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Abstract

We develop an electrical-impedance tomography (EIT) inverse model problem in an infinite-dimensional setting by
introducing a nonlinear elliptic PDE as a new EIT forward model. The new model completes the standard linear model by
taking the transport of ionic charge into account, which was ignored in the standard equation. We propose Bayesian inversion
methods to extract electrical properties of inhomogeneities in the main body, which is essential in medicine to screen the
interior body and detect tumors or determine body composition. We also prove well-definedness of the posterior measure and
well-posedness of the Bayesian inversion for the presented nonlinear model. The new model is able to distinguish between
liquid and tissues and the state-of-the-art delayed-rejection adaptive-Metropolis (DRAM) algorithm is capable of analyzing the
statistical variability in the measured data in various EIT experimental designs. This leads to design a reliable device with higher
resolution images which is crucial in medicine for diagnostic purposes. We first test the validation of the presented nonlinear
model and the proposed inverse method using synthetic data on a simple square computational domain with an inclusion.
Then we establish the new model and robustness of the proposed inversion method in solving the ill-posed and nonlinear EIT
inverse problem by presenting numerical results of the corresponding forward and inverse problems on a real-world application
in medicine and healthcare. The results include the extraction of electrical properties of human leg tissues using measurement
data.
c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Tomography is one of the most important techniques in imaging and could be used in medical monitoring such
as monitoring for internal bleeding, screening for breast cancer, detection of pulmonary emboli and blood clots
in lungs, provided that the corresponding inverse problems can be reliably solved. Imaging the internal organs to
diagnose diseases is one of the most important aspects of modern medicine. Many medical problems could be easily
diagnosed by information about the distribution of electrical properties inside the body. Although tomography has
originally been used solely in medical imaging, in its general sense it has now become much more diverse and
is used in a wide range of fields including industrial and geophysical applications. It is used in industrial-process
tomography to control industrial processes such as curing and cooking. Geophysical surveying is another application
of the technique which is used for determining the location of mineral and oil deposits, leakage detection in pipes,
etc. Furthermore, atmospheric and forensic imaging, archeology, and land-mine detection are other fields where
tomography imaging is used.

Since modern medicine relies on imaging methods, the mathematics of tomography have become one of the
most important applications of mathematics in the areas of healthcare, medicine, and life sciences in general.
In soft-field tomographic techniques, a sensing field is applied to an object and the responses to this field are
measured. Processing of these responses allows reconstruction of the distributions of physical properties inside the
object, if the nonlinear inverse problem can be solved. For instance, electrical-impedance tomography (EIT) [1]
in medicine, electrical-resistance tomography (ERT) [2] in geophysical applications, and electrical-capacitance
tomography (ECT) [3] in industrial process monitoring are soft-field tomography techniques. The nature of soft-field
tomography techniques is much more complex than the nature of hard-field ones and requires considerably more
computational analysis and algorithms to reconstruct the image.

Tomography is defined as measuring the propagation of energy or particle motion in order to reconstruct
information about the interior of a system. Usually this information is a reconstruction of electrical and geometrical
properties of the system such as conductivity, charge, and size. Hence parameter reconstruction in soft-field
tomography is based on an inverse problem, where a forward model is fitted to the data. In medical applications,
computed tomography (CT) and EIT are the two main methods used in imaging and reconstruction. The CT
reconstruction problem is a linear problem since X-rays propagate in straight lines through the object and their
absorption at any point inside the object is independent of the absorption at any other point. Therefore, the
attenuation is measured along each collimated beam direction, which is a linear problem and leads to sparse and
well-conditioned sensitivity matrices (Radon transforms). In this method, the device is usually very complicated
and provides very good resolution. Electrical-impedance tomography is an imaging technique for detecting (and
imaging) internal properties such as the conductivity distribution inside an object by means of measuring the
electrical properties at exterior electrodes. A set of contact electrodes is attached on the surface of the body and
prescribed electric potentials are applied to the body through the electrodes. The corresponding electrical currents
needed to maintain these potentials are measured on these electrodes. The EIT reconstruction is a nonlinear and
ill-posed inversion problem. It is nonlinear since as the field is modified inside the body, the potential measured at
the boundary of the domain is a nonlinear function of the distribution of the electrical properties through the body.
Furthermore, this problem is ill-posed, since large changes in the interior can correspond to very small changes in
the measured data [4]. The resulting resolution of EIT is lower than the one of CT, but practical advantages such as
simple, cheap, portable, and radiation free devices have put this method into the center of attention in recent years.

The idea behind the EIT technology is not new as the idea of electrical-resistive tomography was proposed
in 1978, independently by Henderson and Webster for medical imaging, and by Lytle and Dines for geophysical
imaging [5]. Since that time, computational power has increased and more efficient inverse algorithms have been
proposed. Hence, due to this fact and as it includes crucial applications, looking at the idea again and applying
modern and powerful inverse algorithms such as Bayesian-estimation methods to analyze the results is of great
importance.

