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A B S T R A C T

We propose a mathematical model based on a system of partial differential equations (PDEs) for biofilms. This
model describes the time evolution of growth and degradation of biofilms which depend on environmental
factors. The proposed model also includes quorum sensing (QS) and describes the cooperation among bacteria
when they need to resist against external factors such as antibiotics. The applications include biofilms on
teeth and medical implants, in drinking water, cooling water towers, food processing, oil recovery, paper
manufacturing, and on ship hulls. We state existence and uniqueness of solutions of the proposed model and
implement the mathematical model to discuss numerical simulations of biofilm growth and cooperation. We
also determine the unknown parameters of the presented biofilm model by solving the corresponding inverse
problem. To this end, we propose Bayesian inversion techniques and the delayed-rejection adaptive-Metropolis
(DRAM) algorithm for the simultaneous extraction of multiple parameters from the measurements. These
quantities cannot be determined directly from the experiments or from the computational model. Furthermore,
we evaluate the presented model by comparing the simulations using the estimated parameter values with the
measurement data. The results illustrate a very good agreement between the simulations and the measurements.

1. Introduction

Infection of material and devices implanted into patients’ tissues
and bones is associated with considerable morbidity and costs [1–3].
The use of all kinds of implants, e.g., osteosyntheses, joint prosthe-
sis, cardiac valves and devices, percutaneous intravascular catheters,
invasive monitoring to sustain life at intensive care units, and other
implants is increasing. Dependent on the site of implantation, the
infection rates range from 0.2% to 5% in orthopaedic and trauma
surgery and up to 40% in artificial hearts [4]. Given the high incidence
of fracture stabilization devices of two million per year, the number of
implant infections amounts to up to 100 000 per year [3,5]. The major
pathogens of implant related infections are Staphylococcus aureus and
coagulase negative staphylococci, primarily Staphylococcus epidermidis
[6], followed by enterobacteria, Pseudomonas aeruginosa, and entero-
cocci. These organisms have in common that they are difficult to
eradicate by standard antibiotic therapy due to their intrinsic resistance
and exposure to antimicrobials.

In implant surfaces, these organisms grow in biofilms and thus cause
persistent or recurrent infections [7]. The simple definition of a biofilm
is microorganisms attached to a surface. A more comprehensive defini-
tion is that a biofilm consists of a structured community of bacterial
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cells enclosed in a self-produced polymeric matrix and adherent to
a surface. Biofilms are highly individual based on the characteristics
of the microbe, environmental conditions, nutrients, implant surfaces,
and host immune reaction in case of implant infections (see Fig. 1).
This work focuses on usually monomicrobial biofilms spreading on
surfaces of material implanted in bones or tissues allowing little space
for complex three-dimensional biofilms. These biofilms are the ones
that are most relevant in the clinic.

Biofilm associated infections are frequently resistant to conventional
antimicrobial therapy, because the bacterial biofilm on the surface
serves as a reservoir where bacteria are quasi inaccessible to antibiotics
and the host defenses [8,9]. In the clinical routine, antibiotic suscep-
tibility is tested by determining the minimal inhibitory concentration
(MIC) of the antibiotic on free floating bacteria in the growth phase.
A low concentration of the MIC indicates the susceptibility of the
microorganism and it is a rough approximation of the efficacy of the
treatment.

There are numerous models of medical biofilms. All models as well
as all visualization methods like staining or preparation for electron
microscopy or confocal laser scanning microscopy (CLSM) have limita-
tions. However, initial steps into modeling include simple models like
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Fig. 1. The life cycle of bacteria in biofilms. Phase 1: initial attachment, phase 2: permanent attachment, phase 3: primary maturation, phase 4: secondary maturation, and phase 5:
dispersion.

static biofilms on microtiter plates or coverslips or dynamic biofilms
within flow-cells. CLSM is a good tool to visualize metabolic and/or
structural changes within biofilms and a reliable starting point for more
complex biofilm models [10].

In previous publications, we demonstrated that clinically achievable
antibiotic concentrations do not reduce biofilms and bacterial growth.
Increasing the antibiotic concentration may only reduce the biofilm
thickness and reduce bacterial growth [11,12]. Moreover, we could
demonstrate that changing environmental factors, such as increasing
the environmental temperature or changing the composition of the
implant material resulted in the reduction of biofilm mass and bacterial
load [13,14].

Antibiotic therapy of these chronic biofilm associated infections is
generally effective only when the infection is acute and the implanted
material is removed. When it is necessary to keep the implanted ma-
terial, the success of therapy is mediocre. Even the exchange of the
infected implant material and the necessity to implant a new prosthesis
is associated with higher recurrence rates. International recommen-
dations for the treatment of implant infections propose the use of
quinolones, high-dose beta-lactams, or daptomycin in combination with
rifampicin [15]. However, antimicrobial resistance and intolerability
is common in chronic infection. Thus, antibiotic therapy of these very
complicated infections has to be tailored to the individual patient and
the characteristics of the pathogen.

In order to understand the growth of biofilms and their response
to antibiotic therapy in vivo, we have developed a mathematical model
based on parabolic partial differential equations (PDE) that describes
the time-dependent evolution of the size of the biofilm. The model
contains parameters such as growth rate and cooperation that cannot
be determined directly from experimental data. We therefore solve the
corresponding inverse problem to estimate these important parameter
values. In particular, we use Bayesian inversion and Markov-chain
Monte-Carlo techniques as they are capable of dealing with ill-posed in-
verse problems. The ultimate goal is to provide validated and predictive
models for biofilm formation under conditions relevant in the clinical
setting. Such predictive models are invaluable in decision making for
optimal treatment.

The rest of this paper is organized as follows. In Section 2, we
introduce the proposed PDE model equations as well as the required
initial and boundary conditions. In Section 3, existence and uniqueness
of solutions to the proposed model equations are discussed. Simulation
results of the growth of biofilms as the forward model under considera-
tion are presented in Section 4. Section 5 is devoted to the experimental
findings. In Section 6, we define the biofilms inverse problem and
describe two different approaches, namely a genetic algorithm as a
global, deterministic method and Bayesian inversion as a tool from
uncertainty quantification. Numerical results of solving the biofilm
inverse problem using these two approaches and hence determining the
parameter values together with the model verification are presented in
this section as well. Finally, conclusions are drawn in Section 7.

