We minimize the
computational work subject to the accuracy constraint MSE < €2 so that the root-mean-
square error RMSE < e. To this end, we solve the optimization problem

mlrj}%lnze f(M,h) =MW
Co
=+

(3.34)

subject to  g(M, h) (C1h™)? —? <0,

where the optimization is over M > 1 and h > 0. To simplify the problem, we introduce
the new variable  with 0 < # < 1 such that

<

e 02 and  (C1hY)% = (1—0)e2 (3.35)

By viewing h and M as functions of 0, (3.34]) becomes a one-dimensional convex optimization
problem. Due to the exponents of h and M, it is a nonlinear constraint optimization problem.
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3.4. Optimal Monte-Carlo and Multi-Level Monte-Carlo Methods

Our goal is to formulate the inequality constrained problem as an equality constrained
problem to which Newton’s method can be applied. In order to solve the optimization
problem, we use the interior-point method [80481].

For each pu > 0, we replace the non-negativity constraints with logarithmic barrier terms
in the objective function

minimize  f,(x, ) == f(x) — 1 > _ In(s;)
e i (3.36)
subject to  g(x) — s =0.

Here x, a vector, denotes (M,h) and the vectors g and s represent the g;(x) and s;,
respectively. The s; are restricted to be positive away from zero to ensure that the In(s;)
are bounded. As p1 decreases to zero, the minimum of f,, approaches the minimum of f.
After denoting the Lagrange multiplier for the system by y, the system

Vi) - Vex) 'y =0,
SYe = pe,
9(x) —s=0

is obtained, where S is a diagonal matrix with elements s;, e is a vector of all ones, and Vg
denotes the Jacobian of the constraint g. Now we apply Newton’s method to compute the
search directions Ay, As, Ah via

H(x,y) 0 —AX)"\ [Ax =V +AX)"y
0 Y S As | = pe —SYe . (3.37)
Alz) -1 0 Ah —g9(x) +s

The Hessian matrix is given by
H(x,y) = V(0 =D _uiV0i(x)

and A(xy) is the Jacobian matrix of the constraint (3.34). The second equation is used to
calculate As. By substituting into the third equation, we obtain the reduced KKT system

() )= () e

Now we use iteration to update the solutions by

NCEINENCINCING]
sHD g0 | (M AR,

where (X(O), s(o),y(o)) is the initial guess and a¥) is chosen to ensure both that s**1 >0
and the objective function

o0 8) = a0 8) + 51900 = sl

is sufficiently reduced [82]. The parameter v may increase with the iteration number to
force the solution toward feasibility.
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3.4.2. The Optimal Multi-Level Monte-Carlo Finite-Element Method

For an optimal multi-level Monte-Carlo finite-element method, our goal is to determine the
optimal hierarchies (L, {Mg}EL:O , ho, ) which minimize the computational work subject to
the given accuracy constraint MSE < 2. The optimal number L of levels is also unknown
a priori. To this end, we solve the optimization problem

inimi My, ho,r, L) M,W,
minimize  f(My. ho. Z W

(3.39)
C'oo L
subject to g(My, ho,7, L) := Z W (C1h$)* < &%
=

Again, the problem is over My, > 1, hg > 0, and r» > 1. To obtain the optimal number M,
of samples for £ € {0,..., L}, we calculate

0
o +€9 =0, (3.40)

where £2 is the Lagrange multiplier. This leads to

My =&/ Ve/ W, (3.41)

where Vy = Cyg and V; = C’Ohf_l. Similarly to (3.35]), the equations
Coo _ a2 2
COZ and  (C1h$)% = (1 —0)e (3.42)
hold. Hence, the Lagrange multiplier is given by

L
SR RUAL (3.43)
£=0

Additionally, according to (3.42), hg is calculated by

ho = <m> " k. (3.44)

Thus we arrive at a two-dimensional optimization problem for the unknowns 6 and r.
Similarly to the vanilla Monte-Carlo case, we use the interior-point method to solve
this nonlinear problem and optimize the hierarchies. In problems with two or three
physical/spatial dimensions, the optimal determination of the mesh sizes hy is a crucial
factor in the optimization problem specifically if the exponents ~; are greater than 1.

There are two options: one is to choose the hy as a geometric progression according to
. In this case, we solve the minimization problem . The other is to choose the
mesh sizes hy freely such that they only satisfy the natural condition

ho>hi>hg>--->hp.
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We will explore both options in Section
In the second case, when the mesh sizes are freely chosen, we write them as

h
hei=—2,  4=1,...,L,
¢
where
l
rg:=]]ri  and rm>1 (3.45)
=1

It is clear that rp > rp—1... > r; > 1. Here the optimization problem is an (L + 1)-
dimensional problem for the unknowns # and r1,...,rr. The same procedure can be applied
to solve the problem.

In the next section, we apply these two approaches to a MLMC FE method and discuss
their efficiency.

3.5. Numerical Results

In this section, we present numerical results for the Monte-Carlo and multi-level Monte-Carlo
methods for the drift-diffusion-Poisson system. We also investigate the choices of the FE
mesh sizes on each level, namely as geometric progressions or freely chosen. The random
coefficients in the drift-diffusion-Poisson system considered here stem from a real-world
application, namely the effect of random dopants in nanoscale semiconductor devices, which
is of great importance in its own right.

3.5.1. The Leading Example

Random-dopant effects are called discrete-dopant fluctuation effects [83-85]. In nanoscale
semiconductor devices, the charge profile of the dopant atoms cannot be validly modeled
as a continuum anymore, but the random location of each dopant needs to be taken into
account. This means that each device is a realization of a random process and corresponds
to an event w. In this manner, the potential and carrier-density fluctuations due to the
discreteness and randomness of the dopants are clearly captured.

Here the silicon lattice is doped with boron as the impurity atoms. The domain D C R?
is depicted in Figure The thickness of the oxide layer is 8 nm, the thickness of the
nanowire is 40 nm, its width is 60nm and the nanowire length is 60 nm. Regarding the
geometry, Dirichlet boundary conditions are used at the contacts with a back-gate voltage of
—1V (at the bottom of the device) and an electrode voltage of 0V (at the top of the device).
Zero Neumann boundary conditions are used everywhere else. The relative permittivities
in the subdomains are Ag; = 11.7, Aox = 3.9, Aiiq = 78, and Agop = 4.2. The number of
dopants placed randomly in the device corresponds to a doping concentration of 4-10'6 cm=3.
According to its volume, the silicon subdomain hence contains 6 negative impurity atoms
when Cyop =5 - 10" ¢cm ™3 and 600 dopants when Caop = 5 - 107 cm 3.
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Regarding the doping concentration Cyop, the discrete dopants are approximated by
Gaussian distributions

C; r— ;)2
Caop(z) = Z W exp <—(20_2J)> )

where o is the influence parameter, C; is the charge of the j-th dopant atom, and z; its
position .

Figure [3.1] shows a cross section of the domain in the longitudinal direction. The
longitudinal direction accounts for the transport of charge carriers through the nanowire
(black meshes) connecting the source and drain contacts. At least two spatial dimensions
are required for this type of problem: the potentials applied at the top and bottom require
one dimension and the transport between the source and drain contacts requires another
one. The drawback of 3D simulations is the large computational cost. In order to reduce the
overall computational cost, a two-dimensional implementation was chosen for the numerical
results presented here. A three-dimensional implementation would of course be a more
faithful idealization of the three-dimensional reality, not leading to a constant, infinite
extension of the two dimensions into three.

In order to solve the system of equations, we use Scharfetter-Gummel iteration. In spite of
the quadratic convergence of Newton’s method for the system, Scharfetter-Gummel iteration
has advantages for the problem at hand. First of all, Scharfetter-Gummel iteration is much
less sensitive to the choice of the initial guess than Newton’s method. Another important
feature is the reduced computational effort and memory requirement, since in each iteration
it requires the successive solution of three much smaller elliptic problems.

The calculations are performed using MATLAB version 2015a on an Intel Core 15-4430
3.00 GHz 4-core processor with 8 GB of main memory.

400 7 400

—Insulator

—Nanowire
Electrolyte|

: . Dopant

0 100 200 300 400 500 600

z[nm] z[nm]

Figure 3.1.: Meshes for the random distribution of impurity atoms (red circles) in a nanowire
field-effect sensor for levels £ = 0 (left) and ¢ = 1 (right), where hg = 4.02, r = 2,
and Cqop = 4 x 1016 cm™3. Additionally, oxide subdomain (D), transducer
(Dsi) and the electrolyte (D) are depicted with blue, black and green meshes
respectively.
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Figure 3.2.: Computational work for matrix assembly (top) and solving the system (bottom),
both for the Poisson equation (left) and the drift-diffusion-equations (right).

3.5.2. The Computational Work

As the first step, we calculate the coefficients in the expressions for the computational
work. To that end, we solve the system for various mesh sizes and measure elapsed wall-
clock time spent on matrix assembly and solving the resulting system, both for the Poisson
equation and the drift-diffusion equations. Figure shows the results for the coeflicients
in the expressions for the computational work.

The coefficients o and C in the FE discretization error

IE[V = Villlx + IE[u — @n]llx + [Efv — d4]llx < C1h®

of the system are given in Figure 3.3 The exponent o = 1.926 found here agrees very well
with the order of the discretization used here, i.e., P, finite elements.
For the statistical error, we determine the coefficients in the inequality

(0 AVig] + o{AVa,) + (0] Aun] + 0[Aup,]) + (o[Avy,] + o[Auy,]) < Coo + Cohf_,.

Here Cyg = 0.07 and the rest of the coefficients are shown in Figure 3.3

3.5.3. Optimization

Having determined the coefficients in the expressions for the computational work, it is now
possible to numerically solve the optimization problems. As described in Section we
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Figure 3.3.: Discretization error (left) and statistical (right) error as a function of h.

apply an iterative interior-point method to optimize both the number of samples and mesh
sizes.

Monte Carlo

First of all, we solve the optimization problem (3.34)) for the MC-FE method. Because there
is only one level, it is straightforward to solve. The optimal values for the MC FE method
are summarized in Table for given e.

€ 0.1 005 0.02 0.01 0.005 0.002 0.001
h 0.348 0.243 0.151 0.105 0.074 0.046 0.032
M 12 46 282 1130 4519 28268 113130

Table 3.1.: Optimal MC FE method parameters for various given error tolerances.

Multi-Level Monte Carlo

In the MLMC-FE method, determining the optimal number of levels is an important part
of the calculation. This is achieved here by solving the optimization problem for several
levels starting with a single level and noting that the computational work increases above
a certain number of levels. More precisely, we solve the optimization problem for
0 < L <7 levels as well as for various given error bounds.

Since the number of samples in each level is a continuous variable in the optimization
problem, the optimal number of samples is — in general — not an integer and hence we
choose My, £ =0,..., L, as the final numbers of levels.

The results of the optimization problems provide insight into the MLMC procedure.
Figure shows the minimized computational work as a function of the number of levels
and as a function of the given tolerance. It shows that for smaller tolerances ¢, a larger L is
required.

In Figure the two approaches to multi-level Monte Carlo are compared, namely
choosing the hy as a geometric progressions or freely. Due to generality of the second option,
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Figure 3.4.: The minimized computational work for the MLMC-FE method as a function of
the number of levels and as a function of the given error tolerance. The results
for a geometric progression for h (left) and general h (right) are shown. The
number of levels yielding the minimal overall computational work is indicated
by red circles.
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Figure 3.5.: Comparison between the two different approaches to MLMC FE method for
e = 0.015.

the total work when choosing the hy freely is lower compared to the first option. However,
only a small reduction in computational cost is achieved by the choosing meshes freely.
The results for both approaches to MLMC-FEM are summarized in Tables and for
various given error tolerances. Both figures show additionally that more than two levels
(i.e., L > 2) only yield a relatively small reduction in computational cost even for small
tolerance levels. In practice, it should hence be considered that the interior-point method
requires more time as the number of levels increases.

Comparison

Finally, as Figure [3.6] shows, the computational work for the multi-level Monte-Carlo
method is approximately two times lower than the one for the Monte-Carlo method for
larger tolerance levels such as € = 0.1. The effectiveness of the MLMC-FE method is more
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e ho r M() M1 M2 M3 M4
0.1 0.5171 1.7381 16 4 - - -
0.06 0.4433 2.1319 63 9 - - -
0.02  0.4620 2.0079 471 70 11 - -

0.01  0.4222 2.2940 1882 207 22 - -
0.005 0.4515 2.0765 8534 1167 161 23 -
0.002 0.4549 2.0033 58203 8536 1296 197 30
0.001 0.4407 2.1669 232299 29141 3575 438 54

Table 3.2.: Optimal levels for the MLMC-FE method with h; chosen as a geometric pro-
gression for given error tolerances e.

9 ho 1 T2 T3 T4
0.1 0.5171 1.738 - -
0.05 04433 2.131 - -
0.02 04618 2.020 1.990 -
0.01 04201 2270 2320 - -

0.005 0.4507 2.080 2.070 2.060 -

0.002 0.4587 2.038 2.017 1.990 1.950
0.001 0.4412 2.140 2.157 2.170 2.196

3 MO M1 M2 T3 T4
0.1 16 4 - - =
0.05 63 9 - - =
0.02 471 69 11 - -
0.01 1884 210 22 - -

0.005 8531 1162 160 22 -
0.002 58100 8327 1221 185 29
0.001 232539 29564 3701 455 55

Table 3.3.: Optimal levels for the MLMC-FE method with general h, for given error toler-
ances €.

pronounced for smaller error bounds; for € = 0.001, the computational work is about a factor
102 lower than the Monte-Carlo work. The results agree with Giles’ standard complexity
theorem [30] in the sense that the estimated exponents «, 3, and v satisfy the assumption of
the theorem, i.e., a > %min(ﬁ ,7). Therefore, according to the theorem, the computational
cost of the MLMC-FEM is O(¢~2). Additionally, according to Figure the total cost
of the MC-FEM is O(e~277/®), which agrees with [32]. The optimal distribution of the
samples among the levels in the multi-level method leads to more evaluations in the first
levels (which are cheaper) and to fewer evaluations in the higher levels. On the other hand,
to satisfy the first constraint of ([3.34), the Monte-Carlo method needs a smaller mesh size
compared to the multi-level method, which greatly increases the total computational work
although the total number of samples is lower.
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Figure 3.6.: Comparison of total computational work for MC-FEM and the two approaches
to MLMC-FEM for various given tolerances.

3.6. Summary

In this work, we considered the stochastic drift-diffusion-Poisson equations as the main
model equation for describing transport in random environments with many applications.
We presented existence and local uniqueness theorems for the weak solution of the system.
We also developed MC- and MLMC-FE methods for this system of stochastic PDEs.

Additionally, we balanced the various parameters in the numerical methods by viewing
this problem as a global optimization problem. The goal is to determine the numerical
parameters such that the computational work to achieve a total error, i.e., discretization
error plus statistical error, less than or equal to a given error tolerance is minimized.

Although the exponential terms in the constraints make the optimization problems
nonlinear, the optimization problems can be solved by an interior-point method with sufficient
iterations. The solution of the constrained optimization problem leads to optimal (M, h) in
the case of the vanilla MC method and to hierarchies consisting of (L, {MZ}eL:(] , ho,7) in
the case of the MLMC method.

Moreover, we investigated two different options to the mesh refinement in the multi-level
method. Although less computational effort is needed by choosing the mesh sizes freely, the
difference is negligible. In the comparison of the MC with the MLMC method, the MLMC
method was found to decrease the total computational effort by four orders of magnitude
for small error tolerances. The speed-up becomes better as the error tolerance decreases.

3.7. Randomized Quasi-Monte-Carlo Method

In the second part of this chapter, we develop another optimal method, namely optimal
multilevel randomized quasi Monte-Carlo method for approximating the expected value
of the solution of the stochastic drift-diffusion-Poisson system. Here we use mathematical
model , which models nanoscale devices as described in Section in detail.

In this section, first a randomized quasi-Monte-Carlo method is developed and serves
as a basic building block for the multilevel method developed in the next section. As
aforementioned, the MLRQMC method was first introduced in [28] and developed for a
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PDE in [35]. Here, the multi-level and QMC ideas are applied to a system of equations,
and based thereon, an optimal method is developed.