There are fundamental differences between classical and Bayesian inverse modeling. The first difference is in the
nature of the solution; the solution of Bayesian estimation is a probability distribution of the model parameter, which
is a random variable. Hence a confidence interval for each of the quantities of interest can be found, which is crucial
in applications such as in medicine. The other difference is using prior knowledge in the Bayesian approach to
update the current information about the parameters of interest. The connection between the two level of knowledge
is made by means of Bayes’ Theorem. In Bayesian estimation techniques, Markov-chain Monte-Carlo (MCMC)
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methods [6–9] and adaptive MCMC algorithms [10–12] are used to deal with inverse problems in order to
circumvent the need to calculate high-dimensional integrals (appearing in Bayes’ Theorem). Moreover they sample
the space efficiently and completely search the space. Bayesian approaches to the EIT inverse problem have
previously been studied, for example in [13–16]. Bayesian inference for inverse problems, especially in infinite
dimensions is a new approach, which has been applied to linear (e.g. [17]) and recently nonlinear problems
(e.g. [18,19]).

In this work, we focus on electrical-impedance tomography as a soft-field tomography technique and one of
the main imaging techniques applied in medicine. We present and solve an elliptic partial differential equation,
namely a nonlinear Poisson–Boltzmann equation as the EIT model to find the electrical currents flowing in and
out of the electrodes in a bioimpedance tomography device. This is the first paper that uses this nonlinear model
for the EIT problem in order to take the free charges present in the problem into account and gives the related
Bayesian formulation in an infinite-dimensional setting in order to solve the corresponding inverse problem. We
solve the EIT forward problem by means of the first order Galerkin finite-element (GFE) approximation and a
mesh generated by the GMSH package [20]. For solving the corresponding inverse problem, an adaptive MCMC
method, namely the delayed-rejection adaptive-Metropolis (DRAM) algorithm is proposed, which is based on the
combination of two powerful ideas: adaptive Metropolis (AM) [21,22] and delayed-rejection (DR) [23,24], which
are used as global and local adaptive algorithms to modify the MCMC method. All algorithms for Bayesian inversion
in this work have been implemented in the Julia programming language [25,26]. Numerical results using the state-
of-the-art GFE and the adaptive MCMC illustrate accurate extraction of the quantities of interest in the EIT inverse
problem. We evaluate the presented nonlinear model and the proposed inversion method first on a simple geometry
as the computational domain and using synthetic data. Then we apply it on a real-world application in medicine to
estimation of muscle conductivity in a cross-section of leg using measurement data. As a result, the confidence
interval of unknown quantity using the proposed forward model and the inversion method is calculated. This
application is important since usually muscle absorbs water which decreases its conductivity. The presented model
is capable of distinguishing water and muscle due to the nonlinear term and hence detecting muscle tissues more
accurately and producing high resolution images, which is important for precisely determining the body composition.
On the other hand, the accuracy of results and higher resolution of reconstructed images are crucial in medicine
for diagnostic purposes.

We also present Bayesian inversion for the presented nonlinear elliptic PDE model for EIT in the measure-
theoretic framework and prove that the posterior measure is Lipschitz continuous in the data to conclude
well-definedness and well-posedness of the resulting posterior measures obtained by the Bayesian technique.

The paper is organized as follows: In Section 2, the new nonlinear model as the EIT forward problem is presented.
Section 3 is devoted to the EIT inverse problem. In this section, first Bayesian estimation in the measure theoretic
framework is formulated and then well-definedness and well-posedness of Bayesian inversion for the new EIT model
are proved. In Section 4, numerical experiments of the presented model and the proposed inversion method on a
test problem are illustrated. The examination of the methodology on a real-world application using measurement
data is presented in Section 5. These results show the capability of the Bayesian approach to identify the unknown
quantities in the EIT inverse problem corresponding to the new model and support our theoretical findings. Finally,
conclusions are drawn in Section 6.

2. The EIT nonlinear model

The presence of liquids such as blood in human body is unavoidable. Therefore, in order to design an accurate
and reliable EIT sensor, we need to take them into account in the computational model. We extend the standard
model to the nonlinear one by simulating the transport of free charges in the background medium, which was ignored
in the standard model. The new model can distinguish between the liquid and the other materials and therefore the
inverse problem associated with this model results in more accurate reconstructed images with higher resolution. In
this section, first we briefly review the derivation of the standard linear EIT problem, and then present the nonlinear
model. We give the required assumptions for the existence and uniqueness of solution to the new PDE model as
well.

We assume a square domain as a cross-section of the main object under consideration containing an inclusion
consisting of a different material than the background medium and with eight electrodes which are equidistantly
attached to the surface of the main body. The device with this configuration will be used as the computational domain
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Fig. 1. Schematic diagram of a cross-section of an EIT device with eight electrodes attached to the boundary of the main object including
one inclusion used for the test problem.

for the test problem later. In Fig. 1, a schematic diagram of the device with one of the measurement patterns is
shown. In this pattern, a potential is applied between two electrodes, and the resulting electrical current is measured
at the rest of the electrodes. The forward problem is to find the electrostatic potential in the physical domain and
then to calculate the electrical current flowing through the electrodes. Assume that D ⊂ Rn, n ∈ {2, 3}, is a closed
and bounded domain with a smooth boundary ∂ D. Using the quasi-static approximation, the electrical field E can
be represented in terms of a scalar potential u by

E(x) = −∇u(x), (1)

where x ∈ D. For simplicity we assume direct current or sufficiently low-frequency current such that the magnetic
field can be neglected. In the case of direct currents, in which the applied voltage is independent of time, the
derivation is simple. The electric potential u results in the current density J , which satisfies the continuum Ohm’s
law J = −A∇u, where A is the admittivity [27]. In the absence of current sources in the interior of the body, the
continuum version of Kirchoff’s law ∇ · J = 0 results in the elliptic PDE

∇ · (A∇u) = 0.