2. The biofilm model

Mathematical models come in many forms that can range from very
simple empirical correlations to sophisticated and computationally in-
tensive algorithms that describe three-dimensional biofilm morphology
and activity. The model we propose captures two main character-
istics of a biofilm: It tracks its growth and degradation depending
on environmental factors and it includes the emergence of resistance
(i.e., cooperation against environmental factors).

We first introduce the model equations and then discuss the mean-
ing of the various terms and how they relate to different behaviors of
bacteria forming a biofilm.

2.1. The model equations

The mathematical model is a system that consists of a parabolic par-
tial differential equation, which is well-known as a reaction–diffusion
equation describing biofilm growth, coupled to an ordinary differen-
tial equation (ODE) that describes cooperation among the bacteria
including quorum sensing [16]. This type of system of equations is well-
known as a reaction–diffusion-ODE model and has been applied to the
modeling of, for example, interactions between cellular processes such
as cell growth in mathematical biology [17]. As mentioned above, the
model has two outputs: the concentration of bacteria, whose evolution
in time shows the growth and degradation of the biofilm, and the
cooperation of the bacteria in the biofilm exhibiting the strength of
resistance and protection against environmental factors.

Our model equations are the reaction–diffusion-ODE system

𝜕𝑡𝑢 = ∇ ⋅ (𝐴∇𝑢) + 𝛼𝑢(1 − 𝑢∕𝛽) − 𝛾(𝑡, 𝑥, 𝑦)(1 − 𝑣)𝑢 in R+ ×𝐷, (1a)

𝜕𝑡𝑣 = 𝜌max
(

0, arctan
(

𝜇(𝑞(𝑢) − 𝜈)
))

𝑣 − 𝜅𝑣2 in R+ ×𝐷, (1b)

where
𝑞(𝑢)(𝑡, 𝑥, 𝑦) ∶=

(

𝑢(𝑡, ⋅, ⋅) ∗ 𝐺(⋅, ⋅)
)

(𝑥, 𝑦)

= ∫R2
𝑢(𝑡, 𝜉, 𝜂)𝐺(𝑥 − 𝜉, 𝑦 − 𝜂)d𝜉d𝜂 in R+ ×𝐷

(2)

and

𝐺(𝑥, 𝑦) ∶= 1
2𝜋𝜎2

exp
(

−
𝑥2 + 𝑦2

2𝜎2

)

in R+ ×𝐷. (3)

Here 𝑢(𝑡, 𝑥, 𝑦) is the concentration of bacteria. The variables 𝑥 and 𝑦 ∈ 𝐷
denote position, where 𝐷 is a bounded domain in R2 with the boundary
𝜕𝐷 and 𝑡 ∈ R+ denotes time. Since each bacterium has a finite size, the
value of 𝑢(𝑡, 𝑥, 𝑦) corresponds to the thickness of the biofilm at position
(𝑥, 𝑦). The variable 𝑣(𝑡, 𝑥, 𝑦) denotes cooperation. A value of 𝑣 = 0 means
no cooperation, while 𝑣 = 1 means maximal cooperation.

We call 𝑞(𝑢) the quorum functional. We define it as the convolution
of the bacteria concentration 𝑢(𝑡, 𝑥, 𝑦) with a two-dimensional Gaus-
sian 𝐺(𝑥, 𝑦) with variance 𝜎2. It measures the population density in
a neighborhood of (𝑥, 𝑦) at time 𝑡 and is used in the quorum sensing
model.
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Finally, 𝐴, 𝛼, 𝛽, 𝜌, 𝜅, 𝜈 and 𝜇 denote positive constants and 𝛾(𝑡, 𝑥, 𝑦)
is a function from R+

0 × R2 to R+
0 . These constants depend on the bac-

teria strain and on environmental factors. They are predictive factors
that will be determined and that will make it possible to predict the
development of a patient’s biofilm thus allowing to choose the optimal
treatment.

In the following, the rationale behind the model equations is ex-
plained.

The term ∇ ⋅ (𝐴∇𝑢) describes the spreading of the bacteria accord-
ing to a diffusion process. Different strategies for the bacteria, given
the same energy budget, correspond to different relative sizes of the
constants 𝐴 and 𝛾: Spreading faster (larger 𝐴) in a thinner biofilm that
provides less protection because there is less cooperation (smaller 𝛾)
on the one hand, or spreading slower (smaller 𝐴) and building a better
protected biofilm with more cooperation (larger 𝛾) on the other hand.

The term 𝛼𝑢 describes the increase of the number of bacteria using
a constant growth rate 𝛼 > 0. We assume that enough nutrients are
present to sustain the growth of the biofilm. Hence this means that
a reduction of the amount of nutrients left is not explicitly included
in this model. (Of course, coupling the growth of the biofilm to a
variable amount of nutrients is a possible model extension. Another
model extension is to model the spreading of the bacteria depending
on the local food concentration, and to model the food concentration
by an additional equation.)

The term −𝛼𝑢2∕𝛽 implies that there is an upper limit for the thick-
ness of the biofilm. 𝛽 > 0 is a constant and its value best corresponding
to measurements will be found in Section 6.1. This value also gives
the maximum depth of the biofilm. If we consider a logistic ordinary
differential equation

𝜕𝑡𝑢(𝑡) = 𝛼𝑢(𝑡)(1 − 𝑢(𝑡)∕𝛽),

then

lim
𝑡→∞

𝑢(𝑡) = 𝛽

holds for the long-term limit.
The term −𝛾(𝑡)(1 − 𝑣)𝑢 with a function 𝛾 ∶ R+

0 × R2 → R+
0 describes

the degradation of the biofilm due to environmental factors and antimi-
crobial agents. The function 𝛾 depends on the time of adding antibiotic
substances. 𝛾 is not only a constant, but a function, in order to be able
to investigate the solution after an antibiotic substance has been added
after the biofilm has grown for some time. In many situations, 𝛾 is a
piecewise constant function. The factor 1 − 𝑣 means that the adverse
effect of the environment on the biofilm is reduced whenever there is
more cooperation represented by 𝑣. Of course, 1 − 𝑣 could be replaced
by any function of 𝑣 that vanishes for 𝑣 = 1, that equals 1 for 𝑣 = 0,
and that is monotonically decreasing.