3.7.1. The Koksma-Hlawka Inequality

In quasi-Monte-Carlo (QMC) methods, quasi-random sequences are used instead of random
sequences. Correlations between the points provide greater uniformity and speedup the
computations and therefore the convergence rate, which is generally of a higher order than
that of the standard Monte-Carlo method. This approach avoids the problem of clumping in
the standard Monte-Carlo method; about v/ N out of N points lie in clumps in the standard
Monte-Carlo method [87]. The reason for clumping in the standard Monte-Carlo method
is, of course, the independence of the random points, while the points are correlated in
quasi-Monte-Carlo methods and thus clumping is avoided. The convergence rate of QMC
methods is O((log N)2N~1), where d is the dimension of the random variable. Therefore,
QMC methods have a smaller error and converge faster than the standard Monte-Carlo
method. Still, a large number of dimensions limits the effectiveness of quasi-Monte-Carlo
sequences [35,87].

It is convenient to describe QMC methods in the context of numerical quadrature rules.
QMC methods approximate an integral on a d-dimensional unit cube by an N-point
equal-weight quadrature rule of the form

/[ Flw)dw ~ %Z F(wy). (3.46)

Rather than choosing the points w; uniformly from the unit cube, as is the case with the
standard Monte-Carlo method, QMC methods choose the points in a deterministic manner.
The basis for analyzing QMC quadrature error is the Koksma-Hlawka inequality.

Theorem 5 (Koksma-Hlawka theorem). For any sequence {wj}j>1 and any function f
with bounded variation, the integration error due to (3.46|) is bounded by

N
1
— N — < A .
V) [ S| < V(D). (3.47)
where Vuk (f) is the Hardy-Krause variation of f defined by
ot f
() = [ o (3.45)

for sufficiently differentiable f.

The first factor Vi (f) in is the variation of f in the sense of Hardy and Krause [8§].
This term measures the variability of the function values, whereas the discrepancy term
Dy (wj), the second factor, measures the variability of the underlying sequence, i.e., the
quadrature nodes, from the ideal distribution.

Unfortunately, QMC methods have drawbacks as well. In fact, when the dimension d is
too large, the calculation of the integral in is computationally extremely expensive.
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In other words, for large d, the number N of samples has to be considerably large for
(log N)XN~! to be smaller than N~/2, In [89], it is proved that there exist lattice rules
such that the optimal rate of convergence for QMC rules is O(N~%/2%9) for any § > 0 and
with a parameter a > 1. This convergence rate is independent of the dimension d. In [90],
Kuo showed that there exist shifted rank-1 lattice rules (constructed by the CBC algorithm)
that achieve the optimal convergence of O(N~!%9) for any § > 0. The value of § depends
on the problem and is estimated in Section below.

Furthermore, Vik(f) and D} are difficult to compute. In order to overcome these
difficulties, randomized QMC (RQMC) methods have been developed [91].

The accuracy of a QMC method can be improved by rewriting the function so that the
variation term is reduced [92] or by constructing sequences that have smaller discrepancy [93].
Using RQMC methods with very low discrepancy sequences such as rank-1 lattice rules
helps to increase accuracy and gives a useful error bound.

3.7.2. Randomized Quasi-Monte-Carlo Finite-Element Method
(RQMC-FE-M)

In order to analyze and estimate the variance and to find an error estimate, QMC methods can
be randomized. Randomized quasi-Monte-Carlo (RQMC) methods can also be considered
as a variance reduction technique for the standard Monte-Carlo method. The simplest
method of randomizing is to use a uniformly distributed d-dimensional shift A ~ U[0,1)%.
In particular, a randomized rank-1 lattice rule [94] can be constructed as
W = %AJFA(“ mod1, je{l,....,N}, ie{l,...,M}, (3.49)
where N is the number of quasi-random points, A € [0,1]¢ is the random shift, which
is uniformly distributed over [0,1]¢, M is the number of random shifts, and A € R? is a
d-dimensional deterministic generating vector. Choosing A carefully is important in order
to achieve uniformity. The quality of a randomly shifted lattice rule is determined by the
choice of the generating vector A. This essential question is addressed, e.g., in [95] Section 4].
If the system has a solution (V,u,v), we denote finite-element numerical approxi-
mations by (Vi (z,w), up(z,w), vy (z,w)) for a given w € Q. Since all three components of
the solution are in H'(D) for a given w € Q, the variable u may denote any of the three
components from now on to simplify notation. We define the Hilbert space

X :=H})(D)={ue H (D) | Tu=g} (3.50)

as the solution space, where T' is the trace operator defined such that Tu = g, where g is
Dirichlet lift of up := u|sp,. The operator T is well-defined and continuous from H'(D)
onto H'/2(9D) for the Lipschitz domain D.

Having chosen a finite-element mesh 7, and having fixed k € N with £ > 1, the space

Xp, :=PF(m) i ={ue X | ulg €PHK) VK €} C X (3.51)

is the discretization space, where P*(K) := span{z® | || < k} is the space of polynomials
of total degree less than or equal to k. The expected value of the solution wu is the integral

Elu] = /[(J,l]d u(z,w)dP(w). (3.52)
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The RQMC estimator to approximate E[uy] is then defined by
IR -
QN (up) = i Z N Z up(z, w](-z)) (3.53)
=1 j=1

using the quasi-random points defined in ((3.49).

3.7.3. Error Bound for the RQMC-FE Method

As aforementioned, in order to overcome the difficulty of finding an error bound for the
QMC approach, we use a RQMC method. In this method, the standard assumption is that
up, has bounded variation Vik (up,) in the sense of Hardy and Krause and behaves like the
variance [40]. Therefore, we assume that

VHK(uh) < Oy, (3.54)

where Cj is a positive constant. Similar to the standard MC method, the mean square error

(MSE) can be written as the sum of the variance of the estimator plus the square of the

discretization error [36]. As in [36], a prescribed accuracy is to be achieved, i.e., MSE < £2.
Using the Koksma-Hlawka inequality by calculating

M N

P Quar(un)] = o |2 37+ S wnlal?)

N ) (3.55)

N Zuh(x,wj) — E[uh]> dP(w)
2

52 ), (VD) ) ape)

= O(Vik (up)N72T%) V5 >0,

the variance of the RQMC estimator (3.53)) is estimated following |40]. In fact, in rank-1
lattice rules, the discrepancy satisfies

Di(wj) =O(N~9)  ¥5>0 (3.56)

for any number of points N > 1, any shift of the lattice, and for any dimension d > 1 [96].
The above result is obtained by using component-by-component (CBC) construction, i.e.,
the components of the generating vector A\ are constructed one at a time to minimize the
worst-case error in certain weighted function spaces [94].

Using the boundedness assumption (3.54)) for Vik (up) in (3.55]), we obtain the estimate

o?[Qn(up)] < CoM TIN5 >0 (3.57)
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for the variance of the RQMC method, where Cj is estimated using (3.54)). Furthermore, 4
is estimated in Section (see Figure . The inequality will be used later for an
error estimate.

The variable v may represent any of the three components of the solution (V,u,v) of the
system in order to simplify notation, since all three components are in H'(D) for a
given w € €.

Proposition 6. Suppose that Qn a(up) is the RQMC estimator to approzimate the expecta-
tion Elu] of the solution u(z,w) € X of (3.2). Assume further that the spatial discretization
error converges with order «, i.e.,

IE[u — up]ll2x) < C1h*  3C1 € RT, (3.58)

where up(z,w) € Xy, is the FE approzimation with mesh size h and it has bounded variation.
Then the mean square error of the RQMC estimator Qn y satisfies

QN ar(un) = Blu]l[72g.x) = OMTINT*F) + O(h**)  ¥6>0.  (3.59)

Proof. We estimate the mean square error (MSE). Using inequality (3.57)) and assumption
(3.58), we find that
MSE := [|Qn,a(un) — E[U]H%%Q;X)
= 1 Qn,ar(un) = EIQn,m (un)ll|72(0.x) + IEIQw,a (un)] — Elu]l[72(0.x)
= o?[Quwr(un)] + [Blw — un]l|72(0.x) (3.60)
< COM—lN—2+(5 + CthOt
= O(M~IN"2) + O(h?)
for every § > 0. O

This means that the error behaves like (3.57)).

3.8. Multilevel Randomized Quasi-Monte-Carlo Finite-Element
Method (MLRQMC-FE Method)

Based on the RQMC method in the previous section, a multilevel version is summarized
here.

3.8.1. The Levels

In a multilevel approach, several mesh levels are used, and on each level, the RQMC
estimator (3.53)) is employed to approximate the solution. The domain D is partitioned into
quasi-uniform triangles such that sequences {Thz}EL:O of regular meshes are obtained. For
any ¢ > 0, we denote the mesh size of 73, by

he := max diam(K).

KGTh[
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Uniform refinement of the mesh to obtain a nested family {7, }7°, of regular triangulations
can be achieved by regular subdivision yielding the mesh size

he = 1"h, (3.61)

where hg denotes the mesh size of the coarsest triangulation and r > 1 is independent
of £. In this method, the finite-dimensional sequence X, C X;, C --- C X, C X of
discretization spaces are used, where Xp,, := P*(7;,) with £ € {0,1,2,...,L}, and k € N is

fixed (cf. (3.51)).

The finite-element approximation at level L can be written as the telescoping sum

M=

Upy, = Upy + (uhz - uheﬂ)v

(=1

where up, is the approximation on the mesh 73, at level £. Furthermore, E[uy, — up, ] can
be estimated using N, quasi-random points and M, random shifts on each level £. Therefore
the multilevel RQMC FE estimator with respect to one or more random shift is defined as

IRl My, 8~ 1\~ 1\ (0 )
QLN M, (Uny,) = i Z N Zuho (@, 0] )+Y i Z N, Z (un, (2, 0;”) —un,_, (z,w;")).
i=1 J=1 (=1 i=1 j=1
(3.62)
The sample points w§z) are obtained using ([3.49)), for example, and their total number is

M;N,.
3.8.2. Error Bound for the MLRQMC-FE Method

In order to state a proposition for the mean square error of the multilevel RQMC approxi-
mation, we first make the following necessary assumptions.

Assumptions 6. The assumptions on the boundedness of the variations of the FEM
approrimation and on the convergence order of the discretization error are

1. VHK(uhO) < C()() EC()() c RJr,
2. VHK(uh@ — uhz_l) < Cohf_l Cy € R+, 35 € R+,
3. |E[u — un,]ll2(@ix) < C1h¢ 3Ch € RT,3a € RY.

By using the multilevel approach, the difference between wuy, and uyp, | decreases for
higher levels and therefore Vi (us,) is reduced. Hence, it is a decent assumption that the
Hardy-Krause variation behaves similarly to the variance of up, —up, .

Proposition 7. Suppose Assumptions@ hold and Qr, N, .m(up, ) is the multilevel randomized
quasi-Monte-Carlo estimator with NyM, sample points in level £, £ € {0,1,2,...,L}, to
approzximate the expectation E[u] of the solution u(-,w) € X of using FEM approxi-
mations up,(-,w) € Xp, with mesh size hy.

66



3.8. Multilevel Randomized Quasi-Monte-Carlo Finite-Element Method (MLRQMC-FE Method)

Then the mean square error of the multilevel RQMC' estimator satisfies

L
E[u] = QL a, (i) T2y = OT)+O(My ' Ny >H0)+> - O(hy% M N2%) - W6 > 0.
/=1
(3.63)

Proof. First, following [40], we estimate the variance of the multilevel RQMC estimator
using inequality (3.47) by calculating

1 Mo 1 No ) L 1 My 1 Ny X A
UZ[QL,NAMZ (un,)] = o [ﬁo Z No Z Uhy (ﬂfaw](‘z)) + Z 7 M Z (uhg (, wj(-l)) - uhel(w](-l)))]
i=1 j=1 (=1 i=1 ¢ =1
1 1 X Loy 1
_ - 2 2 &
—mﬂMEMWM+;EﬂMMWMM>wwMﬂ

L 1 1 N,
+ — Up, (T, w;
;Mg /[0,1]d (NZJ;( he( J)

2
— tup,_, (,w5)) — Elup, (z,0;) - Uhel(I,w]‘)O dP(w)

< e [ (Viwtonpi o) aro

Lo * ;
+ Z M, /[0,1]d <VHK(Uh4(CC,Wj) - Uhg_l(x,Wj))DNe(w]-)> dP(w)

]
= O(VA i (une) Ny 20) + O(VE ¢ (un, (x,w5) — up, , (2,w;)) N, 2,

(3.64)
where we used the estimate (3.56)).
Therefore, we have
L
o2[Qr.ve, (uny )] < CooMy "Ny 270+ Co Y hg? M7 N 210, (3.65)

(=1

using the assumptions of bounded variations, i.e., Assumptions [6][I] and [6]2] This estimate
shows how the error of the method behaves in terms of the number of samples (same as
(13.57)), as we will see in the following.

Similarly to the RQMC estimator, the MSE assesses the accuracy of the MLRQMC-FE
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estimator. Using Assumptions and the variance estimate (3.64)), we find

MSE := [|Qr,n,m, (uny,) — Elu]l|72(.x)
= ||QL,N£:MZ (uhL) - E[QL,Ne,Mz (uhL)]”%2(Q;X) + HE[QL,NZ,MZ (uhL)] - E[U]H%Q(Q,X)
= 0*[QL.Ny, v, (un, )] + HE[U —un]l72(05x)

<OOOM lN 2+§+C(]Zhg . lN 246 (Clh%)z
=1

~

:O( IN 2+5 Z h26 1N 2+5)+0(h2a)

(3.66)

for every § > 0. O

3.9. Optimal Multilevel Randomized Quasi-Monte-Carlo Method

Since both the spatial and the stochastic dimensions are to be discretized, the question
how to distribute the computational work between the spatial and stochastic dimensions
poses itself. In other words, various parameters in the numerical approaches outlined so
far must still be determined. These parameters include the mesh size of the finite-element
discretization, the number of levels in the multilevel approach, and the samples to be used
on each level. Because of the computational challenge of solving a system of stochastic
partial differential equations, efficient computational methods are crucial. Therefore, we
develop an optimal method based on the previous section here.

The error bound found in Proposition [7|is used as an estimate of the total error. The total
error is prescribed and the unknown parameters are chosen such that the computational
work is minimized. Hence the computational work must be modeled as a function of the
unknown parameters. It consists of the sum of work necessary to solve each of three
equations in the coupled system, i.e., the total computational work is given by

W =Wp,+Wps+2Wp,+2Wp, (3.67)

where the index P denotes the work due to the Poisson equation and the index D denotes
the work due to the two drift-diffusion equations. Furthermore, since the steps for solving
each equation exhibit different scaling of the computational cost, there are separate terms
for the computational work for assembling the system matrices (index a) and for solving the
resulting systems (index s). Each of four work terms above has the form of pzh, ™, where
the constants pg > 0 and v, > 0 depend on the implementation and will be measured. If an
appropriate linear solver is used to calculated the finite-element approximation uy,, then we
expect that v, = n holds, where n is the number of spatial dimension [97]. In Section
we will see that our numerical results agree with this estimate.

Using this model for the computational work for one sample, the total work for solving
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the system (3.2]) is modeled as

L
W= M;NW;
(=0

L
=> MNe((Wepa+ Weps+2Wepa+2Wep,s) (3.68)
/=0

L
Z MyNe(pahy ™ + pghy ™ + pshy ™ + pahy ™).
=0

Having modeled the computational work, we can now state the optimization problem in
the sense that we want to minimize the total computational work for a prescribed error
tolerance €. The minimization problem is

minimize  f(My, Ny, ho, 7, L) ZM@N@ZM}JL ey

My,Ny,ho,r

subject to  g(Ng, ho,r, L) := CooMy Ny + Cy Z he? M7INT2E0 4 (C1h$)? < €2,
=1

(3.69)
for every § > 0, where hg > O r > 1, Ny, and Ny > 1. The given maximal total error
€2 is an upper bound for , ie., MSE < £2. The goal is to determine opt1mal values
he (by calculating optimal Values for ho and r and using their relation ) and Ny,
¢ € {0,1,...,L}. For all levels, the number M, of shift realizations is an integer, i.e.,
My € N.

This nonlinear constrained optimization problem can be solved numerically; the nonlin-
earity of the constraints g and the objective function f due to the exponents motivates the
use of sequential quadratic programming (SQP) [98] as a generalization of Newton’s method
for unconstrained optimization. The method is iterative and solves quadratic subproblems;
it can be used in both the line-search and trust-region frameworks. SQP is well-suited for
solving problems with significant nonlinearities.