In the case of alternating currents, we consider the time-harmonic Maxwell’s equations at a fixed angular
frequency ω, and it is assumed that the transient components of all fields are negligible [27]. Ignoring magnetic
effects, we substitute Eq. (1) into the time-harmonic Maxwell’s equations, while assuming no internal current source
in EIT problems, and take the divergence on the both sides to obtain the (complex-valued) linear model

∇ · (A∇u) = 0, (2)

where

A(x, ω) := σ (x, ω) + iωϵ(x, ω) (3)

is the admittivity, and σ and ϵ are the electric conductivity and permittivity, respectively. Also, ω is the frequency
of the electrical current. Since we restrict the present discussion to static fields, i.e., ω → 0+, the admittivity is real
and coincides with the static conductivity, i.e. A = σ (x), which we use here. Moreover, the impedivity ρ = 1/A is
just the resistivity of the body [28]. The linear model (2) is widely used for modeling EIT; the Electrical Impedance
Tomography and Diffuse Optical Tomography Reconstruction Software EIDORS [29] (http://eidors.org) is based
on this model equation.

To find the boundary conditions, we assume that there are L contact electrodes eℓ, which are attached to the
surface of the body, i.e.,

eℓ ⊂ ∂ D, 1 ≤ ℓ ≤ L , (4)

such that eℓ ∩ ek = ∅ for ℓ ̸= k. We assume that the electrodes conduct perfectly, and thus the tangential electrical
field vanishes along the electrodes. Then possible boundary conditions on the electrodes are the Dirichlet boundary

http://eidors.org
http://eidors.org
http://eidors.org
http://eidors.org
http://eidors.org
http://eidors.org
http://eidors.org
http://eidors.org
http://eidors.org
http://eidors.org
http://eidors.org
http://eidors.org
http://eidors.org
http://eidors.org
http://eidors.org
http://eidors.org
http://eidors.org
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conditions

u(x) = Uℓ, x ∈ eℓ, 1 ≤ ℓ ≤ L . (5)

We also assume that no current flows in and out of the body between the electrodes, which leads to zero Neumann
boundary condition

∂u(x)
∂n

= 0, x ∈ ∂ D\

L⋃
ℓ=1

eℓ. (6)

Assuming that the energies of all ions in the electric field are distributed according to a Boltzmann distribution,
we define the charge density of free charges in the system by

ffree := η(exp(−βu) − exp(βu)) = −2η sinh(βu),

where η is the ion accessibility function. The constant β is defined as β := 1/UT , where UT is the thermal voltage at
room temperature and it is defined by UT := kB T/q in terms of the Boltzmann constant kB and the temperature T ,
and q > 0 the elementary charge. Here we assume that the charge of single positive and negative charge carriers
are the same. In the definition of charge density of free charges, the exponential terms stem from the Boltzmann
distributions for two species of ions, which lead to sinh in the model.

Adding charge density of free charges ffree to the fixed charges ffixed (for simplicity we denote it by f in the
equation), we arrive at the nonlinear Poisson–Boltzmann equation

−∇ · (A(x)∇u(x)) = f (x) − 2η(x) sinh(βu(x))

as the extended model for the EIT problem. Therefore, the new forward problem describing EIT is to find the
potential u in the main object D, given the conductivity A, the voltage pattern U = [U1, . . . , UL ]T , the ion
accessibility function η, and the concentration f of fixed charges, that solves the (real-valued) nonlinear elliptic
PDE

−∇ · (A(x)∇u(x)) + 2η(x) sinh(βu(x)) = f (x) ∀x ∈ D, (7a)

u(x) = Uℓ ∀x ∈ eℓ, (7b)

∂u(x)
∂n

= 0 ∀x ∈ ∂ D\

L⋃
ℓ=1

eℓ. (7c)

As mentioned before, in every measurement pattern a potential is applied to the electrodes and the resulting
electrical current on the rest of the electrodes is measured. The electrical current flowing through the electrodes in
the EIT problem [4] is calculated by

Iℓ =

∫
eℓ

A
∂u(x)
∂n

ds, ℓ = 1, 2, . . . , L . (8)

The nonlinear Poisson–Boltzmann equation (7) has a unique solution and a pointwise estimate for the solution
of the equation has been presented in [30]. The required assumptions for existence of a unique solution are listed
below:

Assumptions 1. The conductivity A : D → R2×2 and the voltage simulation pattern {Uℓ}
L
ℓ=1 ∈ RL satisfy the

following assumptions:

1. The coefficient A : D → R2×2 is a piecewise constant-valued matrix, which is uniformly elliptic and satisfies

A ∈ L∞(D;R2×2), ess inf
x∈D

A(x) = A− > 0 (9)

and contains the conductivity of the inclusion or background medium, as the two materials are different in
their physical properties.