The variable 𝑣(𝑡, 𝑥, 𝑦) is proportional to the extent of cooperation
among the bacteria in the biofilm. There is increasing empirical evi-
dence that suggests that bacteria cooperate by producing exoproducts
or public goods such as components of the matrix in the biofilm [18,
19]. Hence 𝑣(𝑡, 𝑥, 𝑦) denotes the strength of the resistance or protection
that the bacteria develop against environmental influences. If their
concentration 𝑢 is low, they do not use energy to develop resistance.
However, if their local average concentration 𝑞(𝑢) is above a threshold
𝜈 > 0, the quorum threshold (i.e., 𝑞(𝑢) − 𝜈 > 0), the bacteria start
to cooperate and spend some of their excess energy on cooperative
measures such as strengthening the matrix of the biofilm. 𝑣 is in the
interval [0, 1], where 0 denotes no cooperation and 1 means maximum
cooperation. Otherwise the term including 𝑞 is zero.

The concept of quorum sensing has been included in biofilm models
and its different aspects have been studied by many authors [20–22].
For example, in [22], the authors very recently formulated a math-
ematical model of QS as a stress response mechanism that increases
resistance against antibiotics. In the current paper, we present a new
model for biofilms describing their growth and degradation by means
of a system of equations including a PDE for biofilm concentration and

an ODE for biofilm cooperation. By the second equation, we define
cooperativity as a new concept (or variable), and we investigate the
concept of QS in the framework of the newly defined variable, i.e., the
cooperation. Although QS in the sense of signaling is not studied here,
we look at QS in the framework of the concept of cooperation among
bacteria according to a quorum threshold by calculating a quorum
function, i.e., the local average concentration of the bacteria, which
measures the population density in a neighborhood of all points. There
is much room for further extensions of the present model, e.g., by
incorporating further equations for signaling.

2.2. The initial and boundary conditions

In order to complete the proposed model equations (1)–(3), we
discuss the initial and boundary conditions. We consider the initial
conditions

𝑢0(𝑥, 𝑦) ∶= 𝑢(𝑡 = 0, 𝑥, 𝑦) = exp(−(𝑥2 + 𝑦2)∕10) ∀(𝑥, 𝑦) ∈ 𝐷, (4a)

𝑣0(𝑥, 𝑦) ∶= 𝑣(𝑡 = 0, 𝑥, 𝑦) = exp(−(𝑥2 + 𝑦2)∕10) ∀(𝑥, 𝑦) ∈ 𝐷. (4b)

The Eqs. (4) mean that the biofilm starts to grow at the origin (0, 0)
with initial concentration 1.

Furthermore, if the solution 𝑢 is radially symmetric, then we trans-
form the model equation to polar coordinates (𝑟, 𝜙) so that the deriva-
tives with respect to the angle 𝜙 vanish. This yields the independent
variables 𝑡 and 𝑟 and reduces the number of dimensions. We will discuss
this situation in more detail below.

To supplement the model, for every point (𝑥, 𝑦) on the boundary 𝜕𝐷,
we use the zero Neumann boundary condition
𝜕𝑢
𝜕𝐧

= 0 ∀𝑡 ∈ R+ ∀𝑥, 𝑦 ∈ 𝜕𝐷, (5)

where 𝐧 denotes the unit outwards normal vector on the boundary.

3. Existence and uniqueness of solutions of the model

In this section, we study the existence and regularity of solutions to
the initial–boundary value problem (1)–(5). To this end, we consider
the initial–boundary value problem (IBVP)

𝜕𝑡𝑢 = 𝑑𝑢𝛥𝑢 + 𝑓 (𝑢, 𝑣) in R+ ×𝐷, (6a)

𝜕𝑡𝑣 = 𝑔(𝑢, 𝑣) in R+ ×𝐷, (6b)
𝜕𝑢
𝜕𝐧

= 0 on R+ × 𝜕𝐷, (6c)

𝑢(0, 𝑥, 𝑦) = 𝑢0(𝑥, 𝑦) in 𝐷, (6d)

𝑣(0, 𝑥, 𝑦) = 𝑣0(𝑥, 𝑦) in 𝐷. (6e)

First some assumptions are required. Then, we state a result on local-
in-time existence and uniqueness of solutions to the above IBVP.

Assumptions 1. We assume:

1. The domain 𝐷 ⊂ R𝑑 is bounded with sufficiently regular boundary
𝜕𝐷.

2. The initial conditions 𝑢0 and 𝑣0 are bounded and symmetric functions
on 𝐷.

3. The nonlinearities 𝑓 = 𝑓 (𝑢, 𝑣) and 𝑔 = 𝑔(𝑢, 𝑣) are locally Lipschitz
continuous functions on 𝑢∶ R+×𝐷 → R+ and 𝑣∶ R+×𝐷 → (0, 1] ⊂
R+.

Theorem 1 (Local-In-Time Existence and Uniqueness [17]). Under As-
sumptions 1, there exists 𝑇 = 𝑇 (‖𝑢0‖∞, ‖𝑣0‖∞) > 0 such that the
initial–boundary value problem (6) has a unique local-in-time mild solution
(𝑢, 𝑣) ∈ 𝐿∞([0, 𝑇 ], 𝐿∞(𝐷)).