We denote the parameters found in step s, s € N, by xs := (Ngs, ho,s, s, Ls). In each
iteration, ys is found by solving a quadratic programming (QP) subproblem, whose solution
is then used in the next iteration. The subproblems are of course constructed such that the
sequence Y converges to a local minimum x as s — co. The QP subproblems are based on
a quadratic approximation of the Lagrangian function

L(x:¢) = F0)+ D¢ gl
=1

where the vector { contains the Lagrange multipliers. In order to solve the optimization
problem (3.69)), the objective function is replaced by its local quadratic approximation

f(X) ~ f(Xs) + Vf(Xs)(X - Xs) + %(X - Xs)Hf(Xs)(X - Xs)»
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where H is the Hessian matrix. The term f(x®) in the expression above can be eliminated
from the minimization problem since it is constant. The nonlinear constraint g is replaced

by its linearization g(x) ~ g(xs) + Vg(xs)(x — Xs)-
Hence the minimization problem (3.69) yields the simplified, linearized QP subproblems

minimize %y(x)THf(XS)V(X) + Vf(Xs)TV(X)

) () +g(xs) <0,

(3.70)
subject to Vg (xs

where v(x) = x — xs- The next approximation is given by

Xs+1 ‘= Xs T QsVs,

where v, is obtained by (3.70) and the step-length parameter «y is determined by line
search [99]. Also, H can be updated by any of the quasi-Newton methods, e.g., by the
BFGS method [100].

3.10. Numerical Results

A numerical example is presented here in order to illustrate the advantages of the method
developed in Section [3.9 The well-known deterministic version of the model equations,
namely the drift-diffusion-Poisson system, describes charge transport in many situations; the
stochastic version makes it possible to describe charge transport in random environments.

3.10.1. Computational Cost

As discussed in Section the optimal parameters are found by solving the minimization
problem that minimizes the computational work for a prescribed total error. This procedure
yields the mesh sizes and numbers of samples in the multilevel approach. Before the
minimization problem can be solved, the constants and the exponents in must be
measured.

As already mentioned, the statistical error depends on the mesh size A and the number N
of samples. Figure (left) depicts the error for different mesh sizes (hg = 5, r = 2, and
N =100) with a decay of variance of the order § = 1.652. Shifted rank-1 lattice rules give
rise to the convergence rate O(N~2%9) for a § > 0. However, the value of § is crucial for
the optimization problem. As seen in the figure, the variance of MLRQMC-FEM decays
as O(N~18) (i.e., § = 0.12), while in the case of MC-FEM a rate of O(N~1) is achieved.
These values are obtained using h = 5 with respect to different numbers of quasi points.
Additionally, Figure [3.8]illustrates the discretization error for different mesh sizes, where the
parameters were estimated using 100 samples by comparing the variance of the multilevel
estimator for different mesh sizes. The numerically determined exponent oo = 1.731
agrees very well with the order of the P; FE discretization used here. The coeflicients in the
model for the computational work were also found numerically. For matrix assembly and
solving the system, we recorded the CPU time used as a function of different mesh sizes,
and hence the values of uy and v are found. A summary of the coefficients and exponents

is given in Table
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Figure 3.7.: The decay of variance of the solution as a function of different mesh sizes
(left) and number of samples (right). The values Cpp = 9.45, Cy = 0.338, and
0 = 0.12 are found
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Figure 3.8.: The expected value of the solution as a function of different mesh sizes with
C = 1.304.

Coefficient 1 v p2 7 p3 93 g4 Y4
Value 051 3.07 0.63 3.06 0.38 298 0.34 293

Table 3.4.: The estimated coefficients and exponents in (3.68]).

Since is a continuous optimization problem, the solutions N, are generally no
integers. We therefore round the values N, up to the next integer. Regarding the number
of shift realizations, the value My = 10 is used in all the QMC estimators. Summaries of
the parameter values (h, N), (ho,r, N¢) and (hg,r, M) for the QMC-FE and MLRQMC-FE
and MLMC-FE methods are given in Table Table [3.6] and Table [3.7] respectively.

We compare a previously developed optimal MLMC-FE method [36] with the optimal
MLRQMC-FE method developed in Section [3.9] Figure [3.9) shows the computational work
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e 0.100 0.050 0.030 0.020 0.010 0.005 0.003 0.001
h 0.427 0.208 0.1564 0.122 0.081 0.054 0.071 0.041
N 65 135 231 356 744 1554 3844 9913

Table 3.5.: Optimal mesh size h and number N of samples for the QMC-FE method for
different prescribed total errors ¢.

e h() r N(] N1 N2 N3 N4 N5 N6
0.100 2.192 2.270 209 31 6 2
0.050 2.651 2.144 633 124 24 5
0.030 2.174 2.204 1015 154 28 )
0.020 2.943 2.094 2363 534 106 21
0.010 2.213 2.149 4395 697 131 25
0.005 2.899 2.115 14139 3107 603 117 25

Tt Ot NN
gt NN

2

Table 3.6.: Optimal hierarchies in the MLRQMC-FE method for different prescribed total

erTrors €.
3 ho T MO M1 M2 M3 M4 M5 M6
0.100 1.303 2.151 3920 363 33 3 - - -

0.050 1.370 2.020 18046 1993 215 24 3
0.030 1.430 1.908 56136 7344 957 125 17
0.020 1.390 1.987 126266 14749 1688 193 23 -
0.010 1.459 1.9829 545840 73009 9182 1154 165 21 3

w w |

Table 3.7.: Optimal hierarchies in the MLMC-FE method for different prescribed total
erTors €.

T
-+ optimal QMC-FE method

- optimal MLMC-FE method
10 10 | ~

optimal MLRQMC-FE method

Total work
*

Figure 3.9.: Comparison of the total computational work required for the optimal ML-
RQMC and MLMC methods. For smaller total errors, the effectiveness of the
randomized method is more pronounced.
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Figure 3.10.: The comparison of the total work of MLRQMC for different levels (between
L =0 and L = 7) for three different total errors ¢ = 0.1, ¢ = 0.05, and
e = 0.03. For each prescribed total error, the optimal number of levels is
indicated by a red circle.

for the optimal quasi-Monte-Carlo method and the multilevel methods. It shows that
O(e727) is roughly constant for the standard QMC method. In the MLMC-FE method,
the assumptions of the standard complexity theorem [30] are satisfied, i.e., a > %min(ﬁ ' Y)s
so that the computational cost is O(¢72-2). The faster convergence rate of the RQMC points
results in less computational work for a given total error. In the MLRQMC-FE method, the
RQMC aspect yields a computational complexity of O(~1¥2), which results in additional
savings of a factor between 2 and 17 (relative to MLMC) and 2 and 500 (relative to QMC).
Therefore, the efficiency increase of the multilevel RQMC method is more pronounced for
smaller prescribed total errors.

Additionally, choosing the optimal number L of levels is another important consideration.
Figure depicts the optimal number of levels for three different prescribed total errors.
Using only one level (L := 0) results in the standard Monte-Carlo method. Distributing the
samples among several levels ¢ € {0, ..., L} results in significant savings in computational
cost. For smaller error bounds, a larger number of levels is necessary to obtain the minimum
of computational cost.

3.10.2. The Effect of Random Dopants

The main source of randomness inside the nanoscale devices such as nanowire field-effect
sensors and transistors is the random motion of dopant atoms through the semiconductor
during the fabrication steps of implantation and annealing resulting in their random locations.
To define the microscopic doping profile of individual randomly distributed dopants, a point
doping model such as

Clz,w) =Y Cjd(z — z;(w)) (3.71)
j=1
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can be used, where z; and C; are the position and the charge of the j-th dopant and
0(z — zj(w)) is the Dirac delta distribution at point z;(w). The Gaussian model [86}|101]

C(r,w) = Z (275;]')3/2 exp <—($_2x;2())) (3.72)

is a smoothed version of the point doping model (3.71)), where o is the so called influence
parameter. Here we study the effect of randomness in the position of the dopants, whose
number is constant. The fluctuation of the current in the discrete model for V;, = 0.1V and

Vy = 0.2V is shown in Figure
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Figure 3.11.: Histogram of the current for V; = 0.1V (left) and V; = 0.2V (right), Ngop = 25
and 563 simulations. Here E(I) = 1.49 - 10~ A for the lower gate voltage and
E(I) = 1.14 - 1079 A for the higher gate voltage.

Next, we compare the expected value of the current for different numbers Ny, of dopants
with the continuum model. Figure shows the expected value of the current for different
numbers of dopants, varying from 5 to 50, for various gate voltages. The total charge of the
dopants is kept constant to allow the comparison. According to the figure, the presence of
more than 10 atoms in the regions results in a higher current compared to the deterministic
model at the same gate voltage. In this figure, it is observed that the variation in the
number of dopants (ANge, # 0) gives rise to a noticeable current fluctuation. In other
words, the variations decrease gradually when there are more dopants in the region, which
is consistent with convergence to the continuum model as the number of dopants tends to
infinity. Here, a comparison between two numbers of dopants (Ngop = 5 and Ngep = 50) is
made in Figure where the histograms show that more dopants lead to less fluctuations.
Finally, an interesting result of the simulations is that considering the discrete nature of the
dopants in the devices results in a decrease of the threshold voltage.

3.11. Summary

We have used the stochastic drift-diffusion-Poisson system to model and simulate charge
transport in random environments. We have developed an optimal multilevel randomized
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Figure 3.12.: The I-V characteristics for different numbers of dopants. The results for the
continuum model are shown as well.
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Figure 3.13.: Histogram of the current for V; = 0.2V and for 563 simulations. Left:
Naop = b resulting in E(I) = 9.22 - 1077 A. Right: Naop = 50, resulting
in E(I) = 9.66 - 10~7 A. The current obtained by the continuum model is
I=966-10"TA.

quasi-Monte-Carlo method to calculate the expected value of the solution. We have compared
the new method with the optimal multilevel Monte-Carlo method, where a reduction in
the computational cost of the new method by more than one order of magnitude is found.
In order to obtain the parameters of the numerical method and to solve the resulting
optimization problem, we have used an SQP method as a generalization of Newton’s method
and approximated the nonlinear objective function by its local quadratic approximation. In
summary, a computational complexity of O(e~!%2) is achieved.

Here the effects of random dopants in nanoscale devices and variations due to the location
and the number of dopants have been considered and compared to the continuum model.
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As the number of dopants in the discrete model goes to infinity, the continuum model is
obtained as the limit as expected. The variations are significant for a realistically small
number of dopants.
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Inverse Modeling and Bayesian
Inversion
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4. Bayesian Inversion for
Electrical-lImpedance Tomography

Tomography is one of the most important imaging techniques in vast areas such as industrial,
geophysical and medical application. Many problems in these applications could be easily
diagnosed by information about the distribution of electrical properties inside the object of
study. In this chapter, we focus on electrical-impedance tomography (EIT) as a soft-field
tomography technique for imaging in medical applications. The goal is to extract internal
properties of the body using surface measurements on the electrodes. We present and solve
an elliptic partial differential equation, namely a nonlinear Poisson-Boltzmann equation
as the EIT model to find the electrical currents flowing in and out of the electrodes in a
bioimpedance tomography device.

We solve the EIT forward problem by means of the first order Galerkin finite-element
(GFE) approximation and a mesh generated by the GMSH package [54], and the corre-
sponding inverse problem is solved using the delayed-rejection adaptive-Metropolis (DRAM)
algorithm in the context of Beyasian inversion techniques, which we have implemented
in Julia [55]. We also discuss Bayesian inversion for the presented nonlinear elliptic PDE
model for EIT in the measure-theoretic framework and prove that the posterior measure
is Lipschitz continuous in the data to conclude well-definedness and well-posedness of the
resulting posterior measures obtained by the Bayesian technique.

The chapter is organized as follows: In Section the geometry of the physical domain
is defined, and the related mathematical forward model, namely the standard linear and
the nonlinear model are introduced. Section is devoted to the EIT inverse problem.
In this section, first we give a brief review of Bayesian estimation as a strong uncertainty
quantification (UQ) tool for solving the EIT inverse problem and then formulate it in the
measure theoretic framework. The Markov-chain Monte-Carlo method in the context of
Bayesian inversion and the adaptive Metropolis-Hastings algorithm, namely the DRAM
algorithm, are presented in this section as well. Furthermore, we prove well-definedness and
well-posedness of Bayesian inversion for the EIT PDE model. In Section numerical
experiments including their results are illustrated. These results show the capability of the
Bayesian approach to identify the quantities of interest in the EIT inverse problem, which
is defined for the presented nonlinear forward model and support our theoretical findings.
Finally, summary of the chapter is presented in Section

This chapter is based on the author’s work [102].

4.1. The EIT Forward Problem

The problem formulation for the EIT is based on [44]. First, we briefly review derivation of
the standard linear EIT model, and then extend it to the nonlinear one. We give a weak
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formulation of the new model together with the required assumptions for the existence and
uniqueness results.

4.1.1. The linear Model

First, we describe the geometry of the physical domain. We assume a square domain as a
cross-section of the main object under consideration containing an inclusion consisting of
a different material than the background medium. This EIT device has eight electrodes
equidistantly attached to the surface of the main body. In Figure a schematic diagram
of the device with one of the measurement patterns is shown. In this pattern, a potential is
applied between two electrodes, and the resulting electrical current is measured at the rest
of the electrodes. The forward problem is to find the electrostatic potential in the physical

Figure 4.1.: Schematic diagram of a cross-section of an EIT device with eight electrodes
attached to the boundary of the main object including one inclusion.

domain and then to calculate the electrical current flowing through the electrodes. Assume
that D C R",n € {2,3}, is a closed and bounded domain with a smooth boundary 9D.
Using the quasi-static approximation, the electrical field F can be represented in terms of a
scalar potential u by

E(x) = —Vu(z), (4.1)

where x € D. For simplicity we assume direct current or sufficiently low-frequency current
such that the magnetic field can be neglected.

In the case of direct currents, in which the applied voltage is independent of time, the
derivation is simple. The electric potential u results in the current density J, which satisfies
the continuum Ohm’s law J = —yVu, where + is the admittivity . In the absence of
current sources in the interior of the body, the continuum version of Kirchoff’s law V-J =0
results in the elliptic PDE

V- (vVu)=0.
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In the case of alternating currents, we consider the time-harmonic Maxwell’s equations
at a fixed angular frequency w, and it is assumed that the transient components of all
fields are negligible |103]. Ignoring magnetic effects, we substitute equation into
the time-harmonic Maxwell’s equations, while assuming no internal current source in EIT
problems, and take the divergence on the both sides to obtain the (complex-valued) linear
model

V- (vVu) =0, (4.2)

where
Y(z,w) = o(z,w) + iwe(z, w) (4.3)

is the admittivity, and ¢ and € are the electric conductivity and permittivity, respectively.
Also, w is the frequency of the electrical current. Since we restrict the present discussion
to static fields, i.e., w — 0+, the admittivity is real and coincides with the static con-
ductivity. Moreover, the impedivity p = 1/ is just the resistivity of the body [45]. The
linear model is widely used for modeling EIT; the leading EIT software EIDORS
(http://eidors.org) is based on this model equation.

To find the boundary conditions, we assume that there are L contact electrodes ey, which
are attached to the surface of the body, i.e.,

eoCOD, 1<(<I, (4.4)
such that e, Ne = () for £ # k.

Definition 5 (Voltage pattern). Let U, denote the voltage applied to the (-th electrode, the
ground voltage being chosen such that Zf:l Uy = 0. Then the vector U := [Uy,...,Ur]’ €
R% is called a voltage pattern.

We assume that the electrodes conduct perfectly, and thus the tangential electrical field
vanishes along the electrodes. Then possible boundary conditions on the electrodes are the
Dirichlet boundary conditions

u(z)=Up, x€e, 1<L<L. (4.5)

We also assume that no current flows in and out of the body between the electrodes, which
leads to zero Neumann boundary condition

ou(x)

L
oy =0 oD\ U e (4.6)

(=1

4.1.2. The nonlinear Model

To extend the model, we consider free charges in the equation. To this end, we assume
that ions in the background medium are pointlike charges. In this case, the free charges
contribute to the electrical potential u in the body. Assume that bulk concentration of
positive and negative free charges are denoted by n™ and 7™, respectively. Furthermore
assume that charges of single positive and negative charge carriers are denoted by ¢* and
q~ . Assuming that the energies of all ions in the electric field are distributed according
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to a Boltzmann distribution, then the charge density of free charges in the system can be
defined by

+ —_
qtu(z _ q u(z
ffree = 7]+ exp(— k‘B(T)) -n eXp(_ k‘B(T‘))
Assuming nT =1~ =:n and ¢" = ¢~ =: ¢, the above equation can be simplified as

ftree := n(exp(—pu) — exp(Pu)) = —2nsinh(Su).