2. The voltage applied to the ℓ-th electrode is chosen such that
∑L

ℓ=1 Uℓ = 0.
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3. The EIT inverse problem associated with the nonlinear forward model

The EIT inverse problem is to reconstruct the electrical and physical properties of the body interior, given the
electrical current measurements on its surface. Bayesian inferences [31–34] applied to the EIT inverse problem
corresponding to the standard linear forward model (2) has previously been studied. This inversion method for
nonlinear inverse problems in infinite dimensions is a new approach. In this work, we propose Bayesian estimation
methods to the EIT inverse problem corresponding to the presented nonlinear forward model (7), as this inversion
technique was capable of dealing with ill-posedness and nonlinearity of problems in many applications [35–37].
Here we will also show this claim about the EIT inverse problem by numerical results on a test problem and
then on a real-world application in medicine. Our goal in this section is to show well-definedness of the posterior
measure obtained by the Bayesian techniques as well as well-posedness of the Bayesian inversion for the EIT
inverse model associated with the nonlinear forward model presented in the previous section. To this end, we first
present the mathematical formulation of the Bayesian analysis in a measure-theoretic framework and in the infinite-
dimensional setting. Then, our main theoretical results are stated and proved in Proposition 1. These results include
boundedness and Lipschitz continuity of the solution of the physical model by functions of the parameters, which
lead to well-definedness and well-posedness of the applied Bayesian estimation method for the prescribed model
in the EIT technology.

3.1. Bayesian analysis in a measure-theoretic framework

In Bayesian estimation technique, solution of the inverse problem is the posterior density that best reflects the
distribution of the parameter based on the observations. As the observations or measurements are subject to noise
and the observational noise, i.e., the error e due to modeling and measurement, is unbiased and iid, it can be
represented by random variables as

M = G(Q) + e, (10)

where e is a mean-zero random variable and M is a given random variable representing observed data or
measurements, for which we have a model G(Q) (observation operator) dependent on a random variable Q with
realizations q = Q(ω) representing parameters to be estimated [31].

To describe the Bayesian approach on function spaces, we formulate Bayes’ Theorem in a measure-theoretic
framework, which is suitable for problems on infinite-dimensional spaces. To this end, assume that (X, ∥ · ∥X )
(infinite-dimensional) and (Y, ∥·∥Y ) (possibly infinite-dimensional) are separable Banach spaces and that G : X → Y
is the observation operator. Therefore, let q ∈ X be a random variable distributed according to measure µ0 on
X , in which our prior beliefs about the unknown parameter q are described. We assume the distribution of the
measurement error e (data likelihood) is defined by

π (y|q) := π (y − G(q)) (11)

to calculate the posterior probability measure µy for q ∈ X given y ∈ Y , which leads to

π (q|y) =
π0(q)π (y − G(q))∫

Rp π0(q)π (y − G(q))dq
(12)

using Bayes’ formula, where π0 and π are the prior and posterior density functions and correspond to the probability
measures µ0 and µy , respectively. Thus we have

π (q|y) ∝ π0(q)π (y − G(q)) (13)

with a constant of proportionality depending only on y.
As in infinite-dimensional spaces there is no density with respect to the Lebesgue measure, Bayes’ rule should

be interpreted as providing the Radon–Nikodym derivative between the posterior measure µy(dq) = P(dq|y) (with
density π (q|y)) and the prior measure µ0(dq) = P(dq) (with density π0), yielding

dµy

dµ0
(q) ∝ π (y − G(q)). (14)
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Without loss of generality, we can view the right-hand side as the exponential of the negative of Φ(q, y), where
Φ : X × Y → R is called a potential. Hence Eq. (14) can be rewritten as

dµy

dµ0
(q) ∝ exp (−Φ(q, y)), (15)

since the density π is nonnegative [18]. Furthermore, the posterior measure µy in some PDE inverse problems can
be formulated as

dµy

dµ0
(q) =

1
C(y)

exp (−Φ(q, y)), (16)

where C(y) is a normalization constant and chosen such that µy is a probability measure, i.e.,

C(y) :=

∫
X

exp (−Φ(q, y))dµ0(q). (17)

Furthermore, we assume that µ0(X ) = 1 holds for the infinite-dimensional separable Banach space X .
The goal is to show that the posterior measure µy of the form (16) is well-defined and that the problem is

well-posed with respect to its dependence on the data. To this end, the function Φ : X × Y → R should have
essential properties, namely lower and upper bounds and the Lipschitz property in q and y. As this function is
defined in terms of the function G : X → Rm , it is sufficient to prove the following properties of the function G
corresponding to the inverse problem of interest. This implies that Φ : X ×Rm

→ R satisfies Assumption 2.6 in [18]
with (Y, ∥ · ∥Y ) = (Rm, | · |).

Assumptions 2. The function G : X → Rm has the following properties.

1. For every ε > 0, there exists an M(ε) ∈ R such that the inequality

|G(q)| ≤ exp(ε∥q∥
2
X + M(ε)) (18)

holds for all q ∈ X .
2. For every r > 0, there exists a K (r ) > 0 such that the inequality

|G(q1) − G(q2)| ≤ K (r )∥q1 − q2∥X (19)

holds for all q1, q2 ∈ X with max(∥q1∥X , ∥q2∥X ) < r .

To prove the well-definedness of the posterior measure and well-posedness of the EIT Bayesian inversion, we
need to verify if the bounds and Lipschitz properties in Assumption 2 hold true when G is given by the solution
of the (real-valued) nonlinear elliptic PDE

−∇ · (A(x)∇u(x)) + 2η(x) sinh(βu(x)) = 0 ∀x ∈ D, (20a)

u(x) = g ∀x ∈ ∂ DD, (20b)
∂u(x)
∂n

= 0 ∀x ∈ ∂ DN , (20c)

where ∂ DD and ∂ DN denote the Dirichlet and Neumann boundaries. In (20), the solution u can be the real or the
imaginary part of the solution of the complex-valued model (2)–(3), i.e., either ℜ(u) or ℑ(u). Here, for the sake of
simplicity we denote the solution of the real-valued model (20) by u as well. We present the results in Section 3.2
as a proposition.