We recall the definition of a mild solution and then give a brief
sketch for the proof of Theorem 1.
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Definition 3.1. A mild solution of the initial–boundary value prob-
lem (6) is a couple of measurable functions 𝑢∶ [0, 𝑇 ] × 𝐷 → R+ and
𝑣∶ [0, 𝑇 ] ×𝐷 → (0, 1] ⊂ R+ satisfying the system of integral equations

𝑢(𝑡, 𝑥, 𝑦) = 𝑆(𝑡)𝑢0(𝑥, 𝑦) + ∫

𝑡

0
𝑆(𝑡 − 𝑠)𝑓 (𝑢(𝑠, 𝑥, 𝑦), 𝑣(𝑠, 𝑥, 𝑦))ds, (7a)

𝑣(𝑡, 𝑥, 𝑦) = 𝑣0(𝑥, 𝑦) + ∫

𝑡

0
𝑔(𝑢(𝑠, 𝑥, 𝑦), 𝑣(𝑠, 𝑥, 𝑦))ds, (7b)

where 𝑆 is the semigroup of linear operators generated by the Laplacian
with homogeneous Neumann boundary condition.

Proof. The system (1)–(5) satisfies all assumptions: It is straightfor-
ward to check that the initial conditions are bounded and symmetric,
since they are Gaussian functions. Furthermore, the nonlinearities 𝑓
and 𝑔 in the model are locally Lipschitz continuous functions as can
be seen using the mean-value theorem and due to the boundedness of
the computational domain and the derivatives of the functions 𝑓 and 𝑔
on the domain. The function tan−1 has a bounded derivative and the
derivative of a polynomial (as a 𝐶1 function) is continuous and thus
bounded.

The proof is based on an application of the Banach fixed-point
theorem in order to construct a local-in-time unique solution for sys-
tem (7), as the nonlinearities 𝑓 and 𝑔 are locally Lipschitz continu-
ous functions. Details of the approach and the proof of Theorem 1
for even more general reaction–diffusion equations can be found in
[23, Theorem 1, p. 111]. The construction of nonnegative solutions
of a particular reaction–diffusion-ODE models also can be found in
[24, Chapter 3]. □

Remark 1. To obtain more regular solutions, we can use more regular
initial conditions, i.e., if 𝑢0 ∈ 𝐻2

0 (𝐷) ∶= {𝑢 ∈ 𝐻2(𝐷) ∣ 𝐧 ⋅∇𝑢 = 0 on 𝜕𝐷},
then (𝑢, 𝑣) ∈ 𝐶(𝐷;𝐻2

0 (𝐷) × 𝐿∞(𝐷)). The proof is based on the theory
of strongly continuous semigroups [25]. Furthermore, if 𝑢0 ∈ 𝐶2+𝜂(𝐷)
and 𝑣0 ∈ 𝐶𝜂(𝐷) for some 𝜂 ∈ (0, 1), and the compatibility condition
𝐧 ⋅ ∇𝑢0 = 0 holds on 𝜕𝐷, then the mild solutions of the IBVP (6) are
smooth and satisfy 𝑢 ∈ 𝐶1+𝜂∕2,2+𝜂([0, 𝑇 ] × 𝐷) and 𝑣 ∈ 𝐶1,𝜂([0, 𝑇 ] × 𝐷).
For more details and studies of general reaction–diffusion-ODE systems
in Hölder spaces, we refer the reader to [23, Theorem 1, p. 112] and
[26].

4. The forward problem

In this section, we solve the IBVP (1)–(5) numerically in order to
discuss its behavior and to observe the evolution of concentration and
cooperation in time.

4.1. The model in polar coordinates

As mentioned, the solution 𝑢 is radially symmetric for radially
symmetric initial conditions. Therefore, we can transform the model
equation to polar coordinates (𝑟, 𝜙) and the derivatives with respect
to the angle 𝜙 vanish. This results in a problem in the independent
variables 𝑡 and 𝑟, and thus reduces the number of dimensions. The
original model can be rewritten as

𝜕𝑢
𝜕𝑡

= 𝐴𝜕2𝑢
𝜕𝑟2

+ 𝐴
𝑟
𝜕𝑢
𝜕𝑟

+ 𝛼𝑢(1 − 𝑢∕𝛽) − 𝛾(𝑡)(1 − 𝑣)𝑢, (8a)

𝜕𝑣
𝜕𝑡

= 𝜌max
(

0, arctan
(

𝜇(𝑞(𝑢) − 𝜈)
))

𝑣 − 𝜅𝑣2, (8b)

where

𝑞(𝑢)(𝑡, 𝑟) ∶=
(

𝑢(𝑡, ⋅) ∗ 𝑟𝐺(⋅)
)

(𝑟) (9)

and

𝐺(𝑟) ∶= 1
2𝜋𝜎2

exp
(

− 𝑟2

2𝜎2

)

, (10)

with the initial conditions

𝑢(𝑡 = 0, 𝑟) = exp(−𝑟2∕10), (11a)

𝑣(𝑡 = 0, 𝑟) = exp(−𝑟2∕10), (11b)

which are radially symmetric, and with zero Neumann boundary con-
dition for 𝑢. We have implemented the PDE model (8)–(11) of growth
and degradation of biofilms including quorum sensing by means of
the method of lines (MOL) and present the results in the following
section. MOL is a technique for solving partial differential equations
by discretizing in all but one dimension and then integrating the semi-
discrete problem as a system of ODEs. Here, the discretization in space
is done by means of the finite-difference method, and the resulting ODE
system in time is solved using a multistep solver based on numerical
differentiation formulas (NDFs).

4.2. Numerical results of the biofilm forward problem

Here, we present simulation results for the model (8)–(11). We
assume a circular dish with diameter 35mm centered at the origin as the
growth space and the computational domain for the biofilms, which are
initially located at the center of the dish. Biofilm growth is monitored
for about six hours. The goal is to calculate the area covered by the
biofilm in every hour.

In these simulations, the initial biofilm was located at the center of
the dish. We find the largest circle in the computational domain where
the concentration is above a certain threshold and calculate the relative
coverage using the area of this circle. We discuss numerical results of
biofilms growth and cooperation using different parameter values. The
default setup for the parameters is 𝐴 = 1.01, 𝛼 = 1.03, 𝛽 = 0.74, 𝜈 = 0.52,
𝜅 = 0.2 and 𝜌 = 𝜇 = 𝜎 = 𝛾 = 1. In the numerical experiments, we study
the effect of parameter variations on the solutions of the biofilm model,
namely the concentration and the cooperation, while keeping the rest
of the parameters constant with the default values.