Adding charge density of free charges free to the fixed charges frxeq (for simplicity we
denote it by f in the equation), we arrive at the nonlinear Poisson-Boltzmann equation

=V - (A(@)Vu(z)) = f(x) — 2n(z) sinh(Fu(z))

as the extended model for the EIT problem. Therefore, the forward problem describing
EIT is to find the potential u in the main object D, given the permittivity A, the voltage
pattern U = [Uy, ..., U], the bulk ionic concentration 7, and the concentration f of fixed
charges, that solves the (real-valued) nonlinear elliptic PDE

-V - (A(x)Vu(z)) + 2n(z) sinh(Bu(x)) = f(z) Vx € D, (4.7a)
u(z) =Up Vx € ey, (4.7b)

L
ag(j) =0 Va € 0D\ U er, (4.7¢)

{=1

where (8 := q/kpT. Furthermore, the sinh term stems from the Boltzmann distributions for
two species of ions.

As mentioned before, in every measurement pattern a potential is applied to the electrodes
and the resulting electrical current on the rest of the electrodes is measured. The electrical
current flowing through the electrodes in the EIT problem [44] is calculated by

B Ou(x) B
Ig—/eéA Sbds,  (=12,...L. (4.8)

Weak Formulation and Computational Method

Here, we first present the required assumptions for existence of a unique solution to the
model (4.7]), which is postponed to Section Then the weak formulation of the problem
is stated, which are then used to prove the main theoretical results in Section [4.2]

Assumptions 7. The permittivity A: D — R?*? and the voltage simulation pattern
{Ue}L_| € R satisfy the following assumptions:

1. The coefficient A: D — R?*? s a piecewise constant-valued matriz satisfying
A€ L®(D;R**?), essinfyep A(z) = A~ >0 (4.9)

and containing the permittivity of the inclusion or background medium, as the two
materials are different in their physical properties.
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2. The voltage applied to the ¢-th electrode is chosen such that Zngl U, =0.

Definition 6. Under Assumption @ for every f(x) € L*(D) and U, € H'/2(dD),x € ey,
the function u € H*(D) is a weak solution of the boundary-value problem ([.7)), if it satisfies

a(u,¢) =1(¢) V¢ € Hy(D), (4.10)

where a: HY(D) x H}(D) = R and l: H}(D) — R are defined by

a(u, @) 1=/DAVU'V¢C133+/D(—277) sinh(Bu)pdz

and

1¢) = [ oda.

The PDE model defined on the physical domain is solved using the first order
Galerkin finite-element method. The mesh is generated using the GMSH package, and it is
aligned with the inclusion such that each element has a constant value for the coefficient A.
Figure displays a simulated computational domain of the EIT with FEM mesh with
1335 triangular elements and 657 nodes, and mesh size 0.1. The results of the FEM solver
for the solution of the nonlinear forward model are presented in Section [4.3]

1.001

0.50 -

0.25 -

> 0.00

—0.2519

—0.50 1

—0.751

—1.001

T T T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
X

Figure 4.2.: Simulated EIT domain containing a circle-shaped inclusion centred at (0.5,0)
with radius of 0.2.

4.2. The EIT Inverse Problem

The EIT inverse problem is to reconstruct the electrical and physical properties of the
body interior, given the electrical current measurements on its surface. Bayesian inferences
[104H107] applied to the EIT inverse problem corresponding to the standard linear forward
model (4.2) has previously been studied. This inversion method for nonlinear inverse
problems in infinite dimensions is a new approach. In this work, we apply Bayesian
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estimation to the EIT inverse problem corresponding to the presented nonlinear forward
model , as this inversion technique is capable of dealing with the ill-posedness and
nonlinearity of the problem at hand successfully. We first briefly review Bayes’ Theorem
as a connection between inverse problems and probability theory. One of the goals in
this section is to show well-definedness of the posterior measure obtained by the Bayesian
techniques fo the EIT inverse model which arises from the nonlinear forward model that we
presented in the previous section. Well-posedness of the Bayesian inversion is also proved.
To this end, we first present the mathematical formulation of the Bayesian analysis in
a measure-theoretic framework and in the infinite-dimensional setting. Additionally we
collect required assumptions as well as Proposition [8] that finds a pointwise estimate for
solution of the nonlinear forward model. Finally, our main theoretical results are stated and
proved in Proposition [9] These results include boundedness and Lipschitz continuity of the
solution of the physical model by functions of the parameters, which lead to well-definedness
and well-posedness of the applied Bayesian estimation method for the prescribed model in
the EIT technology. At the rest of the section, we review the Markov-chain Monte-Carlo
(MCMC) methods and the delayed-rejection adaptive-Metropolis (DRAM) algorithm in the
context of Bayesian inversion. MCMC methods are sampling methods based on non-i.i.d.
and correlated samples, and the DRAM algorithm is of interest as an adaptive MCMC
method since it chooses the optimal proposal scale for defining the Markov-chain states
automatically. We will discuss it in Subsection in detail.

4.2.1. Bayesian Analysis

In fact the solution of the inverse problem is the posterior density that best reflects
the distribution of the parameter based on the observations. As the observations or
measurements are subject to noise and the observational noise, i.e., the error e due to
modeling and measurement, is unbiased and iid, it can be represented by random variables
as

M =G(Q) +e, (4.11)

where e is a mean-zero random variable and M is a given random variable representing
observed data or measurements, for which we have a model G(Q) (observation operator)
dependent on a random variable @ with realizations ¢ = Q(w) representing parameters to
be estimated [104].

Assume a given probability space (02, F, P), where 2 is the set of elementary events
(sample space), F' a o-algebra of events, and P a probability measure. Furthermore assume
that all the random variables are absolutely continuous.

Bayes’ Theorem in terms of probability densities can be written as

mo(9)7(ylq)
T q = 5 4.12
(aly) = "L (412)
with
w(0) = [ ml@r(yla)da # 0 (413)
p
where the unknown parameters ¢ = (g1, ..., qp) € RP and the observed data y are realizations

of the random variables @ and M, respectively. Furthermore, 7y(q), 7(qly), and 7 (y|q) are
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the probability density functions of the prior, posterior, and (data) sampling distributions,
respectively. The density 7(y|q) of the data provides information from the measurement
data to update the prior knowledge, and it is well-known as the likelihood density function.
The goal of Bayesian inversion is to estimate the posterior probability density function
7(qly), which reflects the uncertainty about the quantity of interest ¢ using measurement
data y.

Equation gives the posterior density and summarizes our beliefs about ¢ after we
have observed y. Therefore, Bayes’ Theorem for inverse problems can be stated as follows.

Theorem 6 (Bayes’ Theorem for inverse problems [45,|104]). Let mo(q) be the prior proba-
bility density function of the realizations q of the random parameter Q). Let y be a realization
or measurement of the random observation variable M. Then the posterior density of Q
given the measurements y is

mo(@)7(ylg) mo(@)7(yl9)

"W =T T T @ lod (4.14)

Computing the integral appearing in Bayes’ Theorem [0]is costly especially if the parameter
space RP is high-dimensional. Another problem with quadrature rules is that they require a
relatively good knowledge of the support of the probability distribution, which is usually
part of the information that we seek [45,/104]. In Section we shortly discuss the
algorithms for Bayesian estimation, which do not require evaluations of the integral and
that are used to achieve the numerical results for the nonlinear model equation.

4.2.2. Bayesian Approach in Measure-Theoretic Framework

To describe the Bayesian approach on function spaces, we formulate Bayes’ Theorem in a
measure-theoretic framework, which is suitable for problems on infinite-dimensional spaces.
To this end, assume that (X, || - [|x) (infinite-dimensional) and (Y || - [|y) (possibly infinite-
dimensional) are separable Banach spaces and that G: X — Y is the observation operator.
Therefore, let ¢ € X be a random variable distributed according to measure pg on X, in
which our prior beliefs about the unknown parameter ¢ are described. We assume the
distribution of the measurement error e (data likelihood) is defined by

m(ylg) := 7(y — G(q)) (4.15)
to calculate the posterior probability measure p¥ for ¢ € X given y € Y, which leads to

mo(q)m(y — G(q))
m(qly) = (4.16)
Je» mo(@)7(y — G(q))dg
using Bayes’ formula (4.14]), where my and 7 are the prior and posterior density functions
and correspond to the probability measures pg and p¥, respectively. Thus we have

m(qly) x mo(q)m(y — G(q)) (4.17)

with a constant of proportionality depending only on y.
First we define absolutely continuous measures and state the Radon-Nikodym Theorem,
which are needed in the rest of the paper.
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Definition 7 (Absolutely continuous measures). If u and v are two measures on the same
measure space (2, F'), then p is absolutely continuous with respect to v if v(A) = 0 implies
w(A) =0 for every A € F. This concept is denoted by p < v.

Theorem 7 (Radon-Nikodym Theorem). Assume that p and v are two measures on the
same measure space (U, F). If u < v and v is o-finite, then there exists a v-measurable
function f: Q — [0,00] such that for all v-measurable sets A € F

u(4) = [ faavia (4.18)

holds.

Remark 1. The function f is known as the Radon-Nikodym derivative of p with respect to
v and it can be written as

dp
— = : 4.19
B f) (419)
As in infinite-dimensional spaces there is no density with respect to the Lebesgue measure,
Bayes’ rule should be interpreted as providing the Radon-Nikodym derivative between
the posterior measure p¥(dg) = P(dq|y) (with density m(qly)) and the prior measure
to(dq) = P(dq) (with density m), yielding
duy
T—(g) oy — G(g))- (4.20)
dpo
Without loss of generality, we can view the right-hand side as the exponential of the negative
of ®(q,y), where ®: X xY — R is called a potential. Hence equation (4.20)) can be rewritten
as
dp¥y
dpo
since the density 7 is nonnegative [52|. The following theorem justifies the formula rigorously.

(¢) o exp (—®(q,y)), (4.21)

Theorem 8 ( [52], Theorem 6.31). Suppose that G: X — R™ is continuous, that m has
support equal to R™, and that puo(X) = 1. Then qly is distributed according to the measure
w¥(dq), which is absolutely continuous with respect to uo(dq) and has the Radon-Nikodym
derivative

du

i (q) o< exp (—®(q,y)). (4.22)

Furthermore, the posterior measure ¥ in some PDE inverse problems can be formulated

as
a1

q) =
dpo C(y)
where C(y) is a normalization constant and chosen such that p¥ is a probability measure,
i.e.,

exp (=®(g, 9)), (4.23)

Cly) = /X exp (—®(q,y))dpo(q). (4.24)

Furthermore, we assume that po(X) = 1 holds for the infinite-dimensional separable Banach
space X.
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The goal is to show that the posterior measure p¥ of the form is well-defined and
that the problem is well-posed with respect to its dependence on the data. To this end,
the function ®: X x Y — R should have essential properties, namely lower and upper
bounds and the Lipschitz property in ¢ and y. As this function is defined in terms of the
function G: X — R™, it is sufficient to prove the following properties of the function G
corresponding to the inverse problem of interest. This implies that ®: X x R"™ — R satisfies
Assumption 2.6 in [52] with (Y} - ||y) = (R™,]-]).

Assumptions 8. The function G: X — R™ has the following properties.
1. For every e > 0, there exists an M(e) € R such that the inequality
G(g)] < exp(e]lallk + M(e)) (4.25)
holds for all g € X.

2. For every r > 0, there ezists a K(r) > 0 such that the inequality

1G(q1) — Gla2)| < K(r)llar — q2llx (4.26)

holds for all q1,q2 € X with max(||q1||x, [|¢2]|x) < .

First, we check if the bounds and Lipschitz properties in Assumptions (8| can be shown
when G is given by the solution of the (real-valued) linear elliptic PDE

—V - (A(x)Vu(z)) = f Vz € D, (4.27a)
u(x) =g Vx € 0Dp, (4.27b)
dulz) _, Vz € 0Dy (4.27¢)

—V - (A(x)Vu(x)) + 2n(z) sinh(Bu(z)) = 0 Vo € D, (4.28a)
u(z) =g Vo € 0Dp, (4.28b)
ag(j) =0 Va € dDy, (4.28¢)

where 0Dp and 9Dy denote the Dirichlet and Neumann boundaries. In , the
solution u can be the real or the imaginary part of the solution of the complex-valued
model — ([@.3), i.e., either R(u) or I(u). Here, for the sake of simplicity we denote the
solution of the real-valued model by u as well.

First we state a proposition [15], which ensures the existence and uniqueness of the
solution of the nonlinear Poisson-Boltzmann equation and gives a pointwise estimate
for the solution to be used later.

Proposition 8 (Existence, uniqueness, and a pointwise estimate). Suppose that the domain
D CR", n € {2,3} is bounded, the matriz-valued function A € L>=(D;R™%) is uniformly
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elliptic, n € L>®(D;RJ), B €RT, and g € H'Y2(dD). Then the semilinear boundary-value
problem (4.28)) has a unique solution u € H'(D) N L>(D). Furthermore, the estimate

k<u(z) <A
holds for almost all z € D, where
:= min | inf g, —
K := min <g}) 9, s%puL> ,
A = max <sup g, — inf uL>
oD D

and uy, is the solution of the associated linear equation

-V - (A(z)Vur(z)) =0 Vax € D,
ur(x) =g Va € 0Dp,
G Vo € ODy.

4.2.3. Main Results

In the following proposition, the main results are a parameter dependent bound for the
solution of the nonlinear model equation and the Lipschitz property of the solution.
Furthermore, a similar bound for and the Lipschitz property of the solution of the linear
model equation (which can also be found in [108]) are proved in this proposition as well, as
they are the foundation for the theory for the nonlinear equation.

Proposition 9 (Bounds for real-valued linear and nonlinear models). Suppose the real-
valued linear and nonlinear equations (4.27)) and (4.28)) hold in the bounded domain D C R™,
n € {2,3}, with a smooth boundary 0D and A := e? =: 1, where ¢ € L>®(D). Then the

following estimates hold.

1. The estimate
[ull g1 (py < Fe?lallzeo) (4.30)

holds for all ¢ € L*°(D), and the estimate

g — u2||H1(D) < F64maX(H(IlHLOO(D),HQ2||L°<>(D))qu — @2l (p) (4.31)

holds for all 1 and g2 € L>(D) for equation (4.27)), where F' = F (V3| r2(py, | fllz2(p))
is a function and g € L*(D) is the Dirichlet lift of g.

2. The estimate
ull g < Helalee (4.32)

holds for all ¢ € L>°(D), and the estimate

holds for all g1 g2 € L>(D) hold for equation (4.28), where H = H(||[Vg||z2(py) and
S = S(IIV3ll2(py) are functions and g € L?(D) is the Dirichlet lift of g.
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Proof. We substitute v := u — g in (4.27]), where g is the Dirichlet lift of g. It is defined by

_ {g on 0D, (4.34)

B arbitrary in D

such that g € L*(D).
In the first step, we show the estimates for the linear equation. In order to find esti-

mates (4.30) and (4.31)) for the linear model (4.27)), we take the inner product with any
v € H}(D) to obtain

(=V - (AVv),v) = (V- (AVg),v) + (f,v) Vv € Hy(D),
which leads to

(AVv,Vv) = (—AVg, Vv) + (f,v)

:‘—/AVg-Vv+/fv

Hence using the Cauchy-Schwarz inequality we find

and

IZ:‘/AVU'V’U

el Vo|f. < T < el | Vgl 2| Voll 2 + [ fll 2ol 2,

where A = e?. Using the Poincaré inequality, the inequality on the right-hand side can be
written as

I < el gl 2 |[Vol 2 + Cpl| fll 2 V0| 24
where C), is a Poincaré constant. This leads to

IV g2 < el || Vgl 2 + Cpeldle= | £ 2.
Furthermore, we calculate

IVull 2 < Vol 2 + V3l 2 < 1902 Vg] 2 + Cpel e | £ 2 + (VG| (4.35)
=(1+ €2||qIILOO)vaHL2 + Cp€||‘IHL°° £l 2
< 9¢2llallze IVl + CpelltJHLoo £l 2
< 20,1 (gl 2 + || f|2)

_ pyellalliee

where Fy := 2C,(||VGl|z2 + || fll2). Using
Ll < |Vl (4.36)
1+ Cg -
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which is obtained by applying the Poincaré inequality in the definition of the H'-norm and
using inequality (4.35)), we can write
1 2lgll o
WHUHW < [[Vullrz < Fpe ;
where C), is a Poincaré constant. This leads to
llull g < Fe?lalizee

where F' = Fy(1 + 03)1/ 2 which proves inequality (4.30]).
To prove inequality (4.31), we assume that uy and ug satisfy (4.27) with coefficients
Ay = e? and Ay = e%2. Therefore we have

V- (e"Vuy) =V - (e?Vuy).
Subtracting the term V - (e?'Vugy), we see that the difference u; — ug satisfies
V- (eBV(up —uz)) =V - ((e® —e?)Vug).
Now taking the inner product with u; — us, we obtain
(V- (eT'V(u1 —ug)),ur —ug) = (V- ((e”? — e®)Vug),u; — uz)
and hence
(e'V(up —ug), V(ug —ugz)) = ((e® — e™)Vug, V(u; — uz)).