The nonlinear Poisson–Boltzmann equation (20) has a unique solution. Moreover a pointwise estimate for the
solution of the equation has been presented in [30], which will be used later.

3.2. Main theoretical results

Here, the main results including the well-definedness of the posterior measure and well-posedness of the EIT
Bayesian inversion for the new model (20) are presented. To this end, the validity of Assumption 2 should be verified
in the sense that a parameter dependent bound for the solution of the nonlinear model equation must be found and
the Lipschitz property of the solution must hold true as well. We have collected our theoretical findings for the new
model in Proposition 1. For the linear model a similar bound and the Lipschitz property has been already proved
in [38].
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Proposition 1. Suppose the real-valued nonlinear elliptic equation (20) holds in the bounded domain D ⊂ Rn ,
n ∈ {2, 3}, with a smooth boundary ∂ D and A := eq

=: η, where q ∈ L∞(D). Then the estimate

∥u∥H1 ≤ He2∥q∥L∞ (21)

holds for all q ∈ L∞(D), and the estimate

∥u1 − u2∥H1 ≤ Se4 max(∥q1∥L∞(D),∥q2∥L∞(D))∥q1 − q2∥L∞(D) (22)

holds for all q1, q2 ∈ L∞(D), where H = H (∥∇g∥L2(D)) and S = S(∥∇g∥L2(D)) are functions and g ∈ L2(D) is
the Dirichlet lift of g.

Proof. We substitute v := u − g in (20), where g is the Dirichlet lift of g. It is defined by

g :=

{
g on ∂ D,

arbitrary in D
(23)

such that g ∈ L2(D).
In order to find estimates (21) and (22), we take the inner product with any v ∈ H 1

0 (D), which leads to

I :=

⏐⏐⏐⏐∫ A∇v · ∇v

⏐⏐⏐⏐ =

⏐⏐⏐⏐− ∫
A∇g · ∇v −

∫
2η sinh(β(g + v))v

⏐⏐⏐⏐ ,
where A = eq . Using η = eq and sinh(β(g + v)) = (eβ(g+v)

− e−β(g+v))/2 as well as the triangle inequality, we find

e−∥q∥L∞
∥∇v∥

2
L2 ≤ I ≤

⏐⏐⏐⏐∫ eq
∇g · ∇v

⏐⏐⏐⏐ +

⏐⏐⏐⏐∫ eqeβ(g+v)v

⏐⏐⏐⏐ +

⏐⏐⏐⏐∫ eqe−β(g+v)v

⏐⏐⏐⏐ .
Using the Cauchy–Schwarz and Poincaré inequalities and κ ≤ u = g + v ≤ λ, which is a pointwise estimate [30]
for the solution of the Poisson–Boltzmann equation, we can write

e−∥q∥L∞
∥∇v∥

2
L2 ≤ I ≤ e∥q∥L∞ (∥∇g∥L2 + C pe|βλ|

+ C pe|βκ|
∥∇v∥L2 ),

where C p is a Poincaré constant and κ and λ are constants. Therefore, we calculate

∥∇u∥L2 ≤ ∥∇v∥L2 + ∥∇g∥L2 (24)

≤ e2∥q∥L∞ (∥∇g∥L2 + C pe|βλ|
+ C pe|βκ|) + ∥∇g∥L2

= (1 + e2∥q∥L∞ )∥∇g∥L2 + C pe2∥q∥L∞ (e|βλ|
+ e|βκ|)

≤ 2C pe2∥q∥L∞ (∥∇g∥L2 + e|βλ|
+ e|βκ|)

= H0e2∥q∥L∞ ,

where H0 := 2C p(∥∇g∥L2 + e|βλ|
+ e|βκ|). Using the definition of H 1-norm and inequality (24), we can write

1
(1 + C2

p)1/2 ∥u∥H1 ≤ ∥∇u∥L2 ≤ H0e2∥q∥L∞ ,

where C p is a Poincaré constant. This leads to

∥u∥H1 ≤ He2∥q∥L∞ , (25)

where H = H0(1 + C2
p)1/2.

To prove inequality (22), we assume that u1 and u2 satisfy (20) with coefficients A1 = eq1 = η1 and
A2 = eq2 = η2. Hence, subtracting the term ∇ · (eq1∇u2), the difference u2 − u1 satisfies the equation

∇ · (eq1∇(u2 − u1)) = ∇ · ((eq1 − eq2 )∇u2) + eq2 (eβu2 − e−βu2 ) − eq1 (eβu1 − e−βu1 ).

Taking the inner product of this equation with u2 − u1 leads to

I : =

⏐⏐⏐⏐∫ eq1∇(u2 − u1) · ∇(u2 − u1)
⏐⏐⏐⏐

=

⏐⏐⏐⏐∫ (eq1 − eq2 )∇u2 · ∇(u2 − u1) + (eq2 (eβu2 − e−βu2 ) − eq1 (eβu1 − e−βu1 ))(u2 − u1)
⏐⏐⏐⏐ ,
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where the inequalities

e−∥q1∥L∞
∥∇(u2 − u1)∥2

L2 ≤ I ≤

⏐⏐⏐⏐∫ (eq1 − eq2 )∇u2 · ∇(u2 − u1)
⏐⏐⏐⏐

+

⏐⏐⏐⏐∫ (eq2 − eq1 )(eβ max(λ1,λ2)
− e−β max(λ1,λ2))(u2 − u1)

⏐⏐⏐⏐
hold because of the triangle inequality and the pointwise estimates κi ≤ ui ≤ λi , i ∈ {1, 2}, for the solution of the
nonlinear Poisson–Boltzmann equation [30], where κi and λi are constants.