Fig. 2 displays the resulting concentrations of biofilms using dif-
fusion constants 𝐴 = 0.02 and 0.8. These results show that when the
concentration spreads faster (i.e., when the diffusion constant is larger),
the biofilm is thinner and the covered area is larger. For a smaller
diffusion constant, the biofilm is thicker and more concentrated with
smaller coverage, as expected. This result agrees with our qualitative
assessment in Section 2.1.

Fig. 3 shows concentrations of biofilms for three different growth
rates 𝛼 = 1.01, 1.03 and 1.05. In fact, if two populations of bacteria start
to grow with the same diffusion constant but different growth rates,
the one with higher growth rate creates a much more concentrated
and thicker biofilm. Furthermore, the numerical results show larger
coverage area for a bigger growth rate.

We observe the effect of different values of 𝛽 on the concentration
and the cooperation of the biofilms in Fig. 4. According to these results,
using a larger value for the parameter results in a thicker biofilm and
bigger coverage, however slight changes in the parameter value hardly
affect the relative coverage.

Moreover, in Fig. 5, the effect of different values of the parameter 𝜅
is studied and the corresponding numerical results, i.e., the concentra-
tion of biofilm and the cooperation are illustrated. According to these
results, the cooperation among the bacteria increases with larger 𝜅, and
the coverage is almost constant.

According to the simulation results, uncertainty in the model pa-
rameters leads to different results. Now the question is that what
the actual parameter values are. In Section 6, we will answer this
question by means of solving the biofilm inverse problem and identify
all the unknown quantities of the model. Before we can do that, the
experimental results are described in the next section.
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Fig. 2. Biofilm concentration for 𝐴 = 0.02 (left) and 𝐴 = 0.8 (right).

Fig. 3. Biofilm concentration for 𝛼 = 1.01 (left), 𝛼 = 1.03 (middle), and 𝛼 = 1.05 (right).

Fig. 4. Biofilm concentration for 𝛽 = 0.74 (left) and 𝛽 = 5 (right).

5. Experimental results

In this section, we present the results of our experiments and obser-
vations for biofilm growth. In these experiments, we aimed to monitor
the development of biofilms during 24 h. To this end, 1mL of each ref-
erence (diluted in Brain Heart Infusion Medium 1.5 ⋅107) was cultivated
in single 24-well Ibidi 𝜇-Dishes (Ibidi Treat 1, 5 polymer coverslip,
tissue culture treated; Ibidi GmbH, Planegg/Martinsried, Germany).
Biofilms were grown at 37◦C for 24 h on an orbital shaker. Every hour
one well was taken off for further investigation. Furthermore, biofilms
were washed two times in PBS and fixed with 4% glutaraldehyde. We
observed bacteria in biofilms and the matrix (EPS) structure at different
times of biofilm formation. To observe the dense DNA of the dead bac-
teria (Molecular Probes®; Thermo Fisher Scientific), propidium iodide
was used. Polysaccharides, representing the most characteristic fraction
of the extrapolymeric substances, were stained using concanavalin-A
(ConA) (Sigma-Aldrich Corp, St. Louis, MO, USA). Fig. 6 displays the
formation of S. epidermidis and S. aureus biofilms after six hours of
incubation.

During the 24-h long observation of the reference strains, we found
differences in the pattern of biofilm formation; S. aureus ATCC25923
aggregated and formed various grape-like aggregations of bacterial
cells coated by single polysaccharides before spreading on the surface
and forming a biofilm layer. In contrast, S. epidermidis biofilms started
with scattered cells spreading over the surface until reaching conflu-
ence and their maximum thickness at 24 h without forming grapes or
clusters [27].

Fig. 7 illustrates the area coverage by the two reference strains of
biofilms, namely S. aureus ATCC 25923 and S. epidermidis DSM 3269
after 6 h. In these figures, we show how much area is covered by
polysaccharide, mix, and DNA.

In the experiments, the relative coverage at time 𝑡 is defined as
the relative area of the dish covered by the biofilm as measured by
counting particles using the ImageJ software. ImageJ is an open source
Java image processing program for automatic particle counting and
analyzing.

In this work, we have not included the amount of available nutrients
as a variable in our model, but we assume that enough nutrients
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Fig. 5. Biofilm concentration (top) and cooperation (bottom) for 𝜅 = 0.2 (left) and 𝜅 = 1 (right).

Fig. 6. The S. epidermidis (left) and S. aureus (right) biofilms after six hours of incubation. The S. epidermidis film shows scattered cells over the surface, while S. aureus forms
clusters. The images display DNA in red and polysaccharide in green.

are present in order to enable biofilm growth. As already mentioned,
coupling the growth of the biofilm to a variable amount of nutrients
is a possible model extension. Further model extension are to model
the spreading of the bacteria depending on the local food concentra-
tion and to model the food concentration by an additional equation.
Furthermore, if we include the amount of nutrients in the model, new
findings show that the growth of biofilms can even be affected by the
communication between nearby bacterial communities [28]. The bacte-
rial communities seem to use a time-sharing strategy in the sense that
two distinct biofilms can synchronize their growth through electrical
signals. When bacteria face limited nutrients, they alternate feeding

periods and each community takes turns consuming nutrients in order
to reduce competition and to maximize efficiency in consumption. This
behavior extends communication among functional units such as cells
to biofilms. It modifies cell-to-cell signaling mediated by ion channels
[29–32] to signaling between two distinct biofilms.

6. The inverse problem

The coefficients and parameters used in the mathematical model are
effective factors in the growth and cooperation of biofilms, but they
have unknown and uncertain values in the sense that they can only
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Fig. 7. Total area covered by the biofilms S. epidermidis DSM 3269 (left) and S. aureus ATCC 25923 (right) (polysaccharide, mix, DNA) after 6 h based on experimental data.

be determined by measurements that always come with measurement
errors. These parameters cannot be controlled during the experiments.
However, knowing the parameter values that determine the growth and
cooperation of biofilms helps to react against biofilms after diagnosis
in the sense that these parameter values give concrete information
about the bacterial behavior. Understanding the bacterial behavior is
also helpful to know which sort of antibiotics and how much of them
should be used to kill the bacteria. Therefore any information about
these effective factors improves the speed and quality of the treatment.