This yields

I:= '/eq1V(u1 —ug) - V(ug — u2)

= ‘/(qu —e™) - VuaV(ur —ug)|.
Using the Cauchy-Schwarz inequality, we find
eIl 1V (uy —up)|| 2 < T < [le® — e oo Viuiz | 2. (4.37)

Since €4®) (z € D) is continuously differentiable, it is Lipschitz continuous by the
Weierstrass Theorem. Thus we have

le® — €7 || < [lq1 — gol| oo e™@XUarlizoesllaalizoe), (4.38)

Substituting (4.38)) into (4.37)) and using inequality (4.35), we have

IV (ur — u2) ||z < Cp([VGll 2 + || 1] p2)et maxtliarlizeeliazliee) gy — gol| poe.
Therefore we can write
lur — szl < (14 C2)V2 |V (w1 — u2)|| 2
< Cp(IValle + I £llp2) (1 + C2)1/2etmax(lialzoelazlioe) gy — gyl oo

= petmax(laticeellaelleeo) | g — go|| oo
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using inequality (4.36]), which completes the proof for the linear equation (4.27)).
To obtain similar estimates for the nonlinear model (4.28)), we generalize the ideas used
for equation (4.27). To find the bound (4.32), we consider the inner product

(AVv, Vo) = (—=AVg, Vo) + (—2nsinh(8(g +v)),v) Yo € H(D).

Therefore we can write

IZZ}/AV’L%V’U

_ ‘_ / AVg - Vo — / 2 sinh(B(7 + v))v

)
where A = e?. Thus, we have

el || wo||3, < ‘/quv -Vu| =1.

Furthermore, using 7 = €9 and sinh(B(g+v)) = (e?9+%) —e=BE+)) /2 as well as the triangle
inequality, we find

1= ‘—/qug- Vv — /eq(eﬁ(g+”) + e Alat)y,

N ‘ / (1eB@ )| ’ / L1o—BE+0),

< ‘/qug-Vv

Using the Cauchy-Schwarz and Poincaré inequalities, we can write
I < el |17g| 2| Vo) 2 + Cpe\quILooe\ﬂAI V|2 + CpelquLooelﬁn\ V|| L2,

where (), is a Poincaré constant and k < u =g+ v < A is a pointwise estimate obtained
from Proposition [§] for the solution of the Poisson-Boltzmann equation, where x and \ are
constants.

This yields

e Ml || 7o)|7, < T <eldle= (||| 2 + Cpel™ + Cpel™ || V]| 2)
and thus
Vo2 < 10 (Vg 2 + Cpel™ + Cpel ™).
Furthermore, we calculate

Vulle < [Voll2 + IVl L2 (4.39)
< = (|75 2 + Cpel ™ + Cpel™) + V5] 12
= (1 + 2=y gl 2 + Cpe2llqllmo (elPAl 4 elBrly
< 2¢%l9le> 7| 2 + Cp62HQI|Loo)(€\BM + €4l
< 20p62||‘1HL°° (V7| 2 + /P + elBrl)

2
— Hyelale
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where Hp := 2C,(||Vg||2 + e/P 4 el®l). Now using inequality (&-36)), the estimate (4.32)
)| gr < Helalze (4.40)

can be reached, where H = Hy(1 + 05)1/2.
To prove inequality (4.33), we assume that u; and ug satisfy (4.28) with coefficients
Ay =e? = and As = €92 = 19. Hence we have

-V - (e""Vuy) + eql(eﬂu1 — 676"1) = -V - (e®Vug) + eq2(6'8“2 - 675”2).

Subtracting the term V - (e Vuy), we observe that the difference uy — uy satisfies the
equation

V- (eBV(ug —u1)) = V- ((e” — e)Vug) + e® (eﬁw _ e—ﬂﬂz) _ eql(eﬁm _ e—ﬂul).
Taking the inner product of this equation with us — u; yields

(eMV(ug —uy), V(ug —uy)) = ((e™ — e®)Vug, V(ug — uy))

+ (e®2 (eﬁw _ efﬂw) _ et (eﬁm _ efﬁm)’ Uy — uy).
This leads to

I:= /eq1V(u2 —uy) - V(ug —ug)

)

= ‘/(eql —e?)Wuy - V(ug —up) + (qu(eﬁu2 — 67&‘2) — eql(e'B“1 — €7Bu1))(’u2 —uy)

where the inequalities

eallee |7 (uy — uy)|2, < ‘/e‘ﬂV(uz —u) - V(ug —ur)| =1

and

I = /(eq1 —e?)Vuy - V(ug —uy) + (qu(eBW — e_ﬁw) — eql(eﬁu1 — 6_6“1))(1@ —uy)

< /(eq1 —e?)Vuy - V(ug — uq)

+ ’/(eqz (eﬁw _ e*fhm) _ eql(eﬁm _ efﬁm))(ug _ Ul)

< /(eq1 —e?)Wugy - V(ug — uq)

+ ’/(qu o eql)(eﬁmax(Al,Ag) o e—ﬁmax(Al,Ag))(u2 _ ul)

hold because of the triangle inequality and the pointwise estimates k; < u; < \;, @ € {1,2},
for the solution of the nonlinear Poisson-Boltzmann equation obtained by Proposition
where k; and \; are constants.
Now we use the Cauchy-Schwarz and Poincaré inequalities to find
I <[le® — e®||poc [ Vuall 2|V (ug — u1)]| 2

+ preﬁmaX(h,)\z) _ e—ﬁmaX(M,)\z)‘Hew — €| oo ||V (ug — u1)|| 2,
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where C), is a Poincaré constant. Therefore, we can write
e~ llarllzoo 1V (ug — up) |2 < T < [|e? — €% || oo (|| Vg 12 + Cp‘eﬁmax()\l,Az) _ e*ﬁmaX(Al,Az)D'

Using equations (4.38) and (4.39)), we obtain

e Nl |7 (uy — )| 2 < T < ||lg1 — go| oo €™ lallocllazlloc)

(e2||q2||oo (IVgll g2 + Cpe\ﬂ/\z\ + Cpe\ﬂﬁz\) + Cp‘eﬁmax(/\l,M) _ e—ﬁrrla><(>\17/\2)’)7
which leads to

1V (1 — )| 2 < [lg1 — go| poo et ™@<Ularlloesllazlloe)

(||V§||L2 + Cpe|ﬁ)\2| + Cpe|ﬁﬁ2| + Cp|eﬁ max(A1,A2) _ o—Bmax(A1,A2) ’)

= Sollq1 — qo|| Lo et mexUllalioo llazllo)

where Sp := ||V 2 _|_Cpe|5)\2\ + Cpe|ﬁf€2| + Cp|€ﬁ max(A1,A2) _ p—Bmax(A1,A2) |. Therefore, using
inequality (4.36[), we can write

lur —wall g < (1+ G2V (ur —u2) | 2
<(1+ 05)1/2(HV§||L2 + CpeW?‘ + Cpelﬁf@zl + Cp\eﬁ max(A1,A2) _ =B max(Al,Az)D X

et max(lalioollalloc) |1 gy — go || oo

= Setmax(lallocslazlioe) | gy — go| oo,
where S := Sy(1 + Cg)l/ 2. This completes the proof for the nonlinear equation (#.28). O

Remark 2. The quantity ||Vg||12(py is non-zero even if the Dirichlet datum g is a constant.
The new variable v := u — g is defined such that g = g on 0D and g is arbitrary in D.
Therefore in the (realistic) case of non-constant g, |[Vg||r2(py is non-zero in D. Hence,
even if f =0, the quantities F', H, and S are non-zero.

We summarize the above results for linear and nonlinear elliptic inverse problems in the
following theorem for both kinds of observation operator G.

Theorem 9. Assume G(q) = u is the observation operator representing the solution u of the
real-valued linear equation and the nonlinear equation in the bounded domain
D c R", n € {2,3}, with a smooth boundary 0D and A = exp(q) = n with ¢ € L*>(D).
Then the estimates

|G(q)| < Zexp (2]|qll (D)) (4.41)
and
|G(q1) — G(q2)| £ Z exp (dmax{[|q1][ (D), g2l Lo (D) DIla1 — @2l Lo (D) (4.42)

hold, where Z =: F = F(||Vg|| 2, fllz2) in these two inequalities becomes Z =: H =
H(|IVY||r2) for the linear equation (4.27) and becomes Z =: S = S(||Vgl|lp2) for the
nonlinear equation (4.28)), which have been defined in Proposition @
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The estimates (4.41)) and (4.42) for real and imaginary parts of the solution yield estimates
for the complex-valued equation as well. Therefore, Assumptions |8| are satisfied for
the general EIT model equations , where ¢ is constant at each contact at the surface
of the device. This will lead to the main results of the paper, i.e., well-definedness and
well-posedness of the Bayesian inversion problem for linear and nonlinear elliptic problems
including the EIT inverse problem.

The posterior probability measure p¥ defined by is well-defined if we show that
the measure is normalizable. For well-posedness, the continuity of the posterior measure
in the Hellinger metric with respect to the data must be shown. We first define Hellinger
distance and then state the two main theorems resulting from Proposition [J] The reader is
referred to [52] for the details of the following proofs.

Definition 8 (Hellinger distance). Let p and p' be two absolutely continuous probability
measures with respect to measure v. Then the Hellinger distance between p and p' is defined

duen(p, p') == \/(;/ (\/g - \/E)Zd’/)v (4.43)

where dp/dv and dp/' /dv are the Radon-Nikodym derivatives of u and 1, respectively, with
respect to v.

Theorem 10 (Well-definedness of the posterior measure |52, Theorem 4.1]). Let G satisfy
Assumptions @ and assume that the prior measure pg is a Gaussian measure satisfying
wo(X) = 1. Then the posterior measure p¥ given by (4.23) is a well-defined probability
measure.

Proof. Since G satisfies Assumptions , the function ® satisfies Assumptions 2.6 in [52].
Using these assumptions and the Fernique Theorem, the normalization constant C(y) in
is bounded from below and above and hence the posterior measure is normalizable
and well-defined. O

The following theorem states the well-posedness for inverse problems by showing Lipschitz
continuity of the posterior measure in the Hellinger metric with respect to changes in the
data.

Theorem 11 (Well-posedness of the Bayesian inverse problem [52, Theorem 4.2]). Let
G satisfy Assumptions[8. Assume also that the prior measure pg is a Gaussian measure
satisfying po(X) = 1 and that the measure is absolutely continuous, p¥ < ug, with its
Radon-Nikodym derivative given by for each y € Y.

Then the posterior measure p¥ is Lipschitz continuous in the data y with respect to the
Hellinger distance, i.e., if u¥ and uy/ are two measures corresponding to data y and 3, then
there exists v = a(r) > 0 such that the inequality

duen(1”, 1) < ally —¢lly

holds for all y and y' with max{||y|ly, ||y} < r.
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Proof. Let C = C(y) and C' = C(y') denote the normalization constants

C = Jxexp(=®(qy))duo(a),
" = [xexp(—2(q,y"))dpuo(q)

for the posterior measures p¥ and ,uy/, respectively, which can be bounded from below using
Assumptions 2.6 in [52]. Applying the Fernique Theorem and using the assumptions on the
function ®, we find

IC =" <ally =y, (4.44)

where o > 0 is a constant. From the definition of the Hellinger distance, we have

a1 = [ (€712 exp (= 50(a.) — (€ exp (= 58(a.41)) o)

S Il +127

where
I = é/x (exp ( — %Cb(q,y)) — exp ( - %@(q,y’)))Qduo(q),

L= 2(C7V2 — (¢ /X exp (—=@(q,y'))dpo(q)-

Now again using Assumptions 2.6 in [52] and the Fernique Theorem, we obtain the estimate

C
Sl <aly =I5
and that the integral in Io is finite. Furthermore, we find
O™ — (VP < ally — o1}

using the lower bounds for C' and C’, which results in a similar bound for I5. Combining
the bounds gives the desired continuity in the Hellinger metric and completes the proof. [J

4.2.4. Markov-Chain Monte-Carlo (MCMC) Methods

As the computational cost of the integral in in Bayes’ Theorem is expensive, we need
techniques such as Monte-Carlo methods when the parameter space is high-dimensional.
Efficiently sampling the parameter space is essential in the sense that in order to specify
parameter values to evaluate the density, we need algorithms which search the geometry of
the distribution efficiently. Otherwise most of the space is empty in high dimensions. To this
end, we use Markov chains with the desired stationary distribution. Markov-chain Monte-
Carlo methods are a class of Monte-Carlo methods with the general idea of constructing
(time-reversible) Markov chains whose stationary distribution is the posterior density [104].

The Metropolis-Hastings algorithm is an MCMC algorithm to draw samples from a
desired distribution. In this algorithm, the first state of the chain qg is chosen and then the
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new state qi, kK =1,2,..., N, of the chain is constructed based on the previous state q_1.
To this end, a new value ¢* using the proposal density function J(q*|qx—1) is proposed.
Admissibility of this proposed value is tested by means of calculating the acceptance ratio
a(q*|gr—1). If the proposed value is admissible, it is accepted as g, otherwise the old value
is kept and a new proposal is made.

The main question in constructing the MCMC methods is the evolution method of the
chain: Can we find a transition rule r going from ¢x_1 to gr such that the stationary
distribution exists and equals the posterior distribution? One answer to this question is the
Metropolis transition rule, which is defined by

7(qk)

777(%71) . (4.45)

r(qr—1 = qr) =
The rule states if 7 > 1, accept q. Otherwise if 0 < r < 1, reject it and keep the old value
so that g = gx_1. Although this rule works in a continuous parameter space with infinitely
many points ¢, when new candidate points are selected at random, but to concentrate the
sampling in good areas, the next point is selected dependent on the last point according
to a proposal/jumping function J(qi|qx—1). Hence the ratio of probabilities can be
modified as

m(qe)  J(qk—1]qk)

m(ak—1) J(qrlgr—1)’
which leads to the Metropolis-Hastings algorithm.

The number of samples or length of the chain needed in MCMC methods depends on
the problem. One usually discards as many parameter values as needed to be sure that the
starting point is more or less random and a stationary distribution has been reached, which is
called the burn-in period. For more details about MCMC methods see for example |[109-112].
Although the convergence speed is determined by choice of a good proposal distribution,
at least tens or hundreds of thousands samples are necessary to converge to the target
distribution. Choosing the optimal proposal scaling is a crucial issue and affects the MCMC
results; if the covariance of the proposal distribution is too small, the generated Markov
chain moves too slowly, and if it is too large, the proposals are rejected. Hence, optimal
proposal values should be found to avoid both extremes, which leads to adaptive MCMC
methods [113-115]. In the following section, we will consider an adaptive algorithm that
helps us with sampling from potentially complicated distributions.

r(qk—1 = qr) = (4.46)

4.2.5. Delayed-Rejection Adaptive-Metropolis (DRAM) Algorithm

Searching for a good proposal value can be done manually through trial and error, but this
becomes intractable in high dimensions. Therefore, adaptive algorithms that find optimal
proposal scales automatically are advantageous.