Now we use the Cauchy–Schwarz and Poincaré inequalities to find

e−∥q1∥L∞
∥∇(u2 − u1)∥L2 ≤ I ≤ ∥eq1 − eq2∥L∞ (∥∇u2∥L2 + C p|eβ max(λ1,λ2)

− e−β max(λ1,λ2)
|),

where C p is a Poincaré constant. Since eq(x) (x ∈ D) is continuously differentiable, it is Lipschitz continuous by
the Weierstrass Theorem. Thus we have

∥eq2 − eq1∥L∞ ≤ ∥q1 − q2∥L∞emax(∥q1∥L∞ ,∥q2∥L∞ ). (26)

Using inequalities (24) and (26), we obtain

e−∥q1∥L∞
∥∇(u2 − u1)∥L2 ≤ I ≤ ∥q1 − q2∥L∞emax(∥q1∥∞,∥q2∥∞)(e2∥q2∥∞

(
∥∇g∥L2 + C pe|βλ2|

+ C pe|βκ2|
)
+ C p|eβ max(λ1,λ2)

− e−β max(λ1,λ2)
|
)
,

which leads to

∥∇(u2 − u1)∥L2 ≤ ∥q1 − q2∥L∞e4 max(∥q1∥∞,∥q2∥∞)(
∥∇g∥L2 + C pe|βλ2|

+ C pe|βκ2|

+ C p|eβ max(λ1,λ2)
− e−β max(λ1,λ2)

|
)

= S0∥q1 − q2∥L∞e4 max(∥q1∥∞,∥q2∥∞),

where S0 := ∥∇g∥L2 + C pe|βλ2|
+ C pe|βκ2|

+ C p|eβ max(λ1,λ2)
− e−β max(λ1,λ2)

|. Now, we can write

∥u1 − u2∥H1 ≤ (1 + C2
p)1/2

∥∇(u1 − u2)∥L2

≤ (1 + C2
p)1/2(

∥∇g∥L2 + C pe|βλ2|
+ C pe|βκ2|

+ C p|eβ max(λ1,λ2)
− e−β max(λ1,λ2)

|
)

× e4 max(∥q1∥∞,∥q2∥∞)
∥q1 − q2∥L∞

= Se4 max(∥q1∥∞,∥q2∥∞)
∥q1 − q2∥L∞ ,

where S := S0(1 + C2
p)1/2, which completes the proof for the nonlinear equation (20). □

Remark 1. The quantity ∥∇g∥L2(D) is non-zero even if the Dirichlet datum g is a constant. The new variable
v := u − g is defined such that g = g on ∂ D and g is arbitrary in D. Therefore in the (realistic) case of
non-constant g, ∥∇g∥L2(D) is non-zero in D. Hence, even if f = 0, the quantities F , H , and S are non-zero.

We summarize the above results for nonlinear elliptic inverse problems in the following theorem:

Theorem 1. Assume G(q) = u is the observation operator representing the solution u of the real-valued nonlinear
equation (20) in the bounded domain D ⊂ Rn , n ∈ {2, 3}, with a smooth boundary ∂ D and A = exp(q) = η with
q ∈ L∞(D). Then the estimates

|G(q)| ≤ H exp (2∥q∥L∞(D)) (27)

and

|G(q1) − G(q2)| ≤ S exp (4 max{∥q1∥L∞(D), ∥q2∥L∞(D)})∥q1 − q2∥L∞(D) (28)

hold, where H = H (∥∇g∥L2 ) and S = S(∥∇g∥L2 ), which have been defined in Proposition 1.

The estimates (27) and (28) for real and imaginary parts of the solution yield estimates for the complex-valued
equation (20) as well. Therefore, Assumption 2 are satisfied for the general EIT model equations (20), where g is
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Fig. 2. Simulated EIT domain for the test problem containing a circle-shaped inclusion centered at (0.5, 0) with radius of 0.2.

constant at each contact at the surface of the device. This will lead to the main results of the paper, i.e., well-
definedness and well-posedness of the Bayesian inversion problem for linear and nonlinear elliptic problems
including the EIT inverse problem.

The posterior probability measure µy defined by (16) is well-defined if we show that the measure is normalizable.
For well-posedness, the continuity of the posterior measure in the Hellinger metric with respect to the data must be
shown. We state the two main theorems resulting from Proposition 1. The reader is referred to [18] for the proofs.

Theorem 2 (Well-Definedness of the Posterior Measure [18, Theorem 4.1]). Let G satisfy Assumption 2 and assume
that the prior measure µ0 is a Gaussian measure satisfying µ0(X ) = 1. Then the posterior measure µy given by
(16) is a well-defined probability measure.

The following theorem states the well-posedness for inverse problems by showing Lipschitz continuity of the
posterior measure in the Hellinger metric with respect to changes in the data.