There are various methods for estimating the parameter values and
solving the inverse problem. One can divide the statistical inference
approaches into two categories: frequentist and Bayesian inference.
The differences between these two approaches stem from the way the
concept of probability is interpreted.

In the frequentist approach, the unknown parameter is assumed to
be fixed and deterministic, and probabilities are defined as long-term
frequencies of occurrences of an event. The event has to occur many
times. Therefore, in this approach we collect data from a sample of
the population and estimate its mean as the value which agrees best
with the data. In contrast, in the Bayesian approach, the unknown
parameters are assumed to be random variables. In this technique,
probabilities are rooted in degrees of belief and logical support and can
be used to represent uncertainties in any event, even in non-repeatable
events. In Bayesian inference, we define probability distributions over
possible parameter values and use data to update the distribution,
which means that beliefs are updated in response to new evidence.
The updating is done by applying Bayes’ theorem. In fact, the new
information (e.g., experimental data) makes the probability distribution
more focused around the true value of the unknown parameter. Thus
confidence intervals can easily be calculated.

Here, our goal is to estimate effective quantities in the biofilm model
(1). To this end, we use two approaches from the above mentioned sta-
tistical categories: a genetic algorithm (GA) as a deterministic method
and an adaptive Markov-chain Monte-Carlo (MCMC) algorithm as a
stochastic (Bayesian) technique.

The simulation results highlight the differences between the two
approaches. In the case of a genetic algorithm, the technique finds
optimal values for the parameters by minimizing the residual between
the experimental data and the numerical results. In the case of the
Bayesian technique, 95% confidence interval of the parameter values
are also presented. Although the genetic algorithm is a deterministic
technique in the sense that it does not take into account the uncertainty
in the measurements, it gives a good guess for the starting point in
the Markov chain in the MCMC method and the Bayesian approach,
which leads to fast convergence of the chain to the actual value of the
parameter of interest.

6.1. Deterministic approach: Genetic algorithm

In this section, we use a genetic algorithm (GA) as a global-
optimization method in order to estimate the parameters of interest in
the biofilm inverse problem. The genetic-algorithm based approaches
are deterministic methods in the sense that the parameters of interest
are assumed to be deterministic variables, whose optimal values are
found by means of minimizing a cost (fitness) function. This method
must be equipped with a cost function, since it enables the method to
rank the individuals. Here, the cost function is defined as the residual

cost = ‖cov − covexp‖𝓁2 , (12)

between the experimental data and numerical results of the forward
problem, i.e., the coverage data obtained by using the MOL solver
for the forward model. Here cov and covexp denote the coverages
obtained from the simulations and the experiments, respectively. In the
following, the steps of the genetic algorithm are shown [33]:

1. Initialization. In this step, a random initial population is gen-
erated.

2. Evaluation. Each individual is evaluated using a fitness func-
tion.

3. Selection. Selection is a process in which the individuals which
are suitable for the next generation are chosen. In this step,
our model adopts tournament selection. This step is repeated
until the number of individuals selected is equal to the desired
population size. In order to ensure the propagation of elite indi-
viduals, elitism is used. This mechanism selects the individuals
with the best fitness values and directly places them in the next
generation, while the remaining individuals must go through the
selection process.

4. Crossover and Mutation. Using crossover and mutation, chil-
dren are produced from the parents. In mutation, children are
produced by making random changes to a single parent, while
in crossover this is done by combining the vector entries of a
pair of parents.

5. Evaluation. Each individual is evaluated using the fitness func-
tion.

6. Check termination criteria. Steps 2 to 5 are repeated until the
termination criteria are satisfied. Here the algorithm is stopped
when the maximum number of generations has been exhausted
or when the solution with the best fitness has not been changed
from the previous generation.

Table 1 lists the GA setting and can be used for reproducing the
results. The selection function defines how individuals are selected to
become parents. The number of elite children shows the number of
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Table 1
Setting in the genetic algorithm.

Setting Value/Method

Number of generations 50
Population size 60
Initialization method Uniform sampling
Selection function Stochastic universal sampling (SUS) [34]
Number of elite children 2
Crossover fraction 0.8
Mutation fraction 0.2
Crossover function Uniform crossover
Mutation function Gaussian mutation

Fig. 8. The best and mean fitness values in 50 generations in the GA.

Table 2
Optimal parameter values in the biofilm inverse problem found by the GA.

Parameter Optimal value Parameter Optimal value Parameter Optimal value

A 0.0124 𝜈 0.1412 𝜎 0.2061
𝛼 1.0451 𝜅 0.1657 μ 1.0217
𝛽 0.4790 𝜌 0.6120 𝛾 0.7436

individuals with the best fitness values in the current generation that
are guaranteed to survive into the next generation. These individuals
are called elite children. Moreover, crossover fraction is the fraction of
individuals in the next generation, other than elite children, that are
created by crossover. The remaining are generated by mutation.

In this algorithm, we have calculated the mean and the minimum of
the obtained residual in the populations in 50 generations and we have
shown the results in Fig. 8. As the number of generations increases, the
individuals in the population crowd around the minimum point 0.

The GA yields the optimal parameter values in the biofilm model
equation (1) by solving the optimization problem

(𝐴, 𝛼, 𝛽, 𝜈, 𝜅, 𝜌, 𝜎, 𝜇, 𝛾) = argmin cost,

where the cost function is defined in (12). The values found are shown
in Table 2. We will use these values as the initial values for the Markov
chains of the corresponding parameters in the stochastic approach in
the next section. A near optimal choice of starting states of a Markov
chain helps the chain to quickly converge around the true value of the
parameters of interest.

As mentioned before, the genetic algorithm is deterministic in the
sense that it does not take into account the uncertainty in the mea-
surements. Therefore, in the next section, we consider a Bayesian
framework that accounts for the uncertainty in the problem.