The delayed-rejection adaptive-Metropolis (DRAM) algorithm is an efficient adaptive
MCMC algorithm [114]. It is based on the combination of two powerful ideas to modify
the Markov-chain Monte-Carlo method, namely adaptive Metroplolis (AM) [116,117] and
delayed-rejection (DR) [118,|119], which are used as global and local adaptive algorithms,
respectively. AM updates the proposal covariance matrix with an optimal scale and
ensures that information leaned about the posterior distribution is remembered as the chain
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4.2. The EIT Inverse Problem

progresses, while DR updates the proposal scale when the proposed value is rejected to
improve mixing and avoid stagnation of the chain.

The adaptive Metropolis algorithm is a global adaptive strategy, where a recursive relation
is used to update the proposal covariance matrix. In this algorithm, we take the Gaussian
proposal centered at the current state of the chain ¢, and update the chain covariance
matrix at the k-th step using

Vi = SpCOV(qO, qi, . - - ,qk_1) + EIp, (4.47)

where s, is a design parameter and depends only on the dimension p of the parameter space.
This parameter is specified as s, := 2.382/p as the common choice for Gaussian targets
and proposals [120], as it optimizes the mixing properties of the Metropolis-Hastings search
in the case of Gaussians. Furthermore, I, denotes the p-dimensional identity matrix, and
€ > 0 is a very small constant to ensure that V} is not singular theoretically, and in most
cases it can be set to zero [114].

The adaptive Metropolis algorithm employs the recursive relation

k—
k

Vi1 = Vk + 2 <ka 1Ghy — (k+ 1)qaq, + qul;r)

to update the proposal covariance matrix, where the sample mean g, is calculated recursively
by

=qp+ 77— (Tp_1 — @)

kE+1

The basic idea of the DR algorithm is that, if the proposed value ¢* for g; is rejected,
this algorithm provides a mechanism for constructing an alternative candidate ¢** instead
of retaining the previous chain value g;_1 as in the standard Metropolis algorithms. This
process is called delaying rejection, which can be done for one or many stages. Furthermore,
the acceptance probability of the new candidate(s) is calculated. Therefore, in the DR
process, the previous state of the chain is updated using the optimal parameter scale or
proposal covariance matrix that has been calculated via the AM algorithm. The DRAM
algorithm has been summarized in Algorithm

If ¢** is rejected, a third-stage proposal (and corresponding acceptance condition) can
be built. This process can be continued and a jth-stage proposal can be constructed if
the (7 — 1)th-stage proposal is rejected [114]. We have written a package in Julia [55]
in order to implement the DRAM as an adaptive Markov-chain Monte-Carlo method for
Bayesian analysis. The Bayesian inference results of the EIT inverse problem by means of
the adaptive algorithm are presented in Section
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Algorithm 1 The DRAM algorithm
Initialization:
Choose the first state of the chain gy such that mo(qo) > 0.
Choose the number Ngamples 0f samples or iterations.
Choose the parameter €.
Choose the initial proposal covariance matrix Vj (diagonal or symmetric).
Choose the factor v (often v := 1/5) for the second-stage proposal distribution.
for £ =1 : Ngamples do
1. (Adaptivity:) The covariance matrix Vj in the k-th step is updated by .

2. A first-stage proposal ¢* is generated from J(¢*|qx—1) := N(qr—1, Vi)-

3. The new value ¢* is accepted with probability

m(q")  J(qr-1lq")
oy Tt (448)

(g |gk_1) = min (1,

4.  If the new state is accepted, we set g = ¢*. Otherwise:

a)  (Delayed rejection:) A second-stage proposal ¢** is generated from proposal
density

Jo(q" |ak-1,4%) = N(gr-1,7*Vi), (4.49)
where V), is the adapted covariance matrix.
b)  The new value ¢** is accepted with probability

(¢ |y)J(q*|¢"*) (1 — a(q*[g*)) ) _

T(qr-11y)J (¢*|qr—-1)(1 — a(q*|qr—1))
(4.50)

a2(¢""|qk—1,¢") := min (1,

c) If the new state is accepted, we set g := ¢**, otherwise qx := qx_1.
end for

4.3. Numerical Experiments

In this section, we show numerical results for the EIT problem presented in this work
including both forward and inverse problems. The numerical results for the forward problem
include solving the nonlinear Poisson-Boltzmann equation on the prescribed physical domain
and the inverse problem results include simultaneous reconstruction of multiple parameters
of the EIT system. Given a sufficient number of electrical current measurements and
corresponding voltage patterns, we aim to identify the EIT parameters including electrical
and physical parameters, namely the electrical permittivity, the electrical charge, and the
size of the inclusion inside the physical domain. To solve this inverse problem, we will use
Bayesian techniques, where prior information about the parameters of interest is updated
using measurement data (either real world measurements or other computational models
such as more refined ones) to obtain posterior information about the parameters.
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4.3.1. Results for the Forward Model

Here, we present numerical results of solving the presented EIT nonlinear model for an
8-electrode set-up as illustrated in Figure In this set-up, we consider a square domain
D = [-1,1]? as the main body with eight contact electrodes disjointly attached to the
surface of the body, two on each side of the square domain. Moreover, the electrodes are
labeled counterclockwise starting from the left bottom one, which is labeled as electrode 1,
to the bottom left electrode, which is labeled as electrode 8. We assume that the background
medium is a continuum dielectric of permittivity 80. The background medium contains
an inclusion centered at (0.5,0) in the domain, and made of a different material and thus
different permittivity, whose size, charge and permittivity are quantities of interest in solving
the EIT inverse problem here.

The applied voltage patterns are shown in Table The choice of the voltage patterns
or Dirichlet boundary conditions for the forward problem is important, since it effects the
resulting currents and consequently the conservation of current is affected. For instance, if
the voltages applied on the contacts 2 and 5 are the same with different signs, say Us = 0.01
and Us = —0.01, then the inclusion which is located in between acts as a capacitor and
stores potential energy in the electric field. This leads to a reduction in the level of the
resulting current values. Here, we have chosen the voltage pattern by skipping one contact
and applying +0.01 V. Changing the locations of the applied voltages and always skipping
one contact, three more voltage patterns can be made. The four patterns can be seen in
Table 4.1l

Pattern U1 U2 U3 U4 U5 U6 U7 Ug
1 001 O -0.01 | O 0.01] O -0.01 | O
2 0 0.01] 0O -0.01 | O 0.01] 0 -0.01
3 -0.01 | O 001 0O -0.01 | O 001 0O
4 0 -0.01 ] 0O 0.01] 0 -0.01 | O 0.01

Table 4.1.: Four different applied voltage patterns (in Volt) in an 8-electrode EIT device
configuration. The indices of the voltages are the labels of the electrodes.

The results of the presented forward EIT model on the prescribed geometry are
shown in Figure This figure illustrates the potential u calculated for four different
settings of boundary conditions (see Table . The solution to the physical model is
approximated using the first order finite-element and the mesh generation for the prescribed
geometry of the device is done using GMSH package. The mesh is generated in such a way
that it is aligned with the inclusion in the sense that each element has a constant value for
the coefficient A, and the leading equation for the inclusion and the background medium is
respectively linear and nonlinear defined.

4.3.2. Bayesian Inference Results

The numerical results for the nonlinear EIT inverse problem are presented here. Our
goal is simultaneous extraction of multiple parameters which reflect physical and electrical
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Figure 4.3.: Electrical potential for the 8-electrode EIT device configuration with an inclusion
centred at (0.5,0). The figures illustrate voltage patterns 1-4 (clockwise, starting
from top left) mentioned in Table

properties of the body interior in the framework of our theoretical results. To this end, we
implement an adaptive MCMC method, namely the delayed-rejection adaptive Metropolis
(DRAM) algorithm as a package in Julia as this inversion algorithm is capable of dealing
with the nonlinearity and ill-posedness of our problem. As mentioned in Section the
EIT inverse problem is to identify physical and electrical properties of the body interior
given a sufficiently large number of electrical current measurements and corresponding
voltage patterns. These parameters include size R, permittivity A, and charge @ of the
inclusion contained in the body and surrounded by the medium, which have been modeled
by nonlinear model . The results are for the 8-electrode EIT device configuration,
whose solution of the corresponding forward problem is shown in Figure In this work,
the electrical currents calculated on the eight electrodes in four different modes (voltage
patterns or boundary conditions) by the nonlinear forward model solver for the parameter
values A =3, R =0.2, and Q = 1 are assumed to be the exact parameter values.

In Figure sample paths obtained using the DRAM algorithm are shown, which
display convergence of the Markov chains of the three parameters. The chain of the middle
parameter R has tiny oscillations around the exact value 0.2 of the parameter and converges
quickly to this value. The chains of the other two parameters converge to their exact values,
too. Regardless of the chosen initial state, the produced chains jump to around the exact
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parameter values in a short burn-in period and jump around it using the proposed scale
(covariance) by the algorithm till the end of the iterations, which shows robustness of the
applied algorithm to the EIT inverse problem. We examine the convergence of the generated
chains in the next section by looking at how independent the produced samples are and
how good the mixing of the chains is.

4
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Figure 4.4.: Trace plots for the 8-electrode EIT device configuration obtained by the DRAM
algorithm for the parameters permittivity A, size R, and charge Q). The figures

display convergence of the parameters to their exact values, i.e., A =3, R = 0.2,
and @ = 1.

Figure illustrates correlation between each pair of the parameters and their marginal
posterior distributions. Bayesian inference results show that the size of the inclusion can be
extracted very accurately. Permittivity and charge (and charge sign) of the inclusion are
the other parameters of interest that can be recovered nicely using Bayesian inversion. To
better interpret the histogram plots, we calculate confidence intervals for each parameter.

The whole computational method including the forward model solver and the MCMC
calculations is computationally expensive since the physical model must be evaluated for
thousands of samples iteratively. The intensive work is spent on the generation of the mesh
due to the fact that the size of the inclusion is one of the quantities of interest and therefore
the process of mesh generation must be iterated for each sample.

Autocorrelation Function

To statistically testing the convergence of the generated Markov chains, we look at the
correlation between the samples with calculating the autocorrelation function (ACF), which
is defined by
N—t _ _
> k=1(a — 1)
where g and q are respectively the k-th state of the Markov chain and the sample mean [121].
This Formula is based on the idea of computing the correlation between the subchains of
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Figure 4.5.: Two-dimensional histograms and marginal posterior distributions for the 8-
electrode EIT device configuration and for 10000 samples obtained by the
DRAM algorithm for the parameters A, @ and R. The figures show correlations
between each pair of the parameters.

length N with lag t. The numerator of Equation is an estimate of the autocovariance
and the denominator is an estimate of the variance of the chain in order to normalize
the output. Low autocorrelation means that samples are independent and mixing in the
produced chain is good. Figure displays plots of autocorrelation function for the three
Markov chains which are shown in Figure 1.4

Confidence Interval

As an advantage of the statistical method of Bayesian inference, we can find confidence
interval containing admissible and optimal values for each parameter of interest if we could
reconstruct it. Figure [4.7] displays the marginal histograms of the posterior distributions
of the parameters A, Q and R as the quantities of interest in the EIT problem at hand.
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Figure 4.6.: Autocorrelation functions of the generated Markov chains by the DRAM algo-
rithm for the three parameters of interest.

The histograms have been plotted according to the posterior Markov chain using 10000
samples for the 8-electrode EIT device configuration. The mean of the generated chains
and exact values of the parameters are indicated on the figures. The estimated mean value
of the generated posterior chains for the parameter A, R and @ are 3.01, 0.1999988 and
0.94, respectively. Having computed the mean and standard deviation of the chains, we
can calculate the interval of admissible values of the parameters with 95% of confidence.
According to Bayesian estimation results, this interval for parameters A, () and R respectively
are A € [2.76,3.26], R € [0.199979,0.200019], and @ € [0.18,1.69]. Therefore, the size of
the inclusion can be recovered more accurately in the defined EIT problem.

4.4. Summary

In this work, we present a comprehensive physical model for the electrical-impedance
tomography sensors with applications in medicine and healthcare. In the EIT applications
for instance in medicine, there are big data sets of measurements which need to be statistically
analyzed to infer the electrical properties in order to help diagnosis and treatment. We
formulate the Bayesian estimation for the new governing model in a measure-theoretic
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Figure 4.7.: Marginal histograms of posterior distributions of the parameters A, @ and R
produced by means of the DRAM algorithm using 10000 samples. The mean

of the produced chain and the exact value of the parameters are indicated on
the figures.

framework and in an infinite-dimensional setting and present the first application of the
Bayesian inference for the simultaneous extraction of multiple electrical and geometrical
parameters in the EIT technology. We also prove well-definedness of the posterior measure
and well-posedness of the Bayesian inversion for the presented nonlinear model. Numerical
results of the computational MCMC-FEM include calculating electrical potential in the
EIT sensor using FEM, and calculation of the sizes, charges, and permittivities of inclusions

in the body interior under study of the EIT technology using an adaptive MCMC method,
which support our theoretical findings.
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5. Bayesian Inversion for a Biofilm Model
Including Quorum Sensing

This chapter focuses on usually monomicrobial biofilms spreading on surfaces of material
implanted in bones or tissues allowing little space for complex three-dimensional biofilms.
These biofilms are the ones that are most relevant in the clinic.

In order to understand the growth of biofilms and their response to antibiotic therapy
in vivo, we have developed a mathematical model based on parabolic partial differential
equations (PDE) that describes the time-dependent evolution of the size of the biofilm. The
model contains parameters such as growth rate and cooperation that cannot be determined
directly from experimental data. We therefore solve the corresponding inverse problem
to estimate these important parameter values. In particular, we use Bayesian inversion
and Markov-chain Monte-Carlo techniques as they are capable of dealing with ill-posed
inverse problems. The ultimate goal is to provide validated and predictive models for biofilm
formation under conditions relevant in the clinical setting. Such predictive models are
invaluable in decision making for optimal treatment.

This chapter is organized as follows. In Section we introduce the proposed PDE model
equations as well as the required initial and boundary conditions. In Section existence
and uniqueness of solutions to the proposed model equations are discussed. Simulation
results of the growth of biofilms as the forward model under consideration are presented
in Section Section is devoted to the experimental findings. In Section we
define the biofilms inverse problem and describe two different approaches, namely a genetic
algorithm as a global, deterministic method and Bayesian inversion as a tool from uncertainty
quantification. Numerical results of solving the biofilm inverse problem using these two
approaches and hence determining the parameter values are presented in this section as
well. Finally, summary of the chapter is in Section

This chapter is based on the author’s work [122].

5.1. The Biofilm Model

Mathematical models come in many forms that can range from very simple empirical
correlations to sophisticated and computationally intensive algorithms that describe three-
dimensional biofilm morphology and activity. The model we propose captures two main
characteristics of a biofilm: It tracks its growth and degradation depending on environmental
factors and it includes the emergence of resistance (i.e., cooperation against environmental
factors).

We first introduce the model equations and then discuss the meaning of the various terms
and how they relate to different behaviors of bacteria forming a biofilm.
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5.1.1. The Model Equations

The mathematical model is a system that consists of a parabolic partial differential equation,
which is well-known as a reaction-diffusion equation describing biofilm growth, coupled to
an ordinary differential equation (ODE) that describes cooperation among the bacteria
including quorum sensing [123]. This type of system of equations is well-known as a reaction-
diffusion-ODE model and has been applied to the modeling of, for example, interactions
between cellular processes such as cell growth in mathematical biology [124]. As mentioned
above, the model has two outputs: the concentration of bacteria, whose evolution in time
shows the growth and degradation of the biofilm, and the cooperation of the bacteria in the
biofilm exhibiting the strength of resistance and protection against environmental factors.
Our model equations are the reaction-diffusion-ODE system

Ou =V - (AVu) + au(l —u/B) —v(t,z,y)(1 —v)u in R x D, (5.1a)
O = pmax(O, arctan(q(u) — V))v — Kkv? in RT x D, (5.1b)
where

Q(u)(ta z, y) = (U(t, ) ) * G(v ))(ﬂj‘, y)

. (5.2)
= [ u(t,&nG(x—¢&y—n)dédy inRT x D
R2

and . ) )

G(z,y) = 53 OXP <—x2j;2y> in R x D. (5.3)

Here u(t, z,y) is the concentration of bacteria. The variables x and y € D denote position,
where D is a bounded domain in R? with the boundary 9D and t € Rt denotes time. Since
each bacterium has a finite size, the value of u(¢, z,y) corresponds to the thickness of the
biofilm at position (z,y). The variable v(¢,x,y) denotes cooperation. A value of v = 0
means no cooperation, while v = 1 means maximal cooperation.