Theorem 3 (Well-Posedness of the Bayesian Inverse Problem [18, Theorem 4.2]). Let G satisfy Assumption 2.
Assume also that the prior measure µ0 is a Gaussian measure satisfying µ0(X ) = 1 and that the measure is
absolutely continuous, µy

≪ µ0, with its Radon–Nikodym derivative given by (16) for each y ∈ Y .
Then the posterior measure µy is Lipschitz continuous in the data y with respect to the Hellinger distance,

i.e., if µy and µy′

are two measures corresponding to data y and y′, then there exists α = α(r ) > 0 such that the
inequality

dHell(µy, µy′

) ≤ α∥y − y′
∥Y

holds for all y and y′ with max{∥y∥Y , ∥y′
∥Y } < r .

4. Bayesian inference for the nonlinear EIT model on a test problem and using synthetic data

In this section, we verify the validity of our presented nonlinear model for the EIT forward problem as well as the
proposed inversion method for the backward problem on a test example and using synthetic data. The computational
domain here is a square including a circle inhomogeneity with different material from the background medium (see
Fig. 2).

To solve the forward model, we have used finite-element method on the prescribed test geometry with 8 electrodes
attached to the boundary, which are labeled counterclockwise as electrode 1 to 8, starting from the left bottom. We
assume that the background medium is a continuum dielectric and contains an inclusion centered at (0.5, 0) with a
different material, whose size, charge and conductivity are quantities of interest in solving the EIT inverse problem
here. The choice of the voltage patterns or Dirichlet boundary conditions for the forward problem is important,
since it effects the resulting currents and consequently the conservation of current is affected. As it is observable
in Table 1, we have chosen the voltage pattern by skipping one contact and applying ±0.01 V. The results of
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Table 1
Four different applied voltage patterns (in volts) in an 8-electrode EIT device configuration.
The indices of the voltages are the labels of the electrodes.

Pattern U1 U2 U3 U4 U5 U6 U7 U8

1 0.01 0 −0.01 0 0.01 0 −0.01 0
2 0 0.01 0 −0.01 0 0.01 0 −0.01
3 −0.01 0 0.01 0 −0.01 0 0.01 0
4 0 −0.01 0 0.01 0 −0.01 0 0.01

Fig. 3. Electrical potential (in volts) for the 8-electrode EIT device configuration with an inclusion centered at (0.5, 0). The figures illustrate
four voltage patterns mentioned in Table 1.

the presented forward EIT model (7) on the prescribed geometry are shown in Fig. 3. This figure illustrates the
potential u calculated for four different settings of boundary conditions according to Table 1.

Now everything is ready to solve the nonlinear EIT inverse problem. Our goal is simultaneous extraction of
multiple parameters which reflect physical and electrical properties of the interior body in the framework of our
theoretical results. To this end, we implement an adaptive MCMC method, namely the delayed-rejection adaptive
Metropolis (DRAM) algorithm as a package in the Julia programming language [25,26] to show this inversion
algorithm is capable of dealing with the nonlinearity and ill-posedness of our test problem. Here, the electrical
currents are calculated on the eight electrodes in four different patterns/boundary conditions in the nonlinear
Poisson–Boltzmann equation, which is solved for the parameter values A = 3, R = 0.2, and Q = 1. These
values are used as synthetic data in the Bayesian inversion process.

Fig. 4 displays the marginal histograms of the posterior distributions of the parameters A, Q and R as the
quantities of interest in the EIT problem at hand. This figure illustrates a very good reconstruction results in the
EIT test problem. It is an advantage of the statistical method of Bayesian inference that it gives confidence interval
containing admissible and optimal values for each unknown quantity if we could reconstruct it.
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Fig. 4. Marginal histograms of posterior distributions of the parameters A, Q and R produced by means of the DRAM algorithm using
10 000 samples. The mean of the produced chain and the exact value of the parameters are indicated on the figures.

Fig. 5. Two-dimensional histograms and marginal posterior distributions for the 8-electrode EIT device configuration and for 10 000 samples
obtained by the DRAM algorithm for the parameters A, Q and R. The figures show correlations between each pair of the parameters.

The estimated mean value of the generated posterior chains for the parameter A, R and Q are 3.01, 0.1999988 and
0.94, respectively. Having computed the mean and standard deviation of the chains, we can calculate the interval of
admissible values of the parameters with 95% of confidence. According to Bayesian estimation results, this interval
for parameters A, Q and R respectively are A ∈ [2.76, 3.26], R ∈ [0.199979, 0.200019], and Q ∈ [0.18, 1.69],
which shows a successful reconstruction for each of the EIT unknown quantities in the test problem. Here, the
above mentioned confidence intervals and inferred values are obtained using the complete Markov-chain of size
10 000. However, if we use for example the last 1000 samples as the effective posterior samples, the results are
even better; the confidence intervals of A ∈ [2.80, 3.22], R ∈ [0.199984, 0.200018] and Q ∈ [0.30, 1.66] are
obtained and the inferred values are also much closer to the exact ones: 3.01, 0.2 and 0.98 as mean values of the
unknown parameters A, R and Q, respectively.

Fig. 5 illustrates correlation between each pair of the parameters and their marginal posterior distributions.
Bayesian inference results show that the size of the inclusion can be extracted very accurately. Conductivity
and charge (and charge sign) of the inclusion are the other parameters of interest that can be recovered nicely
using Bayesian inversion. The whole computational method including the forward model solver and the MCMC
calculations is computationally expensive since the physical model must be evaluated for thousands of samples
iteratively. The intensive work is spent on the generation of the mesh due to the fact that the size of the inclusion
is one of the quantities of interest and therefore the process of mesh generation must be iterated for each sample.