6.2. Bayesian PDE inversion

The second approach to solve the biofilm inverse problem is
Bayesian PDE inversion [35–37]. In this method, we consider the
unknown parameters as random variables and calculate the posterior
probability density that reflects the distribution of the parameter values
based on the observations. Therefore, in this method, not a single
parameter value but its probability distribution is found. This is an
advantage, since probability distribution conveys information how well
the parameters can be determined.

In Bayesian techniques, prior knowledge about the parameters of
interest is updated using measurements to obtain posterior information
about the parameters. The connection between the parameter infor-
mation is made by means of the well-known Bayes’ Theorem from
probability theory but interpreted on top of a model equation.

We denote the probability space by (𝛺,𝐹 , 𝑃 ), where 𝛺 is the sample
space, 𝐹 a 𝜎-algebra of all events, and 𝑃 a probability measure. It is
assumed that all the random variables are absolutely continuous and
that the unknown parameters 𝑞 ∈ R𝑝 and the measured data 𝑦 are
realizations of the random variables 𝑄 and 𝑀 , respectively.

They are connected by the statistical model

𝑀 = 𝐺(𝑄) + 𝑒. (13)

In this model, 𝑒 is the measurement error, which is a mean-zero ran-
dom variable, and 𝐺(𝑄) is the observation operator dependent on the
random variable 𝑄 with realizations 𝑞 = 𝑄(𝜔). Moreover it is assumed
that 𝜋0(𝑞), 𝜋(𝑞|𝑦), and 𝜋(𝑦|𝑞) are the probability density functions of
the prior, posterior, and (data) sampling distributions, respectively. The
density 𝜋(𝑦|𝑞) of the data provides information from the measured data
to update the prior knowledge, and it is usually called the likelihood
density function.

The goal of Bayesian inversion is to estimate the posterior proba-
bility density function 𝜋(𝑞|𝑦), which reflects the uncertainty about the
quantity of interest 𝑞 using measured data 𝑦. Bayes’ Theorem for inverse
problems can be stated as follows.

Theorem 2 (Bayes’ Theorem for Inverse Problems [37,38]). Let 𝜋0(𝑞) be
the prior probability density function for the realizations 𝑞 of the random
parameters 𝑄. Let 𝑦 be a realization or measurement of the random obser-
vation variable 𝑀 . Then the posterior density of 𝑄 given the measurements 𝑦
is

𝜋(𝑞|𝑦) =
𝜋0(𝑞)𝜋(𝑦|𝑞)

𝜋(𝑦)
=

𝜋0(𝑞)𝜋(𝑦|𝑞)
∫R𝑝 𝜋0(𝑞)𝜋(𝑦|𝑞)d𝑞

. (14)

Calculating the integral in (14) is costly especially in the case of
high-dimensional parameter spaces R𝑝. In order to find the posterior
density without computing the costly integral in (14) and in order
to efficiently sample the parameter space, Markov-chain Monte-Carlo
(MCMC) methods are the method of choice. In these methods, a re-
versible Markov-chain is constructed whose stationary distribution is
the posterior density.

Choosing the proposal scales in the MCMC algorithm is crucial as
they affect the convergence speed of the Markov chain. To this end, we
use the delayed-rejection adaptive-Metropolis algorithm (DRAM) [39],
which is a variant of the Metropolis–Hastings algorithm that combines
adaptivity [40] and delayed rejection [41]. The adaptive part updates
the proposal covariance matrix with an optimal scale and ensures that
information learned about the posterior distribution is remembered as
the chain progresses. The delayed rejection updates the proposal scale
when the proposed value is rejected to improve mixing and to avoid
stagnation of the chain.

The adaptive Metropolis (AM) algorithm is a global adaptive strat-
egy, where a recursive relation is used to update the proposal covari-
ance matrix. In this algorithm, we take the Gaussian proposal centered
at the current state of the chain 𝑞𝑘 and update the chain covariance
matrix at the 𝑘th step using

𝑉𝑘 = 𝑠𝑝 Cov(𝑞0, 𝑞1,… , 𝑞𝑘−1) + 𝜀𝐼𝑝, (15)
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Fig. 9. Marginal histograms of posterior distributions of the parameters in the biofilm model using the DRAM algorithm with 30 000 samples.

where 𝑠𝑝 is a design parameter and depends only on the dimension 𝑝 of
the parameter space. This parameter is specified as 𝑠𝑝 ∶= 2.382∕𝑝 as the
common choice for Gaussian targets and proposals [39], as it optimizes
the mixing properties of the Metropolis–Hastings search in the case of
Gaussians. Furthermore, 𝐼𝑝 denotes the 𝑝-dimensional identity matrix,
and 𝜀 > 0 is a very small constant to ensure that 𝑉𝑘 is not singular
theoretically, and in most cases it can be set to zero.

The adaptive Metropolis algorithm employs the recursive relation

𝑉𝑘+1 ∶=
𝑘 − 1
𝑘

𝑉𝑘 +
𝑠𝑝
𝑘

(

𝑘𝑞𝑘−1𝑞
⊤
𝑘−1 − (𝑘 + 1)𝑞𝑘𝑞

⊤
𝑘 + 𝑞𝑘𝑞

⊤
𝑘

)

to update the proposal covariance matrix, where the sample mean 𝑞𝑘
is calculated recursively by

𝑞𝑘 = 1
𝑘 + 1

𝑘
∑

𝑖=0
𝑞𝑘

= 𝑘
𝑘 + 1

⋅
1
𝑘

𝑘
∑

𝑖=1
𝑞𝑘−1 +

1
𝑘 + 1

𝑞𝑘

= 𝑞𝑘 +
𝑘

𝑘 + 1
(𝑞𝑘−1 − 𝑞𝑘).

When a first-stage proposed value 𝑞∗ for 𝑞𝑘 is rejected, we use the
delayed-rejection (DR) algorithm, which provides a mechanism for
constructing alternative candidate 𝑞∗∗ instead of retaining the prior
chain value 𝑞𝑘−1 as in the standard Metropolis algorithms. This process
is called delaying rejection, which can be done for one or many stages.
Furthermore, the acceptance probability of the new candidate(s) is
calculated. Therefore, in the DR process, the previous state of the chain
is updated using the optimal parameter scale or proposal covariance
matrix that has been calculated via the AM algorithm. The DRAM
algorithm is summarized in Algorithm 1.