We call g(u) the quorum functional. We define it as the convolution of the bacteria
concentration u(t,z,y) with a two-dimensional Gaussian G(z,y) with variance o2. It
measures the population density in a neighbourhood of (z,y) at time ¢ and is used in the
quorum sensing model.

Finally, A, a, B, p, k, and v denote positive constants and (¢, z,y) is a function from
Rar x R? to Rar. These constants depend on the bacteria strain and on environmental factors.
They are predictive factors that will be determined and that will make it possible to predict
the development of a patient’s biofilm thus allowing to choose the optimal treatment.

In the following, the rationale behind the model equations is explained.

The term V - (AVu) describes the spreading of the bacteria according to a diffusion
process. Different strategies for the bacteria, given the same energy budget, correspond to
different relative sizes of the constants A and 7: Spreading faster (larger A) in a thinner
biofilm that provides less protection because there is less cooperation (smaller v) on the one
hand, or spreading slower (smaller A) and building a better protected biofilm with more
cooperation (larger v) on the other hand.

The term au describes the increase of the number of bacteria using a constant growth rate
a > 0. We assume that enough nutrients are present to sustain the growth of the biofilm.
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Hence this means that a reduction of the amount of nutrients left is not explicitly included in
this model. (Of course, coupling the growth of the biofilm to a variable amount of nutrients
is a possible model extension. Another model extension is to model the spreading of the
bacteria depending on the local food concentration, and to model the food concentration by
an additional equation.)

The term —awu?/B implies that there is an upper limit for the thickness of the biofilm.
B > 0 is a constant and its value best corresponding to measurements will be found in
Subsection [5.5.1] This value also gives the maximum depth of the biofilm. If we consider a
logistic ordinary differential equation

Opu(t) = au(t)(1 —u(t)/B),

then
A u(t) =5
holds for the long-term limit.

The term —y(t)(1 — v)u with a function y: R x R? — R describes the degradation of
the biofilm due to environmental factors and antimicrobial agents. The function v depends
on the time of adding antibiotic substances. v is not only a constant, but a function, in
order to be able to investigate the solution after an antibiotic substance has been added
after the biofilm has grown for some time. In many situations, ~ is a piecewise constant
function. The factor 1 — v means that the adverse effect of the environment on the biofilm
is reduced whenever there is more cooperation represented by v. Of course, 1 — v could be
replaced by any function of v that vanishes for v = 1, that equals 1 for v = 0, and that is
monotonically decreasing.

The variable v(t,x,y) is proportional to the extent of cooperation among the bacteria in
the biofilm. There is increasing empirical evidence that suggests that bacteria cooperate by
producing exoproducts or public goods such as components of the matrix in the biofilm
[125,126]. Hence v(t,x,y) denotes the strength of the resistance or protection that the
bacteria develop against environmental influences. If their concentration u is low, they
do not use energy to develop resistance. However, if their local average concentration
q(u) is above a threshold v > 0, the quorum threshold (i.e., ¢(u) — v > 0), the bacteria
start to cooperate and spend some of their excess energy on cooperative measures such
as strengthening the matrix of the biofilm. v is in the interval [0, 1], where 0 denotes no
cooperation and 1 means maximum cooperation. Otherwise the term including ¢ is zero.

The concept of quorum sensing has been included in biofilm models and its different
aspects have been studied by many authors (see e.g. [127-129]). For example, in [129],
the authors very recently formulated a mathematical model of QS as a stress response
mechanism that increases resistance against antibiotics. In the current paper, we present a
new model for biofilms describing their growth and degradation by means of a system of
equations including a PDE for biofilm concentration and an ODE for biofilm cooperation.
By the second equation, we define cooperativity as a new concept (or variable), and we
investigate the concept of QS in the framework of the newly defined variable, i.e., the
cooperation. There is much room for further extensions of the present model, e.g., by
incorporating further equations for signaling.
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5.1.2. The Initial and Boundary Conditions

In order to complete the proposed model equations (5.1)—(5.3)), we discuss the initial and
boundary conditions. We consider the initial conditions

=0,z,y) = exp(—(z* 4+ 3°)/10) Y(x,y) € D, (5.4a)
vo(z,y) == v(t = 0,z,y) = exp(—(z* + 3?)/10) Y(z,y) € D. (5.4b)

The equations mean that the biofilm starts to grow at the origin (0,0) with initial
concentration 1.

Furthermore, if the solution u is radially symmetric, then we transform the model equation
to polar coordinates (7, ¢) so that the derivatives with respect to the angle ¢ vanish. This
yields the independent variables ¢ and r and reduces the number of dimensions. We will
discuss this situation in more detail below.

To supplement the model, for every point (x,y) on the boundary 9D, we use the zero
Neumann boundary condition

9u =0 vVt e RT Va,y € 0D, (5.5)
on

where n denotes the unit outwards normal vector on the boundary.

5.2. Existence and Uniqueness of Solutions of the Model

In this section, we study the existence and regularity of solutions to the initial-boundary
value problem (5.1)—(5.5)). To this end, we consider the initial-boundary value problem
(IBVP)

o = dyAu+ f(u,v)  in RT x D, (5.6a)

v = g(u,v) in R x D, (5.6b)

0

8% =0 on R" x aD, (5.6¢)
u(0,2,y) = uo(z,y) in D, (5.6d)
v(0,z,y) = vo(x,y) in D. (5.6e)

First some assumptions are required. Then, we state a result on local-in-time existence and
uniqueness of solutions to the above IBVP.

Assumptions 9. We assume:
1. The domain D C R? is bounded with sufficiently reqular boundary OD.
2. The initial conditions ug and vy are bounded and symmetric functions on D.

3. The nonlinearities f = f(u,v) and g = g(u,v) are locally Lipschitz continuous
functions on u: RT™ x D = RT and v: RT x D — (0,1] C R*.
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Theorem 12 (Local-in-time existence and uniqueness [124]). Under assumptions[9, there
exists T = T(||uo||oos [|v0lloc) > 0 such that the initial-boundary value problem ([5.6) has a
unique local-in-time mild solution (u,v) € L*([0,T], L*°(D)).

We recall the definition of a mild solution and then give a brief sketch for the proof of
Theorem [12

Definition 9. A mild solution of the initial-boundary value problem (5.6)) is a couple of
measurable functions u: [0,T] x D — RY and v: [0,T] x D — (0,1] C RT satisfying the
system of integral equations

u(t,z,y) = S(t)up(x,y) —|—/0 St —s)f(u(s,z,y),v(s,z,y))ds, (5.7a)

t
v(t,z,y) = vo(z,y) +/0 g(u(s,z,y),v(s,x,y))ds, (5.7b)

where S is the semigroup of linear operators generated by the Laplacian with homogeneous
Neumann boundary condition.

Proof. The system f satisfies all assumptions: It is straightforward to check
that the initial conditions are bounded and symmetric, since they are Gaussian functions.
Furthermore, the nonlinearities f and ¢ in the model are locally Lipschitz continuous
functions as can be seen using the mean-value theorem and due to the boundedness of
the computational domain and the derivatives of the functions f and g on the domain.
The function tan~! has a bounded derivative and the derivative of a polynomial (as a C*
function) is continuous and thus bounded.

The proof is based on an application of the Banach fixed-point theorem in order to
construct a local-in-time unique solution for system , as the nonlinearities f and g are
locally Lipschitz continuous functions. Details of the approach and the proof of Theorem
for even more general reaction-diffusion equations can be found in [130, Theorem 1, p. 111].
The construction of nonnegative solutions of a particular reaction-diffusion-ODE models
also can be found in [131, Chapter 3]. O

Remark 3. To obtain more reqular solutions, we can use more regular initial conditions, i.e.,
if ug € H3(D) := {u € H*(D) | n-Vu =0 on dD}, then (u,v) € C(D; H3(D) x L*¥(D)).
The proof is based on the theory of strongly continuous semigroups [132]. Furthermore,
if ug € C**(D) and vo € C"(D) for some n € (0,1), and the compatibility condition
n-Vug =0 holds on 0D, then the mild solutions of the IBVP are smooth and satisfy
u € C1H1/2:241(10, T) x D) and v € CY([0,T] x D). For more details and studies of general
reaction-diffusion-ODE systems in Holder spaces, we refer the reader to [130, Theorem 1, p.
112] and [133)].

5.3. The Forward Problem

In this section, we solve the IBVP (j5.1)—(5.5) numerically in order to discuss its behavior

and to observe the evolution of concentration and cooperation in time.
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5.3.1. The Model in Polar Coordinates

As mentioned, the solution u is radially symmetric for radially symmetric initial conditions.
Therefore, we can transform the model equation to polar coordinates (7, ¢) and the derivatives
with respect to the angle ¢ vanish. This results in a problem in the independent variables ¢
and 7, and thus reduces the number of dimensions. The original model can be rewritten as

ou *u  Adu

i Aw + P +au(l —u/B) —v(t)(1 — v)u, (5.8a)
?;; = max(0, arctan(q(u) — v))v — K07, (5.8b)
where
q(u)(t,r) = (u(t, E rG(-))(r) (5.9)
and
2
Gr) = ﬁexp (-202> , (5.10)
with the initial conditions
u(t = 0,7) = exp(—r?/10), (5.11a)
v(t = 0,7) = exp(—r?/10), (5.11b)

which are radially symmetric, and with zero Neumann boundary condition for u. We have
implemented the PDE model (5.8)—(5.11)) of growth and degradation of biofilms including
quorum sensing by means of the method of lines (MOL) and present the results in the
following section. MOL is a technique for solving partial differential equations by discretizing
in all but one dimension and then integrating the semi-discrete problem as a system of
ODEs. Here, the dicretization in space is done by means of the finite-difference method,
and the resulting ODE system in time is solved using a multistep solver based on numerical
differentiation formulas (NDF's).

For computing ¢(u) in equation , we have approximated the continuous one-dimensional
convolution using the discrete one-dimensional one. Using a general notation, we estimate
the convolution integral

g(z) = (f*h)(z) = /00 fuw)h(z — u)du (5.12)

glan) = > fla)h(r—jp), (5.13)

j=—00

where the sum is a discrete one-dimensional convolution.

5.3.2. Numerical Results of the Forward Biofilm Problem

Here, we present simulation results for the model (5.8)—(5.11]). We assume a circular dish
with diameter 35 mm centered at the origin as the growth space and the computational
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domain for the biofilms, which are initially located at the center of the dish. Biofilm growth
is monitored for about six hours. The goal is to calculate the area covered by the biofilm
after four hours.

In these simulations, the initial biofilm was located at the center of the dish. We find
the largest circle in the computational domain where the concentration is above a certain
threshold and calculate the relative coverage using the area of this circle. Fig. illustrates
the time evolution of the concentration and the cooperation of biofilms in about six hours
without the presence of any antibiotics and using the diffusion parameter A = 1.01 and
the growth rate o = 1.03. Furthermore, the rest of the parameter values are § = 0.7361,
v = 0.5210, and k = 0.1983. In this setup, the total area covered by the biofilm after four
hours is calculated as 0.9334, i.e., almost the entire domain.

400

t[min] 0 2 rimm] tmin] 0 20  fmm]

Figure 5.1.: Biofilm concentration (left) and cooperation (right) using A = 1.01 and o = 1.03
and without the presence of any antibiotics. The resulting relative coverage is
0.9334.

Numerical results for the case when the antibiotic is present from the beginning are shown
in Fig In this setup, the relative coverage of the biofilm after four hours is calculated
as 0.2761, since the antibiotic does not allow the biofilms to grow and spread fast.

Fig. shows the behaviour of the biofilm in the case when an antibiotic is added after
a while. The biofilm starts to grow quickly till the antibiotic is added and then it degrades
due to addition of antibiotic. In this case, the resulting relative coverage is 0.6346. Here ~
is a piecewise constant function defined as

S {0.01 i<, (5.14)
1 ift>T,
where T = 200 is time of addition of the antibiotic.

Next, we discuss numerical results of biofilms growth and cooperation using different
parameter values. In these numerical experiments, we assume that the antibiotic is present
from the beginning and we study the effect of parameter variations on the solutions of the
biofilm model, namely the concentration and the cooperation, while keeping the rest of
the parameters constant. The default parameter values are the values that yield the best
agreement with measurements, which will be explained in Subsection in detail.
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Figure 5.2.: Biofilm concentration (left) and cooperation (right) using A = 1.01 and o = 1.03
and in the presence of antibiotic from the beginning. The resulting relative
coverage is 0.2761.
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Figure 5.3.: Biofilm concentration (left) and cooperation (right) using A = 1.01 and o = 1.03
and in the presence of antibiotic at ¢ = 200. The resulting relative coverage is
0.6346.

Fig. displays the resulting concentrations of biofilms using diffusion constants A = 0.8
and 0.02. These results show that when the concentration spreads faster (i.e., when the
diffusion constant is larger), the biofilm is thinner and the covered area is larger. For
a smaller diffusion constant, the biofilm is thicker and more concentrated with smaller
coverage, as expected. This result agrees with our qualitative assessment in Section [5.1.1

Fig. [5.5| shows concentrations of biofilms for three different growth rates o = 1.01, 1.03
and 1.05. In fact, if two populations of bacteria start to grow with the same diffusion
constant but different growth rates, the one with higher growth rate creates a much more
concentrated and thicker biofilm. Furthermore, the numerical results show larger coverage
area for a bigger growth rate.

We observe the effect of different values of 8 on the concentration and the cooperation of
the biofilms in Fig According to these results, using a larger value for the parameter

112



5.3. The Forward Problem
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Figure 5.4.: Biofilm concentration (top) and cooperation (bottom) for A = 0.8 (left) and
A = 0.02 (right).
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Figure 5.5.: Biofilm concentration (top) and cooperation (bottom) for v = 1.01 (left),
a = 1.03 (middle), and a = 1.05 (right).

results in a thicker biofilm and bigger coverage, however slight changes in the parameter
value hardly affect the relative coverage.

Moreover, in Fig. the effect of different values of the parameter « is studied and the
corresponding numerical results, i.e., the concentration of biofilm and the cooperation are
illustrated. According to these results, the cooperation among the bacteria increases with
larger x, and the coverage is almost constant.
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Figure 5.6.: Biofilm concentration (top) and cooperation (bottom) for g = 0.74 (left) and
B =5 (right).
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Figure 5.7.: Biofilm concentration (top) and cooperation (bottom) for x = 1 (left) and
k = 0.2 (right).

According to these numerical results, solving the problem without having proper parameter
values at hand may result in arbitrary, highly parameter dependent solutions. In Section [5.5]
we will fix this issue by means of solving the inverse problem and determining the parameter
values. But before we can do that, the experimental results are described in the next section.
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5.4. Experimental Results

In this section, we present the results of our experiments and observations for biofilm growth.
In these experiments, we aimed to monitor the development of biofilms during 24 hours.
To this end, 1 mL of each reference (diluted in Brain Heart Infusion Medium 1.5 - 107) was
cultivated in single 24-well Ibidi p-Dishes (Ibidi Treat 1, 5 polymer coverslip, tissue culture
treated; Ibidi GmbH, Planegg/Martinsried, Germany). Biofilms were grown at 37°C' for
24 hours on an orbital shaker. Every hour one well was taken off for further investigation.
Furthermore, biofilms were washed two times in PBS and fixed with 4% glutaraldehyde. We
observed bacteria in biofilms and the matrix (EPS) structure at different times of biofilm
formation. To observe the dense DNA of the dead bacteria (Molecular Probes®; Thermo
Fisher Scientific), propidium iodide was used. Polysaccharides, representing the most
characteristic fraction of the extrapolymeric substances, were stained using concanavalin-A
(ConA) (Sigma-Aldrich Corp, St. Louis, MO, USA). Fig. displays the formation of
S. epidermidis and S. aureus biofilms after six hours of incubation.

Figure 5.8.: The S. epidermidis (left) and S. aureus (right) biofilms after six hours of
incubation. The S. epidermidis film shows scattered cells over the surface, while
S. aureus forms clusters. The images display DNA in red and polysaccharide
in green.