To statistically test the correlation between the samples of generated Markov chains, we look at the autocorre-
lation function (ACF). Fig. 6 displays autocorrelation plots for the three Markov chains associated with the three
parameters. The results illustrate independence of samples and good mixing in the generated chains.

5. Bayesian inference for the nonlinear EIT model on a cross-section of leg and using measurement data

In the previous section, we tested the new EIT model and the proposed inversion method on a square domain
with an inclusion using synthetic data and extracted the model unknown parameters, successfully. In this section,
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Fig. 6. Autocorrelation plots of the generated Markov chains by the DRAM algorithm for the three parameters of interest.

Fig. 7. EIT domain: cross-section of a right leg illustrating a schematic of the three subdomains (left) and the discretization by a FEM
mesh (right) used for solving the forward problem.

our aim is to establish the new nonlinear model by applying the methodology on a real-world problem, namely the
extraction of muscle conductivity in a cross-section of a human right leg using measurement data. As we already
mentioned, the presented model is able to distinguish liquids due to the nonlinear term, and therefore the electrical
properties of a muscle in the body can be estimated more precisely, which leads to design of reliable EIT sensors
and the reconstruction of higher resolution images. First, we describe the computational domain and illustrate the
numerical solution of the proposed EIT model on the domain. Then we explain the measurement data collection
and present the numerical results of the inversion method.

5.1. The computational domain and the solution of the forward problem

The computational domain is a cross-section of a human right leg, where eight electrodes are attached to its
boundary. Fig. 7 (right) shows the domain with finite element discretization. In this figure (left), three different
subdomains are displayed: the first subdomain is a circle bone (in dark blue) surrounded by the second subdomain
muscle (in brown), which itself consists of many partitions, and the rest is fat (in blue). Each subdomain has its
own electrical conductivity and in the solution of the forward problem the FEM mesh is aligned with the inclusions
such that each element has a constant value for the coefficient A.

To solve the nonlinear forward problem, we have used the first order Galerkin finite element method on the
three subdomains. In this geometry, eight electrodes are attached to the boundary, which are labeled clockwise as
electrode 1 to 8, starting from the top. In the simulations, we assume that voltages of ±10 V are applied to the
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Fig. 8. Solution of the nonlinear forward problem (in volts) using neighboring injection method for a cross-section of a right leg.

injection electrode pairs under the neighboring/adjacent method. Fig. 8 displays the obtained electrical potential as
the solution of the model on the cross-section of the right leg using eight injection patterns.

5.2. Measurement data collection and solution of the inverse problem

Here, we aim to solve the EIT inverse problem corresponding to the nonlinear model that we solved in Section 5.1
on the cross-section of a right leg using real-world surface electrode measurements. The goal is to identify the
electrical conductivity of muscle tissue inside the leg. To solve this ill-posed and nonlinear inverse problem and
reconstruct the conductivity of muscle tissue, we propose the Bayesian techniques, and in particular an adaptive
MCMC method, namely the DRAM algorithm, which has already proved its capability for solving such sophisticated
inverse problems on an EIT test problem in Section 4. For Bayesian analysis of this real-world example, we
use measured data and the neighboring injection method. The reported interval for the muscle conductivity by
Gabriel [39] is [0.02, 0.6] S/m. The reconstruction result shows an acceptable interval of [0.03, 0.10] S/m for the
parameter value with 95% of confidence and the mean value of 0.07 S/m (see Fig. 9).

To interpret the results generated by the Bayesian estimation method, we look at how independent the produced
samples are and how good the mixing of the chains is. To this end, we calculate the autocorrelation between the
samples of the posterior chain [40]. Fig. 10 illustrates autocorrelation plot of the estimated posterior Markov-chain
using all the measurement data, which is indicated as the main chain. This figure also shows ACF plots for each
of injection patterns.



L. Taghizadeh, A. Karimi, B. Stadlbauer et al. / Computer Methods in Applied Mechanics and Engineering 365 (2020) 112959 15

Fig. 9. Posterior distribution of the reconstructed conductivity of muscle using the nonlinear forward model for the cross-section of a right
leg.

Fig. 10. Autocorrelation plots of the posterior chains of eight experimental patterns and the main posterior chain using all the measurement
patterns simultaneously.

6. Conclusions

In this work, we presented a comprehensive physical model for electrical-impedance tomography sensors with
applications in medicine and healthcare. The developed EIT model has the advantage of distinguishing between
liquids and tissues in the body, which is crucial to design a reliable EIT sensor for high resolution images. In
EIT applications, for instance in medicine, there are big data sets of measurements which need to be statistically
analyzed to infer the electrical properties in order to help diagnosis and treatment. To this end, we proposed Bayesian
inversion methods and formulated the methodology for the new governing model in a measure-theoretic framework
and in an infinite-dimensional setting and then proved well-definedness of the posterior measure and well-posedness
of the Bayesian inversion for the presented nonlinear model. We checked the validity of the new model and the
proposed inverse method first on a simple domain including an inhomogeneity with different electrical properties
from the background medium and using synthetic data in order to reconstruct conductivity, charge and size of the
inhomogeneity. Then we established the methodology by applying it on a real-world application in medicine using
measurement data to reconstruct the electrical conductivity of muscle tissue in a cross-section of a human leg.
The numerical results illustrate a reliable reconstruction due to the established reported database for the admissible
electrical conductivity of tissues.
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