The number of samples or iterations in the algorithm must be large
enough to estimate the parameter after discarding a sufficiently long
burn-in period at the beginning.

6.2.1. Numerical results of the Bayesian inversion for the biofilm inverse
problem

In this section, to provide a better insight into the biofilm model,
we quantify uncertain values of the model by means of the Bayesian
inversion method and by comparing and analyzing measurements and
simulations. Bayesian inference has been already applied in order to
parameter identification in different models related to biofilms [42,43].
Here the goal is to extract information as much as possible using the
measurements. However the amount of recovered information depends
on many factors including the size of available experimental data. We
have used the DRAM algorithm as an adaptive MCMC method in the
context of the Bayesian inversion method for this analysis. To start
the Markov chains, we use the optimal parameter values found by the
genetic algorithm, which are summarized in Table 2 in Section 6.1 to
speed up the convergence of the generated chains. We also use the
measured area covered by the S. epidermidis biofilm (mix) according
to Section 5.

Fig. 9 illustrates the 9D Bayesian estimation results and it displays
the marginal histograms of the resulted posterior distribution of nine
parameters of the biofilm model together with their mean values. The
means of the estimated posterior distributions have a good agreement
with the optimal values found by the GA in Section 6.1. The results give
us confidence intervals for each of the unknown quantities as well.

The correlation between some of the model parameter pairs is
illustrated in Fig. 10 by showing two dimensional histograms of the
posterior distribution of the pairs calculated by the DRAM algorithm.
For the rest of the pairs, similar histograms have been obtained.
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Fig. 10. Two dimensional histograms of posterior distributions of the parameter pairs in the biofilm model displaying the correlation between some of the pairs.

Algorithm 1 The DRAM algorithm
Initialization:
Choose the first state of the chain 𝑞0 such that 𝜋0(𝑞0) > 0.
Choose the number 𝑁samples of samples or iterations (often 𝑁samples >
104).
Choose the parameter 𝜀.
Choose the initial proposal covariance matrix 𝑉0 (diagonal or
symmetric).
Choose the factor 𝛾1 (often 𝛾1 ∶= 1∕5) for the second-stage proposal
distribution.
for 𝑘 = 1 ∶ 𝑁samples do

1. (Adaptivity:) The covariance matrix 𝑉𝑘 in the 𝑘-th step is
updated by (15).

2. A first-stage proposal 𝑞∗ is generated from 𝐽 (𝑞∗|𝑞𝑘−1) ∶=
𝑁(𝑞𝑘−1, 𝑉𝑘).

3. The new value 𝑞∗ is accepted with probability

𝛼(𝑞∗|𝑞𝑘−1) = min
(

1,
𝜋(𝑞∗)
𝜋(𝑞𝑘−1)

⋅
𝐽 (𝑞𝑘−1|𝑞∗)
𝐽 (𝑞∗|𝑞𝑘−1)

)

. (16)

4. If the new state is accepted, we set 𝑞𝑘 = 𝑞∗. Otherwise:

(a) (Delayed rejection:) A second-stage proposal 𝑞∗∗ is
generated from proposal density

𝐽2(𝑞∗∗|𝑞𝑘−1, 𝑞∗) ∶= 𝑁(𝑞𝑘−1, 𝛾21𝑉𝑘), (17)

where 𝑉𝑘 is the adapted covariance matrix.
(b) The new value 𝑞∗∗ is accepted with probability

𝛼2(𝑞∗∗|𝑞𝑘−1, 𝑞∗) ∶= min
(

1,
𝜋(𝑞∗∗|𝑦)𝐽 (𝑞∗|𝑞∗∗)(1 − 𝛼(𝑞∗|𝑞∗∗))

𝜋(𝑞𝑘−1|𝑦)𝐽 (𝑞∗|𝑞𝑘−1)(1 − 𝛼(𝑞∗|𝑞𝑘−1))

)

.

(18)

(c) If the new state is accepted, we set 𝑞𝑘 ∶= 𝑞∗∗,
otherwise 𝑞𝑘 ∶= 𝑞𝑘−1.

end for

6.3. The model evaluation

In order to verify the response of the presented biofilm model, we
compare the simulated coverage using the optimal parameter values
with the experimental data. Fig. 11 illustrates this assessment and
shows a very good agreement between the simulations and the mea-
surements, which proves the efficiency of the presented mathematical
model as well as the robustness of the applied inverse methods for
parameter estimation.

Fig. 11. The model assessment: experimental data versus simulated coverage.

7. Conclusions

In this work, we presented a reaction–diffusion-ODE system as the
model equations for biofilms including the cooperation among the
bacteria. This is the first time – to the best of our knowledge – that
cooperation of bacteria in biofilms is introduced and quantified. The
model includes also the concept of quorum sensing, which is presented
in the framework of the newly defined quantity, i.e., the cooperation
in the sense that when local average mass of biofilms is above a
quorum threshold, the bacteria start to cooperate, which leads to higher
resistance against antibiotics. We also presented local-in-time existence
and uniqueness results as well as regularity of solutions to the presented
model type.

To provide better insight into the model, we applied a multi-
parameter Bayesian analysis to quantify the unknown parameter values
of the model. We proposed the DRAM algorithm in the context of
Markov-chain Monte-Carlo methods to extract multiple parameters of
the presented biofilm model and estimated posterior distribution of the
unknown quantities and their confidence intervals. Moreover, in order
to speed up the method, we used a genetic algorithm to determine the
starting values of the Markov chains. Carefully choosing the starting
state ensures that the chain converges to the true value more quickly.
Furthermore, we assessed and validated the presented biofilm model
using the simulation results with the estimated optimal parameter
values and the measurements. The results show a very good agreement
between the model response and the experimental data. The mathemat-
ical model equations in conjunction with Bayesian PDE inversion make
it possible to assign biologically and medically relevant parameter
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values to various species of bacteria. This procedure therefore allows us
to quantify and to compare the behavior and the strategies of different
species of bacteria.
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