During the 24-hour long observation of the reference strains, we found differences in
the pattern of biofilm formation; S. aureus ATCC25923 aggregated and formed various
grape-like aggregations of bacterial cells coated by single polysaccharides before spreading
on the surface and forming a biofilm layer. In contrast, S. epidermidis biofilms started
with scattered cells spreading over the surface until reaching confluence and their maximum
thickness at 24 hours without forming grapes or clusters [134].

Fig. and Fig[5.10] illustrate the area coverage by the two reference strains of biofilms,
namely S. aureus ATCC 25923 and S. epidermidis DSM 3269 after 6 and 24 hours,
respectively. In these figures, we show how much area is covered by polysaccharide, mix,
and DNA.

In the experiments, the relative coverage at time ¢ is defined as the relative area of the
dish covered by the biofilm as measured by counting particles using the ImageJ software.
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ImageJ is an open source Java image processing program for automatic particle counting
and analyzing.
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Figure 5.9.: Total area covered by the biofilms S. epidermidis DSM 3269 (left) and S. au-
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experimental data.
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Figure 5.10.: Total area covered by the biofilms S. epidermidis DSM 3269 (left) and S. aureus

ATCC 25923 (right) (polysaccharide, mix, DNA) in after 24 hours based on
experimental data.

In this work, we have not included the amount of available nutrients as a variable in our
model, but we assume that enough nutrients are present in order to enable biofilm growth.
As already mentioned, coupling the growth of the biofilm to a variable amount of nutrients
is a possible model extension. Further model extension are to model the spreading of the
bacteria depending on the local food concentration and to model the food concentration by
an additional equation. Furthermore, if we include the amount of nutrients in the model,
new findings show that the growth of biofilms can even be affected by the communication
between nearby bacterial communities . The bacterial communities seem to use a
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time-sharing strategy in the sense that two distinct biofilms can synchronize their growth
through electrical signals. When bacteria face limited nutrients, they alternate feeding
periods and each community takes turns consuming nutrients in order to reduce competition
and to maximize efficiency in consumption. This behavior extends communication among
functional units such as cells to biofilms. It modifies cell-to-cell signaling mediated by ion
channels [136139] to signaling between two distinct biofilms.

5.5. The Inverse Problem

The coefficients and parameters used in the mathematical model are effective factors in the
growth and cooperation of biofilms, but they have unknown and uncertain values in the sense
that they can only be determined by measurements that always come with measurement
errors. These parameters cannot be controlled during the experiments. However, knowing
the parameter values that determine the growth and cooperation of biofilms helps to react
against biofilms after diagnosis in the sense that these parameter values give concrete
information about the bacterial behavior. Understanding the bacterial behavior is also
helpful to know which sort of antibiotic and how much should be used to kill the bacteria.
Therefore any information about these effective factors improves the speed and quality of
the treatment.

There are various methods for estimating the parameter values and solving the inverse
problem. One can divide the statistical inference approaches into two categories: frequentist
and Bayesian inference. The differences between these two approaches stem from the way
the concept of probability is interpreted.

In the frequentist approach, the unknown parameter is assumed to be fixed and determin-
istic, and probabilities are defined as long-term frequencies of occurrences of an event. The
event has to occur many times. Therefore, in this approach we collect data from a sample
of the population and estimate its mean as the value which agrees best with the data.

In contrast, in the Bayesian approach, the unknown parameters are assumed to be random
variables. In this technique, probabilities are rooted in degrees of belief and logical support
and can be used to represent uncertainties in any event, even in non-repeatable events. In
Bayesian inference, we define probability distributions over possible parameter values and
use data to update the distribution, which means that beliefs are updated in response to new
evidence. The updating is done by applying Bayes’ theorem. In fact, the new information
(e.g., experimental data) makes the probability distribution more focused around the true
value of the unknown parameter. Thus confidence intervals can easily be calculated.

Here, our goal is to estimate two very effective quantities in particular, namely the
diffusion constant A and the growth rate « in the biofilm model (5.1)). To identify these
parameters, we use two approaches from the above mentioned statistical categories: a
genetic algorithm (GA) as a deterministic one and an adaptive Markov-chain Monte-Carlo
(MCMC) algorithm as a stochastic (Bayesian) technique.

We apply Bayesian inversion as a stochastic approach and a genetic algorithm as a
deterministic approach to estimate the parameter values in the biofilm inverse problem,
also to illustrate the differences between these two approaches. Moreover, the starting point
of the Markov chain in an MCMC method in the Bayesian approach is important for fast
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convergence of the chain to the posteriori distribution of the parameter of interest. To this
end, we use the optimal parameter values obtained from the deterministic approach as the
starting points for the MCMC method. In the case of a genetic algorithm, the technique
finds optimal values for the parameters by minimizing the residual between the experimental
data and the numerical results. In the case of the Bayesian technique, 95% confidence
interval of the parameter values are also presented.

Here, our goal is to estimate effective quantities in the biofilm model . To this end,
we use two approaches from the above mentioned statistical categories: a genetic algorithm
(GA) as a deterministic one and an adaptive Markov-chain Monte-Carlo (MCMC) algorithm
as a stochastic (Bayesian) technique.

5.5.1. Deterministic Approach: Genetic Algorithm

In this section, we use a genetic algorithm (GA) as a global-optimization method in order
to estimate the parameters of interest in the biofilm inverse problem. The genetic-algorithm
based approaches are deterministic methods in the sense that the parameters of interest
are assumed to be deterministic variables, whose optimal values are found by means of
minimizing a cost (fitness) function. This method must be equipped with a cost function,
since it enables the method to rank the individuals. Here, the cost function is defined as
the residual

cost = ||cov — covexp||p2, (5.15)

between the experimental data and numerical results of the forward problem, i.e., the

coverage data obtained by using the MOL solver for the forward model. Here cov and

covexp denote the coverages obtained numerically and in the experiments, respectively.
Steps 1 to 6 show the GA used here, which has been based on [140]:

1. Initialization. In this step, a random initial population is generated.
2. Evaluation. Each individual is evaluated using a fitness function.

3. Selection. Selection is a process in which the individuals which are suitable for the
next generation are chosen. In this step, our model adopts tournament selection.
This step is repeated until the number of individuals selected is equal to the desired
population size. In order to ensure the propagation of elite individuals, elitism is used.
This mechanism selects the individuals with the best fitness values and directly places
them in the next generation, while the remaining individuals must go through the
selection process.

4. Crossover and Mutation. Using crossover and mutation, children are produced
from the parents. In mutation, children are produced by making random changes to a
single parent, while in crossover this is done by combining the vector entries of a pair
of parents.

5. Evaluation. Each individual is evaluated using the fitness function.

6. Check termination criteria. Steps 2 to 5 are repeated until the termination criteria
are satisfied. Here the algorithm is stopped when the maximum number of generations
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has been exhausted or when the solution with the best fitness has not been changed
from the previous generation.

Table lists the GA settings used and can be used for reproducing the results. The
selection function defines how individuals are selected to become parents. The number of
elite children shows the number of individuals with the best fitness values in the current
generation that are guaranteed to survive into the next generation. These individuals are
called elite children. Moreover, crossover fraction is the fraction of individuals in the next
generation, other than elite children, that are created by crossover. The remaining are
generated by mutation.

Setting value/method
number of generations 50
population size 60
initialization method uniform sampling
selection function stochastic universal sampling (SUS) [141]
number of elite children 2
crossover fraction 0.8
mutation fraction 0.2
crossover function uniform crossover
mutation function Gaussian mutation

Table 5.1.: Settings used in the genetic algorithm.

In this algorithm, we have calculated the mean and the minimum of the obtained residual
in the populations in 50 generations and we have shown the results in Fig. [5.11] As
the number of generations increases, the individuals in the population crowd around the
minimum point 0.
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Figure 5.11.: The best and mean fitness values in 50 generations in the GA.
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The GA yields the optimal parameters A, «, 3, v, and « in the biofilm model equation

ED as

(A, a, B,v, k) = argmin cost,

where the cost function is defined in . The values found are shown in Table
We will use these values as the initial values for the Markov chains of the corresponding
parameters in the stochastic approach in the next section. A near optimal choice of starting
states of a Markov chain helps the chain to quickly converge around the true value of the
parameters of interest.

Parameter A « I} v K
Best value found by GA  0.04879 1.0102 0.7361 0.521 0.1983

Table 5.2.: Best parameters values in the biofilm inverse problem found by the GA.

5.5.2. Bayesian PDE Inversion

The second approach to solve the biofilm inverse problem is Bayesian PDE inversion [104-106].
In this method, we consider the unknown parameters as random variables and calculate
the posterior probability density that reflects the distribution of the parameter values
based on the observations. Therefore, in this method, not a single parameter value but
its probability distribution is found. This is an advantage, since probability distribution
conveys information how well the parameters can be determined. Bayesian inversion method
and the Markov-chain Monte-Carlo (MCMC) method as well as delayed-rejection adaptive-
Metropolis (DRAM) algorithm as an adaptive MCMC algorithm have been explained in
Subsections 4.2.1] [4.2.4] and [4.2.5| in detail.

Numerical Results for the Biofilm Inverse Problem Using Bayesian Inference

In this section, to provide a better insight into the biofilm model, we quantify uncertain
values of the model by means of the Bayesian inversion method and by comparing and
analyzing measurements and computed model results. Bayesian inference has been already
applied in order to parameter identification in different models related to biofilms [142,/143].
Here the goal is to extract the as much information as possible using the measurements.
However the amount of recovered information depends on many factors including the size of
available experimental data. Due to a couple of restrictions such as insufficient measurements
(there is no experimental data of cooperation), recovering all model parameters accurately at
the same time is difficult. However, we can find confidence intervals for all the parameters.
Among all parameters, the growth rate o can be extracted best. We have used the DRAM
algorithm as an adaptive MCMC method in the context of the Bayesian inversion method for
this analysis. To start the Markov chains, we use the optimal parameter values that we have
found by means of the genetic algorithm, which are summarized in Table[5.2]in Section [5.5.1]
to speed up the convergence of the generated chains. We also use the measured area covered
by the S. epidermidis biofilm (mix) (see Section [5.4). In Fig. marginal histograms of
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the posterior distribution of the parameters in the prior defined intervals together with their
mean values are shown. We can infer a confidence interval of o € [0.3049, 0.803] at the 95%
level and a mean of 0.5540 for the growth rate . For the rest of the parameters, we find
mean value for the posterior distributions of the parameters, but the corresponding Markov
chains explore the whole, large interval and thus posterior distributions are wide-spread.
The marginal histograms show that among all the growth rate o can be inferred precisely.
This is due to the ill-posedness of the biofilm inverse problem, to the strong correlation
among the model parameters, and in particular to the insufficient number of measurement
values and their noise.

5.6. Summary

In this work, we presented a reaction-diffusion-ODE system as the model equations for
biofilms including the cooperation among the bacteria. This is the first time—to the best of
our knowledge—that cooperation of bacteria in biofilms is introduced and quantified. The
model includes also the concept of quorum sensing, which is presented in the framework of
the newly defined quantity, i.e., the cooperation in the sense that when local average mass of
biofilms is above a quorum threshold, the bacteria start to cooperate, which leads to higher
resistance against antibiotics. We also presented local-in-time existence and uniqueness
results as well as regularity of solutions to the presented model type.

To provide better insight into the model, we quantified the unknown parameter values of
the model by means of a Bayesian technique. In this method, the experiments observations
are compared to the computational growth and coverage obtained from the numerical
solution of the model in order to infer the uncertain values of the model, which cannot
be controlled or determined through the experiments and computations. In the Bayesian
inference, the output is not a single value but a distribution of the parameter density and
a corresponding confidence interval. In this work, the model parameters including those
describe the biofilm concentration and cooperation are estimated using an adaptive MCMC
method, namely the DRAM algorithm. This adaptive algorithm leads to better mixing
of the generated chain and avoids stagnations since it chooses optimal proposal scales
automatically. Furthermore, the Markov chain generated by this algorithm converges faster
and the burn-in period is shorter in comparison to the naive Metropolis-Hastings algorithm.

Due to the ill-posedness of the biofilm inverse problem and strong correlation among the
model parameters and also due to insufficient information from experiments (a small number
of data points for the growth and the coverage area and no cooperation data), the growth
rate « is the parameter which can be recovered best using Bayesian analysis. According to
the numerical results, the growth rate « is recovered successfully and a confidence interval
of [0.3049, 0.803] at the 95% level and a mean of 0.5540 for this parameter are found.

Moreover, we estimate the parameters in the biofilm model using a genetic algorithm
and use these values as the starting points of the Markov chains in the DRAM algorithm.
Carefully choosing the starting state ensures that the chain converges to the true value more
quickly. The mathematical model equations in conjunction with Bayesian PDE inversion
make it possible to assign biologically and medically relevant parameter values to various
species of bacteria. This procedure therefore allows us to quantify and to compare the
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Figure 5.12.: Marginal histograms of posterior distributions of the parameters in the biofilm

model using the DRAM algorithm with 10* samples. The mean values are
also indicated.

behavior and the strategies of different species of bacteria.
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The main objective of this dissertation was uncertainty quantification in various devices
including nanoscale devices such as nanopores and nanowire field-effect sensors and electronic
devices such as electrical-impedance tomography sensors. To this end, we focused on
different aspects of nonlinear partial differential equations (PDEs), which model charge
transport in the devices, which have many applications in industry, medicine and life
sciences. These aspects include analysis, numerical solution to the PDE models as well as
PDE inverse problems. The main PDE models include Poisson-Boltzmann equation and
the drift-diffusion-Poisson (DDP) system in deterministic and stochastic regimes.

As mentioned, we divide the work into two main parts: first, uncertainty quantification in
nanoscale devices by modeling and analyzing nanoelectronic devices and second, uncertainty
quantification in EIT devices and biofilms model by inverse modeling and Bayesian inference.

Following the first part of the research, we first analyzed the so-called drift-diffusion-
Poisson (DDP) system in the alternating-current small-signal regime and extended the
transport model to the frequency domain. We also proved existence and local uniqueness
of solution of the presented model equations in the AC regime. The applications include
wide range of nanoscale devices such as nanowire filed-effect bio- and gas sensors as well as
nanopore sensors, which operate in the AC regime.

Then we studied uncertainty quantification in aforementioned nanoscale devices by
analyzing and developing numerical methods for the stochastic version of the drift-diffusion-
Poisson system. More precisely, we presented existence and local uniqueness theorems
for the system and developed an optimal multilevel Monte-Carlo finite-element method
(MLMC-FEM) by solving an optimization problem. In fact, we minimized the computational
cost of solving the stochastic DDP system by the MLMC-FEM such that the error bound
is less than or equal to a given tolerance level. This leads to find optimal discretization
parameters and optimal number of samples in the stochastic numerical method. The
presented optimal methods are successfully used to solve the stochastic DDP system to
study the effect of random dopants in nanoscale nanowire field-effect sensors. In the
comparison of the MC and MLMC methods, the MLMC method was found to decrease the
total computational cost by four orders of magnitude for small error tolerances. To further
improve the computational efficiency, an optimal multilevel randomized quasi Monte-Carlo
finite-element method (MLRQMC-FEM) was developed and tested. Computational cost of
optimal MLRQMC was one order of magnitude smaller than that of optimal MLMC and
five orders of magnitude smaller than that of the vanilla Monte-Carlo method.

Following the second part of the research, we studied two PDE inverse models, namely
EIT and biofilms inverse problems. First, we presented a nonlinear comprehensive physical
model for the EIT sensors, which have applications for instance in medical imaging and
monitoring for diagnosis purposes. Then we formulated the Bayesian inversion for the
presented nonlinear model in a measure-theoretic framework and in an infinite-dimensional
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setting and presented the first application of the Bayesian analysis for the simultaneous
recovery of multiple parameters in the EIT inverse problem. The well-definedness of the
posterior measure and well-posedness of the Bayesian inversion for the presented model
were also proved. Then we illustrated numerical results of Markov-chain Monte-Carlo finite-
element method (MCMC-FEM), including calculating electrical currents on the electrodes
by means of FEM, and recovery of some electrical and geometrical properties of internal
body using an adaptive MCMC method.

Furthermore, we presented a system of PDEs to model biofilms growth and degradation
considering quorum sensing and cooperation of bacteria against antibiotics. We also solved
the biofilm inverse problem by means of Bayesian inversion techniques and an adaptive
MCMC method comparing the results obtained from the computational model and the
biofilms experiments in order to extract parameters of interest in the mathematical model.
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